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a b s t r a c t 

Edge computing is a promising solution to enable low-latency Internet of Things (IoT) applications, by shifting 

computation from remote data centers to local devices, less powerful but closer to the end user devices. However, 

this creates the challenge on how to best assign clients to edge nodes offering compute capabilities. So far, two 

antithetical architectures are proposed: centralized resource orchestration or distributed overlay. In this work 

we explore a third way, called uncoordinated access, which consists in letting every device exploring multiple 

opportunities, to opportunistically embrace the heterogeneity of network and load conditions towards diverse 

edge nodes. In particular, our contribution is intended for emerging serverless IoT applications, which do not 

have a state on the edge nodes executing tasks. We model the proposed system as a set of M/M/1 queues and 

show that it achieves a smaller delay than single edge node allocation. Furthermore, we compare uncoordinated 

access with state-of-the-art centralized and distributed alternatives in testbed experiments under more realistic 

conditions. Based on the results, our proposed approach, which requires a tiny fraction of the complexity of the 

alternatives in both the device and network components, is very effective in using the network resources, while 

incurring only a small penalty in terms of increased compute load and high percentiles of delay. 

1

 

c  

m  

b  

r  

e  

(

 

a  

l  

o  

w  

S  

l  

t  

v  

p  

m

 

t  

s  

e  

v  

w  

p  

c  

t  

c  

a  

I  

w  

t  

d  

t  

p  

t  

f  

e  

o

 

w  

o  

b  

t  

a  

f  

h

R

A

1

. Introduction 

Nowadays edge computing is a trending architecture where appli-

ations on user devices are provided with computational capabilities

ade available in the access networks. Compared with traditional Mo-

ile Cloud Computing (MCC), edge systems enjoy lower latencies and

educed Internet traffic. These advantages make them desirable in sev-

ral vertical market segments, including mobile Augmented Reality

AR)/Virtual Reality (VR) [1] , connected car [2] , and IoT [3] 

Meanwhile, a new paradigm, called serverless computing or Function

s a Service (FaaS), is also revolutionizing IoT frameworks [4] . In server-

ess computing, processing is offloaded from the user device by means

f tasks similar to remote function calls, often called lambda functions ,

hich are processed by remote executors in a stateless manner [5] .

erverless computing was born as a cloud computing technology to al-

ow an easier up/down scaling of the executors in a data center since

here is no server-side state to be handled. However, this paradigm fits

ery well many IoT applications that natively consist of event-driven or

eriodic execution of processing jobs on data acquired in real-time for

onitoring purposes [6] . 

In this paper we consider a system for IoT applications that combines

he advantages of edge systems and serverless computing. Our target

cenario is illustrated by means of the example in Fig. 1 , which shows an

dge domain consisting of: (i) access points, which provide the client de-
∗ Corresponding author. 

E-mail addresses: c.cicconetti@iit.cnr.it (C. Cicconetti), m.conti@iit.cnr.it (M. Con

e  

ttps://doi.org/10.1016/j.comnet.2020.107184 

eceived 14 October 2019; Received in revised form 24 January 2020; Accepted 27 

vailable online 28 February 2020 

389-1286/© 2020 Elsevier B.V. All rights reserved. 
ices with access to the edge network; (ii) lambda executors, co-located

ith network devices, which are equipped with spare/extra compute ca-

abilities to respond to function execution requests from the clients; (iii)

lients, which offload their computation by means of lambda requests

owards the executors; (iv) a logically centralized entity, indicated as

ontroller / orchestrator, which manages the lifecycle of the lambda im-

ges on the executors and dispatches the lambda requests from clients.

n the literature there are two alternative approaches for this scenario,

hich will be analyzed in Section 3.2 : centralized , where the associa-

ion between clients and executors is decided by the orchestrator, and

istributed , where the edge nodes cooperate to dispatch lambda func-

ions from clients to executors without a central coordination. Both ap-

roaches require that a network-wide infrastructure is created and main-

ained, which may incur a significant overhead and prove inflexible to

ast changing conditions, especially if the capabilities of the lambda ex-

cutors are limited, which is a use case of interest for IoT applications

n low-power gateways in the network. 

Therefore, to overcome the limitations of these existing approaches,

e propose to provide the clients with uncoordinated access : a light

rchestration assigns every client a pool of possible lambda executors,

ut the final choice on where to send each and every request is made by

he client. We discuss this solution in Section 3 , where we also propose

 practical decision mechanism based on probing of the response time

rom different executors, which is simple enough to be implemented

ven in IoT devices with very limited computation resources on board.
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Fig. 1. Target scenario. 
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1 The original name of the committee was Mobile Edge Computing, later 

changed to Multi-access Edge Computing in accordance with the paradigm shift 

towards a technology-agnostic set of specifications, intended for not only mobile 

wireless networks. 
urthermore, we show that our proposed solution is compatible with the

uropean Telecommunications Standards Institute (ETSI) Multi-access

dge Computing (MEC) standard [7] , which is attracting a growing in-

erest from the edge computing industry, especially in the mobile telco

omain. We provide the reader with a tutorial introduction to the stan-

ard in Section 2.2 . 

Furthermore, in Section 4 we model the proposed system under sim-

lifying assumptions, which allows us to perform a numerical analysis

f our proposed solution in the same section. Finally, in Section 5 we

alidate the conclusions obtained via analysis of experimental results

btained with a proof-of-concept implementation. Experiments are car-

ied out in an emulated network, configured with realistic topology and

raffic conditions, also comparing our uncoordinated access to central-

zed and distributed solutions from the literature. 

. State of the art 

The goal of this section is two-fold. On the one hand, in

ection 2.1 we provide the reader with an overview of the recent stud-

es in the scientific literature that are most relevant to this work We

ote that, to the best of our knowledge, there are no works in the liter-

ture that address specifically the topic of serverless computing in edge

ystems for IoT; thus, we survey a selection of works that, in our opin-

on, provide an adequate technical background or ancillary solutions in

reparation of addressing the challenges ahead. On the other hand, in

ection 2.2 we introduce the ETSI MEC standard, which is relevant in

ts possible role as a leading technology to deploy interoperable edge

ystems and applications. 

.1. Distributed computing in edge systems 

The amount of literature that could be ascribed to IoT is titanic. After

he outburst of works on Wireless Sensor Networks (WSNs) more than

0 years ago, our research community has produced architectures, pro-

ocols, and algorithms for all possible requirements, some of which have

ade it into standards and products in the market. However, conclusive

olutions have yet to be found regarding some crucial aspects that still

inder the full potential of mass applications to be unlocked, which is

xpected to pass through edge systems thanks to the advantages they of-

er compared to both on-device execution and pure cloud offloading, as

lready discussed in the introduction. These aspects include scalable and

ustainable strategies for the operation and continuous optimization of

esources under realistic assumptions, for which we illustrate the recent

tate of the art in the following. The interested reader may find further

ources of inspiration in the recent survey papers [8,9] . 
The authors in [10] focus on the server-side implementation chal-

enge if having multiple services on an edge node with compute ca-

abilities, requiring isolation and low overhead, especially lower than

hat imposed by full-fledged virtualization systems intended for high-

nd servers. To this aim, they propose to use WebAssembly, which is a

inary instruction format intended for applications to be executed with

ative speed within web browser, but could equally be used as a form of

xtremely down-scaled virtualization for IoT services, with similar goals

s Unikernels [11] . An even more further looking solution is proposed

n [12] , where the micro-services are assumed to be dynamically dis-

ributed and executed based on peer-to-peer monetary incentives, which

s a direction already pursued in the market, e.g., in the Golem network

roject https://golem.network/ , though in the context of High Perfor-

ance Computing (HPC). In any case, our work builds on top of any

uch approach that allows edge nodes to provide FaaS micro-services

hat respond to requests from clients: we aim at optimizing their access

n the short-term (seconds to minutes), while long-term optimizations

ill be done regularly as part of the system’s house-keeping activities. 

Fault tolerance is the subject of some works, including [13] , where

istributed computing is realized by means of so-called tasklets . The un-

erlying assumption there is that executors are inherently error-prone,

ecause they are hosted on devices owned by (cooperative) end users.

hile this assumption may not apply to typical IoT scenarios, where

ailure of an edge node is expected to be a sporadic event, we note that

ur proposed uncoordinated serverless access goes exactly into the same

irection, since it embeds reliability by using a pool of executors rather

han a single one. Another problem that has attracted some interest re-

ently is deciding on the user device whether a given task should be

ffloaded to edge/fog/cloud nodes or it would be better executed on

he local compute resources. As in [14] , this problem usually creates

rade-offs between execution time and energy consumption, which fits

ery well the use cases where the clients are smart phones. On the other

and, a basic assumption of this work is that the IoT user devices have

ery limited computation capabilities for taking sophisticated decisions,

nd even more so for executing tasks by themselves. However, we in-

pire from that work for the definition of the mathematical system model

n Section 4 . An alternative solution has been also proposed in [15] for

he same problem, where a near-optimal decision algorithm based on

-learning is proposed. 

Finally, we cite here the two alternative architectures mentioned

riefly in the introduction, which will be studied in more details in

ection 3.2 : centralized vs. distributed. A centralized solution, where

 single logical entity implements load-balancing on the client requests

owards a pool of executors, is the standard approach in all cloud-based

erverless environments, which have been evaluated, e.g., in [16] (open

ource) and [17] (commercial). On the other hand, in our previous

ork [18] , we have proposed to distribute load balancing on the edge

odes themselves to overcome the limitations of a centralized structure

n an irregular edge network. However, our previous solution was not

ntended for IoT scenarios, where both edge nodes and clients may have

imited capabilities. In Section 5 we compare in a large-scale scenario

he access scheme proposed in this paper to both such approaches. 

.2. ETSI MEC 

The MEC industry study group was founded in ETSI in 2014 1 to

reate an open environment for the deployment of interoperable ap-

lications from all the actors in the edge ecosystem: vendors, service

roviders, third parties. As a matter of fact, most scientific works fo-

us on specific aspects of the standard. In [19] the authors show how

 real-time video streaming application may benefit form radio-level

https://golem.network/
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Fig. 2. Simplified blueprint of the ETSI MEC reference architecture. 
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nformation provided through the ETSI MEC interfaces, thus allowing

 service provider to improve the Quality of Experience (QoE) of its

sers through the use of open interfaces (today the only option would

e to sign a contract with every mobile network operator, then use dif-

erent proprietary interfaces to gather information from each). In the

ore network of a mobile operator Software Defined Networking (SDN)

nd Network Function Virtualization (NFV) are the state-of-the-art solu-

ions for the deployment and operation of services; in [20] the authors

xplore their relationship with ETSI MEC, which is a key aspect in a

roduction network. The same problem is also addressed in [21] , with

 specific focus on redirecting traffic from a mobile user to its edge node

n a transparent manner during roaming. However, it is yet to be under-

tood whether SDN/NFV are also relevant for IoT systems where the

evices for both connectivity and computation are expected to be more

eterogeneous and with limited capabilities. 

In the following we provide a short introduction to the standard,

ith a focus on the aspects that are more relevant to this work. In Fig. 2

e show the reference architecture of ETSI MEC, as of release 2.1.2

in draft at the time of writing), with some simplifications regarding

nterfaces and components that are not relevant to the discussion in

his paper. The interested reader is referred to [22] , which provides a

omplete overview of the standard, or directly to the ETSI MEC speci-

cations, which are all available to the public from the group website

ttps://www.etsi.org/committee/1425-mec . 

In the upper part of the figure we show the client and device apps.

he client app is ETSI MEC agnostic and it interacts on the data plane
ith a user app that physically resides on a MEC host. The interface

etween the client and user app is application-dependent; generally,

erverless computing is carried out by means of micro-services, hence

he client only needs to know the Uniform Resource Locator (URL) or

nd-point of the lambda executor to offload computation tasks to it. 

On the other hand, the device app is an ETSI MEC aware component

f the application running on the user device, which interacts with the

EC platform on the management plane through the User Application

ife Cycle Management (LCM) Proxy using the Mx2 Application Pro-

ramming Interface (API). The latter, as all the other ETSI MEC inter-

aces, is a vendor-neutral RESTful interface, whose commands and data

tructures are specified to facilitate interoperability between application

nd platform software, intended to be developed by different players in

he ecosystem. The workflow expected from an application wishing to

se an ETSI MEC service is the following: 

1. the client app invokes computation offloading via a proprietary in-

terface on its device app; note that the client and device app may

reside in different devices, e.g., in an IoT system the client app may

be in the smart object and the device app on a concentrator or gate-

way; 

2. the device app checks the availability of the application requested

and initiates the creation of an application context; 

3. the MEC Orchestrator (MEO) checks the availability of resources

and, if the new application is accepted, it allocates the necessary re-

sources via the MEC Platform Manager (MEPM) and Virtualization

Infrastructure Manager (VIM) using the Mm3 and Mm4 interfaces,

respectively; the algorithms and criteria used by the MEO are volun-

tarily left open by the standard to foster market differentiation; 

4. these requests, in turn, reflects on the MEC hosts via the Mm5 and

Mm7 interfaces, respectively for computation and connectivity re-

sources; 

5. once this flow on the management plane is completed, the device

app is notified on the Mx2 interfaces and the client and user app can

start data plane interactions. 

At any time the MEO can change the MEC host serving the client

pp for optimization reasons by means of a push notification to the de-

ice app, e.g., if the mobile device roams to another area of the wire-

ess network or if the computation/network conditions change due to

ther applications. With non-serverless applications, this also incurs a

tate migrations, which in general is a complex and costly operation. In

ection 3.4 we will describe how to implement serverless uncoordinated

ccess in ETSI MEC. 

. Uncoordinated serverless access 

In this section we describe our proposed architecture for uncoordi-

ated access of IoT clients to serverless micro-services in an edge sys-

em. We start by defining the key requirements of IoT architectures, in

eneral, in Section 3.1 , based on which we propose our so-called unco-

rdinated access in Section 3.2 . We then illustrate in Section 3.3 a simple

tateless algorithm that can be used by the clients in this architecture,

ntended as a baseline for constrained devices. Depending on the avail-

bility of extra computational resources on the client devices, one can

hink of more sophisticated solutions, which are the subject of our cur-

ent investigations. We believe that our contribution is general enough

o be suitable to several edge technologies and target deployments; to

onfirm our statement, in Section 3.4 we show how to realize the frame-

ork with the ETSI MEC. 

.1. Requirements 

Before delving into the illustration of our contribution, we elaborate

 moment on the following four fundamental requirements that any

rchitecture should meet to be an effective solution in our context: 

https://www.etsi.org/committee/1425-mec
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Fig. 3. Comparison of the proposed architecture for uncoordinated access to 

serverless functions (bottom) with traditional centralized (top) and distributed 

(middle) approaches. 
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A. It should be easy to implement on the user side: IoT devices often have

very limited CPU/memory capabilities. 

B. It should be lean on edge compute resources: in an IoT scenario the net-

work infrastructure usually consists of WiFi Access Points (APs) or

other System on Chip (SoC) / low-power devices, which are equipped

with specialized hardware, e.g., FPGAs or GPUs, that makes them

suitable as servers for specific applications, but whose processing

capabilities available for control / management activities is limited.

C. It should adapt well to fast changing conditions: in many use cases of

practical interest the user devices are mobile and the application

patterns are not known a priori , thus it is not possible to optimize

once and for all the allocation of clients to edge nodes. 

D. It should be lean on backhaul resources: the connectivity of the edge

nodes, both between themselves and with core network components,

called backhaul in telco terminology, may be scarce and heteroge-

neous. 

E. It should be cheap to maintain: due to the sheer numbers of devices

expected to be connected for future IoT applications, we argue that

any sustainable business model must severely limit the expenses for

operating and monitoring a deployed infrastructure, which in most

cases will grow over time and remain in place for much longer than,

e.g., mobile wireless access infrastructures, which have to catch up

every few years with constantly advancing technologies. 

.2. Proposed architecture 

Let us consider first centralized solutions , which are the base-

ine approach in cloud-based serverless solutions, such as Knative

ttps://knative.dev or Apache OpenWhisk https://openwhisk.apache.

rg , and telco-native architectures, including the ETSI MEC as illustrated

n Section 2.2 . With this paradigm, illustrated in the top part of Fig. 3 ,

he applications on the user devices merely obey to a logically central-

zed orchestrator, which instructs them to which end-point or URL to

ddress their lambda requests. Since the entire decision making is done

y the orchestrator alone, requirements A and B above are automatically

overed. Also, since the orchestrator has a system view, we can expect

hat it can follow very well the changing conditions, possibly even an-

icipating such changes if prediction algorithms are used, which meets

equirement C. For the same reason, requirement E is also addressed:

he orchestrator is the only complex component of the system that needs

e monitored and maintained. However, centralized solutions fall short

n covering requirement D: making appropriate decisions require that

he orchestrator is updated by all edge nodes on the real-time status of

ts resources. This may be reasonable in cloud-based solutions, where all

he executors are powerful and well connected and in close proximity

o one another in a data center, but it certainly poses limits to the

rowth of the edge system as the backhaul gradually becomes a choke

oint. 

For this reason, in the literature some distributed solutions have

een proposed (see Section 2.1 ). As illustrated in the middle part of

ig. 3 , the basic concept of these approaches is that an overlay exists

etween the user devices and the executors, made by edge nodes that

ake local decision in a distributed manner to optimize the execution of

ervices, which greatly reduces the internal traffic thus meeting require-

ent D. The user devices remain unaware of the underlying complexity,

ence requirement A is met, as well. Adaptation to changing conditions

requirement C) is addressed, as long as the distributed system can reach

ear-optimum working point despite the decision makers have a lim-

ted view of the system. However, distributed solutions cannot address

dequately requirements B and E. On the one hand, taking informed

ecisions in a fully distributed manner requires that the edge nodes co-

rdinate among themselves and dedicate part of their computational

apabilities to the process of maintaining a synchronized state for this

urpose; therefore requirement B may be difficult to achieve, especially

ith a high number of edge nodes in the system. On the other hand, the
dge system operator would have to maintain a potentially large number

f active components in the system, including monitoring, supervision,

nd software upgrades phases, also addressing heterogeneous hardware

nd software characteristics, which makes it challenging to achieve re-

uirement E. 

https://knative.dev
https://openwhisk.apache.org
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Table 1 

Qualitative comparison of the proposed architecture (uncoordinated) with classical centralized 

and distributed approaches from the literature, in terms of meeting five fundamental require- 

ments (see Section 3.1 ). 

Requirement Centralized Distributed Uncoordinated 

A. Easy to implement on the user side ++ ++ + 
B. Lean on edge compute resources ++ − ++ 
C. Adaptation to changing conditions ++ + + 
D. Lean on backhaul resources −− + ++ 
E. Cheap to maintain ++ −− ++ 

 

c  

t  

a  

t  

h  

a  

t  

t  

f  

s  

e  

i  

p  

r  

i  

c  

O  

a  

c  

u  

c  

r  

a  

b  

m  

n

 

a  

a  

c

d  

“  

i  

t  

o  

t  

l  

n  

p  

b  

w

 

m  

n  

e  

i  

t  

s  

a  

i  

p

 

T

Fig. 4. Sequence diagram of the execution of lambda functions from a client 

towards its primary executor and, once every 𝜒 requests on average, to the 

secondary executor, as well, for probing purposes. In the figure 𝛿 is the overall 

delay, consisting of processing component 𝜂 and network component 𝜏; the full 

notation is introduced in Section 4 and summarized in Table 2 . 
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In this work we propose a solution, called here uncoordinated ac-

ess , that overcomes the respective limitations of centralized / dis-

ributed approaches and addresses all the requirements. We start with

n observation: slow-changing conditions in the system are easily de-

ectable by a centralized entity, i.e., the orchestrator, with a low over-

ead since this merely requires aggregate measures from the executors

nd it is not a real-time task. Thus, let us assume that the lifecycle of

he micro-service images on the executors is somehow optimized so as

o follow macroscopic slow trends in the system. The real challenge is

ollowing the microscopic fast changes: if, for instance, an executor is in-

talled in a SoC device, such as a Raspberry Pi, then very few concurrent

xecutions of a lambda function can easily overload the executor, thus

ncreasing the response times of clients and possibly degrading the ap-

lication. Following these variations in a system with no reservation of

esources nor a priori knowledge on the arrival of lambda execution jobs

s extremely challenging, and in fact leads to their respective key short-

omings of the centralized and distribution solutions discussed above.

n the other hand, rather than complicating the system to beat this vari-

bility, we propose to embrace it: we propose that the orchestrator allo-

ates a pool of end-points / URLs to every client, which the latter can

se to exploit opportunistically to its own advantage taking internal de-

isions. This is illustrated in the bottom part of Fig. 3 , where solid lines

epresent the current choice of destination of clients and dashed lines

re the (currently) unused alternatives they have been informed about

y the central entity; the latter is called here repository to stress that it

erely communicates a pool of executors to every client without run-

ing a real-time optimization process, as in a centralized architecture. 

We call this solution uncoordinated because the clients do not inter-

ct with other components to take decisions on a per request basis. In

n environment that evolves with fast dynamics, relying on the statisti-

al multiplexing of uncoordinated agents taking myopic “good enough ”

ecisions may result beneficial compared to a system trying to achieve

optimal ” goals, which however fails because it is either fed outdated

nformation or it consumes too many resources (computation, traffic) in

he process. On the other hand, system-wide optimization can be added

n top of the proposed solution, working at a much slower time scale (in

he order of minutes and above). This can be done along at least the fol-

owing two directions: modifying the set of executors deployed on edge

odes (e.g., an algorithm based on popularity of functions requested was

roposed in [23] ); advertising different pools of executors to the clients,

ased on long-term estimates of networking and computation statistics,

hich can be seen as a service placement problem (see [24] ). 

It is straightforward to see that the proposed uncoordinated solution

eets all the requirements in Section 3.1 , with the following two minor

otes. First, this design only makes sense if the clients can decide which

xecutor to use in a simple manner (requirement A), as we explain below

n Section 3.3 . Second, as for distributed solutions, we have to abandon

he goal of achieving a global optimum, since this would require either a

ystem-wide view or an extremely complex/expensive synchronization

cross the clients; however, we argue that “good ” performance levels

n a practical solution are way more preferable than reaching optimum

erformance under unfeasible conditions. 

The above discussion is summarized for the readers’ convenience in

able 1 . 
c  
.3. Client algorithm 

To complete our proposition we now describe how the clients select

ver time the executor to be used from the pool of those available. The

ool of executors must be communicated to clients by a component with

ystem-level view, indicated as a repository in Fig. 3 , which in a real sys-

em would interact with the orchestrator in charge of managing the life

ycle of executors on edge nodes. The algorithm that is used by (e.g.)

he orchestrator to decide which pool of executors has to be notified to

hich client may be subject to optimization too, and is a research issue

er se . However, since this happens at a time scale greater than that of

nterest for the scheduling of lambda functions, we consider this specific

ssue out of the scope of this work, and subject to future investigations.

n the performance evaluation in Section 5 , we select the pool of ex-

cutors that minimize the number of network hops for a client to reach

hem, also limiting the pool size to 2 or 3. 

To keep the client very simple, consistently with requirement A

bove, we propose that it keeps one of the possible destinations are

he current one, then at every execution of the lambda function it se-

ects also another destination for probing with a given probability 𝜒 ,

hich is a system parameter. The lambda function is then issued both

o the primary executor and to the secondary one selected: after measur-

ng the relative latencies, the client may then promote the secondary to

rimary. An example sequence diagram is shown in Fig. 4 . The primary

xecutor (1) is depicted on the right of the client c , which issues lambda

unction requests to 1 only with probability 1 − 𝜒 . Sporadically, i.e., on

verage every 1/ 𝜒 , one request will be issued towards both the primary

xecutor (1) and the secondary executor (2), depicted on the left of c . In

he example, the overall response time from 2 is greater than than from

, hence the process continues at the client side as before. 

In fact, the main reason for a network or service operator to use edge

omputing is because the applications have latency constraints. If this is
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Table 2 

Notation used. 

Symbol Domain Meaning 

 { 1 , … , 𝐶 } Set of clients, || = 𝐶
 { 1 , … , 𝐸 } Set of executors, || = 𝐸


{
1 , … , 2 𝐶 

}
Set of states, || = 2 𝐶 

𝝉 ℝ 𝐶×𝐸 Network delays 

x ℝ 𝐶 Task processor utilization 

𝝀 ℝ 𝐶 Task arrival rate 

𝝁 ℝ 𝐸 Task dispatch rate 

s { 1 , … , 𝐸 } 𝐶×𝑆 Primary executor per client per state 

𝐬̄ { 1 , … , 𝐸 } 𝐶×𝑆 Secondary executor per client per state 

I ijk ⟨i, j, k ⟩ → {0, 1} Primary indicator function 

𝐼 𝑖𝑗𝑘 ⟨i, j, k ⟩ → {0, 1} Secondary indicator function 

𝜹 ℝ 𝐶×𝑆 Average delay with primary executor per client per state 

𝛅̄ ℝ 𝐶×𝑆 Average delay with secondary executor per client per state 

𝜒 (0, 1) Probability that the secondary executor is probed 

 𝑘 ⊆  Set of states reachable by state k 

P [0, 1] S × S Transition matrix of the associated DTMC 

𝝅 [0, 1] S Stationary distribution 
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o  
ot the case, then cloud computing is bound to be a cheaper and easier

lternative for economy of scale reasons. We note that the latency of a

ambda transaction consists of several components, including the time

o transmit the messages and the responses, network queuing delays be-

ween any two hops, and the lambda execution time plus any additional

aiting due to the application/OS scheduler. However, from the point of

iew of the application on the user device, such decomposition is irrele-

ant: what counts is only the time between when the lambda function is

ssued and when a response is received, which can be easily measured

ocally. 

Finally, the reader may wonder at this point why the lambda func-

ion is executed towards both destination instead of only the one under

robing: this is to make sure in the most simple manner that the latency

easurements are comparable. In fact, not all tasks of the same lambda

ype may be the same, e.g., the input may have a different size or con-

ain data that are more or less complex to process on the edge node side;

urthermore, environmental conditions may change from one lambda

xecution to the next one, e.g., the access link of the client may suffer

rom wireless impairments temporarily reducing the bit-rate. 

.4. ETSI MEC implementation 

We now describe how to implement the proposed uncoordi-

ated serverless scheme with ETSI MEC The reader is referred to

ection 2.2 for a tutorial introduction to this standard. 

As mentioned already, with serverless computing the executors do

ot hold a state for every active client application. This property can

e exploited by the MEO to load the lambda images, e.g., Virtual

achine (VM) or containers, on the MEC hosts, according to slow-

hanging estimations / predictions of their utilization, which is outside

he scope of this work. This way, all the interfaces from Mm3 to Mm7 (see

ig. 2 above) are not used either for execution of lambda transactions

r for creation of new application contexts from device apps. The man-

gement plane, as such, is greatly simplified compared to traditional

stateful) applications, and in fact the MEO merely acts a repository of

he end-points of the available lambda images on all the MEC hosts,

rouped per lambda function type. Simplification also translates into a

etter scalability as the rate of context creation increases, which is a

ery desirable property in IoT scenarios where we can expect that some

pplications will have a short-lived duration. 

As an application context creation from the device app is requested

n the Mx2 interface, via the LCM proxy, the MEO selects a number of

xecutors and includes their end-points in the response to the device

pp. 

The algorithm by which the MEO determines both the 𝜒 and which

xecutors are to be selected for every new context is beyond the goal of
his paper and part of our on-going research activities, fostered by the

odel illustrated in Section 4 below as a building block for the design

f such an optimized algorithm in a production system. 

. System model and analysis 

In this section we present a mathematical model of the uncoordi-

ated serverless access system put forward in Section 3 , under simpli-

ying assumptions to make it tractable ( Section 4.1 ). To facilitate the

eader visualizing the model, we then study the simple case of 2 clients

erved by 3 executors ( Section 4.2 ). Finally, we provide numerical re-

ults to compare a static allocation to our proposed solution and derive

ome system properties ( Section 4.3 ). The conclusions found will be val-

dated against experimental results in the next section Section 5 . 

.1. System model 

Despite the simplicity of implementation in both the client and the

rchestrator, the proposed system is still too complex to be formalized

n mathematical terms in general conditions. Therefore, we now make

he following simplifying assumptions. We assume to have a set of 

lients, each issuing lambda function requests of the same type towards

 pool  of executors. For simplicity, we assume that both the arrival

ate of tasks at every client and the serving rate at the executors are

oisson distributed, with average 𝜆i for client i and 𝜇j for executor j . We

ssume that the network delay 𝜏 ij between any client i and executor j is

onstant and independent of the state of the system. Finally, we assume

hat the orchestrator provides every client with exactly two possible

hoices, which we call primary and secondary depending on which one

s currently selected. 

For consistency and better readability we adopt the following rules

n the notation: the indices i and h always refer to clients, the index j

o executors, the index k to states; vectors and matrices are indicated

n bold (e.g., x ) and their corresponding elements use the same letter

n regular font (e.g., x i ). A summary of the notation used is reported in

able 2 . 

Because of our assumptions above, we can consider the client and

xecutors as a set of Markov M/M/1 queue systems. Without loss of

enerality we assume that the executors follow a Processor Sharing (PS)

olicy, which we believe to best approximate how a real edge node

ehaves under typical working conditions. Thus, for each client i we also

efine its processor share x i . The equivalent M/M/1 system is illustrated

y means of the example in Fig. 5 in the specific case where client 1 has

xecutor 1 as primary and 2 as secondary, while the opposite applies to

lient 2. We call the set of these conditions a state , because it captures

ne of the possible combinations in which our system can be. If, for
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Fig. 5. System model, illustrated by means of an example with two clients and 

two executors, with 𝛕 = 𝐱 = 𝟎 ; the equivalent M/M/1 model is on the right. 
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2 In the numeric analysis in Section 4.3 below, we have taken into account 

unstable queues as follows: 𝛿𝑖𝑘 > 𝛿𝑖𝑘 only if 𝛿ik is finite (i.e., stable queue towards 

the primary executor), in which case the condition is always true if 𝛿𝑖𝑘 is infinite 

(i.e., unstable queue towards the secondary executor). 
nstance, the executor 2 becomes primary for client 1, then the system

ill be in a different state. The set of the possible states  is given by

he binary enumerations of clients, because there are only two possible

ptions (primary vs. secondary), thus || = 2 𝐶 . In any specific state k ,

uch as that depicted in Fig. 5 , we can identify the average delay 𝛿ik of

ny client i towards its primary executor, as well as the same quantity

owards its secondary executor, called 𝛿𝑖𝑘 . It is important to note that for

very executor the inbound tasks are both those generated by the tasks

hat have it as the primary destination and those generated for probing

easons by the tasks that have it as the secondary destination. The latter

ollow the same Poisson distribution, but are only a fraction 𝜒 of the

ormer. 

According to basic queuing theory (e.g., [25] ) the average delay in

n M/M/1 PS system, including both queuing and processing times, is:

= 

𝑥 𝑖 𝜇

𝜇 − 

∑
ℎ 𝜆ℎ 

, (1)

here 𝜆h is the arrival rate of any client h served by the executor, which

nly holds if 𝜇 > Σh 𝜆h , i.e., if the system is stable . In our model we must

ake into account that, in any state s , an executor serves only the clients

aving it as a primary or secondary destination in that state. To capture

his property, we define the following two indicator functions . First, I ijk is

 only if client i has primary executor j in state k , i.e., 𝑠 𝑖𝑘 = 𝑗, otherwise

t is 0. Likewise, 𝐼 𝑖𝑗𝑘 is 1 only if 𝑠̄ 𝑖𝑗 = 𝑗, otherwise it is 0. We can now

xpress the average delay of client i towards its primary executor when

he system is in state k as follows, based on Eq. (1) : 

𝑖𝑘 = 

𝑥 𝑖 𝜇𝑠 𝑖𝑘 

𝜇𝑠 𝑖𝑘 − 𝜆𝑖 − 

∑
ℎ ∈,ℎ ≠𝑖 

𝜆ℎ 

[
𝐼 ℎ𝑠 𝑖𝑘 𝑘 + 𝜒𝐼 ℎ𝑠 𝑖𝑘 𝑘 

] + 𝜏𝑖𝑠 𝑖𝑘 , (2)

nd, similarly, the average delay of client i towards its secondary execu-

or when the system is in state k : 

̄
𝑖𝑘 = 

𝑥 𝑖 𝜇𝑠̄ 𝑖𝑘 

𝜇𝑠 𝑖𝑘 − 𝜒𝜆𝑖 − 

∑
ℎ ∈,ℎ ≠𝑖 

𝜆ℎ 

[
𝐼 ℎ ̄𝑠 𝑖𝑘 𝑘 + 𝜒𝐼 ℎ ̄𝑠 𝑖𝑘 𝑘 

] + 𝜏𝑖 ̄𝑠 𝑖𝑘 , (3)

oth Eqs. (2) and (3) assume that the queues are stable, i.e., that the

espective denominator is positive. If this condition is not true, then the

ueue length grows over time and the average delay tends to infinity in

heory, while in practice this condition will lead to much higher delays

han usual. 

Right up to this point we have shown how to build the two matri-

es 𝜹 and 𝛅̄, which give us the average delays experimented by every

lient towards its two possible destinations. We now use this informa-

ion to infer the average behavior of the system at a steady state and,

ence, derive the average delay of every client. Let us consider that the

eal system is dynamic: every client randomly performs probing on the

rimary vs. secondary executor, based on which it decides whether it

hould swap their role. If we assume that every client takes decisions

ased on the average delay, as expressed in Eqs. (2) and (3) , we see
hat the next state for a given client i is fully determined: if 𝛿𝑖𝑘 > 𝛿𝑖𝑘 ,

hen i will continue using s ik as its primary executor; otherwise, the new

rimary executor will become 𝑠̄ 𝑖𝑘 . However, this is an uncoordinated

ystems where all the clients take their decisions individually, thus the

ransition from any state k 1 to k 2 is determined by the random times

hen all the clients take their swap decisions. In other words, it is a

tochastic process, which we can represent by means of an associated

iscrete-Time Markov Chain (DTMC), where each state is exactly one of

he possible states  of our system, and the transition matrix P is built

s follows. For every state 𝑘 ∈  we consider all possible states  𝑘 that

an be reached, where state 𝑧 ∈  𝑘 iff the system can go from k to z with

 combination of clients i changing their primary executor because of

𝑖𝑘 > 𝛿𝑖𝑘 : 

 𝑘 = 

{
∀𝑧 ∈  , 𝑧 ≠ 𝑘 |∀𝑖 ∶ (𝛿𝑖𝑘 ≤ 𝛿𝑖𝑘 ∧ 𝑠 𝑖𝑘 = 𝑠 𝑖𝑧 

)}
(4) 

o simplify notation, we assume that all the queues are stable, in both

he primary and the secondary executors. 2 If there is a state k such that

ll the delays to the primary executor are smaller than the delays to the

econdary executor (i.e., if ∃𝑘 ∶ ∀𝑖, 𝛿𝑖𝑘 ≤ 𝛿𝑖𝑘 ), then it is  𝑘 = ∅. In this

ase k is an absorbing state ; in our system this means that every client sees

he secondary destination as a worse option compared to the primary

estination, thus it does not swap the two, and the system remains stable

ndefinitely. In general, the cardinality of this set is given by: 

 𝑘 | = 2 |{ ∀𝑖,𝛿𝑖𝑘 > ̄𝛿𝑖𝑘 } | − 1 (5)

t may also happen that state k is unreachable , i.e., ∀𝑧 ∶ 𝑧 ∉  𝑘 ; an un-

eachable state will not be reached unless the system starts from it. 

Once all the  𝑘 are determined for each 𝑘 ∈  , the transition proba-

ility p kz from state k to state z in the matrix P is: 

𝑘, 𝑧 ∈  , 𝑝 𝑘𝑧 = 

{ 

0 if 𝑧 ∉ 𝐽 𝑘 
1 |𝐽 𝑘 | if 𝑧 ∈ 𝐽 𝑘 

(6)

ithout considering the systems with absorbing states, which are of lit-

le practical interest to our analysis, and after removing the unreachable

tates, we obtain a chain that is irreducible (i.e., it is possible to go from

ny state to any other), and whose states are positive recurrent by con-

truction. Thus, the chain has a positive unique stationary distribution

, which gives the average probability in the long term that the system

ill be in any given state. Finally, we can use the latter to derive the

verage delays per client as 𝜹𝝅, i.e.: 

[ 𝛿𝑖 ] = 

𝑆 ∑
𝑘 =1 

𝛿𝑖𝑘 𝜋𝑘 (7)

o better visualize the process and system variables we report in the

ollowing a simple numeric example. 

.2. Example 

We now report a small numeric example, with the only purpose of

uiding the reader towards an easier understanding of the proposed no-

ation and model. We have two clients (1 and 2) and three executors

1, 2, and 3), whose arrival and serving rates, and network delays, are

hown in Fig. 6 and given below: 

= 

[
3 4 . 5 

]
= 

[
5 10 15 

]
 = 

[
1 1 

]
= 

[ 
1 1 2 
1 1 2 

] 
. (8) 
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Fig. 6. Toy example of a system with two clients and three servers illustrated 

in Section 4.2 to visualize the data structures involved in the model. 
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s can be seen: client 2 has a heavier load but it can use faster executors;

he fastest executors, i.e., 3, has the highest network delay. 

First, we enumerate all possible 4 states, which are illustrated graphi-

ally in the bottom part of Fig. 6 and formally determined in our notation

s: 

 = 

[ 
1 1 2 2 
2 3 2 3 

] 
̄
 = 

[ 
2 2 1 1 
3 2 3 2 

] 
. (9)

o far, we have simply defined the structures holding the input of our

roblem. Let us now move to the analysis, starting with determining the

verage delays in the current vs. probing destination for all clients in all

tates, using Eqs. (2) and (3) , respectively: 

= 

[ 
3 . 5 3 . 50 5 . 00 2 . 52 
2 . 9 3 . 42 5 . 00 3 . 42 

] 
̄ = 

[ 
2 . 92 2 . 08 2 . 06 2 . 06 
3 . 03 2 . 08 3 . 03 2 . 52 

] 
. (10)

Based on the 𝜹 and ̄𝛅 average delays, we can then write down all the

 𝑘 sets of states that can be reached from state k . For instance,  1 = {3}
ecause, by looking only to the first column of 𝜹 and 𝛅̄, we see that for

lient 1 in state 1 it is better to move to its secondary executor because

11 > 𝛿11 , whereas for the client 2 in state 1 it is better to stick to its

rimary executor since it is 𝛿21 < 𝛿21 ; thus, the only possible transition

s from state 1 to state 3, see also the graphical representation of the

tates in Fig. 6 . Based on the formal definition of  𝑘 in Eqs. (4) and (6) ,

e can build the transition probability P as: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
−1 0 1 0 
0 . 33 −1 0 . 33 0 . 33 
0 . 33 0 . 33 −1 0 . 33 
0 . 33 0 . 33 0 . 33 −1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (11)

hich is irreducible and with positive recurrent states, and it has the

ollowing stationary distribution: 

= 

[
0 . 25 0 . 19 0 . 37 0 . 19 

]
. (12)
ventually, the average delay per client are determined by multiplying

by 𝝅 which gives: 

[ 𝛿] = 

[
3 . 88 3 . 89 

]
, (13)

herefore in this example the two clients have a very similar average

elay. 

.3. Analysis 

In this section we report a numeric analysis obtained with the model

escribed in Section 4.1 above. The tools and scripts used are avail-

ble as open source software on GitHub https://github.com/ccicconetti/

arkovsim . 

In a first batch of results, we compare our uncoordinated serverless

ccess scheme to the baseline solution of statically allocating clients to

xecutors. In both cases, the association between the client and its only

xecutor (or its primary and secondary executors) is random. We mea-

ure the performance in terms of the average delay of clients, which is

iven by Eq. (1) for the single executor case and by Eq. (7) with dual ex-

cutors. We evaluate the performance as the load grows, by increasing

he number of clients from 2 to 14; on the other hand, we consider 4,

, and 8 executors, respectively, while keeping the overall serving rate

qual to 96 (i.e., with 4 executors each has a 96∕4 = 24 serving rate,

tc.). For simplicity, we consider that the network delay is negligible

or every client-executor pair. The value of 𝜒 is always 0.1. For each

ombination of parameters we ran 100 independent runs. In each run

e draw randomly the load of every client from 1 to 3, each with the

ame request duration equal to 1. 

In Fig. 7 we plot the Cumulative Distribution Function (CDF) of the

elay, in a random but representative combination of 10 clients and

 executors. We can see that while the median in the two cases is al-

ost the same, the dual executors distribution is much less skewed than

hat with a single executor: the probing mechanism in the uncoordi-

ated serverless access proposed is very effective in keeping the delay

f clients within a smaller range, even with a random assignment of

lients to executors, which is clearly a worst case. This property is es-

ecially important for those IoT applications that rely on the response

ime for the execution of a remote function being upper bounded for

orrect/smooth operation. 

In Fig. 8 we summarize the results obtained is all the combinations

tudied, by reporting only the 95th percentile of the average delay of

he clients. First of all we note that the curves decreases as the number

f executors decreases, for both the single executor and the dual execu-

ors: since the overall serving rate is the same, it is expected that having

 smaller number of executors reduces the probability that a single ex-

cutor becomes overloaded as a result of an uneven allocation of clients

o executors. Second, as can be seen, the single executor curve always

https://github.com/ccicconetti/markovsim


C. Cicconetti, M. Conti and A. Passarella Computer Networks 172 (2020) 107184 

Fig. 8. Comparison between single vs. dual executor with 4, 6, and 8 executors and an increasing number of clients, in terms of the 95th percentile of the average 

delay of the users. 

Fig. 9. Median of average delays with increasing 𝜒 with different number of 

clients. 
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Fig. 11. Ratio of experiments with absorbing states. 
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ies on top of that with dual executors, which confirms the behavior

escribed for the specific case in Fig. 7 in all the combinations tested. 

We now study another scenario, with the goal of assessing the impact

f 𝜒 on the system dynamics. We keep the number of servers constant

nd equal to 6. Also, the client load is equal to 2, whereas the serving

ate of the executors is drawn uniformly between 8 and 16. We increase

he number of clients from 6 to 10, and the value of 𝜒 from 0.001 to 0.5.

n this case we ran 1000 independent replications for every combination

f the factors. 

First, in Fig. 9 , we show the median of the average delays of all clients

ith increasing 𝜒 and number of clients. As can be seen, the delay is

ot very sensitive to large changes of 𝜒 in the range under test, which

s positive because we can expect this parameter not to have a crucial

elevance in the overall system configuration. However, especially at

igher loads, we can see that high values of 𝜒 tend to exhibit a higher

edian average delay. 

We then show the 95th percentile of the average delays in Fig. 10 .

ike the median, the 95th percentile is not affected significantly by

hanges of 𝜒 below 0.01. However, with higher values, and again espe-

ially at higher loads, the 95th percentile of the average delays decreases

s 𝜒 increases. Intuitively, the reason for this is that at high loads ex-

loration becomes more important because there is a high chance that,

ue to uneven allocation, one of the executors is heavily loaded. In other

ords, when increasing 𝜒 the overall system load also increases, because

he clients do more probing, but, depending on the conditions, the extra

oad can be useful as it benefits users that would otherwise spend too

uch of their time with an overloaded primary executor. As can be ex-

ected, there is a trade-off: as the value of 𝜒 becomes too high, then the

elay increases again because overall the system becomes overloaded. 
Another effect of the value of 𝜒 being too high is that many states of

he system have unstable queues, thus leading to a much sparser tran-

ition matrix P in our model. This, in turn, fosters the appearance of

bsorbing states, which are otherwise extremely rare, as can be seen in

ig. 11 , which shows the ratio of scenarios leading to a transition ma-

rix with an absorbing state over the total number of replications in the

ame conditions. With 𝜒 < 0.2 the ratio is 0, hence it is not shown in the

raph, but it increases steeply (note the y-axis logarithmic scale in this

lot) after 𝜒 = 0 . 2 , for all the number of clients. We leave as future work

eeper elaborations on predicting the conditions leading to a transition

atrix with an absorbing state and on its system performance impact. 
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Fig. 12. Small-scale scenario: network topology. 
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. Performance evaluation 

In this section we study the performance of the proposed solution for

ncoordinated serverless access with a testbed implementation in an em-

lated edge network. We first introduce the methodology and tools used

or the evaluation ( Section 5.1 ). Then we discuss the results obtained in

wo scenarios aimed at different objectives. In Section 5.2 we validate

he qualitative conclusions from the model analysis in Section 4.3 in a

on-realistic scenario that mimics the system model defined therein. In

ection 5.3 we set up an environment in realistic conditions to assess the

erformance of our uncoordinated serverless access scheme, compared

o alternative state-of-the-art solutions. 

.1. Methodology and tools 

In this paper we re-use the performance evaluation framework de-

cribed in [18] , briefly summarized in the following. Performance eval-

ation of edge systems is a challenging task: full-scale deployments are

ost accurate but they require a huge effort for the realization and

ay seldom be configured in such a way to run fully repeatable ex-

eriments; cloud simulators are very versatile but they focus on model-

ng adequately only one or few aspects of the system (e.g., data place-

ent in [26] or scheduling in [27] ); finally, packet-level simulators

e.g., [28] ) include realistic models for the communication but cannot

asily accommodate real applications. We believe that our approach

chieves a good trade-off between accuracy of results under realistic

ondition and execution in a controlled and repeatable environment, by

sing real applications running in lightweight containers emulating a

eal network with mininet http://mininet.org/ . The clients and servers

re written in C++ and they communicate via REST interfaces, realized

ith the popular gRPC https://grpc.io/ library from Google. 

For scalability reasons, lambda executors do not perform computa-

ions based on the input, but instead simply emulate the behavior of

n application running in a VM with given virtual resources assigned,

n terms of number and speed of CPUs and amount of memory avail-

ble, processing incoming requests with a pool of pre-allocated work-

rs, where waiting tasks are served with a First Come First Serve (FCFS)

olicy. In both scenarios below we have configured the lambda executor

mulators so that a single worker fully using its CPU requires 50 ms pro-

essing time for a lambda request of size 5,000 bytes. We have carried

ut a sensitivity analysis to verify that the conclusions are not affected

y this particular choice, as well as by some others listed in the respec-

ive scenarios (including the lambda request rate and the number of

xecutors). The results are however not reported in this work because

hey do not provide the reader with significant insights on the matters

nder study. 

We have implemented the following solutions for comparison rea-

ons: 

• uncoordinated-2 / uncoordinated-3 : the uncoordinated serverless

access proposed in Section 3 , with two and three possible desti-

nations, respectively; based on preliminary results (included in the

supplementary material) additional destinations yield inferior per-

formance in the scenarios we have considered; recall that in our

mathematical model in Section 4 we limited ourselves to just two

destinations to keep it tractable; 

• static : the allocation of every client to just one executor, as the base-

line approach in edge computing also implicitly assumed by the ETSI

MEC; 

• centralized : a single node in the network performs load balancing,

using a weighted round-robin policy, where the weight is equal to a

running estimate of the execution latency towards the given desti-

nation; this approach is illustrated at a high level in the example in

the top part of Fig. 3 ; 

• probing : same as centralized, but lambda dispatching happens by

first querying all the executors on the processing time required if no
other task is received, then selecting the one reporting the shortest

duration; this approach is proposed in [29] as a solution for schedul-

ing tasks in an edge-cloud system; 

• distributed : same as centralized, but there are dispatchers dis-

tributed over the network that perform load balancing purely based

on their local information to limit the communication overhead, as

we proposed in [18] . 

Every experiment has been repeated with the same configuration,

ut different seeds for the initialization of random number generators,

ntil achieving statistical convergence. In the plots we report 95% confi-

ence intervals where appropriate for the type of experiment and unless

hey are negligible compared to the respective mean values. Each exper-

ment lasts for 70 seconds or 310 seconds, respectively in Section 5.2 and

ection 5.3 , but the initial 10% is always considered as warm-up and the

easurements in that period are discarded. The value of 𝜒 in all the ex-

eriments reported below is constant and equal to 0.1 as a compromise

etween reacting fast to changing conditions (which would require 𝜒 as

ig as possible) and keeping the probing overhead reasonable (overhead

ncreases with 𝜒). The value was found based on a preliminary analysis

hose results are not reported in the paper but available as part of the

upplementary material. 

.2. Small-scale scenario 

In this section we aim at validating the conclusions inferred from the

umerical analysis of mathematical model in Section 4.3 : uncoordinated

erverless access brings advantages, in terms of the high percentiles of

elays, compared to static allocation of clients to executors, despite it in-

reases the overall system load. Specifically, we set to achieve this goal

n a topology that clearly benefits a centralized or distributed solution

defined in Section 3.2 ): as illustrated in Fig. 12 , a single access network

eparates the clients from the edge nodes, also providing a perfect “nat-

ral ” location for a load balancer. As a matter of fact, since both the

entralized and distributed policies here would have a single load bal-

ncer, there is no distinction between them and, thus, they are identified

s a single case in plots. All links have a 100 Mb/s capacity with 1 μs

elay. The clients continuously issue an average of 5 lambda requests

er second following a Poisson distribution. The number of servers is

lways 8 while the number of clients is increased from 16 to 32, which

lso increases proportionally the overall load. In every experiment we

elect randomly the number of CPU cores available per executor. For

he static, uncoordinated-2, and uncoordinated-3 policies, the set of tar-

et destinations per executor is selected randomly in every experiment;

or the others, the load balancing node is located in the access network,

hich is the more natural placement providing best results. 

In Fig. 13 we show the cumulative distribution of the delay , which

s defined as the time between when a client issues a lambda re-

uest towards the destination (or the load balancer, when present) and

hen it fully receives back the response. With uncoordinated-2 and

ncoordinated-3 the multiple lambda requests are fired in parallel and

he delay stops as the first response is received from the executor requir-

ng the least processing + networking time, with further responses being

http://mininet.org/
https://grpc.io/
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Fig. 13. Small-scale scenario: delay distribution with 16 (left), 24 (center), and 32 (right) clients. 
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Fig. 14. Small-scale scenario: network traffic. 
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imply discarded. Every curve has been obtained by putting together all

he delays of all clients in all independent repetitions run with a given

ombination of number of clients and policy used. Thus, confidence in-

ervals are not applicable to this metric. 

As we can see from the plots, the probing policy achieves excellent

esults at all traffic loads. This is because the centralized entity, which in

his topology is perfectly located, asks the executors about the process-

ng time of every incoming lambda requests, which makes the mech-

nism robust to both uneven allocation of computation resources and

emporary congestion due to unbalanced traffic. As a matter of fact,

n [29] the authors prove that such a scheduler is (1 + 𝜖) -speed  (1∕ 𝜖) -
ompetitive, which is extremely good in a system where it has been

roved that no online algorithm can be optimal. Unfortunately, this so-

ution cannot be implemented in practice because, in general, an execu-

or does not know beforehand the time required for the execution of a

unction. Also, the traffic overhead caused by this approach is signifi-

ant, as will be seen later. Thus, we consider probing merely as an ideal

erformance reference. 

Load balancing, indicated in the plots as centr./dist., is instead a vi-

ble solution, which yields a smooth, but relatively small, increase of the

elay as the load increases from 16 to 32 clients. The attentive reader

ay have noticed that centr./dist. achieves even better performance than

robing with only 16 clients: this is because the former is not encum-

ered by having to ask the executors about the future processing time,

s the latter is required to do. The performance of our proposed un-

oordinated scheme is only marginally worse than that of centr./dist.,

hich in our opinion is very remarkable because it does not require any

dditional architectural element that would add complexity (hence de-

elopment and maintenance costs), hamper the scalability, and become

 single point of failure, as elaborated extensively in Section 3 . In this

cenario the difference between uncoordinated-2 and uncoordinated-3

s only slight with 32 clients and negligible at lower loads. Finally, a

tatic allocation exhibits poorest performance by far: as already evident

rom the results of the numerical analysis in Section 4.3 in simplified

onditions, adding just one more destination option greatly improves

he performance in terms of delay, especially at high percentiles, which

re most important in latency-sensitive IoT applications. 

In Fig. 14 we show the overall network traffic , defined as the sum of

he average traffic in the unit of time of all the network links. In this

ork, the metric is an indirect measure of the overhead incurred by the

arious strategies adopted: since there are no other ongoing transmis-

ions between nodes in our experiments, under the same rate of lambda

equests served, if solution A has a higher network traffic than solution B

t means that A required additional data exchanges compared to B. As in-

roduced earlier, we see that probing has a huge network overhead, even

n such a small-scale topology as that considered. On the other hand,

tatic has the lowest traffic requirement, which is rather obvious since

he clients transmit to a single executor (unlike uncoordinated-2 and -3)

nd without the need to maintain an overlay, as with a distributed ap-

roach. The uncoordinated solutions exhibit a slightly higher network
raffic, which creates the following trade-off: the higher the number of

estinations (and the higher the value of 𝜒), the lower are high quantiles

f delay but the higher is the communication overhead. Depending on

he target environment and expected Quality of Service (QoS) require-

ents of the applications, a suitable calibration must be done by the

dge system operator to achieve best performance. 

.3. Large-scale scenario 

In this section we use a large scale scenario in a topol-

gy extracted from a real IoT network: Array of Things

ttps://arrayofthings.github.io/ , a collaborative effort with about

00 nodes installed at intersections in Chicago, IL, US, using the

aggle platform [30] , which is more realistic than both the system

odel in Section 4.1 and the environment in the previous experiments

 Section 5.2 ). Starting from the geographical locations of the real nodes,

e have first collapsed nodes that are too close to one another, then

dded bi-directional 100 Mb/s capacity / 1 μs latency links between

odes based on a threshold distance. The resulting network map is illus-

rated in Fig. 15 and it consists of 45 nodes with a diameter of 11 hops.

In this scenario the clients adopt the following traffic pattern: a burst

f lambda requests is generated at the beginning of consecutive periods,

hose duration is drawn from an exponential distribution with mean

0 s. The burst size, expressed in terms of number of lambda requests,

s drawn from a Poisson distribution with mean 25. After receiving the

esponse, the client backs off for a random amount of time, drawn from

 uniform distribution in [150, 200] ms before issuing the next request,

o model processing on the client side. Like in the previous scenario, the

xecutor emulators and client applications are configured in such a way

hat a single task requires 50 ms to be executed on a given core with no

ther concurrent task being processed. Thus, the duty cycle at low loads

s about 0.5 ( = 25 × (50 + 150)∕10 3 ). 

https://arrayofthings.github.io/
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Fig. 15. Large-scale scenario: sample network topology showing servers (cir- 

cles) and clients (triangles), both also acting as intermediate networking devices. 

Fig. 16. Large-scale scenario: average delay. 
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Fig. 17. Large-scale scenario: 95th percentile of delay. 

Fig. 18. Large-scale scenario: network traffic. 
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In every replication, 8 out of the 45 nodes are selected as executors,

ach with two CPU cores and workers. All the nodes may host clients,

hich are dropped randomly at the beginning of every experiment. The

umber of clients is increased from 40 to 80. In uncoordinated-2 and -3,

he destinations are selected among those having a shortest path from

he client; for instance, with uncoordinated-2 if there is destination A

hree hops away and destinations B, C, and D four hops away, then the

est are farther, we select randomly two destinations out of {A, B, C, D}.

y extension, with static we always select the closest executor, breaking

ies randomly when required. With centralized we select randomly the

ode acting as load balancer and all the clients contact the executors

hrough the latter. With distributed we assume that all the nodes host-

ng an executor also host a distributed dispatcher; clients always contact

he closest dispatcher for the execution of lambda requests. In this sce-

ario, when using a probing policy the system becomes unstable, i.e.,

he traffic consumed by the central load balancer for polling all the ex-

cutors to determine which one is best suited to serve the next incoming

ambda request is so high that the communication links are saturated,

hich leads to ever-growing queues (and delays) of client requests. This

onfirms the impossibility to implement the probing policy in a practical

cenario. Results with probing are not shown in plots. 

As in the previous section, the key performance index for this

cenario is the delay, which in this section is subtracted a constant

alue equal to the minimum processing time of the lambda requests,

.e., 50 ms, for better readability of plots. As can be seen in Fig. 16 ,

ncoordinated-2 and -3 achieve intermediate performance in terms of

he average delay, rather close to that of distributed and centralized,

hile the static curve lies well above the rest. This behavior is exac-

rbated for the 95th percentile of the delay, reported in Fig. 17 . This

onfirms that also in a more realistic topology with bursty traffic an un-
oordinated serverless access provides a significant advantage, in terms

f delay, compared to a static allocation of clients to executors. Perfor-

ance can be improved further by using more sophisticated policies,

hich however require new components and have a higher network

verhead. 

The last statement is proved in Fig. 18 , which shows the overall net-

ork traffic. Unlike the previous scenario, which was very optimistic

or the centralized/distributed policies, the network overhead of both is

ignificantly higher than that of uncoordinated access. This is because,

ithout a natural central node in the network, the use of an overlay for

ispatching lambda tasks can be very expensive. Instead, the price to be

aid by uncoordinated-2 and -3 compared to static, in terms of network

raffic, is limited, and deemed to be affordable in most cases because of

he advantages it brings in terms of delay and reliability. 

We conclude the analysis with the average utilization of the execu-

ors, defined as the ratio between the time an executor is busy process-

ng at least one task and the experiment duration, in Fig. 19 (confidence

ntervals here are omitted because negligible). This is to show that unco-

rdinated access requires an additional price: computational resources

n the executors must be invested to process lambda requests without a

trict necessity to do so. In fact, while distributed, centralized and static

ave almost overlapping performance, the utilization becomes higher

ith uncoordinated-2 and even more so with uncoordinated-3. We leave

or future studies the design of more sophisticated policies that retain

ost advantages of the uncoordinated access techniques, while also re-

ucing their network and computational overhead. 

. Conclusions and future work 

In this paper we have investigated the problem of fast changing

onnectivity and computational load conditions for serverless IoT ap-

lications running in an edge network. Based on a critical analysis of
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Fig. 19. Large-scale scenario: average executor load. 
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tate-of-the-art solutions relying on either centralized dispatching or a

istributed overlay, we have proposed a new approach called uncoor-

inated serverless access , which does not require complex/costly/fragile

ystem elements, hence it is practical to implement in fast growing and

ragmented IoT deployments. We have developed a mathematical model

sing queuing theory under simplified assumptions, which shows that

he proposed approach reduces the delay of response times compared

o a static allocation of clients to micro-service executors, which is to-

ay’s baseline. These numerical results have been confirmed by exper-

ments carried out with a prototype implementation in two emulated

etworks, one of which uses a realistic topology and bursty traffic. The

oal achieved is especially important for latency-sensitive applications,

hich can be found in many areas of huge practical interest, such as

onnected car and industry automation. In the emulation experiments

e have also compared uncoordinated serverless access with centralized

oad balancing and distributed dispatching: the results have shown that

ur proposed solution, in addition to being simpler and requiring fewer

aintenance, requires much less network traffic ( −65% than centralized,

55% than distributed) while requiring only +10% computational load

n executors. Finally, the uncoordinated access scheme proposed can be

ealized within the ETSI MEC. 

Even though distributing computing has been extensively studied in

he scientific literature and is a mainstream technology for cloud sys-

ems, very few of the models and technologies apply to IoT systems,

specially when used in edge networks, which are emerging as the most

iable approach to a sustainable deployment in several business areas.

n our opinion, what we have presented in this paper is only the be-

inning in a new area of research on how to design, operate, optimize,

nd maintain complex systems where IoT devices consume services of-

ered by heterogeneous devices close to them with limited compute and

onnectivity capabilities. 

With specific reference to this work, we believe it could be extended

n at least the following directions: further elaboration on the math-

matical model to infer actionable properties in some specific condi-

ions (e.g., with homogeneous population of clients); closed-loop sys-

ems to modify at run-time the system parameter configuration (e.g.,

or the number of destinations per client); more sophisticated stateful

lgorithms (e.g., including prediction/estimation) to be used by clients

hat are powerful enough; integration with orchestration systems for an

ptimized selection of the destinations of each client beyond shortest-

ath. 
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