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Abstract. The goal of this paper is to investigate the role of soil-structure interaction in mod-
eling the dynamic behavior of masonry towers. The study, conducted on the bell tower of the
Basilica of San Frediano in Lucca (Italy), is based on both experimental and numerical re-
sults. The former were collected during an experimental campaign carried out on the tower
using seismometric stations, while the latter have been obtained via the modal analysis and
model updating procedures implemented in the finite element code NOSA-ITACA. Combining
experimental and numerical outcomes made it possible to assess the influence of the soil,
modeled as a system of elastic springs, on the natural frequencies of the tower. Finite element
models of the tower have been calibrated by taking the presence of the adjacent church into
account and choosing different unknown parameters, including the soil stiffness.
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1 INTRODUCTION

Finite element (FE) model updating techniques are based on solution of a constrained min-
imum problem, in which the objective function is generally expressed as the discrepancy be-
tween experimental and numerical natural frequencies and mode shapes [1]. Wide application
of these techniques to heritage structures is quite recent [2], [3], [4].

An efficient algorithm for model updating based on a modified Lanczos projection strategy
and a trust-region scheme has been implemented in NOSA-ITACA, free software developed
in house by ISTI-CNR and successfully applied to several case studies [5, 6]. Besides reduc-
ing the overall computation time of the numerical process and enabling accurate analysis of
large-scale models with little effort, the proposed algorithm allows for obtaining information
on both the reliability of the solution and its sensitivity to noisy experimental data.

Recent studies have shown that soil-structure interaction should be taken into account in
studying the dynamic behavior of masonry structures [7], [8], [9], [10], [11], [12]. Stemming
from the results of a continuous monitoring campaign conducted by the authors on the San
Frediano belfry in the historic center of Lucca [13], this paper is aimed at investigating how
this interaction influences the results of model updating.

In [13] FE model updating of the tower was conducted, by taking the presence of the adja-
cent church into account via suitable boundary conditions and considering the tower clamped
at the base. In the present paper, the soil-structure interaction is studied by applying at the
structure’s base a system of elastic springs whose stiffness is varied in order to represent dif-
ferent soil types [14]. Two models of the tower have been analyzed: in the former the tower is
free, and the influence of the church neglected, while in the latter the presence of the lateral
walls of the church is modelled via elastic springs. The influence of soil stiffness on the tow-
er’s natural frequencies has been investigated and the model updating procedure implemented
in NOSA-ITACA [5], [6] has been applied to determine the optimal mechanical properties of
the tower-springs system.

2 FE MODEL UPDATING

Numerical modeling of a structure is usually characterized by several uncertainties regard-
ing the properties of the constituent materials, the constraining effect of the adjacent buildings,
boundary conditions, local soil conditions, etc. Model updating is a procedure aimed at de-
termining some unknown parameters of a FE model in order to match the experimental and
numerical dynamic properties of a structure (frequencies and mode shapes) [1]. Assuming that
the stiffness and mass matrices of a structure discretized into finite elements depends on a pa-
rameter vector X varying in a p-dimensional box €2, we want to determine the optimal value of
x that minimizes, within the box €, the objective function

§00 =S WL - T n

where 7

. "and fi(x) are the g experimental and numerical frequencies to match (with ¢ not
less than p). In particular, numerical frequencies fi(x) are calculated by solving a generalized
eigenvalue problem involving the stiffness matrix K(x) and mass matrix M(x) depending on
the parameter vector x. Scalars w; are the weight that should be given to each frequency in the
optimization scheme; in order to obtain satisfactory accuracy on the frequencies, wj is usually
chosen as equal to the inverse of the experimental frequency.

The numerical procedure for model updating, described in detail in [5, 6], has been imple-

mented in the NOSA-ITACA code, a finite element software package developed in house by
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ISTI-CNR [15], for performing modal analyses [16] and managing the large-scale problems
encountered in applications.

The algorithm implemented in the code is based on construction of local parametric re-
duced-order models embedded in a trust-region scheme for solving the constrained minimum
problem. In particular, the algorithm exploits the structure of the stiffness and mass matrices
and the fact that only a few of the smallest eigenvalues have to be calculated in order to solve
the problem.

3 THE SAN FREDIANO BELL TOWER

The bell tower of the Basilica of San Frediano (Figure 1), dating back to the 11" century, is
one of the best preserved in Lucca’s historic center. The tower, whose geometry is sketched in
Figure 2 and described thoroughly in [13], is 52 m high, with walls varying in thickness from
about 2.1 m at the base to 1.6 m at the top. The San Frediano Basilica adjoins the tower on
two sides for about 13 m of its height. The masonry constituting the tower appears to be made
of regular stone blocks at the base, while quite homogeneous brick masonry is visible in the
upper sections, apart from the central part of the walls, where the masonry between the win-
dows is made up of stone blocks.

In the period 2015-2017 the tower was instrumented with four SARA tri-axial seismomet-

ric stations, each made up of a SLO6 24-bit digitizer and a SS20 seismometer (electrodynamic
velocity transducer, 2.0 Hz eigenfrequency), made available by the Arezzo Seismology Ob-
servatory (INGV). The instruments were arranged on the San Frediano bell tower adopting
different sensors layouts and data recorded were analyzed via the Covariance Driven Stochas-
tic Subspace Identification method (SSI/Cov) [17], [18] implemented in the MACEC code
[19].
Table 1 reports the mean values of the first five frequencies calculated using data recorded in
August 2016, with a sampling frequency of 100 Hz. The first and second frequencies corre-
spond to flexural mode shapes along the X and Y direction, respectively. The third frequency
is likely related to a torsional mode shape. The last two frequencies correspond once again to
flexural model shapes. More details on mode shapes are given in [13].

#1665 -

Figure 1: The San Frediano bell tower.
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Frequency [Hz]
Mode 1 (Bending X) 1.11
Mode 2 (Bending Y) 1.39
Mode 3 (Torsional) 3.45
Mode 4 (Bending X) 4.64
Mode 5 (Bending Y) 5.37

Table 1: The first five frequencies of the San Frediano bell tower.

3.1 FE modeling, modal analysis and model updating

This section is devoted to the modal analysis of the bell tower. All numerical analyses pre-
sented in this paper have been conducted via the NOSA-ITACA code [5], [6], [16], [15].

The San Frediano bell tower has been discretized into 45935 brick and 673 beam and truss
elements (element n. 8, 9 and 35 in [15]) with 60228 nodes, as shown in Figure 2. Beams
have been used to model the steel tie rods and the wooden roof elements, while trusses are
used for the springs at the base, according to the Winkler model for the soil [ 14] and to model
the adjacent building. In particular, two models have been considered: in the former (Model
1) the presence of the church is neglected, while in the latter (Model 2) elastic spring have
been applied 12.50 m above the base to account for the church’s adjacent walls (red springs
along X and magenta springs along Y in Figure 2). In both cases horizontal displacements of
the base are prevented and vertical displacement is constrained by the presence of elastic
springs under the tower’s base (green in Figure 2).

The masonry has been modeled as an isotropic linear elastic material with Poisson’s ratio v =
0.2, mass density p = 2000 kg/m’, and Young’s modulus E,, varying from 2.0 GPa to 10.0
GPa. Figures 3 to 7 show the first five frequencies of Model 1 as functions of E,,, with the soil
stiffness k,, taking values between 4800 and 128000 kN/m’, corresponding respectively to
loose and dense sand [14]. As expected, for fixed ky, the frequencies are increasing functions
of Young’s modulus. The first and second frequencies remain strictly below the correspond-
ing experimental frequencies, likely due to the fact that the real system is considerably stiffer
than its numerical model. For fixed E,,, the frequencies increase as soil stiffness ky, increases,
but this rise becomes less evident as Young’s modulus increases; for example, the first fre-
quency increases by about 44% when E,=2 GPa and k,, ranges from 4800 kN/m”> to 128000
kN/m’, while for E;;=10 GPa the growth of the first frequency is on the order of 18.5%. Fur-
thermore, there is visibly greater influence of the soil stiffness on the two first bending fre-
quencies than on higher-order ones. With respect to the experimental mode shapes, the MAC
values [18] are consistently greater than 0.9, and their variation with soil stiffness is not ap-
preciable.
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Figure 2: FE discretization of the San Frediano bell tower, model 1 (left) and model 2 (right). In model 1 and
model 2 the soil is modeled as vertical springs (green) and the displacements along X and Y are prevented at the
base (cyan). In model 2 the presence of the adjacent church is modeled as springs along X (red) and Y (magenta).
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Figure 3: Model 1, first frequency as a function of Young’s modulus E,, and soil stiffness k.
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Figure 4: Model 1, second frequency as a function of Young’s modulus E,, and soil stiffness k.
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Figure 5: Model 1, third frequency as a function of Young’s modulus E,, and soil stiffness k.
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Figure 6: Model 1, fourth frequency as a function of Young’s modulus E,, and soil stiffness k.
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Figure 7: Model 1, fifth frequency as a function of Young’s modulus E,, and soil stiffness k.
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The model updating procedure described in [5] and [6] is conducted on Model 1 considering
the unknown parameters masonry’s Young’s modulus E;, [GPa] and the soil stiffness ki,
[kN/m’] ranging in the intervals

E_€[1.0,10.0]1 GPa, k , €[4800.0, 128000.0] kN/m”. (2)
The procedure provides the following values

E™ =6.61 GPa, k™ =1.28 10°kN/m’, 3)

with k™ coinciding with the right end of the interval in (2). The corresponding numerical fre-

quencies and the relative errors with respect to the experimental frequencies are summarized
in Table 2.

Exp. freq. Num. freq. Relative error
[Hz] [Hz] [70]

Mode 1 1.11 0.87 21.62

Mode 2 1.39 1.04 25.18

Mode 3 3.45 3.99 -15.65

Mode 4 4.64 4.78 -3.02

Mode 5 5.37 5.51 -2.61

Table 2: The first five numerical frequencies of Model 1 corresponding to the optimal values in (3) with the rela-
tive errors with respect to the experimental values.

The errors shown in the Table demonstrate that Model 1 is not able to capture the dynamic
response of the real system.

Model 2 differs from Model 1 in that elastic springs are now applied 12.50 m above the base
to account for the adjacent church walls. Let us fix the elastic constants of the springs: kx =
7.75 10" N/m for the springs along X (red in Figure 2) and ky = 1.5 10° N/m for the springs
along Y (magenta in Figure 2). These constants have been determined by considering the
presence of the adjacent church, whose walls have a shear stiffness of about 2.4 10° N/m in
the Y direction and 1.89 10° N/m in the X direction. As for the church’s constituent material,
a shear modulus of 1.25 GPa and a Poisson’s ratio of 0.2 have been assumed [20].

Figures 8 to 12 show the first five frequencies of Model 2 as functions of E,;, and soil stiffness
ky. Dashed lines represent the experimental frequency values.

As in Model 1, for fixed ky, the frequencies are increasing functions of Young’s modulus and
for fixed E,, the frequencies increase with increasing soil stiffness k. However, in this case
the growth is more or less steady; for example, the first frequency increases by about 6.45%
when E,,=2 GPa and the value of k,, is increased from e 4800 kN/m’ to 128000 kN/m3, while
for E;,=10 GPa the corresponding increase is about of 5.84%.

In this case, unlike in Model 1, the five frequencies of the tower are less influenced by soil
stiffness. In fact, the tower’s bending stiffness is mainly influenced by the constraint of the
adjacent walls, while the vertical deformability of the soil under the base seems to make a
negligible contribution to the overall deformability of the system. In this case, also unlike in
Model 1, the experimental frequency values intercept the surfaces of the numerical frequen-
cies, thus indicating that Model 2 can provide a good approximation of the actual dynamic
behavior of the tower.
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Figure 8: Model 2, first frequency as a function of Young’s modulus E,, and soil stiffness k.
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Figure 9: Model 2, second frequency as a function of Young’s modulus E,, and soil stiffness k.
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Figure 12: Model 2, fifth frequency as a function of Young’s modulus E,, and soil stiffness k.

The results of the model updating procedure conducted on Model 2, for E,, [GPa] and k,
[KN/m’] varying in the intervals given in (2), as in the case of Model 1, are the following

E" =5.327 GPa,

ko =1.28 10° kN/m’,

“4)

with k™ coinciding with the right end of the interval in (2). The corresponding numerical fre-

quencies and the relative errors with respect to the experimental frequencies are summarized

in Table 3.

Exp. freq. Num. freq. Relative error
[Hz] [Hz] [%]

Mode 1 1.11 0.98 11.71

Mode 2 1.39 1.29 7.19

Mode 3 3.45 3.65 -5.80

Mode 4 4.64 4.64 0.0

Mode 5 5.37 5.71 -6.33

Table 3: The first five numerical frequencies of Model 2 corresponding to the optimal values in (4) with the rela-
tive errors with respect to the experimental values.

The errors in this case are still consistent, but lower (about one half) than those shown in Ta-

ble 2 for Model 1.
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Finally, if model updating is performed considering as unknown parameters E.,, ky, and the
elastic constants kx;, kx, and ky of the lateral springs as well, for kx;, kx, and ky [N/m] vary-
ing in the interval [1.0 10%, 7.0 10*'], then the optimal values are

E™ =4.53 GPa, k™ =0.69389 10°kN/m’, k¥ =k® =k =3.5 10 N/m.  (5)

The corresponding numerical frequencies and the relative errors with respect to the experi-
mental frequencies are reported in Table 4.

Exp. freq. Num. freq. Relative error
[Hz] [Hz] [70]

Mode 1 1.11 1.13 -1.80

Mode 2 1.39 1.39 0.0

Mode 3 3.45 3.50 -1.45

Mode 4 4.64 4.97 -7.11

Mode 5 5.37 6.05 -12.66

Table 4: The first five numerical frequencies of Model 2 corresponding to the optimal values in (5) with the rela-
tive errors with respect to the experimental values.

For the sake of comparison, we recall the results obtained in [13] considering the tower
clamped at the base and assuming that the horizontal displacements of the points adjacent to

the church (magenta and red points in Figure 2) are prevented. The model updating conducted
in [13] with E,, as the unknown parameter yielded the following optimal value

E® =4.20 GPa, (6)

and the frequencies reported in Table 5.

Exp. freq. Num. freq. Relative error
[Hz] [Hz] [70]

Mode 1 1.11 1.18 -6.31

Mode 2 1.39 1.43 -2.88

Mode 3 3.45 3.37 -2.32

Mode 4 4.64 4.93 -6.25

Mode 5 5.37 6.00 -11.73

Table 5: The first five numerical frequencies of the tower clamped at the base with the horizontal displacements
prevented [13] corresponding to the optimal value in (6) with the relative errors with respect to the experimental
values.

Thus, a comparison of Table 4 to Table 5 shows that taking into account both the deformabil-

ity of the adjacent constraints and the soil-structure interaction allows for appreciably fine-
tuning the model and improving the simulation of the experimental results.
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4 CONCLUSIONS

This paper is devoted to studying the effects of soil deformability and adjacent buildings on
the dynamic behavior of masonry towers. The investigation relies on the use of some experi-
mental results collected during a long-term dynamic monitoring campaign on the San Fredi-
ano bell tower in Lucca and an automated model updating procedure implemented in the
NOSA-ITACA code.

The paper shows that soil stiffness can significantly affect the dynamic behavior of isolated
towers, while in the case of towers connected to other buildings, the model’s global stiffness
is very sensitive to the kind of connection with the adjacent structures. The use of automated
model updating procedures can help fine-tune the FE model, and enables estimating the stiff-
ness of both the soil and the lateral constraints.
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