
IEEE Communications Magazine • March 202040 0163-6804/20/$25.00 © 2020 IEEE

Abstract

Computation offloading through stateless
applications is gaining momentum thanks to the
emergence of serverless frameworks with inher-
ent scalability properties. However, adoption of
a serverless framework in an edge computing
system requires careful consideration to keep its
advantages unscathed. In the cloud, micro-ser-
vices are scaled automatically according to
demands, but in edge computing this would
incur a significantly higher cost than in a data
center and cannot be as fluid. This is especial-
ly relevant in scenarios where edge nodes are
spread across large areas and have relatively
small computation capabilities. In this article we
propose to overcome this issue by adapting the
allocation of demands to the currently allocat-
ed micro-services at short timescales, with two
alternative mechanisms designed for different
target scenarios, both aimed at enabling distrib-
uted computing environments. The proposed
solution can be integrated within the ETSI MEC
standard, which specifies a reference architec-
ture and open service interfaces. Our contribu-
tion is validated in a proof-of-concept scenario
with a prototype implementation released as
open source.

Introduction
Recently, all major cloud providers (e.g., Amazon,
Google, Microsoft) have added to their portfolio
a new offer called serverless computing, which
hides server management from the developers
and provides customers with fine-grained billing
[1]. The application logic is realized by means of
micro-services in a highly scalable infrastructure,
as illustrated in Fig 1 (left). Serverless relies on
aggressive up-/down-scaling of the application,
which makes it difficult to keep a persistent state
associated with a running instance. Therefore,
function as a service (FaaS) is the most popular
programming model for serverless computing: the
users specify the operations, called lambda func-
tions, to be performed in the requests themselves,
either using a high-level language (e.g., Node.js or
Python), or onboarding an image from a database
under the control of the serverless platform. Every
request is stateless, and typically requires very few
operations. Load balancing and resource scaling
can be implemented effectively using state-of-the-
art technology, because all the servers are homo-

geneous in type and configuration, and they often
reside in the same data center.

However, many vertical market segments are
becoming increasingly interested in edge comput-
ing scenarios, where compute nodes are moved
in close proximity to the users, in some cases even
co-located with the same networking devices pro-
viding them with Internet access [2]. Edge com-
puting is a step forward toward the exploitation
of computing capabilities distributed across the
network, at different levels and in different and
heterogeneous entities, often referred to as dis-
tributed computing. The target scenarios of edge
computing are characterized by the possibility to
produce and consume flexible services [3], and
by heterogeneous workloads and multiple spe-
cialized use cases in different business areas, for
example, automotive, the Internet of Things (IoT)
and industrial automation, virtual reality (VR)/aug-
mented reality (AR), e-health, and smart cities [4].
At a very high level, an edge scenario is repre-
sented on the right side of Fig. 1. Deploying FaaS
applications on edge nodes, instead of servers in
a remote data center, would be extremely ben-
eficial to both users and network operators: the
former would enjoy reduced latencies, because
edge nodes are geographically closer to the
end users, while the latter would experience a
cut in outbound network traffic. However, these
advantages are not free to take: unlike in a typi-
cal serverless deployment, in edge scenarios the
nodes performing computation may have much
lower capabilities than high-end servers in remote
data centers, and they are interconnected by het-
erogeneous backhaul links, whose capacity in
some cases is limited and shared with the whole
underlying access network. Thus, it is clear that a
general-purpose serverless framework, designed
for operation in an elastic virtualization environ-
ment, would encounter severe limitations in an
edge domain in terms of scalability, performance,
and reliability. To take into account by design the
characteristics of edge computing in the realiza-
tion of FaaS solutions, in this article we take as a
starting point the European Telecommunications
Standards Institute (ETSI) Multi-access Edge Com-
puting (MEC) [5], which is a standard designed to
address the requirements of several applications
in the 5G era by defining a reference architecture
and vendor- and application-agnostic interfaces.
Then we select from that reference architecture
the mechanisms which can be exploited to real-

Claudio Cicconetti, Marco Conti, Andrea Passarella, and Dario Sabella

NETWORK AND SERVICE MANAGEMENT

Computation offload-
ing through stateless
applications is gaining
momentum thanks to the
emergence of serverless
frameworks with inherent
scalability properties.
However, adoption of
a serverless framework
in an edge computing
system requires careful
consideration to keep its
advantages unscathed.

Claudio Cicconetti (corresponding author), Marco Conti, and Andrea Passarella are with the National Research Council, Pisa, Italy;
Dario Sabella is with Intel Deutschland GmbH.

Digital Object Identifier:
10.1109/MCOM.001.1900498

Toward Distributed Computing Environments
with Serverless Solutions in Edge Systems

CICCONETTI_LAYOUT.indd 40CICCONETTI_LAYOUT.indd 40 3/10/20 11:10 AM3/10/20 11:10 AM

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on September 29,2020 at 09:09:20 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • March 2020 41

ize a serverless framework, including support for
new features required to provide FaaS in distrib-
uted edge environments in a way that is trans-
parent to application developers. The proposed
solution is presented later and essentially consists
of assigning user applications (called contexts in
ETSI terminology) to compute nodes, then adjust-
ing such an allocation based on the varying load
conditions due to, for example, usage patterns
or user mobility. To achieve this goal we present
two alternative approaches: changing the service
endpoint known to users in a centralized manner
(by notifying users) vs. modifying the dispatching
of requests inside the edge domain (transparent
to users) adopting a distributed paradigm. We
implemented a prototype to validate the illustrat-
ed concept, which also includes initial experimen-
tal results to explore the viability of the approach.
Conclusions and future areas of investigation on
the topic are discussed in the fi nal section.

stAte of the Art
Serverless computing is a nascent technology.
However, it has already attracted signifi cant inter-
est in the research community. The major archi-
tectural issues have been examined in [6] as part
of the illustration of the project OpenLambda,
which is an early enlightening exercise to repro-
duce a working serverless environment using
only open source components. More recently,
full-fl edged platforms have sprouted, both as com-
mercial solutions and in open source communities
(e.g., Knative and Apache OpenWhisk), whose
characteristics and performance have been com-
pared in [7] (enterprise) and [8] (open source).
In any case, none of the existing solutions has
been designed specifically for edge computing,
because it creates barriers and limitations in stark
contrast with the ever-increasing freedom enjoyed
by developers when designing solutions intended
for the cloud [9].

As far as the ETSI MEC standard is concerned,
in the literature there are some studies that illus-
trate its reference architecture and objectives.
Application loading/unloading is analyzed in [10],
where the authors present a proprietary partial
implementation of an ETSI MEC system, inter-
acting with an underlying software defined net-
working (SDN) infrastructure. Interaction between
the traffic plane and MEC is also investigated in
[11], with the goal of manipulating network oper-
ation based on a feedback from edge applica-
tions using the Intel©NEV software development
kit (SDK) reference platform, today evolved and
moved toward OpenNESS (www.openness.org).
Finally, integration between SDN and network
function virtualization (NFV) is being sought in the
EU-funded project 5g-EmPOWER (https://5g-em-
power.io/), also planning to integrate MEC
functions. However, none of the above studies
address the specifi c issues of serverless or distrib-
uted computing. In the remainder of this section
we introduce the ETSI MEC standard.

etsI mec IntroductIon

An ETSI MEC domain is made of user equipments
(UEs) and network-side entities operating on two
levels, system and host, as illustrated in Fig. 2. The
blueprint also shows the names of the interfaces
identifi ed by the standard.

The UEs are the devices owned and operat-
ed directly by the users (e.g., smartphones, IoT
sensors/actuators, and connected cars). They
consume the services off ered by the edge net-
work as MEC applications, which are executed
by MEC hosts: these are edge nodes offering
their resources (compute, storage, networking),
virtualized at a coarse grain, for example, by
means of virtual machines (VMs) or containers
together with a reconfi gurable virtual intercon-
necting layer. MEC hosts are distributed over
the edge computing domain, ideally in loca-
tions that are as close as possible to the UEs
(i.e., to the LTE base stations in a mobile access
network) to reduce the response time and the
outbound traffic. At the system level, the MEC
orchestrator has a central role, since it is in
charge of allocating the resources on the MEC
hosts for execution of the applications and ser-
vices required by the clients, whereas the user
application life cycle management (LCM) proxy
is a mere interface between the UEs and the
MEC system.

Figure 1. Typical serverless architecture (left) vs. reference edge computing
scenario (right).

Backhaul to core network

Balancer

Autoscaler

Internet

Images/AAA

AutoscalerInternet

Figure 2. Simplifi ed ETSI MEC architecture.

MEC-aware

MEC host level

MEC host

MEC system level

Mp1

Mp2

MEC platform

Mx2

Mm3

Mm9
User application Life
Cycle Management

(LCM) proxy

Mm5

Mm6

MEC platform
manager (MEPM)

Mm7

Virtualisation
Infrastructure

Manager (VIM)

MEC services

MEC apps

Virtualised infrastructure

Mm4

MEC orchestrator

Mp3
Other
MEC
host

Client
application

MEC-unaware

Device
application

User equipment

CICCONETTI_LAYOUT.indd 41CICCONETTI_LAYOUT.indd 41 3/10/20 11:10 AM3/10/20 11:10 AM

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on September 29,2020 at 09:09:20 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • March 202042

The MEC hosts are managed by the MEC plat-
form manager (MEPM) and the virtual infrastruc-
ture manager (VIM). The former (i.e., the MEPM)
is responsible for the configuration of the MEC
platform in each MEC host, including managing
the life cycles of the MEC applications and ser-
vices. On the other hand, the VIM (e.g., Open-
Stack) manages the (virtualized) infrastructure of
the MEC hosts. The aspect of virtualization is not
directly addressed by the MEC committee and
is, in fact, the subject of another group at ETSI,
called NFV, which is out of the scope of this work
(see, e.g., [12] for an introduction to the subject).
For instance, if the MEC orchestrator decides
that a new MEC application should be run on a
given MEC host, this request is forwarded to the
MEPM, which provides the MEC platform with
the necessary configuration, while the VM hosting
the application is launched and connected by the
VIM. Thanks to this clean design and the defini-
tion of vendor-neutral interfaces, a network opera-
tor may integrate widely used products (e.g., from
the Cloud Native Computing Foundation ecosys-
tem), which reduces operational costs.

For all software running in the UE, the stan-
dard distinguishes two logical components, with
different roles: the client application and the
device application. The client application is the
software that implements the application logic
with resources on the UE, for example, acquisi-
tion from camera and sensors, human-machine
interface (HMI), data pre-processing, rendering,
and visualization. This component requires that
computation and storage are partially realized
externally, but it is unaware of where and how
such delegation is made possible. On the other
hand, the device application is the component
responsible for interacting with the MEC system
to discover which applications are available in the
MEC system and activate a new instance. These
operations are done via a REST interface called
Mx2 , using HTTP/1.1 and JSON encoding of
resources, introduced below and exploited by our
proposed solution:
•	 A device app may request the list of MEC

applications by issuing a GET request on
/app_list; applications are identified by
name, provider, version, and so on, and may
include minimum quality of service (QoS)
requirements.

•	 Instance activation is done by issuing a POST
request with an AppContext message on
/app_contexts; the context contains the
application identification, as found during
the discovery process, and it includes a
Uniform Resource Identifier (URI) local to
the device application to receive notifica-
tions from the MEC system, as seen below.
Once the MEC system has provisioned all
resources, if necessary, the MEC orchestrator
returns an AppContext specifying how to
actually access the application, for example,
an endpoint or URI.
Once a context has been established, the cli-

ent and its associated MEC application interact
directly via a proprietary interface that is not cov-
ered by ETSI MEC. However, if the MEC orches-
trator finds it beneficial or necessary to change
the connection of an active context, it may do so
by issuing a NotificationEvent to the URI specified

by the device application upon context creation.
We exploit this feature of the standard in the
next section to optimize resource allocation upon
changing conditions.

The Mp1 interface is defined to allow onboard-
ing of third-party MEC applications into the MEC
host, hence fostering an open and prosperous
industrial ecosystem. As shown in Fig. 2, MEC
hosts run services in addition to applications:
they may be used by authorized applications to
retrieve additional information from the UE or
network status (e.g., the geographical location of
users or a date stream for time synchronization)
or to influence the edge domain operation for the
benefit of the UE application (e.g., to steer traffic
more efficiently or to prioritize some traffic flows
in the data plane of the access network). The
possibility to enhance the serverless framework
proposed in the next section by means of MEC
services is not explored in this work, but consid-
ered of potential interest for future investigation.

Finally, we can expect security concerns to
exist in a production system. The standard is not
concerned with the interaction between the client
and MEC applications, which is outside its reach
and view. On the other hand, it specifies all REST
commands to be encrypted with Transport Layer
Security (TLS) so that no unintended recipient
may decode the exchanges, and authorized via
OAuth 2.0. According to the latter, the device
app obtains a time-limited token from an authenti-
cation and authorization service, not addressed in
detail in the standard, which grants it permission
to issue requests: no exchange is requested per
transaction, except for an initial handshake upon
the device app first entering the system or to spo-
radically refresh the token’s validity. The ETSI MEC
specifications are publicly available (https://www.
etsi.org/committee/mec). In this work we refer to
version 2.1.1 of the documents released in 2019.

Serverless Edge Computing
In this section we study how to efficiently realize
FaaS (i.e., stateless execution of remote functions)
in an edge computing system, which we call
serverless edge computing. Even though our con-
tribution is general, we adopt the reference archi-
tecture and terminology of ETSI MEC described
earlier to establish a bond with an emerging
industry standard. Hence, we aim at implement-
ing FaaS by deploying MEC applications.

Before delving into the matter, we note that
any nontrivial application is bound to have some
“state,” and hence in principle does not adhere
to a FaaS paradigm. However, the emergence of
serverless computing has shown that there are
several real-world applications that can greatly
benefit from adopting FaaS, from mobile appli-
cations back-ends to complex mathematical cal-
culations, passing through a large variety of IoT
services [1, Table 1]. We can assume that for such
applications, updating the state, which resides
in practice in either the client application or a
remote/distributed storage system, does not cre-
ate a performance bottleneck, and for our pur-
poses in this work can be ignored.

With reference to Fig. 1, in an edge system
there can be no centralized front-end balancer,
because that would require every lambda func-
tion request to go through a component in the

Once a context has

been established, the

client and its associated

MEC application interact

directly via a proprietary

interface that is not cov-

ered by the ETSI MEC.

However, if the MEC

orchestrator finds it ben-

eficial or necessary to

change the connection

of an active context, it

may do so by issuing

a NotificationEvent to

the URI specified by the

device application upon

context creation.

CICCONETTI_LAYOUT.indd 42CICCONETTI_LAYOUT.indd 42 3/10/20 11:10 AM3/10/20 11:10 AM

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on September 29,2020 at 09:09:20 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • March 2020 43

core network and then back to the edge nodes,
then rendering ineffective having computational
resources close to the users. Thus, we assume that
every MEC host runs a local serverless framework
that includes both the workers, that is, the pro-
cessing units that execute the lambda functions,
and a platform for their on-demand activation, all
together exposed toward the edge system as a
single MEC application (or MEC app, for short).
We assume that a single platform/MEC app may
serve multiple types of lambda functions, as sup-
ported by all major serverless frameworks in the
market, and it is in charge of fine-grained sched-
uling of the incoming requests on the available
resources (we consider this aspect outside the
scope of our work).

However, auto-scaling is an inherently global
function since it must have a system view on the
usage of all the MEC hosts and current demands;
in the reference ETSI MEC architecture, it could
be co-located with the MEC orchestrator. As brief-
ly introduced previously, there are two crucial
differences with such an edge deployment and
a typical serverless configuration for cloud appli-
cations:
•	 The connectivity between the system-level

auto-scaling component and the MEC hosts
may be significantly more limited than that
in a data center, in terms of latency, band-
width, and reliability.

•	 The MEC hosts, in general, have smaller com-
putational capabilities than high-end servers
in data centers, which means that they can
be controlled at a coarser granularity and
cause a higher overhead when allocating/
deallocating application images.

Therefore, horizontal scaling cannot be assumed
to be as smooth and fast as in a typical serverless
deployment. We keep this in mind and describe
in the following FaaS operation with ETSI MEC.
We start with a baseline strategy, where there is
static assignment without load balancing, which
propels us toward resource optimization solutions
based on centralized assignment, where client-to-
MEC application mapping is updated periodically
based on edge system-wide decisions, and distrib-
uted assignment, where such a mapping is decid-
ed based on local measurements only.

Static Assignment

In Fig. 3 (top part) we show an example of a
device application creating a context (first POST
request) after having discovered the available
applications with a GET request. Strictly speak-
ing, all the interactions between the device appli-
cation and the MEC system happen through the
Mx2 interface of the LCM proxy, which, however,
is intended as a mere pass-through in both direc-
tions: for this reason, in the following we assume
that the device application interacts directly with
the MEC orchestrator with a slight abuse of ter-
minology. Upon context creation, in addition
to saving the newly created context, the MEC
orchestrator has to identify the MEC application
to be used by the client application sitting behind
the device application in the UE. This operation
should be performed quickly in order not to delay
significantly the start of the serverless operations
at the client application. To achieve fast response
times even with massive serverless applications,

we propose that the MEC orchestrator keeps a
simple table where UE and lambda function
identifiers (which can also be a wildcard *) are
mapped to MEC application service endpoints.
The key feature of static assignment is that all the
client applications in a given UE are always asso-
ciated with the same MEC application, and this
association remains in place for the whole con-
text’s lifetime.

However, in an edge system we expect fast
changes due to the small scale of MEC hosts,
which are exacerbated if the UEs move at high
speed (e.g., cars). This may unbalance tempo-
rarily the load between different MEC hosts and
degrade experience. In medium time windows,
such harmful situations can be fixed by global
auto-scaling, which is out of the scope of this arti-
cle. In the short term of an FaaS invocation, we
can address this by dispatching function requests
to different MEC hosts where the same running
images are available. Specifically, in the remainder
of this section, we propose to relocate the clients
by keeping the same set of running images on the
MEC hosts, instead of resorting to dynamic alloca-
tion/deallocation of the workers. Note that since
we are dealing with stateless applications, this
does not require a transfer of the internal state of
the application, which is not maintained by any
MEC application. Such fine-grained, extremely
fast load balancing at the edge is significantly less
explored in the literature with respect to global
auto-scaling.

Centralized Assignment

Different from the above static assignment, we
now explore the relocation of the client-to-MEC
application mapping at the edge system level.
This can be done in a straightforward manner by
using the notification message defined in the ETSI
MEC standard, described earlier, as illustrated in
the dashed rectangle in Fig. 3. In the example, at
some point the MEC orchestrator’s table changes,
as the result of a periodic edge system optimiza-
tion process (e.g., see the formal study in [13]),
which causes a POST request to be sent to the
URI specified by the device application during
context creation. Eventually, once the client appli-
cation terminates its operation, it instructs the
device application to send a DELETE command to
the MEC orchestrator, which removes the context
from the pool of active ones; again, note that this
is the only piece of state to be cleared up, since
the serving MEC application has none about a
specific client application.

However, this approach has two possible
weaknesses depending on the target deployment.
First, it relies on system-level optimization, which
can be challenging and become a choke point
as the edge system size increases. Second, it
requires that the device applications host a REST
server for the sole purpose of receiving notifica-
tions from the MEC orchestrator, which could be
unjustified in some cases, for example, if the UE is
a constrained IoT device. We address both issues
in the following alternative solution.

Distributed Assignment

Finally, we call distributed assignment the
dynamic dispatching of lambda functions to the
currently most suitable MEC application, trans-

Once a context has

been established, the

client and its associated

MEC application interact

directly via a proprietary

interface that is not cov-

ered by the ETSI MEC.

However, if the MEC

orchestrator finds it

beneficial or necessary

to change the connec-

tion of an active context

it may do so by issuing

a NotificationEvent to

the URI specified by the

device application upon

context creation.

CICCONETTI_LAYOUT.indd 43CICCONETTI_LAYOUT.indd 43 3/10/20 11:10 AM3/10/20 11:10 AM

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on September 29,2020 at 09:09:20 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • March 202044

parent to the client application. We illustrate this
approach in the bottom part of Fig. 3, where we
added a new type of MEC application, called
dispatcher: when it receives a lambda function
request, it forwards it to the most suitable MEC
application in the whole edge system. This way,
a device application does not need to be relo-
cated to another MEC host for issues concern-
ing computation load changes. Instead, it is the
dispatcher-to-MEC-application connection that
is updated, transparent to the client application
on the UE. Note that the MEC orchestrator table
can be simplified with respect to both static and
centralized assignment, since for all lambdas the
entry point is always the same MEC application
(i.e., the dispatcher). We have already studied
the challenge of selecting the best worker in a
distributed system in [14], where we propose
to use a weighted round-robin scheduler, where
the weight is the inverse of an estimate of the
network+computational latency for the given

worker. This way, a more responsive MEC appli-
cation will serve a proportionally higher amount
of lambda function requests than a slower one.
Latency estimates are local to each dispatcher
for scalability reasons.

Compared to the centralized assignment, the
proposed distributed assignment has three disad-
vantages:
•	 Every dispatcher optimizes based on its local

(hence myopic) knowledge, which could
lead to sub-optimal utilization of resources.

•	 Dispatchers must keep track of some state
associated to all serverless applications in the
network, which could be a limiting factor if
the MEC hosts have constrained computa-
tion.

•	 Dispatchers act as intermediaries between
client and MEC applications; hence, they
must be provided off-band all required proto-
col information and credentials, which might
not always be possible.

Figure 3. Example sequence diagram.

GET /app_list

200
(ApplicationList)

POST /app_contexts
(AppContext: ue-uri)

200
(AppContext:

contextId, ref-uri1)

POST ue-uri
(NotificationEvent: ref-uri2)

200

DELETE /app_contexts/contextId

200

Client
app

MEC orchestrator
(via LCM proxy)

centralized optimization of
assignment of client to MEC apps

MEC app1
(ref-uri1)

MEC app2
(ref-uri2)

Not covered by ETSI MEC Covered by ETSI MEC

Device
app

UE

Client
app

MEC orchestrator
(via LCM proxy)

MEC app1
(ref-uri1)

MEC app2
(ref-uri2)

Device
app

UE
MEC app

dispatcher1
(ref-disp1)

200
(AppContext:

contextId, ref-disp)

POST /app_contexts
(AppContext: ue-uri)

local decision to
change allocation

Covered by ETSI MECNot covered by ETSI MEC

UE1
UE2 *

*

MEC app1
MEC app2
MEC app1

UE MEC

UE1
UE2

*

MEC app1
MEC app2
MEC app1

UE MEC

By proposing the two

approaches here, we

intend to raise aware-

ness of the challenges

ahead for research

and development of

solutions in the growing

area of serverless edge

computing. Further

challenges include the

study of the integration

of ETSI MEC services

to exploit estimation

of load and mobility

patterns, and the revi-

sion of generic edge

computing optimization

models and tools to

fully support serverless.

CICCONETTI_LAYOUT.indd 44CICCONETTI_LAYOUT.indd 44 3/10/20 11:10 AM3/10/20 11:10 AM

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on September 29,2020 at 09:09:20 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • March 2020 45

Performance Evaluation

In this section we show the validity of the assign-
ment approaches above. To this aim, we have
realized a prototype implementation of all the
system components to execute end-to-end exper-
iments, making available the Mx2 API as open
source on GitHub at ccicconetti/etsimec.
The MEC applications perform face detection
using OpenCV via stateless function calls. Evalu-
ation is carried out in a network emulated with
Mininet (http://mininet.org/).

The emulated network topology is a fat tree:
the core network, hosting the MEC orchestrator,
is connected to four MEC hosts via fast backhaul
links at 100 Mb/s with 1 ms latency; the access
network nodes are arranged in groups of four in
“pods,” each connected to an MEC host via a
slower 25 Mb/s link with 100 ms latency. Further
details on the evaluation tool are available in [15].

We ran two experiments aimed at showing
the implications of the design choices on per-
formance in limit conditions, described below.
In both experiments every UE runs a single cli-
ent+device application. The system dynamics are
deterministic; hence, the performance is expect-
ed (and verified a posteriori) to be very stable
over multiple repetitions; for this reason, we do
not show confidence intervals, and we plot time
series. The qualitative behavior described below
remains the same by changing the number of cli-
ents and MEC hosts, the link speed and latency,
and the number of central processing unit (CPU)
cores allocated to the MEC applications, although
results are not reported here. With static assign-
ment, the orchestrator table is created based on
the initial location of UEs and never changed
during the experiment, which represents a short
time snapshot in between medium-time optimi-
zation windows. With centralized assignment, the
table is updated every 10 s by the MEC orches-
trator running a simple equalization algorithm,
which is optimal in the simplified test conditions
and evenly spreads the MEC device applications
to the available MEC applications.

In Experiment #1 (slow mobility scenario), start-
ing from a balanced situation with all pods con-
taining the same number of UEs, every 20 s a UE
from Pod #1–3 migrates to Pod #0, the final con-
dition being that all UEs are in Pod #0 (hotspot).
As can be seen in Fig. 4, with a static assignment
the delay curve increases significantly over time,
while both dynamic assignment strategies can
cope adequately with the load changes.

In Fig. 5 we report the overall network
throughput. A static assignment requires much
less network traffic than the others because the
traffic local to a pod never leaves the correspond-
ing MEC host, while the other strategies some-
times require that clients are served by other
MEC hosts. This is especially evident with distrib-
uted assignment, since the dispatchers strive to
equalize the response delay, which in this case is
due almost entirely to the time required for the
computation, regardless of the worker’s location.
Therefore, a trade-off exists between delay and
network traffic.

In Experiment #2 (massive mobility scenario),
all the UEs are in one pod; then every 20 s they
all migrate to another one. In Fig. 6 we show the

delay, which is stable with distributed assignment
despite the very challenging conditions set by
this experiment: only tiny ripples of delays can
be noticed at migration times every 20 s. On the
other hand, centralized assignment only keeps
delay small immediately after an optimization, but
they grow significant after each migration, and
the static assignment suffers for the whole dura-
tion of the experiment.

Conclusions and
Future Research Directions

In this article we have provided a tutorial intro-
duction to the ETSI MEC standard, with a spe-
cific focus on how it can be exploited to realize
serverless edge computing. Furthermore, we have
proposed two alternative design approaches to
follow fast-changing mobility and load conditions
between auto-scaling optimization epochs. With
centralized assignment, we notify the UE applica-
tion via the Mx2 ETSI MEC interface when a bet-
ter server is found. With distributed assignment,
we delegate the selection of the best server to
a dedicated MEC application, called dispatcher,
which makes decisions based on local informa-

Figure 5. Experiment #1 (every 20 s a UE migrates to a central pod): network
load over time.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

N
et

w
or

k
th

ro
ug

hp
ut

 (M
b/

s)

Time (s)

Static assignment

Centralized assignment

Distributed assignment

Figure 4. Experiment #1 (every 20 s a UE migrates to a central pod): delay over
time.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250

Re
sp

on
se

 d
el

ay
 (m

s)

Time (s)

Static assignment

Centralized assignment

Distributed assignment

CICCONETTI_LAYOUT.indd 45CICCONETTI_LAYOUT.indd 45 3/10/20 11:10 AM3/10/20 11:10 AM

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on September 29,2020 at 09:09:20 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • March 202046

tion only. Using emulation experiments we have
shown that both techniques are effective in react-
ing to system changes.

In general, we argue that a one-solution-fits-all
condition does not exist. By proposing the two
approaches above, we intend to raise awareness
of the challenges ahead for research and develop-
ment of solutions in the growing area of serverless
edge computing. Further challenges include the
study of the integration of ETSI MEC services to
exploit estimation of load and mobility patterns,
and the revision of generic edge computing opti-
mization models and tools to fully support server-
less edge computing.

References
[1] P. Castro et al., “The Rise of Serverless Computing,” Com-

mun. ACM, vol. 62, no. 12, 2019, pp. 44–54.
[2] M. Campbell, “Smart Edge : The Center of Data Gravity Out

of the Cloud,” Computer, vol. 52, Dec. 2019, pp. 99–102.
[3] M. Filippou, D. Sabella, and V. Riccobene, “Flexible MEC

Service Consumption Through Edge Host Zoning in 5G
Networks,” IEEE WCNC, 2019.

[4] ETSI,” Multi-Access Edge Computing (MEC); Phase 2: Use
Cases and Requirements,” ETSI GS MEC 002 V2.1.1, 2018.

[5] T. Taleb et al., “On Multi-Access Edge Computing: A Survey
of the Emerging 5G Network Edge Cloud Architecture and
Orchestration,” IEEE Commun. Surveys & Tutorials, vol. 19,
no. 3, 2017, pp. 165–81.

[6] S. Hendrickson et al., “Serverless Computation with Open-
Lambda,” USENIX HotCloud, 2016.

[7] T. Lynn et al., “A Preliminary Review of Enterprise Serverless
Cloud Computing (Function-as-a-Service) Platforms,” IEEE
CloudCom, 2017.

[8] S. K. Mohanty, G. Premsankar, and M. Di Francesco, “An
Evaluation of Open Source Serverless Computing Frame-
works,” IEEE CloudCom, 2018.

[9] S. Venugopal et al., Turn of the Carousel — What Does Edge
Computing Change for Distributed Applications?” ACM
ApPLIED, 2018.

[10] E. Schiller et al., “CDS-MEC: NFV/SDN-Based Application
Management for MEC in 5G Systems,” Computer Networks,
vol. 135, 2018, pp. 96–107.

[11] D. Sabella et al., “A Hierarchical MEC Architecture : Experi-
menting the RAVEN Use-Case,” IEEE VTC-Spring, 2018.

[12] S. Abdelwahab et al., “Network Function Virtualization in 5G,”
IEEE Commun. Mag., vol. 54, no. 4, Apr. 2016, pp. 84–91.

[13] L. Wang et al., “MOERA: Mobility-Agnostic Online
Resource Allocation for Edge Computing,” IEEE Trans.
Mobile Computing, vol. 18, no. 8, 2018, pp. 1843–56.

[14] C. Cicconetti, M. Conti, and A. Passarella, “An Architectur-
al Framework for Serverless Edge Computing: Design and
Emulation Tools,” IEEE CloudCom, 2018.

[15] C. Cicconetti, M. Conti, and A. Passarella, “Architecture
and Performance Evaluation of Distributed Computation
Offloading in Edge Computing,” Simulation Modelling Prac-
tice and Theory, 2019.

Biographies
Claudio Cicconetti (Ph.D. Comp. Eng. 07) is a researcher
at IIT-CNR, Italy, previously working as an R&D manager at
Intecs S.p.a. and a software engineer at MBI S.r.l. He has been
involved in several international R&D projects funded by the
European Commission and the European Space Agency. He has
served as a member of the TPC and organization committees
of several international conferences. He has co-authored 60+
papers published in international journals and peer-reviewed
conference proceedings and two international patents.

Marco Conti is the director of IIT-CNR. He has published 400+
scientific articles and is the founding Editor-in-Chief of Online
Social Networks and Media, Editor-in-Chief for Special Issues of
Pervasive and Mobile Computing, and, for several years, Editor-in-
Chief of Computer Communications, all published by Elsevier. He
has received several awards, including the Best Paper Award at
IFIP TC6 Networking 2011, IEEE ISCC 2012, and IEEE WoWMoM
2013. He is the founder of successful conference and workshop
series, such as IEEE AOC, ACM MobiOpp, and IFIP SustainIT.

Andrea Passarella (Ph.D. Comp. Eng. ‘05) is a research direc-
tor at IIT-CNR, Italy. Previously he was a research associate at
the Computer Laboratory, Cambridge, United Kingdom. He
has published 150+ papers in peer-reviewed journals and con-
ference proceedings, receiving best paper awards at, among
others, IFIP Networking 2011 and IEEE WoWMoM 2013. He
has been involved in the organization of several IEEE and ACM
workshops, including IEEE WoWMoM 2019 (General Co-Chair)
and IEEE INFOCOM 2019 (Workshops Co-Chair), and co-au-
thored the book Online Social Networks (Elsevier, 2015). He is
the Founding Associate EiC of Elsevier OSNEM, and Area Editor
for Elsevier PMC (best area editor 2019), as well as the Chair of
the IFIP TC6 WG 6.3 Performance of Communication Systems.

Dario Sabella works with INTEL as Senior Manager Standards
and Research, driving new technologies and edge cloud inno-
vation for advanced systems, involved in ecosystem engage-
ment, and coordinating internal alignment on edge computing
across standards and industry groups. Since 2019 he has been
Vice-Chairman of ETSI MEC and since 2015 Vice-Chair of IEG
WG. He has been a delegate of 5GAA since 2017. He previ-
ously worked at Telecom Italia, responsible for research and
operational activities on WiMAX, LTE, and 5G. He is an author
of several publications (40+) and patents (20+) on wireless com-
munications, energy efficiency, and edge computing. He has
also organized several international workshops and conferences.

Figure 6. Experiment #2 (every 20 s all UEs in a pod migrate to another): delay
over time.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80

Re
sp

on
se

 d
el

ay
 (m

s)

Time (s)

Static assignment

Centralized
assignment

Distributed assignment

CICCONETTI_LAYOUT.indd 46CICCONETTI_LAYOUT.indd 46 3/10/20 11:10 AM3/10/20 11:10 AM

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on September 29,2020 at 09:09:20 UTC from IEEE Xplore. Restrictions apply.

