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A B S T R A C T   

Membrane reactors - as promising technology for pursuing the Process Intensification Strategy in various 
chemical processes - were reviewed in the field of steam reforming of methane and liquid hydrocarbons for 
sustainable hydrogen production. A summary of the advantages and disadvantages of each considered process 
was presented. Drawbacks and current issues of the traditional reactors in fuel processing processes, which can 
be overcome using membrane reactors, were also described. 

In particular, steam reforming processes are the major hydrogen production methods; therefore, in this review 
the effects of different operating parameters, such as reaction temperature, pressure, feed composition, reactor 
configuration, feed and sweep gas flow rates were analyzed and discussed in terms of methane conversion, 
hydrogen recovery, hydrogen yield and CO selectivity. A deep discussion was proposed about the effects of the 
hydrogen removal from reaction zone (the so called “shift effect”) toward the permeation zone in the membrane 
reactors, highlighting the benefits of their adoption over the traditional reactors.   

1. Introduction 

The general description of a membrane reactor (MR) deals with the 
definition of a device in which the reaction and separation of one or 
more products occur simultaneously [1]. The separation function is 
given by a selective membrane that is allocated in a reactor module to 
constitute an integrated reaction/separation system. MRs move under 
the principles of the Process Intensification Strategy, making possible to 
achieve the same performance of the catalytic traditional reactors (TRs), 
but operating at milder conditions, meanwhile requiring a reduced 
number of devices for achieving a pure product stream of interest [2,3]. 
Due to the integration of the reaction and separation stages in a single 
unit, a MR results to be a compact device showing economic advantages 
in terms of capital and operational costs over the TRs [4–8]. Currently, 
different MR configurations may be noticed such as tube in tube, 
multi-tubes in shell, planar, multi-hollow fibers etc. [1,5,8–13]. Fig. 1 
shows a MR configuration dealing with two concentric tubes as a tube in 

tube solution. In the proposed scheme, the inner tube is filled by catalyst 
pellets in the lumen side and the separative membrane layer may be 
coated on the internal surface of the inner tube, which plays also the role 
of membrane support. Otherwise, the coating of the selective layer is 
realized on the outer surface of the inner tube and the catalyst is packed 
in the annulus of the MR and the permeated stream is collected in the 
lumen side [1,5]. 

On the other hand, the inner tube may consist of the membrane itself 
in the case it is a self-supported dense walled typology. 

For instance, in the configuration of Fig. 1, one or more products of a 
specific reaction process may permeate through the membrane and are 
collected in the annular section of the MR module. In some case, a sweep 
gas may be used to enhance the permeation driving force and the 
product removal. A sweep gas may be supplied in co-current or counter- 
current modality with respect to the MR feed stream. Therefore, in case 
of a membrane possessing full perm-selectivity toward a product, it is 
possible to recover the former with a high purity, reducing the down
stream separation load [1,5–8]. 

Abbreviations: CVD, chemical vapor deposition; ELP, electroless plating; ESR, ethanol steam reforming; GHSV, gas hourly space velocity; GSR, glycerol steam 
reforming; HT, high temperature; LT, low temperature; MR, membrane reactor; MSR, methanol steam reforming; NG, natural gas; PEMFC, polymer electrolyte 
membrane fuel cell; PP-ELP, pore plating electroless plating; PROX, preferential oxidation; PSS, porous stainless steel; SF, sweep factor; SRM, steam reforming of 
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The main application of a product removal from the reaction zone for 
permeation through a membrane refers to limited equilibrium reactions 
[1,6]. The removal of a reaction product leads to an enhancement of the 
reaction conversion or to the same conversion of an equivalent TR, but 
achieved at milder reaction conditions. Furthermore, the adoption of 
MRs allows to avoiding that undesiderable secondary reactions may take 
place [6]. 

In case of a reversible reaction carried out in conventional reformers 
(closed system):  

aA + bB ↔ cC + dD                                                                        (1) 

the equilibrium constant is considered as: 

K =
[C]

c
[D]

d

[A]a[B]b
(2) 

For a specific reaction condition, K has a specific value that can 
obtained from Van’t Hoff equation: 

dlnK
dT

=
ΔH
RT2 (3) 

At the beginning of the reaction, the concentration of the products is 
zero. During the reaction development, the concentration of the re
actants decreases and that of the products increases. Therefore, the value 
of the concentration ratio in the Eq. (2) will be increased until the final 
value of the equilibrium constant is reached. Further conversion of the 
reactants will be stopped and a specific conversion value is obtained for 
a given temperature, pressure and feed composition. In a MR, removing 
one or more products from the reaction zone, the numerator of the 
concentration ratio in Eq. (2) is maintained at a low value, preventing 
that the equilibrium composition may be reached. Therefore, the direct 

reaction can proceed further and the conversion can exceed the corre
spondent value of the closed system at the same reaction conditions. 
This is the well-known mechanism that in a MR is called “shift effect” [1, 
5,9–13]. From the reaction kinetic point of view, the overall consump
tion rate of the product A (Eq. (1)) is given by:  

rA= rA, forward –rA,reverse                                                                    (4) 

Forward and reverse reaction rates directly depend on the reactants 
and products concentration, respectively. In a MR, removing the product 
from the reaction zone reduces the reverse reaction rate, consequently 
improving the overall conversion rate of reactants [1]. 

Nowadays, one of the most studied fields in which MR technology is 
applied refers to hydrogen generation [1,4,6,9,10]. The former is 
considered as an environmentally friendly, clean and highly efficient 
energy carrier. Many efforts are currently done to develop technologies 
useful for producing cost-effective and sustainable hydrogen, especially 
for fuel cell applications [10]. 

Several reviews from literature dealt with deep discussions on MRs 
technology, their fundamentals and adoption to generate hydrogen, but 
- to our best knowledge - there are not reviews strictly dedicated to the 
sustainable hydrogen generation via MRs technology combined to the 
exploitation of light hydrocarbons. 

Hence, in this work, the application of MRs to produce hydrogen via 
steam reforming of liquid hydrocarbons such as methanol, ethanol and 
glycerol is reviewed, discussing on the related MRs performance 
compared to those of MRs used to carry out the steam reforming of 
methane as a fossil-fuel based process. Furthermore, the latest ad
vancements and the future perspectives of a decarbonized society based 
on the sustainable hydrogen generation coming from the exploitation of 
light hydrocarbons and alternative technologies such as the MRs are 
analyzed and discussed. 

2. Membrane reactors 

The MR concept was formulated since 1950 although a special in
terest about this new technology was registered only when new inor
ganic membrane materials were adopted and the MR applications 
involved high-temperature industrial processes. In the last three de
cades, a large literature was addressed about the MR technology, dealing 
with different approaches in specific areas. Furthermore, different kind 
of MRs were developed, depending on the typology of membranes 
adopted. They may be subdivided in: inorganic MRs [6–10], zeolite MRs 
[11,12], polymeric MRs [13,14], photo-catalytic MRs [15,16], mem
brane bio-reactors [17,18], electrochemical MRs (including electrolytic 
cells fuel cells etc.) [19]. In all the aforementioned classes, the combi
nation of a MR operation with a chemical and/or biochemical reaction is 

Nomenclature 

B0
H2 Pre-exponential factor 

JH2 Hydrogen permeating flux 
pH2 , perm Hydrogen partial pressure in the permeate side 
pH2 , ret Hydrogen partial pressure in the retentate side 
ΔH Enthalpy changes 
dP Pore diameter 
Ea Apparent activation energy 
JH2

HP Hydrogen permeating flux contribute due to Hagen- 
Pouiselle equations 

JH2
K Hydrogen permeating flux contribute due to Knudsen flow 

equations 
JH2

SD Hydrogen permeating flux contribute due to solution/ 
diffusion mechanism 

JH2
TOT Total hydrogen permeating flux 

K Equilibrium constant 
N Dependence factor on the hydrogen partial pressure 
R Universal gas constant 
rA, forward Consumption rate of reactant A through the forward 

reaction 
rA,reverse Production rate of the reactant A through the reverse 

reaction 
rA Net reaction rate of reactant A 
T Temperature 
η Viscosity 
ΔpH2 Transmembrane hydrogen partial pressure 
ε Membrane porosity 
τ Tortuosity 
δ Membrane thickness  

Fig. 1. Scheme of a tube in tube membrane reactor configuration.  
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directed to intensify the whole process. Therefore, the membrane plays 
the most significative role, determining if a MR is used to remove or add 
a chemical species, working under “extractor” of “distributor” modality 
[20]. A further configuration is possible, called “contactor” modality, in 
which the membrane favors the contact between catalyst and reactants 
to better develop the reaction process without operating any separation 
process [20,21]. In a MR operated under “extractor” modality, the 
membrane removes selectively a desired species from the reaction 
mixture for permeation. MRs operated under extractor configuration, 
adopted in thermodynamically restricted reactions, allow the enhance
ment of the selectivity towards a particular intermediate species in a 
cascade reaction, due to its selective removal from the reaction medium 
[20]. This mechanism represents the aforementioned “shift effect”, 
which is responsible also for the reduction of sequential reactions [1,6, 
10]. This MR modality is particularly adopted in dehydrogenations or 
hydrogen generation reactions such as steam reforming or water gas 
shift (WGS), carried out using hydrogen selective membranes [4,10,21]. 

MRs operated under “distributor” modality allow to add a limiting 
reactant along the reactor uniformly in order to prevent hot spots and 
side reactions. It is particularly adopted in partial oxidation reactions, in 
which the membrane selectively adds the target oxygen to achieve both 
high conversions and product selectivities. Furthermore, being not re
actants and oxygen premixed, flammable mixtures are avoided and 
flame back firing into the feed is prevented as well [20]. 

MRs used under “contactor” modality allow that the two-sided ge
ometry of the membranes may bring reactants into contact each other 
easier [20]. 

3. Palladium membranes for MR applications 

Most of the MR applications deals with the utilization of inorganic 
membranes due to their resistance at medium-high temperature opera
tions. The choice of the inorganic material to be used for membrane 
preparation and successive utilization in a MR depends on the specific 
reaction process, on the final desired product and related purity, and on 
the operation conditions [1,10]. Ceramic, metallic, zeolite, carbon and 
composite membranes are generally adopted in MRs to carry out reac
tion processes [22,23]. Furthermore, in applications of MRs for 
hydrogen generation a general categorization subdivides them into 
packed-bed and fluidized-bed MRs [1,24]. 

Packed-bed MRs are largely addressed in the scientific literature, 
with many applications of them dealing with planar and tubular con
figurations, in which the catalyst is loaded as a packed bed directly in 
contact with an inorganic membrane [1,5,6,10]. On the other hand, the 
fluidized bed MRs are generally constituted of a bundle of membranes 
immersed in a catalytic bed, which is operated under bubbling or tur
bulent regime due to the need (which represents also the main limita
tion) of maintaining suspended the catalytic bed. In the applications of 
MR technology for hydrogen generation, metallic membranes represent 
the most adopted typology because a number of metals possesses high 
hydrogen perm-selectivity with respect to all the other gases [25,26]. In 
particular, palladium and its alloys dominate over the other inorganic 
membrane materials due to their characteristics of full hydrogen 
perm-selectivity [27–29]. The performance of every kind of inorganic 
membrane material is currently evaluated in terms of hydrogen 
permeability, perm-selectivity and thermal stability. As shown in Fig. 2, 
V, Nb and Ta show the highest hydrogen permeabilities but they possess 
conversely the lowest mechanical resistance, due to the effects of a se
vere hydrogen embrittlement phenomenon [27], which is responsible 
for the membrane failure in case of prolonged hydrogen exposure. 

Pd possesses the highest hydrogen permeability a part from the 
aforementioned materials (V, Nb and Ta), but it is not subjected to a 
drastic embrittlement phenomenon if alloyed with other metals such as 
Ag, Ni, Au, Ru, Cu etc. [30]. 

Hydrogen permeation through Pd walls is developed under a 
solution-diffusion mechanism, which involves a number of activated 

stages: a) molecular hydrogen dissociation at the membrane surface; b) 
atomic hydrogen adsorption on the membrane surface; c) atomic 
hydrogem dissolution into the palladium bulk; d) atomic hydrogen 
diffusion through the membrane; e) re-combination from the atomic 
molecular hydrogen at the gas/metal interface; f) molecular hydrogen 
desorption [27–29,31]. Ideally, the equation expressing the hydrogen 
flux permeating through a Pd-based membrane is reported below: 

JPermeating
H2

=
BH2

δ

(
pn

H2 , retentate − pn
H2 ,permeate

)
(5) 

where JH2
Permeating represents the hydrogen permeating flux, BH2 the 

hydrogen permeability, δ the membrane thickness, pH2,retentate and pH2, 

permeate the hydrogen partial pressures in the retentate and permeate 
sides, respectively, and “n” the hydrogen partial pressure exponent, 
which ranges between 0.5 and 1 [29,31]. The latter variable may depend 
on the rate limiting step of the hydrogen diffusion through the palladium 
wall. 

Hydrogen membrane permeability (BH2) depends on temperature as 
an Arrhenius like equation: 

BH2 = BH20.exp
(

−
Ea

R.T

)

(6) 

BH2
◦ is a pre-exponential factor, Ea the apparent activation energy, R 

the universal gas constant and T the temperature. In case of hydrogen 
bulk diffusion controlling the permeation process as the rate limiting 
step, Eq. (5) becomes the Sieverts-Fick law and the pre-exponential 
factor “n” is equal to 0.5. 

JPermeating
H2

=
BH2

δ

(
p0.5

H2 , retentate − p0.5
H2 ,permeate

)
(7) 

When the n-value is higher than 0.5, the surface effects play a rele
vant role and the hydrogen transport through the membrane is regulated 
by other mechanisms such as Knudsen diffusion, etc. In case of n = 1, the 
surface-reaction controls the hydrogen permeation instead of diffusion 
[31]. 

In case of fully hydrogen perm-selective Pd-based membranes, the 
driving force regulating the hydrogen permeation through the mem
brane is represented by the hydrogen partial pressure square root dif
ference between reaction and permeate sides. 

In recent years, much attention was paid to supported Pd-Pd/alloys 
membranes, constituted of a dense Pd/Pd-alloy film as top layer 
deposited on a porous support among Vycor glass, Al2O3, SiO2 and B2O3 
or porous stainless steel (PSS) [29,31]. This kind of supported Pd-based 
membranes combines reduced membrane cost, due to low Pd content, 
and enhanced mechanical characteristics, due to the presence of the 
porous support. 

The dense Pd/Pd-alloys layer greatly affects the whole membrane 

Fig. 2. H2 permeability vs 1/T for such metals as Nb, V, Ta, Pd, Fe, Ni, Pt. With 
permission of reprint of Taylor & Francis from Conde et al. [27]. 
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performance, which may be expressed by the reference perm-selectivity 
(αH2/N2), represented by the ratio between the ideal H2 and N2 per
meances. Fig. 3 shows a graph in which H2 permeance is plotted against 
H2/N2 selectivity as a function of the thickness of the Pd layer for both 
self-standing and supported membranes. 

In Fig. 3a, the upper bound between hydrogen permeance and top 
layer thickness is plotted to indicate as higher is the Pd thickness as 
lower is the H2 permeance due to the hydrogen diffusion through a 
thicker bulk. Concerning the self-standing Pd/Pd-alloys membranes, 
wall thickness equal to 20 μm represents the limit for this Pd-membranes 
class owing to the low resistance to mechanical stress [31]. For sup
ported Pd/Pd-alloys membranes, the best performance in terms of 
hydrogen permeance are observed in the region of very thin Pd layers. 
Nevertheless, the presence of defects in the thin Pd layers may limit the 
H2/N2 selectivities with respect to the self-standing class, Fig. 3b. 
Consequently, the H2 perm-selectivity of supported Pd-based mem
branes may vary depending on the effectiveness of the dense 
Pd/Pd-alloys layer deposition. Beside the presence of defects in the top 
layer, the contamination due to harmful compounds, the presence and 
typology of the substrate and the intermediate layer play a further role, 
considerably responsible for the membrane performance. Table 1 sum
marizes the performance in terms of hydrogen perm-selectivity and 

permeance, reporting also the operating conditions and thickness of the 
top layer of a number of supported Pd membranes. For some of them, the 
hydrogen perm-selectivity is full and indicated as “∞”. In this case, the 
correspondent hydrogen partial pressure exponent (‘n’) assumes the 
value of 0.5, indicating that the Sieverts-Fick law regulates the hydrogen 
permeation through the membrane. 

In case of supported Pd-based membranes presenting finite values of 
hydrogen perm-selectivity, n-value is equal to 1, which indicates that the 
hydrogen permeation is taking place very fast due to a thin Pd layer (< 5 
μm). For thicker Pd layer (> 5 μm), deviations from Sieverts law (n-value 
> 0.5) are mainly caused by high hydrogen pressure, surface reaction 
rate decrease due to contaminants absorption, concentration polariza
tion effect and pin-holes formation. In the former case, a fraction of 
hydrogen may permeate into the defects via Knudsen or viscous flow 
beside the hydrogen diffusion through the palladium bulk [31] (Eq. 8). 

JTotal
H2

=
1

1
JSD

H2
+ 1

JK
H2
+ 1

JHP
H2

(8) 

JH2
Total represents the total hydrogen permeating through the mem

brane, JH2
SD the hydrogen permeating via solution/diffusion mechanism, 

JH2
K the hydrogen permeated via Knudsen mechanism (Eq. 9) and JH2

HP 

that permeating via viscous flow/Hagen-Pouiselle mechanism (Eq. 10). 

Fig. 3. Supported and self-standing Pd-based membranes: a) H2 permeance vs thickness of the Pd-layer; b) ideal H2/N2 selectivity vs thickness thickness of the Pd- 
layer. With permission of reprint of Elsevier from You & Oyama [31]. 

Table 1 
Performance of supported Pd/Pd-alloys membranes from literature.  

Membrane typology Preparation technique Separative layer (μm) T (◦C) Δp (bar) H2 permeance (mol/m2⋅sPa)  Ideal Selectivity (αH2/N2) Ref. 

Pd/Al2O3 ELP 5 400 1 4.3⋅10− 4 ∞ [32] 
Pd/PSS PP-ELP 20 450 – – ∞ [33] 
Ru/Pd/Al2O3/PHA ELP 6.8 500 1 – ∞a [34] 
Pd/PSS ELP 10 400 2 8.7⋅10− 7 ~ 11,800 [35] 
Pd/Al2O3 ELP 0.9 450 ~ 1 4.0⋅10− 6 9200 [36] 
Pd/YSZ/PSS ELP 25− 30 500 – 3.1⋅10− 4c 400b [37] 
Pd/Al2O3 ELP 2− 4 400 – – 500 [38] 
Pd-Ag/ZrO2 PVD 1.0 400 1 8.0⋅10− 6 500 [39] 
Pd-Ag/PSS PVD 2.8 400 – 1.5⋅10− 5 2900 [40] 
Pd-Cu/Al2O3 MVS 20 400 0.5 1.8⋅10− 6 ~1800 [41] 
Pd-Cu/PSS ELP ~7 400 4 1.9⋅10− 6b ~890 [42] 
Pd-Cu/MPSS SIEP ~17 550 ~7 – ~90 [43] 
Pd-Cu-Pd ELP + GD 19 450 – 2.8⋅10− 6b 2100 [44] 
Pd-Cu/Al2O3-PNS MS 7 ~540 2 5.3⋅10− 7b ∞ [45] 
Pd-Cu/CeO2/PNS MS  500 4 7.0⋅10− 7b > 50,000 [46] 
Pd-Au/α-Al2O3 ELP 8 400 0.5 2.7⋅10− 6 ~500 [47] 
Pd-Au/YSZ ELP 5 500 6 – 4300 [48] 
Pd-Au/PSS ELP ~15 450 1 5.5d > 2700a [49] 
Pd-Au/PSS ELP 7 420 0.5 5.6d 220a [50] 
Pd-Au/PSS ELP ~15 350 1 11.2d 900a [51]  

a H2/He. 
b Separation factor using H2-N2 mixture. 
c [mol/m2⋅s⋅Pa0.5]. 
d Nm3 m− 2 h-1 bar-0.5. 
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JK
H2

=
εdP

τL

(
8

9πMRT

)1/2

ΔpH2 (9)  

JHP
H2

=
r2

8ηLP0
PAVEΔpH2

(10)  

where ε is the membrane porosity, dP the pore diameter, τ the tortuosity, 
L the thickness, M the molecular weight of diffusing gas, ΔpH2 the 
transmembrane hydrogen partial pressure, η the viscosity, PAVE the 
average pressure, P0 the outlet pressure, r the radius. 

On the other hand, a critical issue affecting the H2 permeation per
formance of Pd-based membranes is represented by the effects of con
taminants such as H2S, CO, unsaturated hydrocarbons, coke etc. [52]. In 
particular, the poisoning effects of H2S containing H2 rich-gas mixtures 
on the surface of Pd-coated membranes deal with a progressive loss of 
the membrane performance (lower H2 permeability and 
perm-selectivity) up to achieve the membrane failure due to the dete
rioration of the selective layer. This is caused by the formation of the 
palladium sulphide, whose lattice constant is twice than of pure Pd, 
determining structural stress with the formation of cracks [52,53]. Some 
Pd-alloys seem to be more H2S resistant such as those based Pd alloyed 
with Au and Cu. 

The permeation H2 rich-gas mixtures containing CO through Pd- 
based membranes may be affected by the negative influence of CO, 
causing the decrease of the H2 permeation performance. This is due to 
the adsorbed CO that blocks available dissociation sites for the H2 
adsorption. This effect depends on the operating temperature (particu
larly below 150 ◦C) and the CO concentration. Also in this case, alloys of 
palladium with other metals such as Cu, Ni, Fe, Pt, and Ag improve the 
resistance to the aforementioned CO effects [52,53]. 

The coke deposition on Pd-based membranes may be responsible for 
a loss of the H2 permeation performance, particularly at high tempera
ture. C-atoms penetrate into the palladium lattice, determining its 
expansion and the consequent membrane failure. 

The presence of light-hydrocarbons in H2 rich-gas mixtures may 
affect the Pd-based membranes performance. Indeed, light- 
hydrocarbons may be decomposed at high temperatures over the 
palladium surface, forming Pd-C species, coke deposition and the 
consequent depletion of the H2 permeation characteristics of the mem
brane. In this case, since high temperatures are responsible for the light 
hydrocarbon decomposition, favoring the membrane fouling by coke 
deposition, operating temperature equal to or above 600 ◦C are not 
recommended to avoid severe membrane performance depletion [52]. 

4. Steam reforming of natural gas 

Steam reforming of natural gas (NG) represents the main process 
adopted for industrial hydrogen production [4]. The reaction process is 
performed in TRs at hard and harsh conditions, with an outlet reformed 
stream rich in CO and H2 (synthesis gas). The former is then used for 
large scale ammonia and methanol production. NG is mostly constituted 
of methane, therefore NG steam reforming may be well represented by 
the steam reforming of methane (SRM), which involves the reaction 
process scheme reported below. R1 represents the SRM, R2 the WGS 
reaction, and R3 the overall SRM process. 

CH4 + H2O ↔ CO + 3H2
(
ΔH = 206.2 kJ mol-1) (R1)  

CO + H2O→ CO2 + H2
(
ΔH = -41.2 kJ mol-1) (R2)  

CH4 + 2H2O ↔ CO2 + 4H2
(
ΔH = 165.0 kJ mol-1) (R3) 

SRM is a highly endothermic and a reversible process, in which 
methane conversion is limited by the thermodynamic equilibrium value 
[1,4,54–61]. In other words, the thermodynamic limitation is the main 
issue in the progress of the reaction, the kinetic and catalyst activity are 

not highly determining and the heat transfer to catalytic bed is the rate 
controlling step. Conventionally, SRM is carried out at temperatures 
higher than 1100 K and, to facilitate the heat transfer, the reaction is 
developed in fixed bed small diameter tubes suspended within a furnace 
with different firing configuration [54]. Nevertheless, the high tem
peratures required for converting as much as possible methane into 
hydrogen during SRM in TRs determine the need of expensive reformer 
construction materials adoption such as high alloy nickel chromium 
steel to withstand the thermal stresses. Irreversible coke formation, 
considerable energy consumption, creation of temperature profile inside 
the catalyst bed due to heat transfer limitation and higher possibility of 
NOx formation in the furnace are other critical drawbacks [55]. There
fore, to overcome these problems it is desirable to lower the reaction 
temperature, meanwhile keeping the conversion of methane at high 
levels. MRs equipped with hydrogen selective membranes are an 
attractive option to reach this purpose [1,9,27,56–58]. Hence, removing 
hydrogen from the reaction side by membrane permeation shifts an 
equilibrium limited reaction towards the reaction products and, thereby, 
methane conversion is enhanced due to Le Chatelier’s principle. 

The “shift effect” present in hydrogen perm-selective MRs (which 
operate as non-closed systems) makes possible to achieve higher con
versions of an equivalent TR operated at the same conditions or, 
otherwise, the same conversion but operating at milder conditions. 

Fig. 4 illustrates schematically how a MR may overcome the re
strictions of the thermodynamic equilibrium limited reactions carried 
out in a TR (which operates as a closed system). 

Data from literature confirm this ability and Figs. 5 and 6 show a 
parametric comparison between MRs and TRs performance in terms of 
methane conversion and hydrogen yield during SMR reaction, respec
tively [58-69]. In Figs. 5 and 6, each methane conversion and H2 yield 
obtained in a MR from a published study was plotted against those ob
tained in a TR from the same study. For instance, if in a specific publi
cation, among those reported in the aforementioned figures, methane 
conversion in the MR was 70 % and in the TR 60 %, these data repre
sented a coordinate (6070) in Fig. 5. Hence, the dashed line represents 
the theoretical equivalence between MR and TR methane conversions, 
but since methane conversions and H2 yields in the reported MRs of 
Figs. 5 and 6 were higher than those of the correspondent TR, thus all 
points were above the dashed line. 

In particular, the enhancement of the hydrogen yield in a MR is due 
to the improved conversion, which is driven by the shift effect induced 
by the membrane permeation. Indeed, a higher methane conversion 
determines a larger hydrogen production and, consequently, a higher 
hydrogen yield. 

Furthermore, depending on the hydrogen perm-selectivity 

Fig. 4. Schematic representation of the MRs and TRs behaviors under ther
modynamic equilibrium limited reactions (conversion vs temperature). 
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characteristics of the adopted membrane in the MR and the required 
standards of the hydrogen purity requested by the final user, high grade 
or pure hydrogen may be attained in the MR permeate stream. This 
represents a great benefit for the MRs because they do not require any 
further hydrogen separation stages. 

Most of the industrial plants used to generate hydrogen from SRM 
reaction deals with the presence of a conventional reformer, followed by 
two WGS reactors, which are responsible for the transformation of CO, 
present in the outlet streams of the TR, into further hydrogen and CO2 
[5,6,10]. SRM is an endothermic reaction, whereas WGS is exothermic. 
The desirable operating temperatures in TRs are commonly higher than 
973 K, while in both the WGS reactors (high temperature and low 
temperature reactors in series each other) the temperatures are lower 
than 723 K. Consequently, it is not possible to intensify the whole pro
cess, carrying out both the reactions simultaneously. Cooling down the 
outlet stream coming from the TR to enter the WGS reactors involves a 
large energy penalty. Using a MR, the hydrogen removal determines 
both the shift of the equilibrium of both the WGS and SRM reactions 
towards the products, enhancing both the reactions conversions and the 
hydrogen production. Hence, both reactions may proceed simulta
neously in the MR as a single unit, with an intensification of the process 
system itself, reducing the energy penalties and the costs as well. 

For instance, Fig. 7 shows a comparison between conventional and 
membrane-based integrated systems for generating hydrogen from NG 
steam reforming. As illustrated in Fig. 7b, in an intensified membrane- 

based process, the retentate stream coming out from the second MR 
results to be concentrated and compressed in CO2 (>80 %), and hence 
easy to recover. This involves over a conventional integrated process 
(Fig. 7a) reduced energy consumption, lower footprint, and the reduc
tion of number of devices for reaction–separation–purification. 

5. Steam reforming of liquid hydrocarbons 

Hydrogen fuel cells represent promising candidates for energy pro
duction and a suitable replacement for internal combustion engines 
[59]. Hydrogen is a carbon-free energy carrier that, combined to proton 
exchange membrane fuel cells (PEMFCs), involves a clean process for 
energy production, generating water as unique byproduct [70]. In 
comparison with internal combustion engines, PEMFCs do not possess a 
maximum theoretical efficiency, which may be restricted to 40 % by 
Carnot’s rule. Their theoretical efficiency may be also 100 %. Further
more, they do not have any moving components, not losing any useful 
energy due to the friction. 

One of the main obstacles to widespread use of hydrogen as energy 
source in portable applications is represented by the hydrogen transport, 
distribution and saving due to safety, mechanical and economic issues. 
To overcome these issues, onboard and distributed hydrogen production 
at the consumption place, using liquid fuels such as methanol, ethanol 
etc., was proposed instead of a stationary (central) production of 
hydrogen necessarily involving its transportation and storage in auto
mobiles [71,72]. 

In details, the benefits due to the utilization of methanol, ethanol and 
glycerol as feedstocks to generate hydrogen include [67,73–79]:  

- Numerous and available sources such as oil, natural gas, coal and 
biomass may be used to methanol and ethanol production.  

- Their production technologies in large scales are well established.  
- At room temperature, they are liquid and their transportation and 

storage are easy and safe.  
- Methanol has high hydrogen to carbon ratio and gives the highest 

hydrogen ratio in product. 
- Required reforming conditions are mild: temperature range is rela

tively low and pressure is generally atmospheric. 
- Using methanol, there are not C–C bonds; consequently, this re

duces the possibility of coke formation.  
- Sulfur and nitrogen compounds (SOx and NOx) are not formed.  
- Ethanol, glycerol and methanol can be produced from biomass and 

renewable resources; therefore, their production do not increase the 
net amount of CO2, presenting a low impact on the environment.  

- Glycerol is a byproduct of biodiesel production and, theoretically, 
100 g of glycerol are producible per 1 kg of biodiesel produced.  

- The utilization of crude glycerol in common industrial application is 
limited and its conversion to hydrogen is an attractive idea to 
disposal of surplus glycerol.  

- Without high investments, exiting gasoline refueling stations could 
be converted to methanol and ethanol distribution. 

Regarding to methanol utilization in reforming reactions to produce 
hydrogen, CO is the unique byproduct produced during methanol steam 
reforming (MSR) reaction [76]. The whole reaction mechanism for the 
MSR reaction takes into account also the WGS and methanol decom
position reactions:  

Methanol Steam Reforming: CH3OH + H2O ↔ CO2 + 3H2                 (11)  

Water Gas Shift Reaction: CO + H2O ↔ CO2 + H2                           (12)  

Methanol Decomposition: CH3OH ↔ CO + 2H2 (13)                                  

Concerning the ethanol exploitation for producing hydrogen via 
ethanol steam reforming (ESR) reaction, the reaction mechanism results 
to be more complex than that of the MSR reaction. Indeed, it depends 

Fig. 5. Methane conversion in MRs and TRs during SRM process. Data 
extracted from [58–68]. 

Fig. 6. Hydrogen yield in MRs and TRs during SRM process. Data extracted 
from [57,59,60]. 

T.Y. Amiri et al.                                                                                                                                                                                                                                 



Chemical Engineering and Processing - Process Intensification 157 (2020) 108148

7

strictly on the type of catalyst used [79]. Hence, the reaction mechanism 
of the ESR reaction developed on noble metal-based catalysts involves: 
1) the ethanol decomposition reaction that produces hydrogen, CO and 
CH4, 2) WGS and SRM reactions:  

C2H5OH ↔ CO + CH4 + H2                                                           (14)  

CO + H2O ↔ CO2 + H2                                                                (15)  

CH4 + 2H2O ↔ 4H2 + CO2                                                           (16)  

C2H5OH + 3H2O ↔ 6H2 + 2CO2                                                    (17) 

At lower operating temperatures, other reactions such as dehydro
genation of ethanol to acetaldehyde, decomposition of the acetaldehyde 
to CO and CH4, and acetaldehyde steam reforming are also involved in 
the ESR reaction scheme:  

C2H5OH ↔ CH3CHO + H2                                                            (18)  

CH3CHO + 3H2O ↔ 5H2 + 2CO2                                                   (19)  

CH3CHO ↔ CH4 + CO                                                                 (20) 

The reaction scheme for glycerol steam reforming reaction includes 
glycerol decomposition and WGS reactions:  

3H8O3 → 3CO + 4H2                                                                    (21)  

CO + H2O → CO2 + H2                                                                (22)  

3H8O3 + 3H2O → 3CO2 + 7H2                                                       (23) 

Nevertheless, further secondary reactions are possible and, accord
ing to the literature [74], they are reported in the following:  

C3H8O3 + H2 → 3CH4 + 3CO + 3H2O                                            (24)  

C3H8O3 + 2H2 → 2CH4 + CO + 2H2O                                            (25)  

CO + 3H2 → CH4 + H2O                                                              (26)  

CO2 + 4H2 → CH4 + 2H2O                                                           (27)  

CO2 + CH4 → 2CO + 2H2                                                             (28)  

CH4 + H2O → CO + 3H2                                                              (29) 

A crucial issue during whatever catalytic reaction is the formation of 
coke. In fact, it may be responsible for the depletion of the catalytic 
activity and for the covering or poisoning effect on the membrane in MR 
utilization. Generally, coke formation in the steam reforming of hy
drocarbons can take place according to the reactions reported below:  

2CO → CO2 + C                                                                          (30)  

CH4 → 2H2 + C                                                                           (31)  

CO + H2 → H2O + C                                                                    (32)  

CO2 + 2H2 → 2H2O + C                                                                (33) 

Furthermore, steam reforming of hydrocarbons carried out TRs 
generates reformed streams rich in CO, CO2 and CH4, beside hydrogen. It 
is well-known that hydrogen rich-streams with CO concentration higher 
than 10 ppm may be responsible for the PEMFC anode catalyst poisoning 
[30]. Consequently, reformed streams need to be purified before feeding 
a PEMFC, by means of some additional processes such as the afore
mentioned high temperature and low temperature WGS reactors, in 
which the CO content is reduced because CO is transformed into CO2 and 
further hydrogen (CO content is reduced up to 0.5 %); preferential 
oxidation (PROX) reactors, in which the residual CO is converted into 
CO2 (CO content is lowered to less than 10 ppm), and pressure swing 
adsorption (PSA) to separate hydrogen from CO2. In conventional op
erations, a fraction of produced hydrogen needs to be consumed as well 
as for these additional reactions O2 supplying is also required. 
Furthermore, heat supply equipment and complex energy integration 
between different process units (conventional reformer, WGS reactors 
and PROX reactor) constitute other needs. These operations increase the 
complexity and the costs of the overall process, leading to an uneco
nomical downscaling. Some of the requirements for reforming processes 
in mobile applications are the reduction of reformer size, the process 
intensification and the enhancement of the process efficiency [3,21]. 

Fig. 7. Hydrogen production from NG steam reforming reaction: scheme of an integrated conventional system (A); scheme of an integrated membrane system (B). 
Adapted from Drioli et al. [3]. 
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MRs are attractive hydrogen generators from reforming processes, 
which may combine in the meantime the hydrogen separation/pur
ification in a single device without needing any further purification 
stage, intensifying the whole process, reducing the cost of downstream 
processing, and improving the process efficiency. 

The main problems which currently limit the use of the MR tech
nology are related to the membranes costs. It is clear that, as for all the 
technologies developed at the laboratory scale level, this problem can be 
overcome when the request for this new technology increases, and 
therefore it is necessary to proceed to a scale up. In this case, in fact, a 
widespread diffusion of the technology implies the lowering of the costs 
connected to the production [21]. 

6. Operating parameters effects 

In several reviews about MR technology present in literature, many 
aspects were analysed and discussed, often dealing with the status and 
the advancements of the inorganic membrane materials selective to 
hydrogen separation, MRs modeling and scalability from laboratory to 
pilot/industrial scale. Rarely, it was reviewed in deep the impact of the 
operating conditions on the performance of MRs in which the steam 
reforming of various renewable fuels such as methanol, ethanol, glycerol 
and, for comparison, methane is taking place. Hence, in the following 
sub-paragraphs, the main variables (pressure, temperature, feed flow 
rate, MR modality, feed concentration, sweep-gas flow rate) affecting 
the MRs performance under steam reforming of the aforementioned 
feedstocks are considered and discussed in detail. 

6.1. Effect of pressure 

A pressure increase in a MR shows two competitive effects on the 
reactants conversion. The first is negative and related to thermody
namics issues of steam reforming reaction. In the stoichiometric equa
tions related to the steam reforming of methanol, ethanol, glycerol and 
methane, the reactions proceed with an increase of the moles number 
towards the reaction products. Therefore, the conversion of the re
actants is unfavored by a pressure increase. On the contrary, the second 

effect, the aforementioned shift effect, related to hydrogen permeation 
through the membranes, plays a positive role. 

By increasing the reaction pressure, the hydrogen permeation 
driving force (which is represented ideally by the hydrogen partial 
pressure square root difference between retentate and permeate side) is 
enhanced. According to Richardson’s equation, as high the pressure as 
high the hydrogen removed from the reaction side for permeation 
through the membrane, shifting the reactions towards further reaction 
products formation, with a consequent improvement of the conversions. 
The two distinct effects compete each other and, in most of cases, the 
“shift effect” results to be prevalent on the “thermodynamics effect”, 
globally determining improved performance in terms of conversion and 
hydrogen yield and recovery [80–103]. 

On the other hand, as a consequence of general better performance at 
higher operating pressures, another positive effect is related to the CO 
concentration, which generally decreases by increasing pressure. This is 
generally due to its positive effect on WGS reaction, present in all the 
reaction schemes of the aforementioned steam reforming reactions, 
determining a larger consumption of CO. The effect of pressure on the 
CH4 selectivity in steam reforming of liquid hydrocarbons is generally 
not significant. Also in this case, there are two competitive effects. By 
considering the stoichiometry of the methanation reaction, an increase 
of pressure favors the reaction between hydrogen with COx to produce 
CH4. On the other hand, the removal of hydrogen in a MR from the re
action side shifts the reaction to lower CH4 formation. Nevertheless, the 
positive effect of pressure on CH4 formation is generally slightly prev
alent and the CH4 content in the products increases with the pressure 
[85,87,94,95,98]. Table 2 illustrates some of the most significative re
action performance in MRs as a function of reaction pressure. As shown, 
an increase of pressure globally determines an enhancement of the re
action conversion as well as hydrogen recovery and yield. Although not 
included in Table 2, another important parameter to be taken into ac
count in MRs is the hydrogen purity. This may vary depending on the 
hydrogen perm-selectivities of the inorganic membranes adopted inside 
the MRs. In general, no influence is noticed about hydrogen purity as a 
consequence of a pressure variation in case of thick walled Pd-based 
membranes, because they are dense and fully hydrogen 

Table 2 
Effect of the pressure on the different performance parameters in steam reforming of different hydrocarbons.  

Hydrocarbon Catalyst Membrane p [bar] Conversion 
[%] 

H2 recovery [%] H2 yield [%] CO selectivity 
[%] 

Reference 

Methane NiO/CaAl2O4 Pd-Ag 2→5 55.6→47.1 – – – [56] 
Methane Ru/Al2O3 Pd on PSS 1→5 50.6→64 – – 10.6→4 [61] 
Methane Ni/Al2O3 Pd-Ag 1→3 22.7→31.8 25.7→57 – 0.5→0.2 [81] 
Methane Ni catalyst Pd 1→9 67.8→90 – – – [89] 
Methane Ni-doped SiO2 top layer supported on Al2O3 1→4 59→79 – 1.3→3.2 – [90] 
Methane Ru/Al2O3 Pd-based 2→9 50.7→82.7 – – – [91] 
Methane alumina-supported nickel catalyst Pd on PSS 1→3 75.5→97 – – 4.2→0.6 [92] 
Methane Ru/Al2O3 Pd on PSS 5→ 6 72.9 → 79.5 97.9→98.7 – – [93] 
Ethanol Co3[Si2O5]2(OH)2 supported over 

cordierite 
Pd-Ag 7.3→11.3 – 27→54 – 5.3→4.2 [73] 

Ethanol Ni/ZrO2 Pd on PSS 8→12 80→93 32→84 – 3.2→1.2 [85] 
Ethanol Co/Al2O3 Pd on PSS 3→8 86→99 6.8→53  4.5→2.8 [87] 
Ethanol Pd–Rh/CeO2 Pd 1→11 – – 4.3→66 – [94] 
Ethanol  Pd–Ag 1→8 73→95.5 43.9→96.3 – – [95] 
Methanol Cu/ZnO/Al2O3 Silica 1.5→10 85 → 94  82 → 93 0.3 → 0.06 [75] 
Methanol Cu/ZnO/Al2O3 Pd-Ag 2→16 38→69 64→97 –  [78] 

Methanol CuO/ZnO/Al2O3 Pd 1.5→2.5 
71.7→84 23.4→41.7 73.4→82 1.07→1.21 

[84] 55.9→58.7 19→35 57.8→58.7 0.62→0.4 

Methanol Cu/ZnO/Al2O3 Pd-Ag 1.5→2.5 
98→100 

– 
22.5→31.5 

4.1→3.96 [96] 
4.9→6.7 57→62 

Methanol Cu/Zn/Mg Pd-Ag 1.5→3.5 – 
64.1→91.7 63.5→65.3 – [97] 
30.7→70.8 

Methanol Cu/ZnO/Al2O3 Pd-Ag 2→10 79→87 51→90 – – [98] 
Methanol Cu/ZnO/Al2O3 Silica 1.5→10 79 → 88 – 77 → 85 0.52 → 0.26 [99] 
Glycerol Ni/CeO2/Al2O3 Pd-Ag 1→5 17.4→27.4 0→3.9 15.2→13.3 – [100] 
Glycerol Ru/Al2O3 Pd–Ag 1→5 11.3→15.1 9.6→16.9 5.3→7.4 – [101] 
Glycerol Co-Ni/Al2O3 Pd–Ag 1→ 10 46 → 81 17 → 56 – 6.6 → 0.9 [102] 
Glycerol Co-Al2O3 Pd–Ag 1→4 43.6→91.8  33.8→62.8  [103]  
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perm-selective. Hence, a change of purity would be determined by the 
membrane failure [58]. In case of supported Pd-based membranes (not 
fully hydrogen perm-selective), in which a thin dense layer of 
Pd/Pd-alloy is deposited on a porous substrate, higher pressures could 
allow to gaseous products beside hydrogen to pass through the defects of 
the dense thin layer with a different mechanism with respect to the 
solution-diffusion (Knudsen, Hagen-Pouseille) [63]. Nevertheless, most 
of hydrogen passes through the dense layer of Pd/Pd-alloy for solution 
diffusion (Eq. (7)). 

Furthermore, in some steam reforming reactions, an increase of 
pressure may determine an increase of coke formation, which is 
responsible for the catalyst deactivation, resulting in higher CH4 and 
CO2 formation, which – at higher pressure conditions – may pass as 
larger flow rates across the defects of the thin, dense, selective layer. 

6.2. Effect of feed flow rate (space velocity) 

A decrease of the feed flow rate grows up the residence time of re
actants in the catalytic bed favoring a higher contact time within re
actants and catalyst [104–111]. This favors the conversion and the 
hydrogen yield [10,56,112–117]. As a consequence, at lower feed flow 
rates a larger amount of hydrogen is produced, determining higher 
hydrogen concentration in the reaction side and, hence, higher 
hydrogen partial pressures. This globally favors the hydrogen perme
ation driving force and a larger shift effect on the reaction system. 
Taking into account the aforementioned benefits of the shift effect 
present in the MRs during steam reforming reactions of hydrocarbons, 
Table 3 illustrates the performance of a number of reaction systems from 
literature showing the effects of the feed flow rate (space velocity) 
variation on the reaction performance. As expected, higher values of the 
space velocity induce a general decrease of the reaction performance in 
terms of conversion, hydrogen yield and recovery, independently of 
which kind of steam reforming reaction is carried out in the MR. 

6.3. Effect of reactor configuration 

Various studies present in literature proposed different MR config
urations [73,77]. On one hand, a MR configuration may consist of a 
reactor geometry in which the reaction and selective separation of 
hydrogen do not occur simultaneously (staged MR modality). In this 
case, the reaction takes place in the reaction zone, which is confined in a 
part of the MR, not in direct contact with the hydrogen selective mem
brane. Hence, the hydrogen produced during the steam reforming re
action permeates through the membrane and is collected in the 
permeate side, Fig. 8a. On the other hand, another MR configuration 
may consist of a reactor geometry in which both reaction and hydrogen 
separation take place simultaneously (catalytic MR modality). In this 

case, the catalytic bed is in direct contact with the hydrogen selective 
membrane, Fig. 8b. Sharma et al. [57] demonstrated that, comparing a 
staged with a catalytic Pd-based MR, the hydrogen permeating flux and 
related permeate purity were found comparable. Furthermore, at opti
mized conditions, the catalytic MR performance in terms of conversion 
and hydrogen yield were equivalent to the staged MR. Dominguez et al. 
[73] also compared a staged with a catalytic MR during ESR reaction. 
Fig. 9 shows that ethanol conversion and hydrogen yield increase with 

Table 3 
Effect of the feed flow rate on the different performance parameters in steam reforming of different hydrocarbons.  

Hydrocarbon Catalyst Membrane GHSV [h− 1] Conversion [%] H2 recovery [%] H2 yield [%] CO selectivity [%] Reference 

Methane Ni-based Pd 4400→6900 51→31 90→82 – – [104] 
Methane Ni (ICI 41− 6) Pd-Ru 18→68a 84→64 – – – [116] 
Methane Ni/Al2O3 Pd-Ag 32→172a 72.7→21 – – – [117] 
Ethanol Ni/ZrO2 Pd 800→1200 94.3→79.2 38.4→12.8 39.5→34.5 – [85] 
Ethanol Pd–Rh/CeO2 Pd 1200→4500 – 15.6→14.2 65.7→43.5 – [94] 
Ethanol Rh/La–Al2O3 Pd–Ag 8500→22,500 – – 4.3→2.8 7→6.7 [105] 

Methanol Cu/ZnO/Al2O3 Pd–Ag 
800→25,000 100→25 

– – 
12→0 

[67] 10→4 2000→25,000 100→65 
Methanol Cu/ZnO/Al2O3 Pd-Ag 9000→42,000 100→25.5 – – 36→22 [78] 
Methanol Cu/ZnO/Al2O3 Pd-Ag 1800→10,250 98.7→37 – 22.5→1.5* – [96] 
Methanol Cu/ZnO/Al2O3 Silica 2000 → 10,000 92 → 73 – 90 → 72 0.12 →0.83 [99] 
Methanol Cu/ZnO/Al2O3 Pd–Ag 4000→14,000 97→78 95→50.5 – – [106] 
Glycerol Ru/Al2O3 Pd–Ag 0.1→1b 57→11.5 55→17 – – [101] 
Glycerol Co-Ni/Al2O3 Pd–Ag 1 → 10b 46 → 17 17 → 8 – 6.6 → 4.8 [102]  

a Feed flow rate (sccm). 
b WHSV (h− 1). 

Fig. 8. Two different membrane reactor configurations: (a) staged membrane 
reactor and (b): catalytic membrane reactor. 

Fig. 9. Performance of the staged MR and catalytic MR in ethanol steam 
reforming process. 
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temperature during ESR reaction for both MR modalities. Nevertheless, 
the catalytic MR modality seems to better perform than the staged MR. 
Probably, in the catalytic membrane configuration the continuous 
removal of hydrogen from the reaction zone as it is produced in the 
catalytic bed enhances both conversion and hydrogen yield, favoring the 
consumption of some intermediate species such as CO, CH4 and acet
aldehyde. In the staged MR modality, the development of the ESR re
action without a continuous and immediate removal of hydrogen favors 
the formation of byproducts and intermediates, which determine a 
lower hydrogen concentration in the reaction side (consequently, a 
lower hydrogen partial pressure), involving lower hydrogen permeation 
driving force and, globally, decreased performance. 

6.4. Effect of temperature 

The steam reforming reactions considered in this review (ethanol, 
methanol, glycerol and methane) are all endothermic. From a thermo
dynamic point of view, they are favored at higher temperatures. Table 4 
illustrates the performance of several MRs used for producing hydrogen 
from steam reforming of various hydrocarbons. It appears evident that 
higher temperatures improve the catalytic activity, resulting in higher 
conversions and hydrogen yields. Moreover, as described by the 
Richardson eq. (8), the temperature dependence of the hydrogen 
permeation through Pd-based membranes follows an Arrhenius-like 
equation. Consequently, the hydrogen permeating flux is increased by 
raising the temperatures, making more effective the shift effect on the 
steam reforming reactions considered [107–111]. Nevertheless, CO 
selectivity raises by increasing the temperature. Indeed, two main 
sources of CO production are the decomposition reaction of liquid fuels 
such as methanol and ethanol and the reverse of WGS reaction. 
Decomposition reaction is endothermic and WGS exothermic, so that 
both reactions move toward further CO formation as temperature 
increases. 

6.5. Effect of the feed molar ratio 

Another important parameter useful to influence the steam reform
ing reactions of hydrocarbons is the feed molar ratio. The presence of 
steam in the reaction environment has the desired effect on the steam 
reforming catalyst activity and selectivity [74,77,84,88,94,95,99,102, 
103,112,113]. Using the sub-stoichiometric feed molar ratio in the inlet 
stream leads to poor conversion and increases the possibility of 
by-products and coke formation. Generally, increasing the feed molar 
ratio up to 2–3 times the stoichiometric value enhances the conversion, 
Table 5. Nevertheless, above certain feed molar ratios, the conversion 
remains almost constant. Feed dilution at a constant total inlet flow rate 

means a low space velocity, increases the contact time between re
actants and catalytic bed and, consequently, improves the conversion. 
Higher feed molar ratios involve a larger water content in the feed, 
which contributes to shift ESR, MSR, WGS, GSR and SRM reactions to
ward the reaction products, favoring a higher hydrogen production and, 
consequently, the hydrogen yield (mole of produced H2/mole of feed 
inlet). In the meanwhile, a higher feed molar ratio lowers CO formation 
due to the enhanced WGS reaction up to achieve negligible CO values. 

However, using very high feed molar ratios, the consequent excess of 
water in the reaction environment dilutes the produced hydrogen, 
resulting in a lower hydrogen partial pressure in the retentate side. This 
lowers the hydrogen permeation driving force, inducing a lower 
hydrogen permeating flux through the membrane and the recovery. 
Therefore, to select an optimal feed molar ratio, it is necessary to bal
ance the different effects, which may conflict within each other. 

6.6. Effect of sweep gas flow rate 

The use of a sweep gas inside the permeate stream of a MR involves a 
decrease of the hydrogen partial pressure at this side for dilution, 
meanwhile increasing the hydrogen permeation driving force, favoring 
higher conversion, hydrogen yield and recovery to be reached. Never
theless, the use of a sweep gas involves also a drawback related to the 
need of its separation from hydrogen to guarantee the hydrogen purity 
of the stream collected in the permeate side. At laboratory scale, several 
times inert gases such as N2, He or Ar are used [103–115]. Realistically, 
at larger scale only steam could be used as a sweep gas because easy to 
separate from hydrogen for condensation. Table 6 illustrates a number 
of studies dealing with the effect of the sweep gas on various steam 
reforming reactions. In this table, the effect of the sweep gas flow rate is 
considered introducing the sweep factor, which presents the ratio be
tween the sweep gas and feed molar flow rates as: Eq. (34): 

SF =
Sweep gas molar flow rate

Feed molar flow rate
(34) 

It should be noted that, in Table 5, the increase of conversion de
pends on the sweep factor growth. Nevertheless, it is not recommended 
to increase the sweep factor above certain values because it could not 
have any advantageous effect on the MR performance. 

7. Conclusion and future trends 

MRs offer many advantages over the TRs in terms of both economic 
and environmental features. Using the MRs the number of operational 
units, the complexity and production cost, energy consumption and 
equipment sizes are reduced. The adoption of the MR technology in the 

Table 4 
Effect of temperature on the different performance parameters in steam reforming of different hydrocarbons.  

Hydrocarbon Catalyst Membrane [h]T [K] Conversion 
[%] 

H2 recovery 
[%] 

H2 yield [%] CO selectivity 
[%] 

Reference 

Methane Ni-Al2O3 Pd-Ag 400→500 13.2→30.5 – – 0.1→1.1 [81] 
Methane NieAl2O3 Pd-Ag 550→600 23→41 8.5→23 – – [107] 
Ethanol Co3[Si2O5]2(OH)2 supported over 

cordierite 
Pd-Ag 325→400 98.6→100 – 3.2→3.7 3→5.3 [73] 

Ethanol Pd–Rh/CeO2 Pd 550→650 98.2→98.8 – 14→54.7a – [94] 
Ethanol Co/Al2O3 Pd-Ag 573→973 35→100 63→99 29→83 – [108] 
Methanol Cu/ZnO/Al2O3 Silica 493 → 573 70 → 95 – 74→ 88 0.18 →1.29 [75] 
Methanol Pd-Ag with catalytic property 350→450 79.7→97.9 31.2→38.2 – 32→40 [77] 
Methanol Cu/ZnO/Al2O3 Pd-Ag 200→350 15→100 38→77 – – [78] 
Methanol CuO/ZnO/Al2O3 Pd/Al2O3 280→330 58→84 35→42 59→82 0.4→1.2 [84] 
Methanol Cu/ZnO/Al2O3 Silica 493 → 573 66 → 90 – 67 → 86 0.3 → 1.6 [89] 
Methanol CuO/ZnO/Al2O3 Pd-Ag 200→250 34.6→50.8 – – 0.05→0.47 [109] 
Glycerol Ni/CeO2/Al2O3 Pd-Ag 400→450 10.4→22.3 – 1.4→2.3 – [100, 

110] 
Glycerol Co-Ni/Al2O3 Pd-Ag 623 →773 41 → 56 12 → 36 – 6.9 → 5.1 [102] 
Glycerol Pd-Ni 300→500 12.5→99.5 61.5→73.5 – – [111]  

a Volumetric yield. 
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field of hydrogen production makes possible to overcome the intrinsic 
limitations connected to the conventional processes such as the ther
modynamic constrains. Pd and Pd-alloys result the dominant materials 
among others in the preparation of inorganic membranes to be installed 
in MRs for generating hydrogen from catalytic processes. However, the 
application of Pd-based MRs at industrial scale seems to be still far to be 
realized owing to the high cost of Pd and to the membrane limitations in 
terms of resistance under harsh environments in long-time operations. 
Currently, most of the industrial companies involved in the field of 
hydrogen production using pilot-scale MRs are highlighting the impor
tance of the experimentation at larger scale because useful to fully un
derstand that a catalytic MR well operating at industrial level closely 
depends on 1) the right selection of the most adequate catalysts for a 
specific chemical process, 2) the hydrogen selective membranes adopted 
and 3) the protocols for the process management under operations. 

A widespread commercial application of MRs in various processes 
will be possible only if MR operation and membrane properties will be 
optimized passing through the simplification of the membrane produc
tion stage. It is worth of noting that MRs are limited in applications at 
larger scale, and this cannot be dependent only on the relatively low 
membrane/MR performance (low membrane permeability and selec
tivity, thermal and chemical resistance, etc.), but more probably to not 
optimized MR module design and, sometimes, to engineering analyses. 
Many efforts are currently made about the research on new inorganic 
membrane materials or on the combination of the existent ones in order 
to prepare new membranes and MR solutions able to meet the industrial 
needs. 

The perspectives of MR technology in industry (fuel processing, 
chemical and petrochemical industries etc.) are hence linked to the 
possible development of the Integrated Membrane Operations in the 
same industrial cycle, with consequent and realistic advantages in terms 
of plant compactness, low environmental impact, high process effi
ciency, energy saving and reduced costs. However, the MRs imple
mentation in industry will be concretely realized once a few issues, such 

as the membrane/MR fabrication costs reduction, the enhancement of 
membrane performance in terms of stability under harsh environment, 
poisoning, and aging phenomena, and the current lack of industry- 
produced MR commercial-scale units, will be solved. 

In the meantime, the prospect of generating hydrogen from steam 
reforming of light hydrocarbons is strongly linked to the research ad
vances on the enhancement of productivity through the catalytic engi
neering and the progress of chemical reactors (among them, the MRs), a 
part from the general and economical attention towards the exploitation 
of alternative sources instead of the fossil fuels, the social appreciation, 
and the widely accepted utilization of the hydrogen energy in our 
society. 
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