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Abstract. Quantification is the task of estimating, given a set σ of
unlabelled items and a set of classes C, the relative frequency (or “preva-
lence”) p(ci) of each class ci ∈ C. Quantification is important in many
disciplines (such as e.g., market research, political science, the social sci-
ences, and epidemiology) which usually deal with aggregate (as opposed
to individual) data. In these contexts, classifying individual unlabelled
instances is usually not a primary goal, while estimating the prevalence
of the classes of interest in the data is. Quantification may in principle
be solved via classification, i.e., by classifying each item in σ and count-
ing, for all ci ∈ C, how many such items have been labelled with ci.
However, it has been shown in a multitude of works that this “classify
and count” (CC) method yields suboptimal quantification accuracy, one
of the reasons being that most classifiers are optimized for classification
accuracy, and not for quantification accuracy. As a result, quantification
has come to be no longer considered a mere byproduct of classification,
and has evolved as a task of its own, devoted to designing methods and
algorithms that deliver better prevalence estimates than CC. The goal
of this tutorial is to introduce the main supervised learning techniques
that have been proposed for solving quantification, the metrics used to
evaluate them, and the most promising directions for further research.

1 Motivation

Quantification (also known as “supervised prevalence estimation” [2], or “class
prior estimation” [5]) is the task of estimating, given a set σ of unlabelled items
and a set of classes C = {c1, . . . , c|C|}, the relative frequency (or “prevalence”)
p(ci) of each class ci ∈ C, i.e., the fraction of items in σ that belong to ci. When
each item belongs to exactly one class, since 0 ≤ p(ci) ≤ 1 and

∑
ci∈C p(ci) = 1,

p is a distribution of the items in σ across the classes in C (the true distribution),
and quantification thus amounts to estimating p (i.e., to computing a predicted
distribution p̂).

Quantification is important in many disciplines (such as e.g., market research,
political science, the social sciences, and epidemiology) which usually deal with
aggregate (as opposed to individual) data. In these contexts, classifying indi-
vidual unlabelled instances is usually not a primary goal, while estimating the
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prevalence of the classes of interest in the data is. For instance, when classifying
the tweets about a certain entity (e.g., a political candidate) as displaying ei-
ther a Positive or a Negative stance towards the entity, we are usually not much
interested in the class of a specific tweet: instead, we usually want to know the
fraction of these tweets that belong to the class [9].

Quantification may in principle be solved via classification, i.e., by classifying
each item in σ and counting, for all ci ∈ C, how many such items have been
labelled with ci. However, it has been shown in a multitude of works (see e.g.,
[1, 3, 7–9, 12]) that this “classify and count” (CC) method yields suboptimal
quantification accuracy. Simply put, the reason of this suboptimality is that most
classifiers are optimized for classification accuracy, and not for quantification
accuracy. These two notions do not coincide, since the former is, by and large,
inversely proportional to the sum (FPi + FNi) of the false positives and the
false negatives for ci in the contingency table, while the latter is, by and large,
inversely proportional to the absolute difference |FPi − FNi| of the two.

One reason why it seems sensible to pursue quantification directly, instead
of tackling it via classification, is that classification is a more general task than
quantification: after all, a perfect classifier is also a perfect quantifier, while the
opposite is not true. To see this consider that a binary classifier h1 for which
FP = 20 and FN = 20 (FP and FN standing for the “false positives” and
“false negatives”, respectively, that it has generated on a given dataset) is worse
than a classifier h2 for which, on the same test set, FP = 18 and FN = 20.
However, h1 is intuitively a better binary quantifier than h2; indeed, h1 is a
perfect quantifier, since FP and FN are equal and thus, when it comes to class
frequency estimation, compensate each other, so that the distribution of the test
items across the class and its complement is estimated perfectly. In other words,
a good quantifier needs to have small bias (i.e., needs to distribute its errors
as evenly as possible across FP and FN). A training set might thus contain
information sufficient to generate a good quantifier but not a good classifier,
which means that performing quantification via “classify and count” might be a
suboptimal way of performing quantification. In other words, performing quan-
tification via “classify and count” looks like a violation of “Vapnik’s principle”
[21], which asserts that

If you possess a restricted amount of information for solving some prob-
lem, try to solve the problem directly and never solve a more general
problem as an intermediate step. It is possible that the available infor-
mation is sufficient for a direct solution but is insufficient for solving a
more general intermediate problem.

As a result, quantification is no longer considered a mere byproduct of classifi-
cation, and has evolved as a task of its own, devoted to designing methods (see
[10] for a survey) for delivering better prevalence estimates than CC.

There are further reasons why quantification is now considered as a task of
its own. One such reason is that, since the goal of quantification is different
from that of classification, quantification requires evaluation measures different
from those used for classification. A second reason is the growing awareness that
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quantification is going to be more and more important; with the advent of big
data, more and more application contexts are going to spring up in which we
will simply be happy with analyzing data at the aggregate level and we will not
be able to afford analyzing them at the individual level.

2 Format and detailed schedule

The structure of the lectures is as follows (each section also indicates the main
bibliographic material discussed within the section):

1. Introduction / Motivation [17]

(a) Solving quantification via “Classify and Count”
(b) Concept drift and distribution drift
(c) Vapnik’s principle
(d) The “paradox of quantification”

2. Applications of quantification in machine learning, data mining, text mining,
and NLP [9, 12]

(a) Sentiment quantification
(b) Quantification in the social sciences
(c) Quantification in political science
(d) Quantification in epidemiology
(e) Quantification in market research
(f) Quantification in ecological modelling

3. Evaluation of quantification algorithms [19]

(a) Desirable properties for quantification evaluation measures
(b) Evaluation measures for quantification
(c) Experimental protocols for evaluating quantification

4. Supervised learning methods for binary and multiclass quantification [1, 3,
7, 8, 11, 12, 15, 18]

(a) Aggregative methods based on general-purpose learners
(b) Aggregative methods based on special-purpose learners
(c) Non-aggregative methods

5. Advanced topics [4, 6, 13, 14, 16, 20]

(a) Ordinal quantification
(b) Quantification for networked data
(c) Quantification for data streams
(d) Cross-lingual quantification

6. Conclusions
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