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Abstract

Smart cities are nowadays equipped with pervasive networks of sensors that monitor traffic

in real-time and record huge volumes of traffic data. These datasets constitute a rich source

of information that can be used to extract knowledge useful for municipalities and citizens.

In this paper we are interested in exploiting such data to estimate future speed in traffic

sensor networks, as accurate predictions have the potential to enhance decision making

capabilities of traffic management systems. Building effective speed prediction models in

large cities poses important challenges that stem from the complexity of traffic patterns,

the number of traffic sensors typically deployed, and the evolving nature of sensor networks.

Indeed, sensors are frequently added to monitor new road segments or replaced/removed due

to different reasons (e.g., maintenance). Exploiting a large number of sensors for effective

speed prediction thus requires smart solutions to collect vast volumes of data and train

effective prediction models. Furthermore, the dynamic nature of real-world sensor networks

calls for solutions that are resilient not only to changes in traffic behavior, but also to changes

in the network structure, where the cold start problem represents an important challenge.

We study three different approaches in the context of large and dynamic sensor networks:

local, global, and cluster-based. The local approach builds a specific prediction model for

each sensor of the network. Conversely, the global approach builds a single prediction

model for the whole sensor network. Finally, the cluster-based approach groups sensors into

homogeneous clusters and generates a model for each cluster. We provide a large dataset,

generated from ∼1.3 billion records collected by up to 272 sensors deployed in Fortaleza,

1



Brazil, and use it to experimentally assess the effectiveness and resilience of prediction

models built according to the three aforementioned approaches. The results show that the

global and cluster-based approaches provide very accurate prediction models that prove to

be robust to changes in traffic behavior and in the structure of sensor networks.

Keywords: Smart Cities, Intelligent transportation systems, Short-term Traffic Prediction,

Dynamic Sensor Networks, Machine Learning, Urban Mobility.

1. Introduction

Highly populated cities increasingly face mobility challenges caused by transport and

traffic. The huge volume of data collected by real-time traffic monitoring sensors provides

new opportunities to develop models and algorithms that enhance transportation services

towards intelligent transportation systems, in particular those dealing with traffic predic-

tions. Vehicle speeds on road networks are determined by complex traffic processes governed

by stochastic and non-linear interactions between individual drivers [15], hence predicting

the speed of vehicles is as complex as predicting the underlying traffic processes. Short-

term traffic prediction techniques have been investigated and exploited since some time [29].

However, the emergence of smart cities, where urban areas are covered by massive amounts

of sensors, combined with the development of transportation technologies, requires traffic

prediction techniques that are fast, scalable, and suitable for complex and heterogeneous

sensors networks like those deployed in smart cities.

Many different traffic sensor technologies are currently used to monitor road networks,

such as those based on inductive-loop detectors, magnetometers, video image processors,

microwave radar sensors, laser radar sensors, passive infrared sensors, ultrasonic sensors,

passive acoustic sensors, and devices exploiting combinations of the aforementioned tech-

nologies [17]. In this work we focus on sensors capable of capturing the speed of vehicles
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traveling over large and dynamic road networks, where sensors can be added or removed

from the network for various reasons, and address the problem of training accurate predic-

tion models that are capable of maintaining their accuracy over time – we call this the model

aging problem – and cope with structural changes affecting sensor networks – we call this

the network dynamicity problem.

We address these challenges by proposing and analyzing three different approaches that

can be used to train machine-learned prediction functions: local, global, and cluster-based.

The local approach is the solution commonly used in the literature, where each sensor

is considered separately from others to train a specific predictive function. This approach

suffers the cold start problem and therefore hardly applies to dynamic sensor networks, where

sensors may be continuously added and removed on a daily basis. Moreover, in large and

dynamic sensor networks the local approach requires to train and maintain a large amount

of different prediction models. To overcome these issues we propose the global and cluster-

based approaches, where models are trained on data coming from all the sensors in the

network (or groups of similar sensors, in the cluster-based case) to build resilient predictive

functions. The global approach provides substantial benefits in terms of reduced complexity

and costs. Furthermore, by relying on a single prediction function that is independent from

specific sensors, the global approach naturally solves the cold start problem. Moreover, the

global approach is expected to be robust with respect to structural changes occurring in

sensor networks, thus also addressing the dynamicity problem.

We also tested a cluster-based approach to prove its potential in representing a viable

compromise between the local and global approaches. Specifically, the cluster-based ap-

proach trains distinct predictive functions for groups of similar sensors, where sensors are

clustered according to some similarity metric; depending on the number of clusters, the

behavior of this approach resembles the one of the local approach (when a high number of

clusters is used) or the behavior of the global one (when few clusters are used). From the

experimental evaluation we cannot conclude yet that this approach indeed represents a good

compromise, since results are discordant and further work is needed.

The contributions of this paper can be summarized as follows:
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• we propose the global and cluster-based approaches for learning vehicle speed prediction

functions in large and dynamic sensor networks.

• driven by three experimental questions, we provide a comprehensive evaluation to

assess the effectiveness of the predictive models trained according to the three ap-

proaches. The training is conducted by using different state-of-the-art machine learn-

ing algorithms on a large, real-world sensors dataset. The dataset covers a time span

of 12 months, during which 130 (145) sensors were added (removed) to (from) the

network. The evaluation shows that the models created using the global approach

represent good solutions when dealing with dynamic sensor networks, as they prove to

be accurate and resilient both to model aging and to structural changes in the sensor

infrastructure (which, in turn, includes the cold start problem).

• we release to the scientific community the real-world dataset used to assess our pro-

posals. The dataset originates from ∼1.3 billion records collected during the whole

2014 by 272 different road traffic sensors deployed in the city of Fortaleza, Brazil. Due

to privacy concerns we do not release the original raw data, but a dataset obtained

after an aggregation and cleaning process. To the best of our knowledge, this is the

largest and richest dataset made publicly available for research on speed prediction in

dynamic sensor networks.

The paper is structured as follows: Section 2 reports an overview of the related works

dealing with the traffic prediction problem. Section 3 defines our prediction problem and

discusses three approaches to solve the problem. Section 4 presents the dataset used in our

experiments, as well as the pre-processing steps used to transform the data into a format

suitable for speed prediction. Section 5 details the experimental evaluation and discusses

the results. Finally, Section 6 draws the final conclusions and sketches potential lines of

future research.
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2. Related Work

Short-term traffic prediction aims at estimating traffic conditions from few seconds to few

hours in the future, based on current and past traffic information. The field has an extensive

and longstanding research history that originates in the 1980s in the context of intelligent

transportation systems. A comprehensive and recent survey [29] observes how this research

area moved from a classical statistical perspective (e.g. ARIMA) to data-driven modeling

techniques based on machine learning and neural networks. Most of the interest in this field

focuses on developing methodologies that can be used to model traffic characteristics such

as volume, density, speed, travel times, and produce estimates of future traffic conditions.

The IEEE ICDM 2010 Contest [31] fostered the development of Machine Learning solu-

tions tackling traffic prediction. One of the tasks of the contest addressed speed prediction

based on a real-time stream of synthetic data from vehicles in Warsaw (Poland). The data

stream consisted of GPS locations of the traveling vehicles sampled every 10 seconds, and

the task asked to predict the average speed on selected road segments for a close time inter-

val (0-6’ minutes) and a farther one (24-30’ minutes). The winning solution proposed the

adoption of a random forest model [14]. The authors employ two kind of features to model

the speed: i) features computed by a global traffic flow model common to all road segments

and ii) features computed by a local traffic flow model that strictly depends on the road

segment considered. The global traffic flow model outputs 68 features while the local traffic

flow models compute from 6 to 42 features, depending on the road segment.

The most related aspect of the aforementioned article to our work is the adoption of

some form of “global” knowledge to make the learned solutions more robust and effective.

In this work we remark that we investigate machine learned models trained on all or subsets

of sensors deployed in a large road network. On the one hand, we believe that the increasing

availability and heterogeneity of traffic data, pushed both by innovations in sensor tech-

nologies and the urgency of mobility problems faced in highly-populated urban areas, call

for methodologies that are accurate, robust to variations in the characteristics of the road

segments considered, and that can accommodate dynamic networks of traffic sensors. On
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the other hand, to the best of our knowledge state-of-the-art solutions for short-term speed

prediction are limited to local models trained on historical data collected from individual

sensors. Thus, while a local approach allows to train very effective prediction models at

sensor level, it is also very demanding in that it requires to train and maintain periodically

different models for each sensor – indeed, this issue becomes relevant when the number of

sensors becomes large, or sensors are frequently added (removed) to (from) the network.

For what concerns the machine learning techniques considered in our work, we report

that state-of-the-art solutions [34, 30] use models based on gradient boosting regression trees

(GBRT), as this technique proves to be superior to others. We also report, however, that the

existing literature evaluates the aforementioned techniques limitedly to some local approach.

Recent works experiment deep learning technologies for predicting short-term vehicle

speed. Deep learning algorithms use multiple-layer deep architectures to extract inher-

ent features from data to model patterns and structures. Indeed, deep learning allows to

represent complex traffic features without previous knowledge [16, 19]. A deep learning

architecture composed of a deep belief network (DBN) and a multitask regression layer

is proposed in [16]. The DBN is used for unsupervised feature learning, while the multi-

task regression layer above the DBN is used to supervise the prediction through multitask

learning. The experimental evaluation shows that the proposed approach outperforms well-

established competitors such as ARIMA (AutoRegressive Integrated Moving Average) [27],

Bayesian [26], SVR (Support Vector Regression) [3], LWL (Locally Weighted Learning) [25],

MNR (multivariate Non-parametric Regression) [9], and neural networks [4]. [32] proposes

a data grouping approach based on a convolutional neural network called DGCNN to fore-

cast urban short-term traffic flows, where the neural network uses spatial relations between

traffic locations to train predictive models. In the experimental evaluation the authors show

that the DGCNN produces more accurate predictions than competitors such as historical

average, ARIMA, and SAE (stacked autoencoder) [19]. In [18] the authors propose the use

of convolutional neural networks, centered on the notion of diffusion convolution, to capture

spatial and temporal dependencies among traffic flows. Finally, in [33] the authors propose

ST-ResNet, a deep-learning-based approach that forecasts the inflow and outflow of crowds
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in spatial regions within urban areas – as such, we note that this work targets a different

problem with respect to the one considered in our work. The approach relies on three resid-

ual neural networks to model some properties characterizing spatio-temporal data, more

precisely, temporal closeness, period, and trend properties of crowd traffic. The aggregated

output of the networks is then integrated with external factors, such as weather and day of

the week, to predict at once the inflows and outflows of the spatial regions considered.

Overall, the works mentioned above are orthogonal to our proposal, as we investigate

how to reduce management complexity by minimizing the number of models to be trained

and maintained with respect to the local approach. It is recognized that deep learning

models trained on large datasets outperforms those using small training dataset. Although

a similar investigation is out of the scope of this paper, it is likely that short-term vehicle

speed prediction based on deep neural networks can benefit from the global or cluster-

based approaches we propose, thanks to the present availability of large amounts of training

samples.

3. Problem definition

Let S = {s1, . . . , sn} be a network of n sensors overseeing the traffic conditions of a

specific geographical area. Within a given time interval T , sensors in S produce a collection

of observations, where each observation is a triple (tj, sj, xspeed) recording the time tj ∈ T

of the event of a vehicle passing by some sensor sj ∈ S with a speed xspeed.

Let us then denote byO the set of average speed observations that are produced as follows:

the whole time interval T is split in time-buckets of fixed length (e.g., 5 minutes each) and,

for each bucket and sensor, the average speed of all the vehicles observed is computed. Each

average speed observation is thus represented by a triple (k, i, speed), where k and i are

respectively the identifiers of the time bucket and sensor, while speed is the average vehicle

speed observed. Moreover, let y(k, i) be a function that, given the identifiers of the bucket

and sensor, returns the observed average speed, i.e., y(k, i) = speed.

Then, we define the PredictSpeed problem as the problem of finding an accurate

function f for predicting y(k, i) given all the previous observations recorded in O, i.e., all
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the observations having a time bucket identifier lower than k.

Definition 3.1 (PredictSpeed). The PredictSpeed problem requires to find a predic-
tive function f̂ over the class of all possible predictive functions H such that:

f̂ = arg min
f∈H

∆(f), (1)

where ∆ is a loss function assessing the quality of a candidate predictive function f over the

observations in O. In this work we use two different loss functions: the Mean Squared Error

(MSE) and the Mean Absolute Percentage Error (MAPE). These functions are defined as:

∆MSE(f) =
1

|O′|
∑

(k,i,speed)∈O′

(f(k, i)− y(k, i))2 (2)

∆MAPE(f) =
1

|O′|
∑

(k,i,speed)∈O′

|f(k, i)− y(k, i)|
y(k, i)

, (3)

where O′ is the set of observations used to assess the quality of the prediction and f(k, i) is

the estimate returned by function f for y(k, i). The smaller the value yielded by the above

loss functions, the better the predictive performance of f .

We employ Machine Learning (ML) techniques to address the PredictSpeed problem.

More specifically, we aim at learning from the observations in O some function f̂ that

minimizes the error measured by ∆. We train the prediction models on datasets containing

examples built from past sensors observations, where each example is represented by an

high-dimensional vector of features. The aim of these features is to model relations between

the traffic conditions observed in time buckets prior to k and the speed y(k, i) that will be

recorded by sensor i within the time bucket k (in other words, the label to predict). To

train the models we rely on state-of-the-art machine learning techniques for regression tasks

[11]: Gradient Boosting Regression Trees (GBRT) [12, 13], Random Forests [2] and Linear

Regression [10].

In this work we address large traffic sensor networks typically instrumenting the roads

of large cities. As such, we are interested in studying speed prediction techniques that

are resilient not only to changes in traffic behavior, but also to changes in the network

where sensors are frequently added to monitor new road segments or replaced/removed due

8



to various maintenance reasons. To investigate this scenario we introduce three different

approaches that can be used to learn f̂ , i.e., the local, global and cluster-based approaches.

The local approach learns a different prediction function f̂i for each sensor si using the

observations recorded by si and defines the prediction function f̂ in terms of n distinct

local prediction functions f̂i. The global approach learns the prediction function f̂ from the

observations of all sensors. Finally, the cluster-based approach uses a similarity measure to

partition the sensors into k disjoint clusters, and learns a distinct prediction function f̂c for

each cluster c via the observations recorded by the sensors associated with c.

To the best of our knowledge state-of-the-art techniques solving the speed prediction

problem employ the local approach, as this strategy fits nicely the dynamics of individual

sensors within the network. However, the local approach cannot be applied to new sensors

added to the network due to the lack of historical data – this is also known as the cold start

problem. Moreover, using the local approach in large networks typically implies a huge data

management overhead due to the training and maintenance of possibly hundreds of different

prediction models.

The most natural strategy to tackle this issue is to use the global approach, where a

single prediction model is trained over data from the whole sensor network. Indeed, this

approach is expected to generalize well over previously unseen sensors and adapts well to

changes in traffic behaviors. Unfortunately this generalization power comes with a cost, as

a global model might not fit the dynamics of individual (or groups of) sensors.

Finally, we argue that the cluster-based approach allows to find a proper trade-off be-

tween the advantages and disadvantages of the local and global approaches: the higher the

number of clusters, the more the models generated by the cluster-based approach fit the

dynamics of individual sensors; conversely, the lower the number of clusters, the more the

generated models tend to capture general traffic dynamics.

4. Dataset preparation

We evaluate the local, global, and cluster-based approaches introduced in Section 3 by

means of a real-world dataset containing data from traffic sensors deployed in the city of

9



Fortaleza (Brazil). The dataset is provided by Autarquia Municipal de Trânsito e Cidadania

(AMC), the authority supervising Fortaleza’s road-network. The raw dataset consists of

about 1.3 billions records, collected by a network of 302 sensors during the whole year of

2014, for a total of 60 GB of data. Each record is associated with the passage of one vehicle

in the area covered by one of the sensors. Each record contains five fields: i) sensor ID,

representing the identifier of the sensor that produced the record, (ii) timestamp t, indicating

when the record was produced, (iii) lane number l, indicating the number of lanes monitored

by the sensor, (iv) maximum lane velocity sl, the maximum speed allowed in the lane(s),

and (v) speed s of the vehicle that triggered the record creation.

Among the sensors in the dataset, only 154 were always continuously active during all

the months of the year. Indeed, the sensor network was subjected to frequent additions and

removals, mainly due to hardware malfunctions, contract expirations, contract renewals,

and so on. Figure 1 shows the locations of 234 sensors that were active during January and

February 2014, while Table 1 presents some characteristics of the dataset: the column #

records reports the number of observations gathered during the associated month, while

the column # sens. added reports the number of active sensors in a given month that were

not appearing in the preceding month. Similarly, the column # sens. removed reports

the number of sensors that were not active in a given month while they are active in the

preceding one. Finally, the column # active sens. reports the overall number of active

sensors within the associated month. From the figures in the Table we observe that the

network of sensors is highly dynamic, thus indicating the importance of prediction models

that are resilient to changes in the network.

In the next paragraphs we detail the data preparation phases needed to build from

the raw dataset the dataset O of average speed observations given in input to the ML

techniques considered in this work. More precisely, we illustrate how we filtered out the

outliers, aggregated the data, and engineered the various features.

Data cleaning. We first filter out from the dataset observations that are possibly affected

by anomalies. To this end, we partition the observations by month and compute the mean
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Figure 1: Map of the traffic sensors deployed during January and February 2014. Each circle in the map
represents a group of spatially close sensors – darker circles indicate multiple sensors monitoring different
lanes.

µ and the standard deviation σ of the speed within each month. Finally, we remove the

observations whose speed has a distance from µ greater or equal than 3σ. The output of

this phase consists of the set of observations appearing in the original dataset minus the

ones that are deemed anomalous by the above criterion.

Data aggregation. The goal of this second phase is to generate the set O of average

speed observations from the data obtained at the end of the first phase. To this end we

partition the data into ten distinct time intervals, each spanning a period of two months,

and aggregate the data in each partition according to 5-minute time slots. Then, for each

sensor and 5-minute time slot pair we compute the attributes shown in Table 2.

The choice of using 5-minute time slots is common in state-of-the-art literature [6, 5,

21, 34, 35, 23], while the choice of intervals spanning 2 months represents a proper trade-off
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Month # records # sens. added # sens. removed # active sens.

January 116,448,334 - - 236
February 89,272,352 5 51 190
March 87,505,939 0 5 185
April 87,838,370 2 0 187
May 113,754,231 53 13 227
June 85,672,156 6 54 179
July 94,307,178 10 0 189
August 125,829,696 66 4 251
September 94,889,414 7 62 196
October 129,457,780 69 0 265
November 125,366,035 9 2 272
December 132,161,025 0 4 268

Tot. records 1,282,502,510

Table 1: Salient details of the original data produced by the network of sensors monitoring the city of
Fortaleza (Brazil) during the whole 2014.

between the need to have enough data to perform the training, validation, and evaluation

of the models, and the need to have a reasonable number of test sets spanning the whole

dataset timeline in order to evaluate the robustness of the models learned with respect to

aging.

The resulting dataset is the set of average speed observations O detailed in Table 4 of

Section 5.1. We report that we released the aggregated dataset to the scientific community1

to ensure the reproducibility of our results and promote research developments in this field.

Feature engineering. We aim at devising a “good” set of features that can be success-

fully used to train robust and accurate speed prediction models. Before introducing the

features used, we explain how information in the temporal domain are exploited to derive

them. Figure 2 provides a schema of the temporal intervals considered for feature modeling.

From the figure we first notice Query time, which represents the time instant in which the

prediction request occurs. Query time is associated with a specific 5-minute time slot, i.e.,

the 5-minute time slot preceding the one in which Query time falls: this represents Query

time’s time slot of reference and it is denoted by tsref .

1The dataset will be released upon acceptance of the manuscript.
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Attribute Description

sensor id Identifier of the sensor.
n lanes Number of lanes monitored by the sensor.

speed limit Maximum speed allowed in the road moni-
tored by the sensor.

timestamp Time instant associated with the start of the
5 minute time-slot.

vehicle count Number of vehicles (throughput) that pass by
the sensor within the 5 minute time-slot.

avg speed Average speed of vehicles that pass by the
sensor within the 5 minute time-slot.

std speed Standard deviation of the speed of vehicles
that pass by the sensor within the 5 minute
time-slot.

min speed Minimum speed of vehicles that pass by the
sensor within the 5 minute time-slot.

max speed Maximum speed of vehicles that pass by the
sensor within the 5 minute time-slot.

Table 2: List of the attributes associated with each sensor and 5-minute time-slot pair.

The speed prediction refers to a future 5-minute time slot, tsf . Inspired by several works

available in the literature [28, 24, 31, 21], we use a predictive horizon of 30 minutes after

the beginning of tsref
2. Besides the fundamental time slots mentioned above, to perform

accurate predictions we leverage information contained within few other selected time slots

related to Query time. More specifically we consider:

• ts30: 30-minute time slot that ends at the same time instant of tsref ’s ending.

• ts1w: 5-minute time slot starting one week before the beginning of tsf .

• ts2w: 5-minute time slot starting two weeks before the beginning of tsf .

For all the 5-minute time slots and all the sensors in S we use the schema highlighted above

to design a set of 25 features that model traffic conditions. Table 3 reports the complete

2In general, we note that the width of all the intervals involved can be parametrized according to specific
application needs.
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Figure 2: Diagram illustrating time-slot related features.

list, together with the time slots they refer to. These 25 features can be divided into six

different groups as shown in the Table. We note that the second group contains categorical

features; as such, we converted them to numerical values based on the following semantic:

• day of the week : 0 (Monday), 1 (Tuesday), 2 (Wednesday), 3 (Thursday), 4 (Friday),

5 (Saturday) or 6 (Sunday).

• slot of day : value comprised between 0 to 287, due to the discretization of time into

5-minutes time slots (i.e., 24 · (60/5) slots).

• working day : equal to 1 if the time slot falls within a working day, 0 otherwise.

Finally, we use the average speed in the future time slot (tsf ) as the prediction label of the

current observations. It is worth noticing that information concerning sensor identifiers or

their geographical coordinates are not included among our features since we want to train

models that are able to generalize over different sensors.

The features in groups (iii) and (iv) capture two different time slots close to Query time.

We included both of them as they may capture specific time-dependent traffic trends. To

the best of our knowledge, this is the first work that addresses the construction of speed

prediction models based on time-dependent groups of features.
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Group Features Name Description

i Sensor
n lanes Sensor number of lanes
speed limit Speed limit

ii Time reference
day of week Day of week
slot of day Slot of day
working day Working day

iii 5 min last time slot (tsref )

v count5 Number of vehicles
min5 Minimum speed
max5 Maximum speed
avg5 Average speed
std5 Standard Deviation

iv 30 min last time slot (ts30)

v count30 Number of vehicles
min30 Minimum speed
max30 Maximum speed
avg30 Average speed
std30 Standard Deviation

v
One week before prediction
time slot (ts1w)

v count1w Number of vehicles
min1w Minimum speed
max1w Maximum speed
avg1w Average speed
std1w Standard Deviation

vi
Two weeks before prediction
time slot (ts2w)

v count2w Number of vehicles
min2w Minimum speed
max2w Maximum speed
avg2w Average speed
std2w Standard Deviation

Table 3: List of the features used in our prediction models.

5. Experimental Evaluation

In this section we discuss the experiments conducted to generate different prediction

models and assess their performance. More specifically, Section 5.1 introduces the exper-

imental setting used to conduct the results evaluation, while Section 5.2 introduces the

experimental questions and discusses the results.

5.1. Experimental Setting

Test system. We conduct our experiments on a server with 16 Xeon E5520 Intel CPUs,

each clocked at 2.27GHz, with 8192 KB L3 cache, 24 GB of RAM, and Ubuntu OS (16.04

LTS).
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Figure 3: Example of sensor clustering conducted according to the similarity between time-series.

Sensor clustering. The cluster-based approach relies on some clustering strategy to oper-

ate. To this end, we evaluate two different strategies: the first one exploits sensor geolocation

information and employs a spatial distance function to compute distances between pairs of

sensors. For the purposes of this work we experimented with the Euclidean, haversine, and

road network distances. The second strategy focuses on the similarity of traffic behaviors

observed by different sensors and clusters sensors accordingly. We implement the latter

strategy by modeling sensors as time series containing sequences of sensor observations.

Specifically, each sensor is modeled by a weekly sequence of average speeds computed for

each 5-minute time slot, weighed by the number of cars observed. In this way, each sensor

is represented by a time series of 7× 24× 60/5 = 2, 016 values. Consequently, the similar-

ity between a pair of time series can be determined as the Euclidean distance between the

associated multidimensional points. Figure 3 provides examples of clusters found with the

latter strategy.

We established the best clustering strategy by performing an extensive experimental

evaluation, comparing the MSE yielded by models generated by the cluster-based approach

through different clustering techniques – for the sake of brevity we omit the discussion of
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these experiments and report that the clustering strategy achieving the best results uses

K-Means++ [1] to cluster sensors modeled as time-series. Consequently, in the experiments

presented in Section 5.2 the cluster-based approach employs this strategy.

Dataset. The dataset used in the experimental evaluation, built as discussed in Section 4,

contains 12,054,700 records. We split the data into several distinct partitions, i.e., training,

validation, and test sets.

First, we define a training set as a temporal interval covering two consecutive months of

data. By doing so, the dataset is thus arranged into ten partitions. We build the training sets

so that two subsequent partitions of two months each overlap by one month, e.g., the second

month of the first partition is also the first month of the second partition. Consequently, we

have ten partitions ranging from January to November 2014: Jan/Feb, Feb/Mar, Mar/Apr,

Apr/May, May/Jun, Jun/Jul, Jul/Ago, Ago/Sep, Sep/Oct, Oct/Nov. From Section 4 we

remember that some of the features refer back to two weeks before prediction time. Moreover,

we report that the cluster-based approach requires two weeks of data to cluster the sensors.

Consequently, the first two weeks of any partition are used exclusively for feature and cluster

computation. This means that we use the remaining six weeks of data to build the samples

in the training set. Moreover, we filter out all the samples where the actual speed to predict

is zero. Table 4 provides the most salient details about the training sets. For each training

set of two months, we report the number of aggregated observations (# agg. obs.) and

the number of operating sensors (# sensors.).

We then define validation and test sets as a temporal split covering a single month of

data, from March to December. For each training set we use the month of data that follows

to build the validation and test sets – for instance, when training on January and February

2014 we define the associated validation and test sets on March 2014.

To create validation and test sets we consider the sensors present both in the training set

and in the month that follows it. By doing so, we avoid performing predictions that involve

sensors not present in the training set. We also perform a randomized stratified sampling,

based on the sensor identifiers, to homogeneously distribute the data of each sensor across
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Partition # agg. obs. # sensors

Jan/Feb 2,266,620 240
Feb/Mar 2,038,634 189
Mar/Apr 2,040,453 184
Apr/May 2,162,768 236
May/Jun 2,152,463 228

Jun/Jul 2,053,947 182
Jul/Aug 2,420,851 244
Aug/Sep 2,322,379 249
Sep/Oct 2,388,983 258
Oct/Nov 2,722,819 266

Table 4: Details of the ten partitions defined on the reference dataset.

the validation (50%) and test (50%) sets.

Machine learning methods. The machine learning methods considered in this work to

train models are Multivariable Linear Regression (MLR) [10], Random Forest (RF) [2], and

Gradient Boosting Regression Trees (GBRT) [12, 13]. The implementations of MLR and RF

are provided by the Scikit-Learn machine learning library [22], while the implementation of

GBRT is provided by XGBoost [7, 8]. We also consider Historical Average (HA), a baseline

algorithm that predicts the average speed in a given time slot tsi by averaging the speed of

all the training examples having the same day of week and slot of day of tsi.

For what concerns the hyper-parameters needed by RF and GBRT, we determine the best

combination by means of a grid search with different hyper-parameter subsampling ranging

in {0.1, 0.5, 1.0}. The first hyper-parameter required by RF and GBRT is the maximum

tree depth (max depth) – to this end we consider the range [5, 20] (with step 2). GBRT

and RF also require to provide the number of trees (n estimators) to be used in a model;

to this end the implementations of RF and GBRT employ an early stopping technique to

find out the best value. Finally, GBRT requires a third hyper-parameter, the learning rate

(learning rate), for which we consider the range [0.05, 0.2] (with step 0.05). We also test

the L1 and L2 regularization strategies, ranging respectively in the sets {0.0, 0.01, 1.0} and

{0.0, 1.0, 100}. Overall, for each possible combination we generate a model and pick the
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one that yields the lowest MSE. The evaluation is conducted over the validation set.

5.2. Experimental results

The experiments aim at comprehensively answering the following experimental questions:

EQ1 Which machine learning algorithms achieve the best results when used to address the

PredictSpeed problem in the context of a static sensor network? Also, which are

the most relevant features for the local, global, and cluster-based approaches?

EQ2 In the context of a static sensor network, are the models trained according to the local,

global and cluster-based approaches resilient with respect to aging?

EQ3 Are the prediction models trained according to the local, global, and cluster-based

approaches robust in managing effectively the structural changes affecting a real-world

dynamic network of sensors? Also, do the global and cluster-based approaches address

effectively the cold start problem?

In the following sections we answer the above questions.

5.2.1. EQ1 – Evaluation of machine learning techniques and feature relevance

The main goal of this study is to evaluate and establish the best machine learning tech-

nique among those tested for each approach. In this context we consider static sensor net-

works and compare the following methods: Historical Average (Hist.Avg.), a commonly used

baseline, Linear Regression (MLR), Random Forest (RF) and Gradient Boosting Regression

Trees (GBRT).

We generate the training, validation, and test sets according to the methodology de-

scribed in Section 5.1. We also impose an additional constraint that ensures we are dealing

with static sensor networks; more specifically, we require that samples in the training, val-

idation, and test sets refer to the same set of sensors. For instance, if a training set covers

February and March, and the associated validation and test sets cover April, we only use

samples collected by sensors that were working during all these months.

Tables 5 and 6 show the MSE and MAPE measured for the prediction models trained

according the global, cluster and local approaches with the various ML algorithms tested.
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training val&test test size ML algorithm global cl.k=2 cl.k=4 cl.k=8 local

Jan/Feb Mar 375992 GBRT 14.62 14.65 14.61 14.60 14.38
RF 15.30 15.05 15.00 14.96 14.62
MLR 15.23 15.23 15.22 15.22 14.82
HIST AVG 92.80 92.93 92.59 92.51 19.83

Feb/Mar Apr 644235 GBRT 15.54 15.59 15.62 15.51 14.99
RF 16.35 16.12 16.08 15.97 15.17
MLR 16.39 16.38 16.38 16.35 15.61
HIST AVG 92.58 92.56 91.97 91.18 20.91

Mar/Apr May 332851 GBRT 14.18 14.30 14.23 14.13 13.82
RF 15.09 14.88 14.82 14.70 14.15
MLR 14.99 14.99 14.98 14.96 14.38
HIST AVG 90.95 89.47 88.33 87.06 19.39

Apr/May Jun 633282 GBRT 14.14 14.22 14.17 14.08 13.99
RF 14.77 14.59 14.55 14.41 14.21
MLR 14.81 14.80 14.80 14.78 14.28
HIST AVG 93.35 92.46 91.51 89.27 21.71

May/Jun Jul 379778 GBRT 14.00 14.05 14.23 14.12 13.64
RF 14.82 14.57 14.57 14.50 14.11
MLR 14.79 14.79 14.79 14.78 14.27
HIST AVG 87.52 87.52 87.48 87.57 19.43

Jun/Jul Aug 703642 GBRT 13.99 14.06 14.02 14.08 13.64
RF 14.88 14.58 14.52 14.50 13.88
MLR 14.81 14.81 14.80 14.80 14.17
HIST AVG 90.62 90.85 89.10 88.28 18.75

Jul/Aug Sep 332969 GBRT 14.47 14.54 14.52 14.48 14.01
RF 15.36 15.04 14.98 14.89 14.11
MLR 15.29 15.29 15.29 15.26 14.50
HIST AVG 89.88 88.97 87.42 84.90 19.84

Aug/Sep Oct 832012 GBRT 14.42 14.54 14.56 14.49 14.22
RF 15.36 15.08 15.05 14.95 14.94
MLR 15.34 15.33 15.32 15.28 14.96
HIST AVG 97.22 97.25 97.11 96.30 21.30

Sep/Oct Nov 493406 GBRT 13.77 13.83 13.85 13.76 13.69
RF 14.68 14.37 14.30 14.21 13.86
MLR 14.56 14.58 14.57 14.58 14.09
HIST AVG 95.86 95.91 96.07 96.41 20.56

Oct/Nov Dec 176542 GBRT 14.78 14.84 14.81 14.75 14.50
RF 15.64 15.35 15.28 15.17 14.61
MLR 15.62 15.62 15.61 15.57 14.85
HIST AVG 94.89 94.64 92.53 92.59 20.24

Table 5: MSE evaluation of ML techniques for the blobal, cluster-based (with k ∈ [2, 8]), and local ap-
proaches. The best performers are highlighted in bold.

The first consideration we can do by looking at the figures reported in the tables is that

GBRT outperforms the other techniques tested in all the experiments conducted, with MLR

and RF following closely. Furthermore, we see that the local approach consistently provides

prediction models achieving the lowest MSE and MAPE error, independently from the period

considered. This result was largely expected since the local approach allows to train models

that can capture the specific behavior and context of each sensor. On the other hand, we

have to consider the huge cost for achieving this level of accuracy. For instance, let us
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training val&test test size ML algorithm global cl.k=2 cl.k=4 cl.k=8 local

Jan/Feb Mar 375992 GBRT 0.0920 0.0922 0.0922 0.0921 0.0906
RF 0.0943 0.0944 0.0944 0.0941 0.0923
MLR 0.0938 0.0938 0.0938 0.0938 0.0932
HIST AVG 0.3006 0.3007 0.2996 0.2970 0.1063

Feb/Mar Apr 644235 GBRT 0.0958 0.0959 0.0961 0.0957 0.0934
RF 0.0985 0.0987 0.0986 0.0981 0.0948
MLR 0.0982 0.0982 0.0982 0.0981 0.0964
HIST AVG 0.3022 0.3017 0.3000 0.2950 0.1107

Mar/Apr May 332851 GBRT 0.0906 0.0911 0.0908 0.0905 0.0892
RF 0.0936 0.0939 0.0937 0.0934 0.0914
MLR 0.0928 0.0928 0.0928 0.0928 0.0924
HIST AVG 0.2962 0.2930 0.2899 0.2854 0.1064

Apr/May Jun 633282 GBRT 0.0884 0.0887 0.0886 0.0883 0.0868
RF 0.0904 0.0910 0.0909 0.0903 0.0887
MLR 0.0906 0.0905 0.0905 0.0904 0.0890
HIST AVG 0.2915 0.2892 0.2869 0.2808 0.1085

May/Jun Jul 379778 GBRT 0.0875 0.0876 0.0888 0.0884 0.0861
RF 0.0902 0.0901 0.0905 0.0903 0.0881
MLR 0.0901 0.0901 0.0902 0.0901 0.0892
HIST AVG 0.2816 0.2809 0.2805 0.2802 0.1016

Jun/Jul Aug 703642 GBRT 0.0868 0.0871 0.0869 0.0878 0.0854
RF 0.0898 0.0896 0.0894 0.0900 0.0870
MLR 0.0896 0.0896 0.0896 0.0896 0.0885
HIST AVG 0.2869 0.2868 0.2831 0.2785 0.0998

Jul/Aug Sep 332969 GBRT 0.0874 0.0876 0.0877 0.0874 0.0854
RF 0.0905 0.0902 0.0900 0.0897 0.0864
MLR 0.0903 0.0903 0.0903 0.0902 0.0878
HIST AVG 0.2812 0.2781 0.2749 0.2680 0.1009

Aug/Sep Oct 832012 GBRT 0.0858 0.0862 0.0864 0.0861 0.0848
RF 0.0888 0.0893 0.0893 0.0890 0.0879
MLR 0.0889 0.0888 0.0888 0.0887 0.0885
HIST AVG 0.2918 0.2907 0.2899 0.2878 0.1030

Sep/Oct Nov 493406 GBRT 0.0801 0.0805 0.0805 0.0803 0.0793
RF 0.0829 0.0829 0.0826 0.0825 0.0803
MLR 0.0824 0.0825 0.0825 0.0825 0.0815
HIST AVG 0.2765 0.2764 0.2760 0.2750 0.0960

Oct/Nov Dec 176542 GBRT 0.0841 0.0845 0.0845 0.0842 0.0824
RF 0.0871 0.0869 0.0867 0.0863 0.0832
MLR 0.0866 0.0865 0.0865 0.0865 0.0847
HIST AVG 0.2791 0.2785 0.2732 0.2730 0.0973

Table 6: MAPE evaluation of ML techniques for the global, cluster-based (with k ∈ [2, 8]), and local
approaches. The best performers are highlighted in bold.

consider the number of different models trained for performing the experiments reported in

Table 5 and 6. For the local approach we had to train more than 2, 000 models for each

algorithm. Conversely, with the global approach we had to train only 10 prediction models

for each algorithm, one for each row of the tables.

However, in terms of MSE and MAPE achieved, the advantage of the local approach

over the global one appears to be relatively low. Indeed, the performance of the global

approach follows closely that of the local one, while the error difference between the two
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does not seem to justify the higher complexity of the local approach – an issue that becomes

apparent when managing large sensor networks.

Finally, it is worth noting that although the prediction error achieved by models gen-

erated via the cluster-based approach is close to those obtained with models generated via

the global and local ones, the cluster-based approach does not provide the level of accuracy

we were expecting; we hypothesize that the similarity metrics we experimented may not be

sufficient to capture the actual specificity of the data collected by sensors. Further work is

thus needed to explore different similarity metrics that may allow the cluster-based approach

to be a proper trade-off between the global and the local ones for what concerns prediction

error and management complexity.

Relevance of features.

In the batch of experiments that follows we study the relevance of the features introduced

in Section 4, Table 3, in the contexts of the local, global, and cluster-based approaches. We

employ GBRT, since in the previous study it proved to be the best performing ML technique.

The relevance of each feature is estimated by counting the number of times it is used in a

split node of any decision tree in the GBRT forest. For the local, cluster-based and global

approaches we computed the feature importance as the average of all feature importance of

all local models of all the ten months. Figure 4 presents the results.

From the plots we observe how the slot of the day feature is the most relevant for the local

approach and the second most relevant for the cluster-based approach intuitively indicating

that the time of the day is a good indicator of the local traffic flow. On the other hand,

the most relevant feature for the global and cluster-based approaches results the average

of the last 30 minutes. Again, intuitively, this shows that predictions from the global and

cluster-based approaches are based on the average of behaviour of sensors more than the

specific time of the date that is more related to a single sensor. Finally, we observe that the

non-temporal features belonging to group (i) exhibit the lowest relevance.

In conclusion, this study shows that GBRT represents the best ML technique for all the

considered approaches, with MLR and RF following closely. The study also shows that the
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Figure 4: Analysis on the relevance of features. Left-hand side: feature relevance with the local approach.
Center side: feature relevance with the cluster-based approach for k=8. Right-hand side: feature relevance
with the global approach.

most relevant feature for the local approach is related to the time of the day thus reflecting

the typical traffic flow behavior local to a given sensor while for global and cluster-based

approaches the most relevant features are related to the average speed in the previous 30

days.

5.2.2. EQ2 – Evaluation of the aging of predictive models generated by the local, global, and
cluster-based approaches with a static sensor network

The main goal of this study is to evaluate how predictive models generated by the local,

global, and cluster-based approaches age over time. Indeed, we recall that traffic behavior

tend to change due to holiday periods, large events, changes in the road network, seasonal

trends, and so on. It is therefore reasonable to suspect that a model built on data covering a

specific period may not represent well the traffic behavior in subsequent periods. Assuming

that we want to avoid a frequent re-training of the models, this study aims to understand

which approaches achieve the most consistent predictive performance over time.

In the batch of experiments that follows we consider a scenario with static sensor net-

works, and analyze the performance of predictive models. We generate the training, valida-
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tion, and test sets according to the methodology described in Section 5.1. We also impose an

additional constraint that ensures we are dealing with static sensor networks; more specifi-

cally, we require that samples in the training, validation, and test sets refer to the same set

of sensors. For instance, if a training set covers February and March, and the associated

validation and test sets cover April, we will use samples collected only by sensors that were

working during all these months.

The performance of the approaches is evaluated in terms of average MSE metric (Section

3). The ML technique used to generate the models is GBRT. Finally, the cluster-based

approach uses k values comprised in the range [2, 64] – indeed, this range represents an

appropriate transition from the global approach to the local one.

Table 7 summarizes the average MSE yielded by the local, cluster-based and global

approaches. In the first column we see the 10 different training sets while in the first row we

see the test and validation months. As we anticipated in Section 5.1, for each pair of months

we build a model that is then tested over the months that follow. This leads to the upper

triangular matrix shown in Table 7. From the results we observe how the local approach

often achieves the best results in the first month of test, while its performance degrades

noticeably in the months that follow. Conversely, the results highlight the robustness and

resilience of the cluster-based (with k = 2) and global approaches, as their performance tend

to remain stable across the months. In general, we argue that the local approach performs

consistently worse due to its inability to generalize traffic behavior. On the other hand,

the global and cluster-based approaches consistently achieve very good performance, thus

suggesting that they are capable to effectively capture changes in global traffic behavior over

time.

Figure 5 provides a pictorial overview of the results. The plot clearly shows the trend

of model aging: while models trained with the local approach tend to age significantly (this

is signalled by a significant increase of the average MSE over time), thus demonstrating a

high sensitivity to unseen data, global prediction models are definitely more robust to model

aging, as they exhibit a stable average MSE.
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LOCAL

training set
test set

Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan/Feb 14.38 15.89 14.74 16.00 15.25 16.08 16.32 17.09 16.01 17.79
Feb/Mar 14.99 14.39 15.38 14.61 15.47 15.86 16.73 15.45 17.09
Mar/Apr 13.82 14.78 14.75 15.64 15.81 16.49 15.55 16.97
Apr/May 13.99 14.25 15.03 15.29 16.63 15.06 16.70
May/Jun 13.64 14.26 14.61 15.99 14.46 16.26
Jun/Jul 13.64 14.01 15.35 13.88 15.92
Jul/Aug 14.01 15.56 14.49 16.43
Aug/Sep 14.22 13.98 15.39
Sep/Oct 13.69 15.32
Oct/Nov 14.50

CLUSTER-BASED (k = 2)

training set
test set

Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan/Feb 14.65 15.63 14.25 14.20 13.99 14.25 14.42 14.77 13.69 15.18
Feb/Mar 15.59 14.31 14.24 14.07 14.43 14.55 15.04 13.79 15.05
Mar/Apr 14.30 14.15 14.18 14.38 14.47 15.02 13.88 15.08
Apr/May 14.22 14.06 14.28 14.40 14.79 13.76 15.00
May/Jun 14.05 14.33 14.60 14.74 13.81 15.10
Jun/Jul 14.06 14.21 14.73 13.55 14.83
Jul/Aug 14.54 15.13 14.07 15.16
Aug/Sep 14.54 13.71 14.47
Sep/Oct 13.83 14.84
Oct/Nov 14.84

GLOBAL

training set
test set

Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan/Feb 14.62 15.76 13.93 14.41 14.05 13.79 14.31 14.47 13.50 14.17
Feb/Mar 15.54 14.26 14.25 14.05 14.25 14.33 14.77 13.77 15.12
Mar/Apr 14.18 14.17 14.05 14.26 14.37 14.76 13.78 15.06
Apr/May 14.14 13.97 13.69 14.29 14.33 13.39 14.03
May/Jun 14.00 13.68 14.33 14.41 13.42 13.98
Jun/Jul 13.99 14.13 14.41 13.49 14.74
Jul/Aug 14.47 14.49 13.74 14.47
Aug/Sep 14.42 13.64 14.41
Sep/Oct 13.77 14.67
Oct/Nov 14.78

Table 7: Average MSE over different months for models generated via the local (top table), cluster-based
(k=2, middle table), and global (bottom table) approaches.

5.2.3. EQ3 – Evaluation of the resilience of predictive models generated by the local, global,
and cluster-based approaches with a dynamic sensor network

In this study we consider a scenario with a dynamic sensor network and analyze the

performance of the global and cluster-based approaches to assess their resilience with respect

to changes that affect the network over time. Thus, differently from the previous studies we

do not limit ourselves to a fixed subset of sensors but consider also sensors that are added

to the network outside the temporal interval spanned by the training sets. To this end we
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Figure 5: Aging effect measured in terms of average MSE by increasing the distance of the test set from the
training set. The average MSE is computed for the ten training partitions.

conduct the following experiment: we compare the performance of the local, global, and

cluster-based approaches limitedly to some of the sensors added to the network beyond the

end of the pair of months used as training set, to prove the superior predictive performance of

the latter approaches. We perform the experiment on eight months, from May to December

2014. We do not provide any result for March and April 2014, as no new sensors were added

to the network in that period. Table 8 details the number of sensors added to the dynamic

network for each considered month.

In this context we notice that the global and cluster-based models used in the first batch

of experiments (i.e., EQ1) can be reused. Due to its characteristics, however, the local

approach requires a different training procedure since it must train a model each time a new

sensor is added to the network. Accordingly, each local model is trained and evaluated over

the month of data where the new sensor appears. Note that, in EQ1 and EQ2, validation

and test sets were built over each month, splitting the samples of that month in half between

the two sets. However, in this experiment training data is required for each added sensor:
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training set
test set

May Jun Jul Aug Sep Oct Nov Dec

Jan/Feb 3 7 12 27 28 48 55 57
Feb/Mar 52 7 12 76 28 96 102 103
Mar/Apr 52 7 12 76 28 96 102 103
Apr/May 5 10 24 26 45 52 54
May/Jun 5 19 21 40 48 50
Jun/Jul 64 16 84 91 92
Jul/Aug 5 21 29 31
Aug/Sep 16 24 26
Sep/Oct 9 11
Oct/Nov 2

Table 8: Number of sensors added to the dynamic sensor network. Each cell represents the number of
sensors that were not present in the network during the temporal interval covered by the training set but
appear in the temporal interval covered by the test set.

to this end, we use the validation set previously defined, i.e., 50% of the data of the month,

to train the local model. We then split the test set in two halves (25% of the original set

each) and use the first half to validate the model and the other half to test it. We assess

the performance of the approaches by considering the average MSE achieved over all the

sensors considered. Tables 9 presents the results of the investigation while Figure 6 presents

the average prediction error achieved by the three strategies for each specific test month.

The results show that the local approach is able to handle new sensors even if the global

and cluster-based (with k = 2) approaches behave similarly to the local approach in terms

of average MSE. The experiment thus shows that the global and cluster-based approaches

are able to effectively tackle changes in dynamic sensor networks. The competitiveness

of the global and cluster-based approaches becomes even more evident when dealing with

older models, i.e., models built months before prediction time. Here, the local approach

performs worse as it does not deal properly with aging (see results for EQ2). This result has

interesting practical implications: first, our proposed global and cluster-based approaches

allow for a reduced management complexity, meaning that they do not require per-sensor

training; instead, they allow for an easy development and deployment of prediction models.

Furthermore, the results demonstrate that the global and cluster-based approaches tackle

effectively the cold start problem, since they achieve comparable results w.r.t. the local

approach without the need to retrain a model each time a new sensor is added to the

network. Finally, as the global and cluster-based approaches are more robust to aging they
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do not require frequent re-training on specific (i.e., per-sensor) data.

LOCAL

training set
test set

May Jun Jul Aug Sep Oct Nov Dec

Jan/Feb 12.05 16.98 12.02 11.95 17.32 16.8 18.39 20.83
Feb/Mar 11.23 16.98 12.02 10.28 17.32 14.49 14.38 15.51
Mar/Apr 11.23 16.98 12.02 10.28 17.32 14.49 14.38 15.51
Apr/May 18.79 11.52 12.54 17.29 17.09 19.28 21.44
May/Jun 12.26 12.17 18.22 18.16 19.68 22.39
Jun/Jul 9.82 21.97 15.48 15.45 16.39
Jul/Aug 20.91 19.36 19.68 21.07
Aug/Sep 20.57 21.6 22.76
Sep/Oct 18.8 20.72
Oct/Nov 20.54

CLUSTER-BASED (k = 2)

training set
test set

May Jun Jul Aug Sep Oct Nov Dec

Jan/Feb 11.89 20.81 12.41 11.98 17.23 17.62 18.46 19.96
Feb/Mar 12.67 21.47 12.49 11.52 17.27 15.73 15.58 15.55
Mar/Apr 12.79 20.13 12.3 11.62 17.26 15.79 15.64 15.70
Apr/May 23.51 11.6 12.29 17.31 18.04 19.29 20.76
May/Jun 11.41 12.32 18.26 19.09 20.06 21.22
Jun/Jul 10.96 22.1 16.82 16.38 16.25
Jul/Aug 20.5 20.5 19.73 19.24
Aug/Sep 21.64 21.3 20.97
Sep/Oct 19.36 19.44
Oct/Nov 19.59

GLOBAL

training set
test set

May Jun Jul Aug Sep Oct Nov Dec

Jan/Feb 11.82 20.86 12.24 11.88 17.23 17.6 18.41 19.99
Feb/Mar 12.52 20.03 12.3 11.34 17.4 15.64 15.49 15.39
Mar/Apr 12.56 21.47 12.28 11.36 17.47 15.76 15.57 15.58
Apr/May 23.26 11.58 12.28 17.33 18.07 19.4 20.78
May/Jun 11.4 12.18 18.51 19.33 20.12 21.65
Jun/Jul 11.09 22.14 16.91 16.39 16.29
Jul/Aug 20.46 20.64 19.78 19.47
Aug/Sep 21.76 21.08 20.89
Sep/Oct 19.26 19.45
Oct/Nov 19.63

Table 9: MSE yielded by the local (top table), cluster-based (with k = 2, middle table), and global (bottom
table) approaches with respect to a dynamic sensor network.

6. Conclusion and future work

Traffic forecasts should be accurate and robust to changes in traffic monitoring networks.

When such changes may occur, traffic management systems should optimize management

and advisory strategies to enhance decision-making capabilities and maintain an appropriate

level of service. In this context we consider the problem of predicting the speed of vehicles
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Figure 6: Average prediction error on new sensors of a specific month. The result is obtained by averaging
the performance of all the prediction models available for a specific test month.

by analyzing data collected from a large and dynamic network of sensors, where sensing

devices are continuously added and removed to the network. To this end we evaluate three

different approaches called the local, global and cluster-based, that leverage state-of-the-art

supervised machine learning techniques.

The local approach, which is the traditional strategy adopted by state-of-the-art litera-

ture, trains a model for each sensor, and generally achieves high performance in the presence

of long term historical data. However, this approach suffers the cold start problem and can

be hardly applied to dynamic sensor networks, where sensors are frequently added and re-

moved. Moreover, the local approach entails consistent data management costs with large

and dynamic sensor networks, as it requires to train and maintain many different prediction

models.

To tackle the limitations of the local approach, in this paper we propose the global
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and cluster-based approaches. The global approach trains a single prediction model over

the observations of all the sensors of the network, while the cluster-based approach trains

prediction models on clusters of sensors to capture traffic behavior observed by “similar”

sensors. Subsequently, we formally introduce the speed prediction problem and design a

methodology that allows to train models according to the three approaches.

To evaluate the approaches we conduct an extensive experimental evaluation on a very

large dataset collected in the city of Fortaleza, Brazil – we also report that we made the

dataset publicly available to ensure the reproducibility of our results and promote research

developments in this field. Driven by three experimental questions, we first analyze three

state-of-the-art machine learning techniques for the speed prediction problem, and prove that

gradient boosting with regression trees outperforms the other techniques. Subsequently, we

focus on the characteristics of static sensors networks, studying how the models, trained

according to the three approaches, age over time. Here we observe how the local approach

achieves the best results when tested over the same period covered by the training set, while

it degrades noticeably over the subsequent temporal periods due to its inability to generalize

different traffic behavior. On the contrary, the global approach addresses the aging problem

effectively, as it allows to train models that capture traffic changes without the need to per-

form expensive re-trainings, with the cluster-based approach following closely. Finally and

most importantly, the evaluation shows that the global and cluster-based approaches achieve

comparable results w.r.t. the local approach when facing consistent structural changes in

dynamic sensor networks, thus addressing effectively the network dynamicity problem and

the cold start problem.

Overall, the performance of the global and cluster-based approaches is determined by

its resilience to model aging and to structural changes affecting dynamic sensor networks,

and we believe that these results have the potential to impact smart cities and current data

management practices in the field of speed prediction.

One line of future research is towards the improvement of the clustering approach, as a

compromise between local and global. Alternative similarity measures have to be tested to

better group sensors data with similar behaviour.
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Another line deals with feature engineering; for instance, one may consider introducing

features related to information in various domains to further improve the accuracy, such

as weather conditions, accidents, road-network maintenance, and so on. Other features

may be engineered to consider information related to spatially close (according to some

proximity function or clustering process) sensors. Finally, another possible line of research

may leverage the approaches presented in this work to generate cost functions in the context

of time-dependent road networks [20].
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