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Abstract

Soil structure is a key factor that supports all soil functions. Extracting intact 

soil cores and horizon specific samples for determination of soil physical 

parameters (e.g. bulk density (Bd) or particle size distribution) is a common 

practice for assessing indicators of soil structure. However, these are often 

difficult to measure, since they require expensive and time consuming 

laboratory analyses. Our aim was to provide tools, through the use of machine 

learning techniques, to estimate the value of Bd based solely on soil visual 

assessment, observed by operators directly in the field. The first tool was a 

decision tree model, derived through a decision tree learning algorithm, which 

allows discrimination amongst three Bd ranges. The second tool was a linear 

equation model, derived through a linear regression algorithm, which predicts 

the numerical value of soil Bd. These tools were validated on a dataset of 471 
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soil horizons, belonging to 201 soil profile pits surveyed in Ireland. Overall, the 

decision tree model showed an accuracy of ~60%, while the linear equation 

model has a correlation coefficient of about 0.65 compared to the measured Bd 

values. For both models, the most relevant property affecting soil structural 

quality appears to be the humic characteristics of the soil, followed by soil 

porosity and pedogenic formation. The two tools are parsimonious and can be 

used by soil surveyors and analysts who need to have an approximate in-situ 

estimate of the structural quality for various soil functional applications.

Keywords: soil bulk density, soil structure, soil quality, machine learning

1. Introduction

The importance of soil structure in relation to soil quality is well known 

(Mueller et al., 2009; Karlen, 2004; Kay et al., 2006). A commonly used soil 

physical measurement to characterize soil structural quality is soil bulk density 

(Bd) (Armindo and Wendroth, 2016; Dam et al., 2005; Håkansson and Lipiec, 

2000; Logsdon and Karlen, 2004; Moncada et al., 2015), which is defined as the 

oven-dry mass per unit volume of soil (IUSS Working Group, 2006; Mueller et 

al., 2009). Measurement of soil Bd is useful as it describes both the packing 

structure of the soil and its permeability (Dexter, 1988), whereby drainage 

characteristics can be inferred (Reidy et al., 2016). Bd measurement is often 

used in agronomic studies as it indicates the presence of compacted layers 

resulting from machinery or animal traffic (Reidy et al., 2016; Saffih-Hdadi, 

2009), which may affect crop production. It is commonly considered an 

efficient measurement of soil carbon and nutrient stocks (Ellert and Bettany, 

1995; Reidy et al., 2016). 
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However, the process of measuring Bd is often time consuming and open to 

human bias in the field and requires accurate laboratory analyses using trained 

personnel. Furthermore, soil texture has an important influence on the 

assessment of Bd e.g. in soils with high clay or sand content, or very humic 

soils, it may be difficult to obtain a representative sample and large variability 

between replicate samples can represent a problem. Also, in some soils the 

presence of stones can make sampling almost unmanageable. For such reasons, 

or constraints of budget or laboratory facilities, Bd measurements are commonly 

missing from soil databases (Reidy et al., 2016). 

The main methods employed for the prediction of Bd are pedotransfer functions 

(PTF) methods, based on measurable soil attributes, such as organic carbon 

(OC) and clay content (Kaur et al., 2002; Leonavičiutė, 2000; Reidy et al., 

2016). However, many of these methods ignore horizonation and depth 

variances for soil Bd prediction (Reidy et al., 2016). Furthermore, the nature of 

these methods, based on chemical/physical or landscape parameters, do not 

capture the intrinsic nature of the soil structural properties. 

Our experience with respect to soil descriptions and classification has shown 

that the visual observations collected in the field at horizon level are often very 

important for the evaluation of soil quality (Fenton et al., 2017; 2015) and they 

become essential during the interpretation of the trend of some analytical 

parameters used as indicators of soil structure status e.g. Bd. 

Soil structural quality has been assessed visually for millennia (Batey, 2000) 

e.g. soil survey manuals used in the field such as the Soils Survey Division Staff 

Manual (1993) or the WRB for soil resources (FAO, ISRIC and ISSS, 1998) 

include soil structure visual observations. However, soil scientists, for a long 

time, have presented repeatable procedures for the examination of soil structural 
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form, stability and resilience (see latest review by Emmet-Booth et al., 2016 

with examples from 1940’s to present; Ball and Munkholm, 2015).

Taking this into account, in the present work we investigated whether, and to 

what extent those visual observations, called descriptors, can be used to predict 

soil Bd, which is considered one of the most efficient indicators in the 

assessment of soil structure quality (Moncada et al., 2015). 

In order to achieve this objective, machine learning techniques were used. The 

potential of machine learning techniques have been rediscovered in the last few 

years through various applications in environmental sciences. 

Worldwide, decision tree approaches have been used for different purposes: 

identifying sources of soil pollution (Xue et al., 2015); describing the extension 

of different forms of soil erosion in Mexico (Geissen et al., 2007); predicting 

chemical soil properties at national level in Australia (Henderson et al., 2005); 

classifying the surface soil freeze/thaw status in China (Jin et al., 2009) and 

even studying of soil structure through the prediction of soil hydraulic 

properties (Pachepsky and Rawls, 2003). However, limited literature has been 

found on the use of these powerful tools for environmental science in Europe. 

The decision tree model output applied in this paper is based on a series of rules 

generated by the software, which can be visualised as paths starting from the 

root of the decision tree and ending at one of the leaves (Bhargava et al., 2013; 

Xue et al., 2013; Xue et al., 2015). Each of those paths corresponds to one or 

more soil descriptors, which are related to an internal node (Henderson el al., 

2005). The model is able to examine all possible descriptors and then to select 

the most decisive splitting attribute (Xue et al., 2013). This operation occurs 

several times until all the instances are correctly classified in a set of rules. Each 

descriptor included in the model corresponds to a more defined level of 

classification. 

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236



5

The linear regression model applied in this paper is a classical statistical 

technique used to predict numerical data. It is based on the modelling of the 

relationship between a scalar dependent variable and one or more explanatory 

variables. 

With our work we want to:

(i) Provide an operational strategy to estimate a range of Bd values, based on the 

visual soil parameters by means of a decision tree approach. This model can be 

used as a field tool to predict a general class of Bd (Low, Medium and High). It 

is an instrument able to discriminate between macro classes and has to be 

considered as a descriptive tool for qualitative estimation.

(ii) Propose an algorithm that can predict a numerical estimate of Bd. This 

second model should discriminate better between smaller increments. This 

instrument has to be considered as a more refined tool for quantitative 

estimation.

2. Methods

2.1 Primary data source and descriptors

Two pedological surveys, where full soil profile descriptions and supporting 

laboratory analyses, were carried out in Ireland with the aim of defining a 

coherent and homogeneous way to study soil formation, functions and quality: 

1. The Irish Soil Information System (Irish SIS) project was established in 

2008. It aimed to conduct a programme of structured research into the 

national distribution of soil types and construct a soil map, at 1:250,000 

scale, able to identify and describe the soils according to a harmonised 

national legend. Irish SIS included more than 225 sites distributed around 

Ireland (Creamer et al., 2014). 
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2. The Soil Quality and Research project (SQUARE) started in 2013. The 

aim was to establish a baseline of soil quality in Ireland. The SQUARE 

soil survey included 38 grassland sites distributed within the five major 

agro climatic regions of Ireland defined by Holden and Bereton (2004) 

and classified into two drainage classes on the basis of the Irish Soil 

classification System. 

During both (1) and (2) profile pits approximately 1 m deep, were observed and 

described by different operators. For the present study data from 201 profiles 

(168 Irish SIS, 33 SQUARE) was extracted from the larger database to cover a 

wide variety of Irish soil types with a specific focus on mineral soils. This data 

represents 471 horizons (http://gis.teagasc.ie/soils/map.php). 

Although different surveyors worked across the projects mentioned, a 

systematic procedure was applied to describe the nature of the soil profiles, 

which included each of the soil horizons. Training was given to field operators. 

Using knowledge of soil structure and quality, the operators followed a widely 

understood schema of observation (developed by FAO through the Guidelines 

for Soil Description in 2006) which was able to investigate and finally 

characterize soil structure through visual parameters (FAO, 2006; FAO, ISRIC 

and ISS, 1998). Herein we have selected eleven descriptors presented in Table 1 

(justifications are provided in Table 1), which may be considered the most 

important for the qualitative judgment of soil structure. Each descriptor was 

described and recorded on the basis of a set of pre-defined categories, reported 

in Table 1 in the Supplementary Material.

2.2 Soil analysis

The procedure to determine Bd of intact cores is a version of the ISO 

11272:1998 – Soil Quality Part 5: Physical methods Sect. 5.6 – Determination 

of dry bulk density. The primary difference between the ISO and the applied 
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methodology is that the ISO does not account for stone mass and volume in its 

core method, whereas the methodology applied in this study includes the 

following equation to calculate Bd (stone free):

Bd (g cm-3) =                                                                Eq 1(𝑀𝑑 ‒ 𝑀𝑠)/(𝑉 ‒ 𝑉𝑠)

where; Md: oven dry soil material weight (g), Ms: oven dry stone weight (g), V: 

volume of soil core (cm-3), Vs: volume of stones (mL). Soil Bd values reported 

in this paper correspond to the mean of the three values obtained for each 

horizon sampled.

2.3 Model frameworks

Two models were built by means of the modelling tool WEKA (Waikato 

Environment for Knowledge Analysis). WEKA 3.8 is open source software for 

machine learning and data mining under the General public license developed at 

the University of Waikato in New Zealand 

(http://www.cs.waikato.ac.nz/ml/weka, Bhargava et al., 2013). This software 

includes different implementations of several machine learning algorithms. In 

our context, we used two specific algorithms that are made available by the tool, 

namely:

• the j48 algorithm, which corresponds to the WEKA’s implementation of the 

C4.5 decision tree learner (Quinlan, 1993; Xue et al., 2015) which was used 

to build Model (1);

• a linear regression algorithm, used to build the Model (2). The M5 Method 

was used as attribute selection method for the linear model presented.

Two models were produced to achieve the objectives of our work:
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• Model (1) is based on a classic decision tree model, developed to be used in 

the field in order to predict a Bd class using only visual descriptors as in 

Table 1. 

• Model (2) is a linear regression model that uses the same in-field descriptors 

as above, and it is able to predict a numerical value of Bd with a relatively 

small error. 

The proposed two models are both descriptive and predictive, but the decision 

tree is better at exploring in a descriptive way the relationship between Bd and 

visual parameters, as it allows further analysis of the soil pertaining to that soils 

own chemical and physical characteristics. On the other hand, the linear 

equation algorithm is stronger as a predictive tool and it offers a more precise 

estimate of Bd.

2.3.1 Data treatment 

The entire database consists in 201 sampling points (profile pits) for a total of 

471 horizons. For each horizon eleven descriptors and Bd data were used to train 

Model (1) and Model (2). The treatment of data can be summarized as follows:

• Data cleaning: to produce a full dataset, time was invested to ensure the data 

homogeneity between Irish SIS (649 horizons) and SQUARE datasets (125 

horizons). In particular, descriptor rating options were double checked to 

reaffirm consistency across projects. To achieve uniformity within the 

dataset some data conversions were necessary. The final dataset consisted of 

471 horizons i.e. 346 from Irish SIS and 125 from SQUARE.

• Missing values imputation: an initial analysis of the dataset highlighted the 

presence of some missing values for part of the considered descriptors, 

namely: “Fissure size”, “Void size”, “Void abundance” and “Soil 

consistency”. To avoid further reductions of the dataset, an IMRI imputation 

(performed by the WEKA 3.8 software described above) was selected as the 

means to predict missing values (Templ et al., 2011).
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2.3.2 Model 1: Decision tree model, validation and outputs

Model (1) has been designed to predict classes of Bd data through the 

combination of the 11 visual descriptors outlined in Table 1. The model has 

been trained using Bd data at horizon level. The predicted classes of Bd are:

(i) Low Bd class: < 1.0 g cm-3 (n=137 cases)

(ii) Medium Bd class: between 1.0 and 1.4 g cm-3(n=178 cases)

(iii) High Bd class: > 1.4 g cm-3 (n=156 cases)

Class ranges were selected on the basis of their homogeneity in terms of class 

population. The Bd measured in the majority of mineral soils under agricultural 

management in Ireland occur typically within the 1.0 and 1.4 g cm-3 range. 

Values of < 1.0 g cm-3 are usually related to Ombrotrophic or Mineratrophic 

Peat Soils (which correlates with the Histosol reference soil group of the WRB 

(IUSS Working Group WRB, 2006) or mineral soils having a Histic horizon 

(Reidy et al., 2016). Therefore 1.0 g cm-3 was selected as the lower Bd threshold 

e.g. herein 16 cases out of 137 belonged to the Low Bd class as Oh, Op, Of or 

Omf. The higher threshold (1.4 g cm-3) was empirically chosen to best fit these 

data. In particular, multiple decision tree models were trained by varying the 

threshold between 1.1 g cm-3 and 1.8 g cm-3, in 0.1 intervals. The model trained 

with the 1.4 g cm-3 threshold outperformed, other model runs in terms of 

accuracy.

The decision tree produced herein can be easily converted into classification 

rules. Each path in the tree that goes from the root to one of the leaves defines 

one classification rule. In our case each rule categorises the data in Bd Low, 

Medium and High classes. The knowledge represented in a decision tree can be 

extracted and represented in the form of the classification rule IF-THEN as 

follows:
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If {condition A} AND {condition B} AND {condition C} AND {…} then 

categorization.

In our case:

If 

the horizon is described as HUMOSE

then

the horizon fits into the bulk density category “Low”= <1 g cm-3

A pruning technique is automatically performed by the WEKA software. This 

allows the identification and the removal of the outliers reducing the risk of 

overfitting to the training data (Bhargava et al., 2013). When decision trees are 

built, many of the ramifications can represent noise or outliers in the training 

data. The pruning process tries to identify and remove these branches with the 

aim of improving the accuracy of classification of future data. The next step was 

to prune the dataset to identify and remove branches which do not improve 

prediction with the aim of improving the accuracy of classification of future 

data. 

A10-fold cross validation method was adopted, which randomly partitions the 

dataset into 10 parts and is used to validate the model. Then nine parts of the 

dataset were used to train the model, with the last part used for model testing 

(see Xue et al., 2015 for a similar approach).  

Two measures were applied to evaluate the model performance; precision and 

recall values were calculated. Precision indicates how many of the instances 

were classified within a certain class that actually belong to that class. Whereas 

recall indicates how many of the instances that belong to a certain class are 
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correctly classified by the model. To explain these measures further, it is useful 

to introduce the concepts of true positive, false positive and false negative. 

Given a class C, we define true positives tp as the number of instances labelled 

as C in the original dataset, and classified as C by the decision tree; false 

positives fp as the number of instances not labelled as C in the original dataset, 

and incorrectly classified as C by the decision tree; false negatives fn as the 

number of instances labelled as C in the original dataset, and not classified as C 

by the decision tree. Given these definitions, precision pC and recall rC for the 

class C are defined as follows:

pC = ;                                                                                              Eq 2
𝑡𝑝

𝑡𝑝+ 𝑓𝑝

 rC =                                                                                               Eq 3
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
Precision is negatively influenced by the number of false positive cases. 

Whereas, recall is negatively influenced by the number of false negative cases. 

High scores for precision and recall show that the classifier is returning accurate 

results (high precision, related to low false positive rates), as well as returning a 

majority of all positive results (high recall, related to a low false negative rates). 

As no baseline algorithms were available, or proposed in other publications, 

against which to evaluate the performance of our Model (1), we resort to 

comparing it with a random predictor baseline, i.e. a fictional algorithm that 

randomly predicts the class of an instance (Alvaretz, 2002).

Let n be the total number of instances, and let c be the number of instances of 

class C, the precision and recall of a random predictor for the class C is given 

by:

 pC = rC = c / n                                                                                            Eq 4
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Besides precision and recall for each class, we also evaluated the average value 

of these measures. In addition, we evaluated the harmonic means of precision 

and recall, which is normally called F-measure, and is defined as follows: 

F-measure=                                                                                Eq 52 ∗
𝑝𝑐 ∗ 𝑟𝑐
𝑝𝑐 + 𝑟𝑐

Finally, as an overall indicator of the ability of the decision tree to correctly 

classify the instances, we evaluated the overall accuracy, which is defined as 

follows:

Accuracy (%) =                                                                  Eq 6
𝑡𝑝+ 𝑡𝑛

𝑡𝑝+ 𝑡𝑛+ 𝑓𝑝 + 𝑓𝑛

2.3.3 Model 2: Linear regression model, validation and outputs

Using data from the visual parameters (Table 1), a linear equation that predicted 

an exact Bd value was developed. 

As for Model (1), Model (2) was learned using Bd data at horizon level and 

produced by means of the WEKA software, using a linear regression algorithm. 

For this experiment these data were converted into numerical binary data, since 

the linear regression algorithm takes numerical data as input. In particular, for 

each value taken by each descriptor, a binary variable was created that takes 

either 0 (False) or 1 (True) as values. The variable was 1 if the descriptor had 

the value associated to the variable, and 0 otherwise. 

The model builds a linear equation based on a weighted combination of the 

possible values taken by the 11 descriptors. In particular, the linear model has 

the following form:

Bd (g cm-3) =                                                                            Eq 7∑𝑛𝑖 = 0𝐶𝑖 ∗  𝑉𝑖
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where Ci are the coefficients computed by the linear regression algorithm. Vi 

are the binary variables. The linear regression algorithm is designed to select 

only those variables that have an influence on the final Bd value. Hence, the 

final model will not include all the possible variables, but only a subset. A 10-

fold cross validation was performed to validate the model as described in par 

2.3.2.

For Model (2) we could not evaluate the performance through precision and 

recall, since numerical values are involved instead of categorical ones, but we 

evaluated it in terms of correlation coefficient, root mean squared error, and 

mean absolute error:

The Root Mean Squared Error (RMSE) gives an estimation of the standard 

deviation of the error (Henderson et al., 2005). The lower is RMSE the higher is 

the predictive ability. Where n is the size of the dataset and  is the predicted 𝑦𝑡
value, the formula is defined as follows:

RMSE=                                                                     Eq 8
1
𝑛∑

𝑛
𝑡 = 1(𝑦𝑡 ‒ 𝑦𝑡) 2

The Mean Absolute Error (MAE) is a quantity used to measure how close 

predictions are to the eventual outcomes. The mean absolute error is also known 

as the mean absolute deviation (Henderson et al., 2005). The lower the MAE 

value the higher is the predictive ability.

MAE=                                                                              Eq 9
1
𝑛∑

𝑛
𝑡 = 1|𝑦𝑡 ‒ 𝑦𝑡|
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3. Results and discussion

3.1 Model 1: Decision tree approach to assess Bd classes

3.1.1 Model performances

The number of rules generated by the decision tree algorithm was 41 in total; 

11, 13 and 17 for Low, Medium and High respectively (all the rules are reported 

in Table 2 in the Supplementary Material). The overall tree is reported in was 

unpacked into three sub-trees, one for each Bd class, to increase output 

readability (Figure 1s 1-3). The decision tree hierarchy consists of six levels 

(level 1 has the highest classification power) of depth as follows:

Level (1): Humose

Level (2): Structure type

Level (3): Macropores Size/Void Size/Void Abundance/Plasticity

Level (4): Structure Grade/Stickiness

Level (5): Fissures

Level (6): Structure size 

The descriptor “soil consistency” was excluded by the tree hierarchy, showing 

no influence on the prediction of Bd ranges. To discuss these results, it is useful 

to associate the different levels and hence, the corresponding descriptors, to 

specific soil quality properties. Broadly the descriptors that remained in the 

analysis fell into 4 main groups in order of importance as follows: 

(i) soil humic characteristics; explained by level (1); 

(ii) pedogenic formation; explained by level (2); 

(iii) soil porosity; explained by level (3);

(iv) soil cohesive properties; explained by level (3-4). 

The majority of the 41 rules were classified within the first three hierarchical 

levels highlighting the importance of these soil structural descriptors in 

quantifying Bd class. In general the parallelism between soil aggregation 

mechanisms, soil intrinsic characteristics related to soil forming factors, and the 
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arrangement of solid and voids with their capacity to retain and transmit fluids, 

resulted in the main factors being capable of explaining soil Bd.

The overall accuracy shows that the model correctly classified 71% of the 

training data (Table 2). However, after the 10-fold cross validation step the 

model was able to correctly predict 60% of the cases (Table 2). The confusion 

matrix shows that mis-categorisation does not occur from Low to High Bd 

classes and vice versa, but can occur from Low to Medium (46 cases) and from 

High to medium (52 cases) (Table 3). The cause of lower model performance 

can be clarified by looking at the branches of the decision tree that miss-classify 

the highest number of instances (for discussion see par. 3.2.1).

The decision tree model was evaluated using the random predictor method (see 

par. 2.3.2). Performances are the following: 

Low: pL = rL = 137/471 = 0.29. 

Medium: pM = rM = 178/471 = 0.37. 

High: pH = rH = 156/471 = 0.33.

For the Low Bd class, the decision tree outperforms a random predictor by 40% 

in terms of precision and by 25% in terms of recall; for the Medium Bd class, by 

16% in terms of precision and by 26% in terms of recall; for the High Bd class 

by 30% in terms of precision and by 29% in terms of recall. These figures 

indicate that, although the accuracy indicates poor performance for the Low Bd 

class, the prediction for this class in terms of precision is actually the best 

amongst all 3 classes. This is due to the lower number of Low Bd instances, 

which are harder to detect for a random classifier, and that our algorithm 

predicts with a substantially higher degree of precision. Overall, the 

classification produced by the model is considerably better than a random 

classification. 

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885



16

3.1.2 Rules analysis 

Figures 1-3 shows the decision tree generated for each Bd class with the 

corresponding instances classified for each rule and the percentage of accuracy, 

which refers to the percentage of true positive cases found by the model for the 

rule discussed. Rules classifying less than two instances are not reported in 

these figures. 

• Level 1: “Humose”

The “Humose” descriptor emerges as the most dominant discriminator. All the 

horizons that highlight the presence of the “humose” feature following the rule 

“Humose: yes”, fit in the category Low Bd. The model correctly classifies 

85.9% of n=64 instances for this rule with relatively few false positive cases.

The humose feature refers to an estimation of the level of humification of the 

organic material, so it is indirectly related to the C content. In fact, soil OC 

content gives an indication of decomposition rates which have a direct effect on 

soil aggregation (Bronick and Lal, 2005; Schulten and Leinweber, 2000). The 

presence of humic substances, as well decomposed organic matter (OM), 

contributes to the stability of soil aggregates and pores through the bonding or 

adhesion properties of organic materials, such as bacterial waste products, 

organic gels, fungal hyphae and worm secretions and casts. Moreover, OM 

intimately mixed with mineral soil materials induces increased moisture holding 

capacity and air exchange with the atmosphere (Stevenson, 1994). This 

mechanism is reflected by lower values of Bd, resulting in enhancement of soil 

porosity producing a good soil structure.

When the humose feature is recorded as absent, the model switches to level 2 

for further refinement. 
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• Level 2: “Structure Type”: Granular

“Structure Type” was the most discriminating descriptor at the second level of 

the tree hierarchy. Here the tree branches out to account for the effect of 

different types of structure. 

For the rule “Humose: no, AND Structure type: Granular” the model classified 

23 cases as belonging to the Low Bd class, with an accuracy of 56.5%. Despite 

the high number of false positives, the amplitude of the group is among the 

highest, showing its reliability. 

Granular aggregates are spheroids or polyhedrons aggregates of soil, having 

curved or irregular surfaces (FAO, 2006), they are normally associated with 

highest air capacity, and are an indicator of good soil structure (Mueller et al., 

2009). Such cases are mostly A horizons, not deeper than 30 cm. Root mass, 

density, distribution and turnover, can positively influence the soil particle 

aggregation by releasing a variety of compounds, (such as root exudates) and 

can contribute to increased soil porosity  through mechanical action (Bronick 

and Lal, 2005; Caravaca et al., 2002). This is reflected in the Bd, resulting in 

lower values.

• Level 2: “Structure Type”: Subangular Blocky → Level 3, 

“Macropores Size” → Level 4 ”Structure Grade”

In presence of the “Subangular Blocky” structure type the tree branches split 

again, going deeper into the third hierarchical level of tree structure, showing 

the “Macropores size” descriptor as the next level of description. For the rules 

“Humose: no, AND Structure type: Subangular Blocky AND Macropores: (A), 

(B), (C), (D)”.:

(A) Coarse (C 5.0-20.0 mm): 50% accuracy when classifying Low Bd class. 

(B) Fine (F 0.5-2.0 mm): for subangular blocky aggregates, 66.1% accuracy 

when classifying Medium Bd class. This is a rule that has a higher number of 
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instances (n=92), which balances the presence of a relatively high number of 

false positives. For angular blocky aggregates, 72.7% accuracy when classifying 

Medium Bd class (n=11).

(C) Very Fine (VF< 0.5 mm): 66.7% accuracy when classifying High Bd class.

(D) Medium (M 2.0-5.0 mm): 100% accuracy when classifying Low and 

Medium Bd class.

Subangular blocky structure type is described as cube like with a flat surface 

and rounded corners (FAO, 2006; Schoeneberger et al., 2012) and is considered 

an indicator of an intermediate degree of soils structure quality, between the 

granular/crumbly aggregates and the blocky/sharp angular ones. Results for this 

structure type show that the size of the macropores is a crucial variable to 

discriminate in terms of Bd classes, as Bd is very sensitive to both alteration of 

macroporosity abundance and size of pores (Mueller et al., 2009). In particular 

the higher the macropore size, the lower the Bd class predicted by the model. 

For the rule (A), horizons fitting the Low Bd class are mostly Ap horizons, 

corresponding to the upper soil layers (maximum depth of 22 cm). Earthworm 

activity is mainly concentrated in the top soil (Haynes and Naidu, 1998; Lee and 

Foster, 1991), which promotes macropores (C 5.0-20.0 mm) which in turn can 

alter soil porosity thereby affecting the movement of air, water and solutes 

(Shipitalo and Le Bayon, 2004). For the rule (B) and (C) medium and high Bd 

are associated with macropore sizes from 0.5 mm to 2.0 mm. The cases 

following these two rules are mainly classified as A or B horizons for the 

medium Bd class (average maximum depth of ~40 cm) and as B horizons for the 

higher Bd class (average maximum depth of ~60 cm). At such depths roots 

become thinner resulting in reduced porosity and higher Bd. Furthermore, Bd 

often increases exponentially in the deeper horizons due to compaction resulting 

from an increase in clay material or as result of management operations. 
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The medium class of macropores (M 2.0-5.0 mm) insufficiently defines the Bd 

range and must be assisted by another splitting attribute which is triggered at 

level four. The “Structure grade” is identified by the model as an important 

variable to discriminate between the Low and Medium Bd class for this 

macropores size. The rule (D) is consequently developed as follows:

• “Humose: no, AND Structure type: Subangular Blocky AND Macropores: M 

2.0-5.0 mm AND Structure grade: Moderate”; which predict Low Bd class 

(100% correct instances).

•  “Humose: no, AND Structure type: Subangular Blocky AND Macropores: 

M 2.0-5.0 mm AND Structure grade: Weak”; which predict Medium Bd class 

(100% correct instances).

FAO (2006) defines soils by describing the lack (apedal) or the presence (pedal) 

of a defined structure. A moderate structure grade, showing the presence of a 

nicely structured soil, was associated with a Low Bd class. Medium Bd classes 

are associated with a weak structure grade, synonymous of a lower structure 

quality. However, herein cases classified for these two rules were similar in 

terms of actual Bd values. In particular, cases classified as Low Bd had actual 

values very close to the upper limit of this category (values between 0.9 and 1.0 

g cm-3) and the cases classified as Medium Bd had actual values close to the 

lower limit of this category (values between 1.0 and 1.16 g cm-3). Considering 

the narrow range of values for these cases across the Low and Medium Bd 

categories the model correctly discriminates between categories. 

• Level 2: “Structure Type”: Angular Blocky → Level 3, “Void Size” 

→ Level 4 ”Stickiness”

The “Angular Blocky” aggregates belong to the blocky category as for the 

subangular blocky aggregates, but differ as they have faces intersecting at 

relatively sharp angles (FAO, 2006; Schoeneberger et al., 2012). In the presence 

of this structure type i.e. a typical indicator of a poorly structured soil, the 
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model returns “Void size” as the next, most important, descriptor. This 

descriptor indicates the total volume of pores discernible with a *10 hand-lens 

(FAO, 2006). It differs from macroporosity as it is a much wider term that 

includes soil fissures and plane (FAO, 2006). Macropores are mostly 

determined by plant roots through the twisting activity within and around 

aggregates, and by zoological exploration, through burrowing activity, so they 

are usually larger pores having a size higher than 75 μm (Russell, 1975). 

However, here macropores and voids are described in terms of size, so a high 

void size can correspond to a high macropores size. Therefore, it is important to 

highlight here that although different from a semantic point of view, the 

combination of these two descriptors was very effective in explaining soil 

porosity. 

For the rule “Humose: no, AND Structure type: Angular Blocky AND Void 

size: C 5.0-20.0 mm” the model returned 75% of correct instances for the class 

Low Bd. Although the structure type indicated was often that of a very poor 

structured soil, characterised by large, angular and sharp aggregates, this effect 

was mitigated by the presence of a very high overall porosity, resulting in a 

Low Bd (Pagliai and Vignozzi, 2002).

The rule “Humose: no, AND Structure type: Angular Blocky AND Void size: 

VF <0.5 mm”, returned High Bd class with 76.9 % accuracy. Also this rule was 

quite wide in terms of population (n=26). In this case the poorly structured 

horizons were associated with the smallest size of pores. The cases are mainly 

classified as Bg, BCg, Cg or Eg horizons, with an average depth ranging from 

42 to 72 cm. For such cases, gleying is caused by surface water which has been 

held in a poorly permeable horizon, (mainly belonging to surface water gley soil 

type (Stagnosols reference soil group of the WRB). These poorly permeable 

layers showed evidence of compaction due to one or more of the following 

characteristics: (i) presence of a pan, resulting in severe compaction imposed by 
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management, (ii) poor structural development, (iii) very heavy textured 

horizons dominated by silt and clay and (iv) natural impeded horizons due to 

soil formation and profile development mechanisms. 

Furthermore, the presence of some argillic horizons classified as Btg following 

this rule, as well as having gleyic features, showed the presence of clay-sized 

material in coatings or as intrapedal concentrations (FAO, 2006). Clay content 

physically affects particle aggregation through swelling and dispersion, 

resulting in contiguous peds which fit together eliminating space (Attou et al., 

1998; Bronick et Lal, 2005; Kay, 1998; Russel, 1975).

When the void size is classified as belonging to the middle category (Humose: 

no, AND Structure type: Angular Blocky AND Void size: F 0.5-2.0 mm), 

“Stickiness” was selected by the model as the next most informative descriptor, 

associating Medium Bd class with the “Non Sticky OR Slightly Sticky” feature 

(50% and 63.6% accuracy, respectively), and the High Bd class with the 

“Sticky” feature (accuracy of 75%). The rules’ population size was n=44, n=22 

and n=12, respectively and therefore must be considered an important branch of 

the overall tree. As the stickiness property is considered an indirect indicator of 

the clay content in soil, the results confirmed that the presence of clay material 

was one of the characteristics which makes the soil prone to compaction, or at 

least significantly decreases the level of porosity. Even in the presence of a 

relatively higher porosity, clay content was crucial to force a split in Bd classes, 

thereby attributing higher Bd values to heavier textured soils.

 “Plasticity” appears at the third depth level of the decision tree for the 

structure type Angular Blocky to Granular. Like stickiness, plasticity is directly 

related to the clay content (FAO, 2006). Horizons classified as “Plastic OR 

Slightly plastic AND Macropores size: Very Fine (VF< 0.5 mm)”, fit into the 
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High Bd class, highlighting the link between high values of Bd and clay content 

(accuracy respectively of 100% and 66.7%).

• Level 2: “Structure Type”: Prismatic → Level 3, “Void Abundance” 

→ Level 4 ”Structure Grade” → Level 5: “Fissures”→ Level 6: 

“Structure Size”

The “Prismatic” structure type is described by FAO, (2006) and by 

Schoeneberger et al. (2012) as having vertical elongated units with limited faces 

in the horizontal plane. Horizons having prismatic to angular blocky aggregates 

are classified by the model within the High Bd class (accuracy, 62.5%). The 

average depth ranges within 53-95 cm, classified across a number of soil types 

e.g. typical surface water gleys (Stagnosols reference soil group of the WRB), 

typical luvisols (Luvisols), typical brown podzolic (Podzols) and typical 

calcareous brown earths (Calcaric Cambisols). Different soil types are subjected 

to different mechanisms of soil particle aggregation which can exert a degree of 

compaction in a specific horizon, due to their intrinsic nature or to a 

combination of factors, such as: (i) clay concentrations in the impeded horizon, 

as for luvisols; (ii) translocation of Al and Fe in the spodic horizon, as for 

brown podzolic (Bronick and Lal, 2005; Collins, 2004), (iii) presence of 

carbonates, as for the calcareous brown earths (Boix-Fayos, et al., 2001) and 

(iv) presence of a poorly permeable horizon, as for the gleyic horizons in 

surface water gleys (Collins et al., 2004).

Furthermore, for the prismatic structure type, “Voids abundance” is selected as 

the main descriptor to split the data between High and Medium Bd for this 

structure type. 

For the rules “Humose: no, AND Structure type: Prismatic AND Void 

abundance: A, B, C:

(A) High (15-40%): the model returns 66.7% of correctly classified instances as 

belonging to the Medium Bd class, 
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(B) Very Low (<2%): the model classifies for the High Bd class with an 

accuracy of 75%. 

(C) Medium (5-15%): the model classifies for Medium and High Bd with an 

accuracy of 83.3 and 89%, respectively.

The Low Bd category was not defined by the model for this structure type, 

indicating the prismatic arrangement as having overall higher Bd values. The 

abundance of voids is important, as the void size for this type of structure, 

poorer than the angular blocky structure type. Rules (A) and (B) associated 

higher void abundance with higher structure quality. On the other hand the rule 

(C), which took into account the medium void abundance category, requires 

further descriptors to categorise within the High and the Medium Bd classes, 

such as “Structure grade”, “Fissures” and “Structure size”. 

The presence of smaller sized prismatic aggregates (Structure size: Fine 10-20 

mm) directs the model to predict High Bd class with 100% correct instances. As 

found in the present study, the rapid wetting of dry soil which comes in contact 

with free water can cause micro-cracking. This increases ped friability, causing 

the production of smaller sized aggregates, which does not always result in 

lower values of Bd (Dexter, 2002).

Vertical fissures are also an important feature of this structure type. Although 

hard clods are devoid of microstructure, fissures enable the percolation of the 

surface water in the deeper layers (Russel et al., 1975). Such a drainage 

advantage is not valid for the “Platy” structure type. In this case the model 

returns two different outputs. Platy aggregates, probably formed by intensive 

mechanical intervention, indicate compaction which affects water percolation, 

resulting in high Bd values (accuracy, 66.7%). On the other hand, some platy 

aggregates were attributed to the histic horizons (Of, Omf) which showed no 

developed structure, associated with very low Bd (accuracy 75%).
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• Level 2: “Structure Type”: Massive

Structure types defined as “Massive” and “Single grain” were categorised by 

Schoeneberger et al. (2012) as structure less soils. Massive soil material 

normally has stronger consistence as the soil particles are arranged in a coherent 

mass and are very difficult to break (FAO, 2006). Horizons with “Massive”, 

“Massive to Angular blocky” and “Massive to Single Grain” structure types 

were classified by the model as belonging to the High Bd class with an accuracy 

of 77.8%, (n=63; very influential rule in the overall tree output), 83.4% and 

100%, respectively. Further analysis of the data showed that most of the 

horizons belonging to the rule: “Humose: no, AND Structure type: Massive” 

were described as having a hard or very hard consistence dry, fine or very fine 

macropores and very low void abundance. The decrease in soil macroporosity 

and the firm nature of the aggregates suggests a high level of compaction 

(Epron et al., 2016), resulting in high Bd values which ranged from 1.4 g cm-3 to 

1.9 g cm-3. In the case of the Massive to single grain structure type, “Plasticity” 

is a key attribute to assess the range of Bd (rule: “Humose: no, AND Structure 

type: Massive to Single grain AND Plasticity: Non plastic”). 

The arrangement of the aggregates which are weak and tend to disintegrate 

when sampling in the field, suggested the presence of sandy material held 

together in big, hard and massive aggregates. In some soils, sand grains have a 

film of orientated clay particles on the surface, not enough to be detected by 

feel, but that are able to strongly hold the sand particles packing them together 

in massive aggregates (Russel, 1975). Sandy soils are prone to compaction of 

surface layers, due to intensive agricultural operations (Ampoorter et al., 2007; 

Deconchat, 2001; Teepe et al., 2004).

Low Bd class was attributed by the model to the horizons responding to the rule 

“Humose: no, AND Structure type: Single grain”, which is a feature typical of 

sandy soils not subjected to compaction phenomena, thereby conserving a large 
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amount of wide pores (Ampoorter et al., 2007). The model correctly classified 

66.7% of the instances following this rule.

3.2 Model 2: Linear regression approach to predict a numerical estimate of 

Bd

3.2.1 Model and performance

After several trials with different machine learning methods for numerical 

prediction, a linear regression model was selected based on better overall 

performance. This conclusion asserts that a strong linear relationship exists 

between the visual descriptors and Bd values. As a result, since the model 

produced by a linear regression algorithm is a linear equation, the predicted 

value of Bd can be easily computed in seconds without the need for time 

consuming and costly laboratory analyses. 

Model (2) considers only those descriptors that influence the final Bd value. For 

this quantitative estimation seven descriptors out of eleven were selected by the 

linear regression algorithm:

(i) Humose

(ii) Structure Grade

(iii) Structure Type

(iv) Structure Size

(v) Macropores

(vi) Void Size

(vii) Void Abundance
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The linear equation produced by Model 2 to predict Bd is as follows: 

Bd (g cm -3) =

0.4575 * (NO Humose: =true) +

-0.0517 * (MODERATE Structure Grade=true) +

-0.2128 * (GRANULAR Structure Type=true) +

0.093 * (MASSIVE Structure Type=true) +

-0.134 * (SUBANGULAR BLOCKY Structure Type=true) +

-0.1501 * (SUBANGULAR BLOCKY TO GRANULAR Structure Type=true) +  

-0.1003 * (ANGULAR BLOCKY TO GRANULAR Structure Type=true) +

-1.1619 * (VERY COARSE > 10mm Structure Size=true) +

0.1471 * (VERY FINE < 0.5mm Macropores=true) +

-0.1791 * (COARSE 5-20 mm Void Size=true) +

0.0802 * (VERY LOW Void Abundance=true) +

-0.0784 * (HIGH Void Abundance=true) + 

0.8866                                                                       Eq 10

The equation produced follows a simple framework:

(i) All the descriptors associated with a positive coefficient caused a significant 

incremental increase in Bd. Basically, as the associated coefficients are positive, 

a soil classified having these descriptors (Vi=1=true, see description in 

paragraph 2.3.3), will result in an increased Bd final value. 

The variables “NOHumose=true”, “VERY FINE<0.5mm Macropores=true”, 

“VERY LOW Void Abundance=true” and “MASSIVE Structure Type=true”, all 

cause an increase in Bd, with 0.4575; 0.1471; 0.0802; and 0.093 explanatory 

power, respectively. 
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In line with Model (1) results, the humification degree of OM has the greatest 

influence on Bd prediction. This characteristic, as well as readily defining Bd 

class, also informed small differences in soil Bd and generally indicated 

pedological features that were consistent with lower Bd values. 

Following the humic feature, macropores size was the second more 

discriminating feature, with the lower size able to distinguish a wide increment 

of prediction (multiplier of 0.1471). Furthermore, very low void abundance 

triggered the model as the fourth main attribute (multiplier of 0.0802). This was 

an expected result, as porosity was already investigated by the decision tree 

approach and was one of the most critical soil characteristics which took into 

account an evaluation of soil structure. In particular, size of pores was 

highlighted as a stronger predictor for an increase of Bd with respect to pore 

abundance. As seen from the decision tree output, the massive structure type has 

a role in increasing soil Bd. In general both models although operating at 

different scales produce the same descriptors for the prediction of Bd. 

(ii) All the descriptors associated with a negative coefficient have a role 

decreasing Bd. Basically, as the associated coefficients are negative, a soil 

classified as having these descriptors, resulted in a decreased Bd, and therefore 

have a better soil physical quality. 

In Model (2), structure size appears to be a stronger descriptor which influences 

a decrease in Bd when evaluated as “VERY COARSE>10 mm Structure 

Size=true” (multiplier of -1.1619). This was surprising considering that in 

Model (1) the size of aggregates was not particularly important (sixth level) in 

the tree hierarchy as a splitting attribute. This highlights that this feature is 

better at identifying small incremental reductions of Bd, but is less informative 

when splitting into wider Bd ranges.
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However, in Model (2) Structure type still has to be considered one of the most 

informative variables, since it appears in four out of eight factors having a 

negative coefficient in the equation. In particular, looking at the equation, we 

have:

• “GRANULAR Structure Type=true” ,
• “SUBANGULAR BLOCKY TO GRANULAR Structure Type=true”, 
• “SUBANGULAR BLOCKY Structure Type=true”, 
• “ANGULAR BLOCKY TO GRANULAR Structure Type=true”,

as coefficients -0.2128; -0.1501; -0.134; -0.1003, respectively.

Granular structure type is responsible of a higher decrease of Bd, confirming 

what was found for Model (1), indicating good soil structure. 

The model showed sufficient sensitivity allowing the identification of 

differences related to soil structure type. This is despite the relatively crude 

measurement of soil structure at field level in tandem with other attributes. In 

particular while the soil structure quality, associated with a change of structure 

type, gradually decreases, with diminishing negative effect on Bd, indicated by 

the coefficients for individual structure types. Hence, corresponding to their 

respective coefficients, a granular structure type will have a higher negative 

increment, resulting in a reduction of the Bd final value, while an angular blocky 

to granular structure type will have a lower negative reduction in the final 

predicted value, resulting in a higher Bd final value. 

Structure size, Void size, Void abundance and Structure grade were, in order of 

importance, the next most informative features for the linear regression model. 

If both the features relating to porosity appear in the Model (1) at a high level in 

the tree hierarchy (level 3), for this model only void size with the variable 

“COARSE 5-20 mm Void Size=true” appears to have higher negative impact, 

with a relatively high coefficient of -0.1791, while void abundance (HIGH Void 

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652



29

Abundance=true) resulted in having less negative impact on the definition of a 

final Bd value, being associated with a smaller coefficient, -0.0784. Probably, as 

per the decision tree model, the shape of aggregates is again a critical point 

which drives the selection of the second decisive node into pore abundance or 

size, depending on the original structure type.

3.2.2 Overall model evaluation

The overall correlation coefficient on training set for the linear regression model 

is 0.71 with Root Mean Squared Error (RMSE): 0.25 and Mean Absolute Error 

(MAE): 0.20; (Table 4). After a 10-fold cross validation the correlation 

coefficient slightly dropped, to 0.65, with similar error ranges (RMSE: 0.27 and 

MAE: 0.21); (Table 4). The errors reported for this model may be considered 

quite high in relation to a standard lab-based Bd measure. However, it is 

important to highlight that the model has been fed using only soil visual 

parameters. Considering the nature of these data inputs and the influence that 

different operators can have during the classification phase, this range of error is 

low. 

Figure 4 2 shows the prediction performances of Model (2). The distribution of 

predicted values results more coherent with the real values for a middle range of 

Bd values. In particular we identified a range that goes between 0.8 to 1.6 g cm-

3, which falls within the typical range of Bd found in Irish grassland soils, where 

the model returns Bd values close to real values. In these cases the model is 

more robust, predicting a numerical estimate with a quite low standard error. 

Furthermore, neither overestimation nor underestimation prevails for a middle 

range of Bd.

The model shows the higher errors for the extreme Bd classes, namely (i) very 

low Bd, that we identified as values lower than 0.8 g cm-3, or (ii) very high Bd 

values, identified as values higher than 1.6 g cm-3. The algorithm appears to a 

have higher prediction power on medium Bd values, which fall within the 
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typical range of Bd found in Irish grassland soils, and hence, also  which also 

receive higher representation in our dataset. In general, machine learning 

algorithms are improved where greater input data is provided. Therefore, in our 

case, the algorithm is inherently biased towards the correct prediction of 

medium ranges. 

3.3 Models choice considerations 

We have chosen to use decision trees and linear regression because these simple 

types of models allow users to identify the Bd class (for decision trees), and the 

Bd value (for linear regression) without the need to rely on additional software. 

Furthermore, besides the predictive ability, decision trees also provide 

descriptive power, in that they make explicit the relationships among different 

characteristics of the soils and allow the user to have greater insight to these 

relationships. Other algorithms that were considered, i.e., support vector 

machines and multi-layer perceptron, although leading to similar performance, 

do not allow this type of insight. A full comparison between different 

algorithms, from the performance point of view, can be conducted in future. 

While the quality of the interrogated database was good, we believe that further 

improvement of model performance can be achieved by increasing the extent of 

the sample dataset, especially for horizons with low and high Bd values, which 

are less represented in our data. Finally, the utility of these models to assess 

critical thresholds for compaction should be evaluated for descriptive soil 

datasets where attributes such as “Compact degree” (FAO, 2006) are included. 

4. Conclusion

A decision tree and linear equation model were developed to predict soil bulk 

density on the basis of visual descriptors. The visual soil descriptors identified, 

as being more informative by both models, are associated with specific soil 

properties. This allows the user to rank to these properties in terms of their 
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impact on soil structural quality. For both models the most relevant properties 

that affect Bd appears to be soil humic characteristics, followed by soil porosity 

and pedogenic formation. 

Overall, the decision tree model shows an accuracy of about 60%, while the 

linear equation model had a correlation coefficient of about 0.65 with respect to 

the measured Bd values. The two models are parsimonious and can be used by 

soil surveyors and analysts who need to have a quick and approximate in-situ 

estimate of the structural quality for various soil functional applications. 

Furthermore they have an enormous potential to retrofit Bd data (i.e. gap fill) to 

existing data sets were laboratory data are missing. Future work is required to 

refine these models for use on soils with very low and very high Bd classes 

which fall outside those typically found in Ireland. Finally, our goal is to encode 

the decision tree and the linear equation into a mobile application, in order to 

enable multiple user types to perform Bd prediction more quickly, on site, and in 

a user friendly manner.
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Table 1. Selection of soil structure field descriptors described by FAO, Guidelines for Soil 

Description, 2006.

Descriptor Title Description

1 Humose This is an estimation of the degree of humification of the organic material. 
Surveyor must provide a positive or affirmative answer to being humose (this 
descriptor was recorded as a presence/absence in the database).

2 Soil 
Consistency

The strength with which soil materials are held together. It provides a means of 
describing the degree of cohesion and adhesion between the soil particles as 
related to the resistance of the soil to deform or rupture. It includes soil 
properties such as friability, plasticity, stickiness and resistance to 
compression. It changes with soil moisture and is highly related to the 
percentage of clay and OM in the soil.

3 Stickiness It is the capacity of the soil to adhere to an object. It is evaluated pressing a 
small amount of wet soil between thumb and forefinger to see if it will stick to 
fingers.

4 Plasticity The ability of soil material to retain a shape after pressure deformation. It is 
evaluated by rolling a small amount of wet soil between the hand palms until it 
forms a long, round strip like a wire about 3 mm thick.

Soil structure* is described as the combination of  (5, 6, 7)
5 Structure 

Grade
It describes the level of development of soil structure. It is expressed as the 
differential between cohesion within aggregates and adhesion between 
aggregates. It is evaluated in relation to the arrangement of the aggregates and 
to the strength necessary to break them.

6 Structure Type It describes the form or shape of individual aggregates and is directly 
correlated with the pedogenic formation.

7 Structure Size It describes the average size of individual aggregates. Different classes may be 
recognized in relation to the type of soil structure from which they come.

Voids** is described as the combination of (8, 9)
8 Voids 

Abundance
An indication of the total volume of voids measured by area and was recorded 
as the percentage of the surface occupied by pores.

9 Voids Size The diameter of voids and was recorded in mm.
10 Fissures size The diameter of fissures and was recorded in mm.
11 Macropores 

size
The diameter of macropores, which are described as bigger void, mostly 
determined by plant roots, and by zoological exploration. Macropores were 
recorded in mm.

*Soil Structure: It refers to the spatial disposition of aggregates which are the result of the aggregation of single 
particles such us sand, silt and clay. Size, shape and arrangement of these solids and voids, determining the 
porosity and the capacity to retain fluids and inorganic and organic substances can occur in different patterns, 
resulting in different soil structures (Bronick et Lal, 2005).** Voids: Include all the pore space present in the 
soil. It is closely related to the porosity and is a good indicator of soil compactness. It is evaluated as 
presence/absence data. Voids were described in terms of size and abundance.
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Table 2. Decision tree model (Model 1); performances. RMSE: Root Mean Squared Error; 

MAE: Mean Absolute Error

Performance with cross validation Performance on training set
N. of 
instances

Accuracy RMSE                  MAE                                     N. of 
instances

Accuracy RMSE                  MAE                                     

Correctly 
Classified 
Instances                     

283   60.08 % 0.44 0.32 335 71.12% 0.37 0.27

Incorrectly 
Classified 
Instances                  

188    39.91 % 136 28.87 %

N. of 
instances

Precision Recall F-
measure

N. of 
instances

Precision Recall F-
measu
re

Low Bd class 137 0.70 0.54    0.60 137 0.75      0.65    0.69
Medium Bd class 178 0.53      0.63    0.58 178 0.64 0.73    0.68
High Bd class 156 0.62      0.62    0.62 156 0.76      0.74    0.75
Weighted 
Average

0.61    0.60      0.60 0.72    0.71 0.71

Table 3. Decision tree model (Model 1); confusion matrix.

Classes classified by decision tree model (N. of instances=471)

a b c

Low Bd class (a) 74 46 17

Medium Bd class (b) 25 112 41

High Bd class (c) 7 52 97

Table 4. Linear regression model (Model 2); performances. RMSE: Root Mean Squared 
Error; MAE: Mean Absolute Error

Performance with cross validation Performance on training set
N. of instances Correlation 

coefficient
RMSE                  MAE                                     N. of instances Correlation 

coefficient
RMSE                  MAE                                     

Instances                     471 0.65 0.27 0.21 471 0.71 0.25 0.20
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Highlights:

• Two models to estimate Bd values based on soil visual descriptors, are 

proposed.

• Machine learning techniques were used to build the models. 

• Estimation of Bd by these models can replace complex laboratory 

analysis.

• Relevant properties affecting soil Bd are humic feature, porosity and 

pedogenesis.
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Abstract

Soil structure is a key factor that supports all soil functions. Extracting intact 

soil cores and horizon specific samples for determination of soil physical 

parameters (e.g. bulk density (Bd) or particle size distribution) is a common 

practice for assessing indicators of soil structure. However, these are often 

difficult to measure, since they require expensive and time consuming 

laboratory analyses. Our aim was to provide tools, through the use of machine 

learning techniques, to estimate the value of Bd based solely on soil visual 

assessment, observed by operators directly in the field. The first tool was a 

decision tree model, derived through a decision tree learning algorithm, which 

allows discrimination amongst three Bd ranges. The second tool was a linear 

equation model, derived through a linear regression algorithm, which predicts 

the numerical value of soil Bd. These tools were validated on a dataset of 471 
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soil horizons, belonging to 201 soil profile pits surveyed in Ireland. Overall, the 

decision tree model showed an accuracy of ~60%, while the linear equation 

model has a correlation coefficient of about 0.65 compared to the measured Bd 

values. For both models, the most relevant property affecting soil structural 

quality appears to be the humic characteristics of the soil, followed by soil 

porosity and pedogenic formation. The two tools are parsimonious and can be 

used by soil surveyors and analysts who need to have an approximate in-situ 

estimate of the structural quality for various soil functional applications.

Keywords: soil bulk density, soil structure, soil quality, machine learning

1. Introduction

The importance of soil structure in relation to soil quality is well known 

(Mueller et al., 2009; Karlen, 2004; Kay et al., 2006). A commonly used soil 

physical measurement to characterize soil structural quality is soil bulk density 

(Bd) (Armindo and Wendroth, 2016; Dam et al., 2005; Håkansson and Lipiec, 

2000; Logsdon and Karlen, 2004; Moncada et al., 2015), which is defined as the 

oven-dry mass per unit volume of soil (IUSS Working Group, 2006; Mueller et 

al., 2009). Measurement of soil Bd is useful as it describes both the packing 

structure of the soil and its permeability (Dexter, 1988), whereby drainage 

characteristics can be inferred (Reidy et al., 2016). Bd measurement is often 

used in agronomic studies as it indicates the presence of compacted layers 

resulting from machinery or animal traffic (Reidy et al., 2016; Saffih-Hdadi, 

2009), which may affect crop production. It is commonly considered an 

efficient measurement of soil carbon and nutrient stocks (Ellert and Bettany, 

1995; Reidy et al., 2016). 
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However, the process of measuring Bd is often time consuming and open to 

human bias in the field and requires accurate laboratory analyses using trained 

personnel. Furthermore, soil texture has an important influence on the 

assessment of Bd e.g. in soils with high clay or sand content, or very humic 

soils, it may be difficult to obtain a representative sample and large variability 

between replicate samples can represent a problem. Also, in some soils the 

presence of stones can make sampling almost unmanageable. For such reasons, 

or constraints of budget or laboratory facilities, Bd measurements are commonly 

missing from soil databases (Reidy et al., 2016). 

The main methods employed for the prediction of Bd are pedotransfer functions 

(PTF) methods, based on measurable soil attributes, such as organic carbon 

(OC) and clay content (Kaur et al., 2002; Leonavičiutė, 2000; Reidy et al., 

2016). However, many of these methods ignore horizonation and depth 

variances for soil Bd prediction (Reidy et al., 2016). Furthermore, the nature of 

these methods, based on chemical/physical or landscape parameters, do not 

capture the intrinsic nature of the soil structural properties. 

Our experience with respect to soil descriptions and classification has shown 

that the visual observations collected in the field at horizon level are often very 

important for the evaluation of soil quality (Fenton et al., 2017; 2015) and they 

become essential during the interpretation of the trend of some analytical 

parameters used as indicators of soil structure status e.g. Bd. 

Soil structural quality has been assessed visually for millennia (Batey, 2000) 

e.g. soil survey manuals used in the field such as the Soils Survey Division Staff 

Manual (1993) or the WRB for soil resources (FAO, ISRIC and ISSS, 1998) 

include soil structure visual observations. However, soil scientists, for a long 

time, have presented repeatable procedures for the examination of soil structural 
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form, stability and resilience (see latest review by Emmet-Booth et al., 2016 

with examples from 1940’s to present; Ball and Munkholm, 2015).

Taking this into account, in the present work we investigated whether, and to 

what extent those visual observations, called descriptors, can be used to predict 

soil Bd, which is considered one of the most efficient indicators in the 

assessment of soil structure quality (Moncada et al., 2015). 

In order to achieve this objective, machine learning techniques were used. The 

potential of machine learning techniques have been rediscovered in the last few 

years through various applications in environmental sciences. 

Worldwide, decision tree approaches have been used for different purposes: 

identifying sources of soil pollution (Xue et al., 2015); describing the extension 

of different forms of soil erosion in Mexico (Geissen et al., 2007); predicting 

chemical soil properties at national level in Australia (Henderson et al., 2005); 

classifying the surface soil freeze/thaw status in China (Jin et al., 2009) and 

even studying of soil structure through the prediction of soil hydraulic 

properties (Pachepsky and Rawls, 2003). However, limited literature has been 

found on the use of these powerful tools for environmental science in Europe. 

The decision tree model output applied in this paper is based on a series of rules 

generated by the software, which can be visualised as paths starting from the 

root of the decision tree and ending at one of the leaves (Bhargava et al., 2013; 

Xue et al., 2013; Xue et al., 2015). Each of those paths corresponds to one or 

more soil descriptors, which are related to an internal node (Henderson el al., 

2005). The model is able to examine all possible descriptors and then to select 

the most decisive splitting attribute (Xue et al., 2013). This operation occurs 

several times until all the instances are correctly classified in a set of rules. Each 

descriptor included in the model corresponds to a more defined level of 

classification. 
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The linear regression model applied in this paper is a classical statistical 

technique used to predict numerical data. It is based on the modelling of the 

relationship between a scalar dependent variable and one or more explanatory 

variables. 

With our work we want to:

(i) Provide an operational strategy to estimate a range of Bd values, based on the 

visual soil parameters by means of a decision tree approach. This model can be 

used as a field tool to predict a general class of Bd (Low, Medium and High). It 

is an instrument able to discriminate between macro classes and has to be 

considered as a descriptive tool for qualitative estimation.

(ii) Propose an algorithm that can predict a numerical estimate of Bd. This 

second model should discriminate better between smaller increments. This 

instrument has to be considered as a more refined tool for quantitative 

estimation.

2. Methods

2.1 Primary data source and descriptors

Two pedological surveys, where full soil profile descriptions and supporting 

laboratory analyses, were carried out in Ireland with the aim of defining a 

coherent and homogeneous way to study soil formation, functions and quality: 

1. The Irish Soil Information System (Irish SIS) project was established in 

2008. It aimed to conduct a programme of structured research into the 

national distribution of soil types and construct a soil map, at 1:250,000 

scale, able to identify and describe the soils according to a harmonised 

national legend. Irish SIS included more than 225 sites distributed around 

Ireland (Creamer et al., 2014). 
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2. The Soil Quality and Research project (SQUARE) started in 2013. The 

aim was to establish a baseline of soil quality in Ireland. The SQUARE 

soil survey included 38 grassland sites distributed within the five major 

agro climatic regions of Ireland defined by Holden and Bereton (2004) 

and classified into two drainage classes on the basis of the Irish Soil 

classification System. 

During both (1) and (2) profile pits approximately 1 m deep, were observed and 

described by different operators. For the present study data from 201 profiles 

(168 Irish SIS, 33 SQUARE) was extracted from the larger database to cover a 

wide variety of Irish soil types with a specific focus on mineral soils. This data 

represents 471 horizons (http://gis.teagasc.ie/soils/map.php). 

Although different surveyors worked across the projects mentioned, a 

systematic procedure was applied to describe the nature of the soil profiles, 

which included each of the soil horizons. Training was given to field operators. 

Using knowledge of soil structure and quality, the operators followed a widely 

understood schema of observation (developed by FAO through the Guidelines 

for Soil Description in 2006) which was able to investigate and finally 

characterize soil structure through visual parameters (FAO, 2006; FAO, ISRIC 

and ISS, 1998). Herein we have selected eleven descriptors presented in Table 1 

(justifications are provided in Table 1), which may be considered the most 

important for the qualitative judgment of soil structure. Each descriptor was 

described and recorded on the basis of a set of pre-defined categories, reported 

in Table 1 in the Supplementary Material.

2.2 Soil analysis

The procedure to determine Bd of intact cores is a version of the ISO 

11272:1998 – Soil Quality Part 5: Physical methods Sect. 5.6 – Determination 

of dry bulk density. The primary difference between the ISO and the applied 
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methodology is that the ISO does not account for stone mass and volume in its 

core method, whereas the methodology applied in this study includes the 

following equation to calculate Bd (stone free):

Bd (g cm-3) =                                                                Eq 1(𝑀𝑑 ‒ 𝑀𝑠)/(𝑉 ‒ 𝑉𝑠)

where; Md: oven dry soil material weight (g), Ms: oven dry stone weight (g), V: 

volume of soil core (cm-3), Vs: volume of stones (mL). Soil Bd values reported 

in this paper correspond to the mean of the three values obtained for each 

horizon sampled.

2.3 Model frameworks

Two models were built by means of the modelling tool WEKA (Waikato 

Environment for Knowledge Analysis). WEKA 3.8 is open source software for 

machine learning and data mining under the General public license developed at 

the University of Waikato in New Zealand 

(http://www.cs.waikato.ac.nz/ml/weka, Bhargava et al., 2013). This software 

includes different implementations of several machine learning algorithms. In 

our context, we used two specific algorithms that are made available by the tool, 

namely:

• the j48 algorithm, which corresponds to the WEKA’s implementation of the 

C4.5 decision tree learner (Quinlan, 1993; Xue et al., 2015) which was used 

to build Model (1);

• a linear regression algorithm, used to build the Model (2). The M5 Method 

was used as attribute selection method for the linear model presented.

Two models were produced to achieve the objectives of our work:
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• Model (1) is based on a classic decision tree model, developed to be used in 

the field in order to predict a Bd class using only visual descriptors as in 

Table 1. 

• Model (2) is a linear regression model that uses the same in-field descriptors 

as above, and it is able to predict a numerical value of Bd with a relatively 

small error. 

The proposed two models are both descriptive and predictive, but the decision 

tree is better at exploring in a descriptive way the relationship between Bd and 

visual parameters, as it allows further analysis of the soil pertaining to that soils 

own chemical and physical characteristics. On the other hand, the linear 

equation algorithm is stronger as a predictive tool and it offers a more precise 

estimate of Bd.

2.3.1 Data treatment 

The entire database consists in 201 sampling points (profile pits) for a total of 

471 horizons. For each horizon eleven descriptors and Bd data were used to train 

Model (1) and Model (2). The treatment of data can be summarized as follows:

• Data cleaning: to produce a full dataset, time was invested to ensure the data 

homogeneity between Irish SIS (649 horizons) and SQUARE datasets (125 

horizons). In particular, descriptor rating options were double checked to 

reaffirm consistency across projects. To achieve uniformity within the 

dataset some data conversions were necessary. The final dataset consisted of 

471 horizons i.e. 346 from Irish SIS and 125 from SQUARE.

• Missing values imputation: an initial analysis of the dataset highlighted the 

presence of some missing values for part of the considered descriptors, 

namely: “Fissure size”, “Void size”, “Void abundance” and “Soil 

consistency”. To avoid further reductions of the dataset, an IMRI imputation 

(performed by the WEKA 3.8 software described above) was selected as the 

means to predict missing values (Templ et al., 2011).
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2.3.2 Model 1: Decision tree model, validation and outputs

Model (1) has been designed to predict classes of Bd data through the 

combination of the 11 visual descriptors outlined in Table 1. The model has 

been trained using Bd data at horizon level. The predicted classes of Bd are:

(i) Low Bd class: < 1.0 g cm-3 (n=137 cases)

(ii) Medium Bd class: between 1.0 and 1.4 g cm-3(n=178 cases)

(iii) High Bd class: > 1.4 g cm-3 (n=156 cases)

Class ranges were selected on the basis of their homogeneity in terms of class 

population. The Bd measured in the majority of mineral soils under agricultural 

management in Ireland occur typically within the 1.0 and 1.4 g cm-3 range. 

Values of < 1.0 g cm-3 are usually related to Ombrotrophic or Mineratrophic 

Peat Soils (which correlates with the Histosol reference soil group of the WRB 

(IUSS Working Group WRB, 2006) or mineral soils having a Histic horizon 

(Reidy et al., 2016). Therefore 1.0 g cm-3 was selected as the lower Bd threshold 

e.g. herein 16 cases out of 137 belonged to the Low Bd class as Oh, Op, Of or 

Omf. The higher threshold (1.4 g cm-3) was empirically chosen to best fit these 

data. In particular, multiple decision tree models were trained by varying the 

threshold between 1.1 g cm-3 and 1.8 g cm-3, in 0.1 intervals. The model trained 

with the 1.4 g cm-3 threshold outperformed, other model runs in terms of 

accuracy.

The decision tree produced herein can be easily converted into classification 

rules. Each path in the tree that goes from the root to one of the leaves defines 

one classification rule. In our case each rule categorises the data in Bd Low, 

Medium and High classes. The knowledge represented in a decision tree can be 

extracted and represented in the form of the classification rule IF-THEN as 

follows:
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If {condition A} AND {condition B} AND {condition C} AND {…} then 

categorization.

In our case:

If 

the horizon is described as HUMOSE

then

the horizon fits into the bulk density category “Low”= <1 g cm-3

A pruning technique is automatically performed by the WEKA software. This 

allows the identification and the removal of the outliers reducing the risk of 

overfitting to the training data (Bhargava et al., 2013). When decision trees are 

built, many of the ramifications can represent noise or outliers in the training 

data. The pruning process tries to identify and remove these branches with the 

aim of improving the accuracy of classification of future data. The next step was 

to prune the dataset to identify and remove branches which do not improve 

prediction with the aim of improving the accuracy of classification of future 

data. 

A10-fold cross validation method was adopted, which randomly partitions the 

dataset into 10 parts and is used to validate the model. Then nine parts of the 

dataset were used to train the model, with the last part used for model testing 

(see Xue et al., 2015 for a similar approach).  

Two measures were applied to evaluate the model performance; precision and 

recall values were calculated. Precision indicates how many of the instances 

were classified within a certain class that actually belong to that class. Whereas 

recall indicates how many of the instances that belong to a certain class are 
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correctly classified by the model. To explain these measures further, it is useful 

to introduce the concepts of true positive, false positive and false negative. 

Given a class C, we define true positives tp as the number of instances labelled 

as C in the original dataset, and classified as C by the decision tree; false 

positives fp as the number of instances not labelled as C in the original dataset, 

and incorrectly classified as C by the decision tree; false negatives fn as the 

number of instances labelled as C in the original dataset, and not classified as C 

by the decision tree. Given these definitions, precision pC and recall rC for the 

class C are defined as follows:

pC = ;                                                                                              Eq 2
𝑡𝑝

𝑡𝑝+ 𝑓𝑝

 rC =                                                                                               Eq 3
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
Precision is negatively influenced by the number of false positive cases. 

Whereas, recall is negatively influenced by the number of false negative cases. 

High scores for precision and recall show that the classifier is returning accurate 

results (high precision, related to low false positive rates), as well as returning a 

majority of all positive results (high recall, related to a low false negative rates). 

As no baseline algorithms were available, or proposed in other publications, 

against which to evaluate the performance of our Model (1), we resort to 

comparing it with a random predictor baseline, i.e. a fictional algorithm that 

randomly predicts the class of an instance (Alvaretz, 2002).

Let n be the total number of instances, and let c be the number of instances of 

class C, the precision and recall of a random predictor for the class C is given 

by:

 pC = rC = c / n                                                                                            Eq 4

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649



12

Besides precision and recall for each class, we also evaluated the average value 

of these measures. In addition, we evaluated the harmonic means of precision 

and recall, which is normally called F-measure, and is defined as follows: 

F-measure=                                                                                Eq 52 ∗
𝑝𝑐 ∗ 𝑟𝑐
𝑝𝑐 + 𝑟𝑐

Finally, as an overall indicator of the ability of the decision tree to correctly 

classify the instances, we evaluated the overall accuracy, which is defined as 

follows:

Accuracy (%) =                                                                  Eq 6
𝑡𝑝+ 𝑡𝑛

𝑡𝑝+ 𝑡𝑛+ 𝑓𝑝 + 𝑓𝑛

2.3.3 Model 2: Linear regression model, validation and outputs

Using data from the visual parameters (Table 1), a linear equation that predicted 

an exact Bd value was developed. 

As for Model (1), Model (2) was learned using Bd data at horizon level and 

produced by means of the WEKA software, using a linear regression algorithm. 

For this experiment these data were converted into numerical binary data, since 

the linear regression algorithm takes numerical data as input. In particular, for 

each value taken by each descriptor, a binary variable was created that takes 

either 0 (False) or 1 (True) as values. The variable was 1 if the descriptor had 

the value associated to the variable, and 0 otherwise. 

The model builds a linear equation based on a weighted combination of the 

possible values taken by the 11 descriptors. In particular, the linear model has 

the following form:

Bd (g cm-3) =                                                                            Eq 7∑𝑛𝑖 = 0𝐶𝑖 ∗  𝑉𝑖
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where Ci are the coefficients computed by the linear regression algorithm. Vi 

are the binary variables. The linear regression algorithm is designed to select 

only those variables that have an influence on the final Bd value. Hence, the 

final model will not include all the possible variables, but only a subset. A 10-

fold cross validation was performed to validate the model as described in par 

2.3.2.

For Model (2) we could not evaluate the performance through precision and 

recall, since numerical values are involved instead of categorical ones, but we 

evaluated it in terms of correlation coefficient, root mean squared error, and 

mean absolute error:

The Root Mean Squared Error (RMSE) gives an estimation of the standard 

deviation of the error (Henderson et al., 2005). The lower is RMSE the higher is 

the predictive ability. Where n is the size of the dataset and  is the predicted 𝑦𝑡
value, the formula is defined as follows:

RMSE=                                                                     Eq 8
1
𝑛∑

𝑛
𝑡 = 1(𝑦𝑡 ‒ 𝑦𝑡) 2

The Mean Absolute Error (MAE) is a quantity used to measure how close 

predictions are to the eventual outcomes. The mean absolute error is also known 

as the mean absolute deviation (Henderson et al., 2005). The lower the MAE 

value the higher is the predictive ability.

MAE=                                                                              Eq 9
1
𝑛∑

𝑛
𝑡 = 1|𝑦𝑡 ‒ 𝑦𝑡|
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3. Results and discussion

3.1 Model 1: Decision tree approach to assess Bd classes

3.1.1 Model performances

The number of rules generated by the decision tree algorithm was 41 in total; 

11, 13 and 17 for Low, Medium and High respectively (all the rules are reported 

in Table 2 in the Supplementary Material). The overall tree is reported in Figure 

1. The decision tree hierarchy consists of six levels (level 1 has the highest 

classification power) of depth as follows:

Level (1): Humose

Level (2): Structure type

Level (3): Macropores Size/Void Size/Void Abundance/Plasticity

Level (4): Structure Grade/Stickiness

Level (5): Fissures

Level (6): Structure size 

The descriptor “soil consistency” was excluded by the tree hierarchy, showing 

no influence on the prediction of Bd ranges. To discuss these results, it is useful 

to associate the different levels and hence, the corresponding descriptors, to 

specific soil quality properties. Broadly the descriptors that remained in the 

analysis fell into 4 main groups in order of importance as follows: 

(i) soil humic characteristics; explained by level (1); 

(ii) pedogenic formation; explained by level (2); 

(iii) soil porosity; explained by level (3);

(iv) soil cohesive properties; explained by level (3-4). 

The majority of the 41 rules were classified within the first three hierarchical 

levels highlighting the importance of these soil structural descriptors in 

quantifying Bd class. In general the parallelism between soil aggregation 

mechanisms, soil intrinsic characteristics related to soil forming factors, and the 
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arrangement of solid and voids with their capacity to retain and transmit fluids, 

resulted in the main factors being capable of explaining soil Bd.

The overall accuracy shows that the model correctly classified 71% of the 

training data (Table 2). However, after the 10-fold cross validation step the 

model was able to correctly predict 60% of the cases (Table 2). The confusion 

matrix shows that mis-categorisation does not occur from Low to High Bd 

classes and vice versa, but can occur from Low to Medium (46 cases) and from 

High to medium (52 cases) (Table 3). The cause of lower model performance 

can be clarified by looking at the branches of the decision tree that miss-classify 

the highest number of instances (for discussion see par. 3.2.1).

The decision tree model was evaluated using the random predictor method (see 

par. 2.3.2). Performances are the following: 

Low: pL = rL = 137/471 = 0.29. 

Medium: pM = rM = 178/471 = 0.37. 

High: pH = rH = 156/471 = 0.33.

For the Low Bd class, the decision tree outperforms a random predictor by 40% 

in terms of precision and by 25% in terms of recall; for the Medium Bd class, by 

16% in terms of precision and by 26% in terms of recall; for the High Bd class 

by 30% in terms of precision and by 29% in terms of recall. These figures 

indicate that, although the accuracy indicates poor performance for the Low Bd 

class, the prediction for this class in terms of precision is actually the best 

amongst all 3 classes. This is due to the lower number of Low Bd instances, 

which are harder to detect for a random classifier, and that our algorithm 

predicts with a substantially higher degree of precision. Overall, the 

classification produced by the model is considerably better than a random 

classification. 
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3.1.2 Rules analysis 

Figure 1 shows the decision tree generated for each Bd class with the 

corresponding instances classified for each rule and the percentage of accuracy, 

which refers to the percentage of true positive cases found by the model for the 

rule discussed. Rules classifying less than two instances are not reported in 

these figures. 

• Level 1: “Humose”

The “Humose” descriptor emerges as the most dominant discriminator. All the 

horizons that highlight the presence of the “humose” feature following the rule 

“Humose: yes”, fit in the category Low Bd. The model correctly classifies 

85.9% of n=64 instances for this rule with relatively few false positive cases.

The humose feature refers to an estimation of the level of humification of the 

organic material, so it is indirectly related to the C content. In fact, soil OC 

content gives an indication of decomposition rates which have a direct effect on 

soil aggregation (Bronick and Lal, 2005; Schulten and Leinweber, 2000). The 

presence of humic substances, as well decomposed organic matter (OM), 

contributes to the stability of soil aggregates and pores through the bonding or 

adhesion properties of organic materials, such as bacterial waste products, 

organic gels, fungal hyphae and worm secretions and casts. Moreover, OM 

intimately mixed with mineral soil materials induces increased moisture holding 

capacity and air exchange with the atmosphere (Stevenson, 1994). This 

mechanism is reflected by lower values of Bd, resulting in enhancement of soil 

porosity producing a good soil structure.

When the humose feature is recorded as absent, the model switches to level 2 

for further refinement. 
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• Level 2: “Structure Type”: Granular

“Structure Type” was the most discriminating descriptor at the second level of 

the tree hierarchy. Here the tree branches out to account for the effect of 

different types of structure. 

For the rule “Humose: no, AND Structure type: Granular” the model classified 

23 cases as belonging to the Low Bd class, with an accuracy of 56.5%. Despite 

the high number of false positives, the amplitude of the group is among the 

highest, showing its reliability. 

Granular aggregates are spheroids or polyhedrons aggregates of soil, having 

curved or irregular surfaces (FAO, 2006), they are normally associated with 

highest air capacity, and are an indicator of good soil structure (Mueller et al., 

2009). Such cases are mostly A horizons, not deeper than 30 cm. Root mass, 

density, distribution and turnover, can positively influence the soil particle 

aggregation by releasing a variety of compounds, (such as root exudates) and 

can contribute to increased soil porosity  through mechanical action (Bronick 

and Lal, 2005; Caravaca et al., 2002). This is reflected in the Bd, resulting in 

lower values.

• Level 2: “Structure Type”: Subangular Blocky → Level 3, 

“Macropores Size” → Level 4 ”Structure Grade”

In presence of the “Subangular Blocky” structure type the tree branches split 

again, going deeper into the third hierarchical level of tree structure, showing 

the “Macropores size” descriptor as the next level of description. For the rules 

“Humose: no, AND Structure type: Subangular Blocky AND Macropores: (A), 

(B), (C), (D)”.:

(A) Coarse (C 5.0-20.0 mm): 50% accuracy when classifying Low Bd class. 

(B) Fine (F 0.5-2.0 mm): for subangular blocky aggregates, 66.1% accuracy 

when classifying Medium Bd class. This is a rule that has a higher number of 
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instances (n=92), which balances the presence of a relatively high number of 

false positives. For angular blocky aggregates, 72.7% accuracy when classifying 

Medium Bd class (n=11).

(C) Very Fine (VF< 0.5 mm): 66.7% accuracy when classifying High Bd class.

(D) Medium (M 2.0-5.0 mm): 100% accuracy when classifying Low and 

Medium Bd class.

Subangular blocky structure type is described as cube like with a flat surface 

and rounded corners (FAO, 2006; Schoeneberger et al., 2012) and is considered 

an indicator of an intermediate degree of soils structure quality, between the 

granular/crumbly aggregates and the blocky/sharp angular ones. Results for this 

structure type show that the size of the macropores is a crucial variable to 

discriminate in terms of Bd classes, as Bd is very sensitive to both alteration of 

macroporosity abundance and size of pores (Mueller et al., 2009). In particular 

the higher the macropore size, the lower the Bd class predicted by the model. 

For the rule (A), horizons fitting the Low Bd class are mostly Ap horizons, 

corresponding to the upper soil layers (maximum depth of 22 cm). Earthworm 

activity is mainly concentrated in the top soil (Haynes and Naidu, 1998; Lee and 

Foster, 1991), which promotes macropores (C 5.0-20.0 mm) which in turn can 

alter soil porosity thereby affecting the movement of air, water and solutes 

(Shipitalo and Le Bayon, 2004). For the rule (B) and (C) medium and high Bd 

are associated with macropore sizes from 0.5 mm to 2.0 mm. The cases 

following these two rules are mainly classified as A or B horizons for the 

medium Bd class (average maximum depth of ~40 cm) and as B horizons for the 

higher Bd class (average maximum depth of ~60 cm). At such depths roots 

become thinner resulting in reduced porosity and higher Bd. Furthermore, Bd 

often increasesin the deeper horizons due to an increase in clay material or as 

result of management operations. 
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The medium class of macropores (M 2.0-5.0 mm) insufficiently defines the Bd 

range and must be assisted by another splitting attribute which is triggered at 

level four. The “Structure grade” is identified by the model as an important 

variable to discriminate between the Low and Medium Bd class for this 

macropores size. The rule (D) is consequently developed as follows:

• “Humose: no, AND Structure type: Subangular Blocky AND Macropores: M 

2.0-5.0 mm AND Structure grade: Moderate”; which predict Low Bd class 

(100% correct instances).

•  “Humose: no, AND Structure type: Subangular Blocky AND Macropores: 

M 2.0-5.0 mm AND Structure grade: Weak”; which predict Medium Bd class 

(100% correct instances).

FAO (2006) defines soils by describing the lack (apedal) or the presence (pedal) 

of a defined structure. A moderate structure grade, showing the presence of a 

nicely structured soil, was associated with a Low Bd class. Medium Bd classes 

are associated with a weak structure grade, synonymous of a lower structure 

quality. However, herein cases classified for these two rules were similar in 

terms of actual Bd values. In particular, cases classified as Low Bd had actual 

values very close to the upper limit of this category (values between 0.9 and 1.0 

g cm-3) and the cases classified as Medium Bd had actual values close to the 

lower limit of this category (values between 1.0 and 1.16 g cm-3). Considering 

the narrow range of values for these cases across the Low and Medium Bd 

categories the model correctly discriminates between categories. 

• Level 2: “Structure Type”: Angular Blocky → Level 3, “Void Size” 

→ Level 4 ”Stickiness”

The “Angular Blocky” aggregates belong to the blocky category as for the 

subangular blocky aggregates, but differ as they have faces intersecting at 

relatively sharp angles (FAO, 2006; Schoeneberger et al., 2012). In the presence 

of this structure type i.e. a typical indicator of a poorly structured soil, the 
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model returns “Void size” as the next, most important, descriptor. This 

descriptor indicates the total volume of pores discernible with a *10 hand-lens 

(FAO, 2006). It differs from macroporosity as it is a much wider term that 

includes soil fissures and plane (FAO, 2006). Macropores are mostly 

determined by plant roots through the twisting activity within and around 

aggregates, and by zoological exploration, through burrowing activity, so they 

are usually larger pores having a size higher than 75 μm (Russell, 1975). 

However, here macropores and voids are described in terms of size, so a high 

void size can correspond to a high macropores size. Therefore, it is important to 

highlight here that although different from a semantic point of view, the 

combination of these two descriptors was very effective in explaining soil 

porosity. 

For the rule “Humose: no, AND Structure type: Angular Blocky AND Void 

size: C 5.0-20.0 mm” the model returned 75% of correct instances for the class 

Low Bd. Although the structure type indicated was often that of a very poor 

structured soil, characterised by large, angular and sharp aggregates, this effect 

was mitigated by the presence of a very high overall porosity, resulting in a 

Low Bd (Pagliai and Vignozzi, 2002).

The rule “Humose: no, AND Structure type: Angular Blocky AND Void size: 

VF <0.5 mm”, returned High Bd class with 76.9 % accuracy. Also this rule was 

quite wide in terms of population (n=26). In this case the poorly structured 

horizons were associated with the smallest size of pores. The cases are mainly 

classified as Bg, BCg, Cg or Eg horizons, with an average depth ranging from 

42 to 72 cm. For such cases, gleying is caused by surface water which has been 

held in a poorly permeable horizon, (mainly belonging to surface water gley soil 

type (Stagnosols reference soil group of the WRB). These poorly permeable 

layers showed evidence of compaction due to one or more of the following 

characteristics: (i) presence of a pan, resulting in severe compaction imposed by 
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management, (ii) poor structural development, (iii) very heavy textured 

horizons dominated by silt and clay and (iv) natural impeded horizons due to 

soil formation and profile development mechanisms. 

Furthermore, the presence of some argillic horizons classified as Btg following 

this rule, as well as having gleyic features, showed the presence of clay-sized 

material in coatings or as intrapedal concentrations (FAO, 2006). Clay content 

physically affects particle aggregation through swelling and dispersion, 

resulting in contiguous peds which fit together eliminating space (Attou et al., 

1998; Bronick et Lal, 2005; Kay, 1998; Russel, 1975).

When the void size is classified as belonging to the middle category (Humose: 

no, AND Structure type: Angular Blocky AND Void size: F 0.5-2.0 mm), 

“Stickiness” was selected by the model as the next most informative descriptor, 

associating Medium Bd class with the “Non Sticky OR Slightly Sticky” feature 

(50% and 63.6% accuracy, respectively), and the High Bd class with the 

“Sticky” feature (accuracy of 75%). The rules’ population size was n=44, n=22 

and n=12, respectively and therefore must be considered an important branch of 

the overall tree. As the stickiness property is considered an indirect indicator of 

the clay content in soil, the results confirmed that the presence of clay material 

was one of the characteristics which makes the soil prone to compaction, or at 

least significantly decreases the level of porosity. Even in the presence of a 

relatively higher porosity, clay content was crucial to force a split in Bd classes, 

thereby attributing higher Bd values to heavier textured soils.

 “Plasticity” appears at the third depth level of the decision tree for the 

structure type Angular Blocky to Granular. Like stickiness, plasticity is directly 

related to the clay content (FAO, 2006). Horizons classified as “Plastic OR 

Slightly plastic AND Macropores size: Very Fine (VF< 0.5 mm)”, fit into the 

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239



22

High Bd class, highlighting the link between high values of Bd and clay content 

(accuracy respectively of 100% and 66.7%).

• Level 2: “Structure Type”: Prismatic → Level 3, “Void Abundance” 

→ Level 4 ”Structure Grade” → Level 5: “Fissures”→ Level 6: 

“Structure Size”

The “Prismatic” structure type is described by FAO, (2006) and by 

Schoeneberger et al. (2012) as having vertical elongated units with limited faces 

in the horizontal plane. Horizons having prismatic to angular blocky aggregates 

are classified by the model within the High Bd class (accuracy, 62.5%). The 

average depth ranges within 53-95 cm, classified across a number of soil types 

e.g. typical surface water gleys (Stagnosols reference soil group of the WRB), 

typical luvisols (Luvisols), typical brown podzolic (Podzols) and typical 

calcareous brown earths (Calcaric Cambisols). Different soil types are subjected 

to different mechanisms of soil particle aggregation which can exert a degree of 

compaction in a specific horizon, due to their intrinsic nature or to a 

combination of factors, such as: (i) clay concentrations in the impeded horizon, 

as for luvisols; (ii) translocation of Al and Fe in the spodic horizon, as for 

brown podzolic (Bronick and Lal, 2005; Collins, 2004), (iii) presence of 

carbonates, as for the calcareous brown earths (Boix-Fayos, et al., 2001) and 

(iv) presence of a poorly permeable horizon, as for the gleyic horizons in 

surface water gleys (Collins et al., 2004).

Furthermore, for the prismatic structure type, “Voids abundance” is selected as 

the main descriptor to split the data between High and Medium Bd for this 

structure type. 

For the rules “Humose: no, AND Structure type: Prismatic AND Void 

abundance: A, B, C:

(A) High (15-40%): the model returns 66.7% of correctly classified instances as 

belonging to the Medium Bd class, 
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(B) Very Low (<2%): the model classifies for the High Bd class with an 

accuracy of 75%. 

(C) Medium (5-15%): the model classifies for Medium and High Bd with an 

accuracy of 83.3 and 89%, respectively.

The Low Bd category was not defined by the model for this structure type, 

indicating the prismatic arrangement as having overall higher Bd values. The 

abundance of voids is important, as the void size for this type of structure, 

poorer than the angular blocky structure type. Rules (A) and (B) associated 

higher void abundance with higher structure quality. On the other hand the rule 

(C), which took into account the medium void abundance category, requires 

further descriptors to categorise within the High and the Medium Bd classes, 

such as “Structure grade”, “Fissures” and “Structure size”. 

The presence of smaller sized prismatic aggregates (Structure size: Fine 10-20 

mm) directs the model to predict High Bd class with 100% correct instances. As 

found in the present study, the rapid wetting of dry soil which comes in contact 

with free water can cause micro-cracking. This increases ped friability, causing 

the production of smaller sized aggregates, which does not always result in 

lower values of Bd (Dexter, 2002).

Vertical fissures are also an important feature of this structure type. Although 

hard clods are devoid of microstructure, fissures enable the percolation of the 

surface water in the deeper layers (Russel et al., 1975). Such a drainage 

advantage is not valid for the “Platy” structure type. In this case the model 

returns two different outputs. Platy aggregates, probably formed by intensive 

mechanical intervention, indicate compaction which affects water percolation, 

resulting in high Bd values (accuracy, 66.7%). On the other hand, some platy 

aggregates were attributed to the histic horizons (Of, Omf) which showed no 

developed structure, associated with very low Bd (accuracy 75%).
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• Level 2: “Structure Type”: Massive

Structure types defined as “Massive” and “Single grain” were categorised by 

Schoeneberger et al. (2012) as structure less soils. Massive soil material 

normally has stronger consistence as the soil particles are arranged in a coherent 

mass and are very difficult to break (FAO, 2006). Horizons with “Massive”, 

“Massive to Angular blocky” and “Massive to Single Grain” structure types 

were classified by the model as belonging to the High Bd class with an accuracy 

of 77.8%, (n=63; very influential rule in the overall tree output), 83.4% and 

100%, respectively. Further analysis of the data showed that most of the 

horizons belonging to the rule: “Humose: no, AND Structure type: Massive” 

were described as having a hard or very hard consistence dry, fine or very fine 

macropores and very low void abundance. The decrease in soil macroporosity 

and the firm nature of the aggregates suggests a high level of compaction 

(Epron et al., 2016), resulting in high Bd values which ranged from 1.4 g cm-3 to 

1.9 g cm-3. In the case of the Massive to single grain structure type, “Plasticity” 

is a key attribute to assess the range of Bd (rule: “Humose: no, AND Structure 

type: Massive to Single grain AND Plasticity: Non plastic”). 

The arrangement of the aggregates which are weak and tend to disintegrate 

when sampling in the field, suggested the presence of sandy material held 

together in big, hard and massive aggregates. In some soils, sand grains have a 

film of orientated clay particles on the surface, not enough to be detected by 

feel, but that are able to strongly hold the sand particles packing them together 

in massive aggregates (Russel, 1975). Sandy soils are prone to compaction of 

surface layers, due to intensive agricultural operations (Ampoorter et al., 2007; 

Deconchat, 2001; Teepe et al., 2004).

Low Bd class was attributed by the model to the horizons responding to the rule 

“Humose: no, AND Structure type: Single grain”, which is a feature typical of 

sandy soils not subjected to compaction phenomena, thereby conserving a large 
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amount of wide pores (Ampoorter et al., 2007). The model correctly classified 

66.7% of the instances following this rule.

3.2 Model 2: Linear regression approach to predict a numerical estimate of 

Bd

3.2.1 Model and performance

After several trials with different machine learning methods for numerical 

prediction, a linear regression model was selected based on better overall 

performance. This conclusion asserts that a strong linear relationship exists 

between the visual descriptors and Bd values. As a result, since the model 

produced by a linear regression algorithm is a linear equation, the predicted 

value of Bd can be easily computed in seconds without the need for time 

consuming and costly laboratory analyses. 

Model (2) considers only those descriptors that influence the final Bd value. For 

this quantitative estimation seven descriptors out of eleven were selected by the 

linear regression algorithm:

(i) Humose

(ii) Structure Grade

(iii) Structure Type

(iv) Structure Size

(v) Macropores

(vi) Void Size

(vii) Void Abundance
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The linear equation produced by Model 2 to predict Bd is as follows: 

Bd (g cm -3) =

0.4575 * (NO Humose: =true) +

-0.0517 * (MODERATE Structure Grade=true) +

-0.2128 * (GRANULAR Structure Type=true) +

0.093 * (MASSIVE Structure Type=true) +

-0.134 * (SUBANGULAR BLOCKY Structure Type=true) +

-0.1501 * (SUBANGULAR BLOCKY TO GRANULAR Structure Type=true) +  

-0.1003 * (ANGULAR BLOCKY TO GRANULAR Structure Type=true) +

-1.1619 * (VERY COARSE > 10mm Structure Size=true) +

0.1471 * (VERY FINE < 0.5mm Macropores=true) +

-0.1791 * (COARSE 5-20 mm Void Size=true) +

0.0802 * (VERY LOW Void Abundance=true) +

-0.0784 * (HIGH Void Abundance=true) + 

0.8866                                                                       Eq 10

The equation produced follows a simple framework:

(i) All the descriptors associated with a positive coefficient caused a significant 

incremental increase in Bd. Basically, as the associated coefficients are positive, 

a soil classified having these descriptors (Vi=1=true, see description in 

paragraph 2.3.3), will result in an increased Bd final value. 

The variables “NOHumose=true”, “VERY FINE<0.5mm Macropores=true”, 

“VERY LOW Void Abundance=true” and “MASSIVE Structure Type=true”, all 

cause an increase in Bd, with 0.4575; 0.1471; 0.0802; and 0.093 explanatory 

power, respectively. 
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In line with Model (1) results, the humification degree of OM has the greatest 

influence on Bd prediction. This characteristic, as well as readily defining Bd 

class, also informed small differences in soil Bd and generally indicated 

pedological features that were consistent with lower Bd values. 

Following the humic feature, macropores size was the second more 

discriminating feature, with the lower size able to distinguish a wide increment 

of prediction (multiplier of 0.1471). Furthermore, very low void abundance 

triggered the model as the fourth main attribute (multiplier of 0.0802). This was 

an expected result, as porosity was already investigated by the decision tree 

approach and was one of the most critical soil characteristics which took into 

account an evaluation of soil structure. In particular, size of pores was 

highlighted as a stronger predictor for an increase of Bd with respect to pore 

abundance. As seen from the decision tree output, the massive structure type has 

a role in increasing soil Bd. In general both models although operating at 

different scales produce the same descriptors for the prediction of Bd. 

(ii) All the descriptors associated with a negative coefficient have a role 

decreasing Bd. Basically, as the associated coefficients are negative, a soil 

classified as having these descriptors, resulted in a decreased Bd, and therefore 

have a better soil physical quality. 

In Model (2), structure size appears to be a stronger descriptor which influences 

a decrease in Bd when evaluated as “VERY COARSE>10 mm Structure 

Size=true” (multiplier of -1.1619). This was surprising considering that in 

Model (1) the size of aggregates was not particularly important (sixth level) in 

the tree hierarchy as a splitting attribute. This highlights that this feature is 

better at identifying small incremental reductions of Bd, but is less informative 

when splitting into wider Bd ranges.
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However, in Model (2) Structure type still has to be considered one of the most 

informative variables, since it appears in four out of eight factors having a 

negative coefficient in the equation. In particular, looking at the equation, we 

have:

• “GRANULAR Structure Type=true” ,
• “SUBANGULAR BLOCKY TO GRANULAR Structure Type=true”, 
• “SUBANGULAR BLOCKY Structure Type=true”, 
• “ANGULAR BLOCKY TO GRANULAR Structure Type=true”,

as coefficients -0.2128; -0.1501; -0.134; -0.1003, respectively.

Granular structure type is responsible of a higher decrease of Bd, confirming 

what was found for Model (1), indicating good soil structure. 

The model showed sufficient sensitivity allowing the identification of 

differences related to soil structure type. This is despite the relatively crude 

measurement of soil structure at field level in tandem with other attributes. In 

particular while the soil structure quality, associated with a change of structure 

type, gradually decreases, with diminishing negative effect on Bd, indicated by 

the coefficients for individual structure types. Hence, corresponding to their 

respective coefficients, a granular structure type will have a higher negative 

increment, resulting in a reduction of the Bd final value, while an angular blocky 

to granular structure type will have a lower negative reduction in the final 

predicted value, resulting in a higher Bd final value. 

Structure size, Void size, Void abundance and Structure grade were, in order of 

importance, the next most informative features for the linear regression model. 

If both the features relating to porosity appear in the Model (1) at a high level in 

the tree hierarchy (level 3), for this model only void size with the variable 

“COARSE 5-20 mm Void Size=true” appears to have higher negative impact, 

with a relatively high coefficient of -0.1791, while void abundance (HIGH Void 
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Abundance=true) resulted in having less negative impact on the definition of a 

final Bd value, being associated with a smaller coefficient, -0.0784. Probably, as 

per the decision tree model, the shape of aggregates is again a critical point 

which drives the selection of the second decisive node into pore abundance or 

size, depending on the original structure type.

3.2.2 Overall model evaluation

The overall correlation coefficient on training set for the linear regression model 

is 0.71 with Root Mean Squared Error (RMSE): 0.25 and Mean Absolute Error 

(MAE): 0.20; (Table 4). After a 10-fold cross validation the correlation 

coefficient slightly dropped, to 0.65, with similar error ranges (RMSE: 0.27 and 

MAE: 0.21); (Table 4). The errors reported for this model may be considered 

quite high in relation to a standard lab-based Bd measure. However, it is 

important to highlight that the model has been fed using only soil visual 

parameters. Considering the nature of these data inputs and the influence that 

different operators can have during the classification phase, this range of error is 

low. 

Figure 2 shows the prediction performances of Model (2). The distribution of 

predicted values results more coherent with the real values for a middle range of 

Bd values. In particular we identified a range that goes between 0.8 to 1.6 g cm-

3, which falls within the typical range of Bd found in Irish grassland soils, where 

the model returns Bd values close to real values. In these cases the model is 

more robust, predicting a numerical estimate with a quite low standard error. 

Furthermore, neither overestimation nor underestimation prevails for a middle 

range of Bd.

The model shows the higher errors for the extreme Bd classes, namely (i) very 

low Bd, that we identified as values lower than 0.8 g cm-3, or (ii) very high Bd 

values, identified as values higher than 1.6 g cm-3. The algorithm appears to a 

have higher prediction power on medium Bd values which also receive higher 
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representation in our dataset. In general, machine learning algorithms are 

improved where greater input data is provided. Therefore, in our case, the 

algorithm is inherently biased towards the correct prediction of medium ranges. 

3.3 Models choice considerations 

We have chosen to use decision trees and linear regression because these simple 

types of models allow users to identify the Bd class (for decision trees), and the 

Bd value (for linear regression) without the need to rely on additional software. 

Furthermore, besides the predictive ability, decision trees also provide 

descriptive power, in that they make explicit the relationships among different 

characteristics of the soils and allow the user to have greater insight to these 

relationships. Other algorithms that were considered, i.e., support vector 

machines and multi-layer perceptron, although leading to similar performance, 

do not allow this type of insight. A full comparison between different 

algorithms, from the performance point of view, can be conducted in future. 

While the quality of the interrogated database was good, we believe that further 

improvement of model performance can be achieved by increasing the extent of 

the sample dataset, especially for horizons with low and high Bd values, which 

are less represented in our data. Finally, the utility of these models to assess 

critical thresholds for compaction should be evaluated for descriptive soil 

datasets where attributes such as “Compact degree” (FAO, 2006) are included. 

4. Conclusion

A decision tree and linear equation model were developed to predict soil bulk 

density on the basis of visual descriptors. The visual soil descriptors identified, 

as being more informative by both models, are associated with specific soil 

properties. This allows the user to rank to these properties in terms of their 

impact on soil structural quality. For both models the most relevant properties 
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that affect Bd appears to be soil humic characteristics, followed by soil porosity 

and pedogenic formation. 

Overall, the decision tree model shows an accuracy of about 60%, while the 

linear equation model had a correlation coefficient of about 0.65 with respect to 

the measured Bd values. The two models are parsimonious and can be used by 

soil surveyors and analysts who need to have a quick and approximate in-situ 

estimate of the structural quality for various soil functional applications. 

Furthermore they have an enormous potential to retrofit Bd data (i.e. gap fill) to 

existing data sets were laboratory data are missing. Future work is required to 

refine these models for use on soils with very low and very high Bd classes 

which fall outside those typically found in Ireland. Finally, our goal is to encode 

the decision tree and the linear equation into a mobile application, in order to 

enable multiple user types to perform Bd prediction more quickly, on site, and in 

a user friendly manner.
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Table 1. Selection of soil structure field descriptors described by FAO, Guidelines for Soil 

Description, 2006.

Descriptor Title Description

1 Humose This is an estimation of the degree of humification of the organic material. 
Surveyor must provide a positive or affirmative answer to being humose (this 
descriptor was recorded as a presence/absence in the database).

2 Soil 
Consistency

The strength with which soil materials are held together. It provides a means of 
describing the degree of cohesion and adhesion between the soil particles as 
related to the resistance of the soil to deform or rupture. It includes soil 
properties such as friability, plasticity, stickiness and resistance to 
compression. It changes with soil moisture and is highly related to the 
percentage of clay and OM in the soil.

3 Stickiness It is the capacity of the soil to adhere to an object. It is evaluated pressing a 
small amount of wet soil between thumb and forefinger to see if it will stick to 
fingers.

4 Plasticity The ability of soil material to retain a shape after pressure deformation. It is 
evaluated by rolling a small amount of wet soil between the hand palms until it 
forms a long, round strip like a wire about 3 mm thick.

Soil structure* is described as the combination of  (5, 6, 7)
5 Structure 

Grade
It describes the level of development of soil structure. It is expressed as the 
differential between cohesion within aggregates and adhesion between 
aggregates. It is evaluated in relation to the arrangement of the aggregates and 
to the strength necessary to break them.

6 Structure Type It describes the form or shape of individual aggregates and is directly 
correlated with the pedogenic formation.

7 Structure Size It describes the average size of individual aggregates. Different classes may be 
recognized in relation to the type of soil structure from which they come.

Voids** is described as the combination of (8, 9)
8 Voids 

Abundance
An indication of the total volume of voids measured by area and was recorded 
as the percentage of the surface occupied by pores.

9 Voids Size The diameter of voids and was recorded in mm.
10 Fissures size The diameter of fissures and was recorded in mm.
11 Macropores 

size
The diameter of macropores, which are described as bigger void, mostly 
determined by plant roots, and by zoological exploration. Macropores were 
recorded in mm.

*Soil Structure: It refers to the spatial disposition of aggregates which are the result of the aggregation of single 
particles such us sand, silt and clay. Size, shape and arrangement of these solids and voids, determining the 
porosity and the capacity to retain fluids and inorganic and organic substances can occur in different patterns, 
resulting in different soil structures (Bronick et Lal, 2005).** Voids: Include all the pore space present in the 
soil. It is closely related to the porosity and is a good indicator of soil compactness. It is evaluated as 
presence/absence data. Voids were described in terms of size and abundance.

2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183



38

Table 2. Decision tree model (Model 1); performances. RMSE: Root Mean Squared Error; 

MAE: Mean Absolute Error

Performance with cross validation Performance on training set
N. of 
instances

Accuracy RMSE                  MAE                                     N. of 
instances

Accuracy RMSE                  MAE                                     

Correctly 
Classified 
Instances                     

283   60.08 % 0.44 0.32 335 71.12% 0.37 0.27

Incorrectly 
Classified 
Instances                  

188    39.91 % 136 28.87 %

N. of 
instances

Precision Recall F-
measure

N. of 
instances

Precision Recall F-
measu
re

Low Bd class 137 0.70 0.54    0.60 137 0.75      0.65    0.69
Medium Bd class 178 0.53      0.63    0.58 178 0.64 0.73    0.68
High Bd class 156 0.62      0.62    0.62 156 0.76      0.74    0.75
Weighted 
Average

0.61    0.60      0.60 0.72    0.71 0.71

Table 3. Decision tree model (Model 1); confusion matrix.

Classes classified by decision tree model (N. of instances=471)

a b c

Low Bd class (a) 74 46 17

Medium Bd class (b) 25 112 41

High Bd class (c) 7 52 97

Table 4. Linear regression model (Model 2); performances. RMSE: Root Mean Squared 
Error; MAE: Mean Absolute Error

Performance with cross validation Performance on training set
N. of instances Correlation 

coefficient
RMSE                  MAE                                     N. of instances Correlation 

coefficient
RMSE                  MAE                                     

Instances                     471 0.65 0.27 0.21 471 0.71 0.25 0.20
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Humose 
no 

Structure Type 

Subangular 
Blocky 

Macropores 

Angular 
Blocky Void Size 

Angular 
Blocky to 
Granular 

HIGH Bd (3; 66.7%) VF <0.5 mm 

M 2.0-5.0 mm Structure Grade 

Strong HIGH Bd (3;66.7%) 

F 0.5-2.0 mm Stickiness 

HIGH Bd (12;75%) Sticky 

VF <0.5 mm HIGH Bd (26;76.9%) 

Plasticity 

Slightly 
Plastic 

Plastic 

Macropores 

VF< 0.5 mm HIGH Bd (3;66.7%) 
HIGH Bd (1;100%) 

Prismatic Void  
Abundance 

HIGH Bd (4;75%) VL <2% 

Prismatic to  
Angular Blocky 

HIGH Bd (8;62.5%) 

Prismatic to  
Subangular 
Blocky 

Void Size 

F 0.5-2.0 mm HIGH Bd (6;66.7%) 

Platy to Angular Blocky HIGH Bd (3;66.7%) 

M  
5-15% 

Structure Grade 

Moderate Fissures 
F <1 
mm 

Structure Size 
FI 10-20 mm HIGH Bd (2; 100%) 

Weak HIGH Bd (5; 80%) 
W 2-5 mm HIGH Bd (2; 100%) 

Massive HIGH Bd (63;77.8%) 

Massive to 
Angular Blocky 

Macropores 

HIGH Bd (6; 83.4%) VF <0.5 mm 
Massive to 
Single grain 

Plasticity 

Non plastic  HIGH Bd (2, 100%) 

yes 
LOW Bd (64; 85.9%) 

Granular LOW Bd (23; 56.5%) 

C 5.0-20.0 mm LOW Bd (4; 50%) 

MEDIUM Bd (92; 66.1%) F 0.5-2.0 mm 

M 2.0-5.0 mm Structure Grade 

Moderate LOW Bd (5; 100%) 

Weak MEDIUM Bd (4; 100%) 

MEDIUM Bd (44; 50%-22; 63.6%) 
Non Sticky OR 
Slightly Sticky 

C 5.0-20.0 mm LOW Bd (4;75%) 

Macropores 

MEDIUM Bd (11;72.7%) F 0.5-2.0 mm 

Subangular 
Blocky to 
Granular 

MEDIUM Bd  
(11;72.7%) 

ME 20-50 mm MEDIUM Bd  
(6; 83.3%) 

H 15-40% MEDIUM Bd (3; 66.7%) 

F 0.5-2.0 mm LOW Bd (4; 75%) 

Slightly Plastic LOW Bd (5; 40%) 
Platy LOW Bd (4; 75%) 

Single Grain LOW Bd (3; 66.7%) 



 

 



Figures Captions:

Figure 1. Decision tree model for predicting bulk density classes (Model 1): 

LOW Bd <1 g cm-3; MEDIUM Bd 1-1.4 g cm-3; HIGH Bd >1.4 g cm-3. The 

number of cases classified for the rule and the percentage of accuracy are 

reported.

Figure 2. Decision tree model for predicting bulk density classes (Model 1): 

MEDIUM Bd 1-1.4 g cm-3. The number of cases classified for the rule and the 

percentage of accuracy are reported.

Figure 3. Decision tree model for predicting bulk density classes (Model 1): 

HIGH Bd >1.4 g cm-3. The number of cases classified for the rule and the 

percentage of accuracy are reported.

Figure 42. Relationship between measured bulk density (Bd) and predicted bulk 

density values for the linear regression model (Model 2). Bd  values are reported 

in g cm-3.
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in g cm-3.



Supplementary Material Table 1. Field descriptors choice options. Abbreviation and definitions. 

Field Descriptor Full Name Abbreviation/Definition

No Humic NH

1. Humose

Humic H

Loose LO: Non-coherent.

Very friable VFR: Crushes under very gentle pressure, but coheres when pressed together.

Friable FR: Crushes under gentle to moderate pressure between thumb and forefinger and coheres when pressed 
together.

Firm FI: Crushes under moderate pressure between thumb and forefinger; resistance is noticeable.

Very firm VFI: Crushes under strong pressure; barely crushable between thumb and forefinger.

2. Soil 
Consistency

Extremely firm EFI: Crushes under only very strong pressure; cannot be crushed between thumb and forefinger.

Non-sticky NST: No soil material adheres to thumb and finger after release of pressure.

Slightly sticky SST: Soil material adheres to thumb and finger after release of pressure, but it is easily removed.

Sticky ST: Soil material adheres to thumb and finger after release of pressure, and tends to stretch and pull apart 
rather than coming away from each digit.

3. Stickiness

Very sticky VST: Soil material adheres strongly to thumb and finger after release of pressure, and stretches when 
fingers are separated.

Non-plastic NPL: No wire is formable.

Slightly plastic SPL: Wire formable but breaks immediately if bent into a ring; deformation by slight force.

Plastic PL: Wire formable but breaks if bent into a ring; deformation by slight to moderate force.

4. Plasticity

Very plastic VPL: Wire formable and can be bent into a ring; deformation by moderately strong to strong force.

Weak WE; Aggregates barely visible in situ and only weak arrangement of natural surfaces that breaks when 
gently disturbed.

Moderate MO: Aggregates are visible in situ and there is a distinct arrangement of material. When disturbed it 
breaks into a mixture of entire and broken aggregates.

5. Structure 
Grade

Strong ST: Aggregates are clearly visible in situ and there is prominent arrangement of material. When 
disturbed it breaks into distinct whole aggregates.



Weak to Moderate WM: Show weak and moderate properties

Moderate to strong MS: show moderate and strong properties.

Granular GR

Granular to Single 
Grain

GRSG

Angular Blocky AB

Angular Blocky to  
Granular

ABGR

Subangular Blocky SB

Subangular Blocky 
to Granular

SBGR

Prismatic PR

Prismatic to 
Angular Blocky

PRAB

Prismatic to 
Subangular Blocky

PRSB

Platy PL

Platy to Angular 
Blocky

PLAB

Platy to Subangular 
Blocky

PLSB

Single Grain SG

Massive MA

Massive to Single 
Grain

MASG

6. Structure 
Type

Massive to Angular 
Blocky

MAAB

7. Structure 
Size*

*Structure size is evaluated taking into account the main categories of structure type in the following order.

Blocky Coarse C : 20-50mm

Prismatic/Column
ar

Coarse C : 50-100mm

Granular/Platy Coarse C : 5-10mm

Prismatic/Column
ar

Fine F : 10-20mm



Granular/Platy Fine F : 1-2mm

Blocky Fine F : 5-10mm

Blocky Medium M : 10-20mm

Prismatic/Column
ar

Medium M : 20-50mm

Granular/Platy Medium M : 2-5mm

Prismatic/Column
ar

Very Coarse VC : > 100mm

Granular/Platy Very Coarse VC: > 10mm

Blocky Very Coarse VC: > 50mm

Prismatic/Column
ar

Very Fine VF: < 10mm

Granular/Platy Very Fine VF: < 1mm

Blocky Very Fine VF: < 5mm

Very Low VL: <2%

Low L: 2-5%

Medium M: 5-15%

High H: 15-40%

8. Voids 
Abundance

Very High VH: >40%

Very Fine VF: < 0.5mm

Fine F: 0.5-2 mm

Medium M: 2-5 mm

Coarse C : 5-20 mm

9. Voids Size

Very Coarse VC: 20-50mm

Fine F: < 1mm

Medium M: 1-2 mm

10. Fissures Size

Wide W: 2-5 mm



Very Wide VW: 5-10 mm

Extremely Wide EW: > 10mm

Very Fine VF: < 0.5mm

Fine F : 0.5-2 mm

Medium M : 2-5 mm

Coarse C : 5-20 mm

11. Macropores 
Size

Very Coarse VC : 20-50mm



Supplementary Material Table 2. Total list of rules for Model 1.

Rule n. Bulk density Class Description
1 Low Humose=Yes

2 Low Humose=No AND Structure type=Granular
3 Low Humose=No AND Structure type=Subangular Blocky AND Macropores= M 2.0-

5.0 mm AND Structure Grade=Moderate
4 Low Humose=No AND Structure type=Subangular Blocky AND Macropores= C 5.0-20 

mm
5 Low Humose=No AND Structure type=Angular Blocky AND Void Size= C 5.0-20 mm
6 Low Humose=No AND Structure type=Angular Blocky AND Void Size= F 0.5-2.0 mm 

AND Stickiness= Very Sticky
7 Low Humose=No AND Structure type=Single Grain
8 Low Humose=No AND Structure type=Massive to Angular Blocky AND Macropores= 

F 0.5-2.0 mm
9 Low Humose=No AND Structure type=Prismatic to Subangular Blocky AND Void 

Size= M 2.0-5.0 mm
10 Low Humose=No AND Structure type=Platy
11 Low Humose=No AND Structure type=Massive to Single grain AND Plasticity= 

Slightly Plastic
12 Medium Humose=No AND Structure type=Subangular Blocky AND Macropores F 0.5-2 

mm
13 Medium Humose=No AND Structure type=Subangular Blocky AND Macropores M 2.0-5.0 

mm AND Structure Grade= Weak
14 Medium Humose=No AND Structure type=Angular Blocky AND Void size= M 2-5 mm 

AND Structure Grade= Moderate
15 Medium Humose=No AND Structure type=Angular Blocky AND Void size= F 0.5-2 mm 

AND Stickiness= Non Sticky 
16 Medium Humose=No AND Structure type=Angular Blocky AND Void size= F 0.5-2 mm 

AND Stickiness= Slightly Sticky
17 Medium Humose=No AND Structure type=Prismatic AND Void abundance= H 15-40%
18 Medium Humose=No AND Structure type=Prismatic AND Void abundance= M 5-15% 

AND Structure Grade= Moderate AND Fissures= F <1 mm AND Structure Size= 
ME 20-50 mm

19 Medium Humose=No AND Structure type=Prismatic AND Void abundance= M 5-15% 
AND Structure Grade= Moderate AND Fissures= F <1 mm AND Structure Size= 
CO 50-100 mm

20 Medium Humose=No AND Structure type=Prismatic AND Void abundance= M 5-15% 
AND Structure Grade= Strong



21 Medium Humose=No AND Structure type=Prismatic to Subangular Blocky AND void 
size=VF <0.5 mm

22 Medium Humose=No AND Structure type= Subangular Blocky to Granular
23 Medium Humose=No AND Structure type= Angular Blocky to Granular AND Macropores= 

F 0.5-2.0 mm
24 Medium Humose=No AND Structure type= Angular Blocky to Granular AND Macropores= 

M 2.0-5.0 mm
25 High Humose=No AND Structure type= Massive
26 High Humose=No AND Structure type= Subangular Blocky AND Macropores= VF <0.5 

mm
27 High Humose=No AND Structure type= Angular Blocky AND Void size= M 2.0-5.0 mm 

AND Structure grade= Strong
28 High Humose= No AND Structure type= Angular blocky AND Void size=F 0.5-2 mm 

AND Stickiness= Sticky
29 High Humose=No AND Structure type= Angular blocky AND Void size= VF <0.5 mm
30 High Humose=No AND Structure type= Prismatic AND Void abundance= M 5-15% 

AND Structure grade= Moderate AND Fissures= F <1mm AND Structure size= FI 
10-20 mm

31 High Humose=No AND Structure type= Prismatic AND Void abundance= M 5-15% 
AND Structure grade= Moderate AND Fissures= W 2.0-5.0 mm

32 High Humose=No AND Structure type= Prismatic AND Void abundance= M 5-15% 
AND Structure grade= Weak

33 High Humose=No AND Structure type= Prismatic AND Void Abundance=VL
34 High Humose=No AND Structure type= Prismatic to Angular Blocky
35 High Humose= No AND Structure type= massive to Angular Blocky AND 

Macropores=VF < 0.5 mm
36 High Humose=No AND Structure type= Prismatic to Subangular Blocky AND Void 

size= F 0.5-2 mm
37 High Humose=No AND Structure type= Platy to Angular Blocky
38 High Humose=No AND Structure type=Massive to Single grain AND Plasticity= Non 

Plastic
39 High Humose=No AND Structure Type=Angular Blocky to Granular AND 

Plasticity=Slightly plastic AND Macropores= VF< 0.5 mm
40 High Humose=No AND Structure type= Angular Blocky to Granular AND 

Plasticity=Non plastic
41 High Humose=No AND Structure type= Angular Blocky to Granular AND Plasticity= 

Plastic

.


