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Abstract Deep learning has achieved impressive results in many machine
learning tasks such as image recognition and computer vision. Its applica-
bility to supervised problems is however constrained by the availability of
high-quality training data consisting of large numbers of humans annotated
examples (e.g. millions). To overcome this problem, recently, the AI world is
increasingly exploiting artificially generated images or video sequences using
realistic photo rendering engines such as those used in entertainment applica-
tions. In this way, large sets of training images can be easily created to train
deep learning algorithms. In this paper, we generated photo-realistic synthetic
image sets to train deep learning models to recognize the correct use of per-
sonal safety equipment (e.g., worker safety helmets, high visibility vests, ear
protection devices) during at-risk work activities. Then, we performed the
adaptation of the domain to real-world images using a very small set of real-
world images. We demonstrated that training with the synthetic training set
generated and the use of the domain adaptation phase is an effective solution
for applications where no training set is available.

Keywords Deep Learning · Virtual Dataset · Transfer Learning · Domain
Adaptation · Detection · Personal Protective Equipment

1 Introduction

It is estimated that every day around six thousand people die in the world due
to accidents at work or occupational diseases, causing more than 2.3 million
deaths a year. Many of these accidents could be prevented by the simple use
of personal safety equipment, such as helmets or reflective vests. However, it is
not always possible to effectively control whether such equipment is actually
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used. Artificial Intelligence (AI) can be of great help by constantly analyzing
the working environment with a camera and warning workers who do not
comply with the rules.

To this end, the AI sector known as supervised machine learning has
achieved significant success in a variety of application domains. These achieve-
ments have been so impressive that they have attracted increasing attention
from the scientific community to the production of annotated datasets with
which to train learning algorithms. In the era of big data, the availability of
examples such as images or videos is not considered a problem. However, these
data must be annotated by humans before they can be used, e.g. by adding
class labels or visual masks, and in many specific application domains, this
can be very expensive or even impossible.

Indeed, although a large amount of annotated data is already available and
successfully used to produce important academic results and commercially vi-
able products, there is still a huge amount of scenarios where laborious human
intervention is required to produce high-quality training sets. These scenarios
include, but are not limited to, the detection of safety equipment, self-driving
cars, the detection of firearms.

To address this problem and make up for the lack of annotated examples
in a variety of scenarios, the research community has begun to increasingly
leverage the use of programmable virtual scenarios to generate synthetic visual
data sets as well as associated annotations. For example, in image-based deep
learning techniques, the use of a modern rendering engine (i.e. capable of
producing photo-realistic images) has proven to be a valuable tool for the
automatic generation of large data sets (see Section 2). The advantages of this
approach are remarkable. In addition to making up for the lack of data sets
in some particular application domains, these synthetic datasets do not create
problems with existing laws about the privacy of individuals related to facial
detection, such as the European of the General Data Protection Regulation
(GDPR).

a) b)

Fig. 1 Examples of safety equipment: a) real photograph of worker wearing helmets and
high-visibility vests, and b) virtual rendering with people with helmets, welding mask, ear
protections, and high-visibility vests.

In this paper, we investigate the effectiveness of rendering engines in gener-
ating realistic image sequences to train machine learning algorithms to address
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the problem of detection and recognition in scenarios where no or insufficient
annotated data is available. In particular, the study focuses on the context of
visual detection of safety equipment (see Figure 1), for which, to the best of
our knowledge, no public dataset exists.

To this end, we show how a known deep neural network exploiting the
transfer learning approach can achieve cutting-edge results in object detection
tasks when trained with virtually generated images containing people equipped
with safety items (such as high visibility jackets and helmets) and then adapted
to the real world domain using some training examples retrieved from the
Internet. More in detail, we contribute to this field with the following results:

– automatic generation of a virtual training set for the recognition of personal
security equipment, with different scene conditions,

– provide an annotated test set of real-world images, and
– competitive results with state of the art detectors tested for such scenarios.

We will see that, on the very few real-world examples available, the use of
virtual images dramatically increases system performance in terms of accu-
racy. The dataset that we created is made publicly available to the research
community [1].

This work extends the paper we presented at CBMI 2019 that received the
best paper award [2]. The main extension is on experimenting our approach not
only on the YOLO architecture but also on Faster-RCNN, another commonly
used object detection method. By doing this, we did not only achieved better
performance, bu we demonstrated that the overall approach was not specific
to the YOLO architecture.

The rest of the paper is organized as follow: Section 2 gives an overview
of existing methods based on virtual environments; Section 3 describes how
we used an existing rendering engine and the policy to create the dataset and
the test set; Section 4 discusses our detection method; Section 5 shows our
experimental results; finally Section 6 concludes.

2 Related Work

With the advent of deep learning, object detection technologies have achieved
accuracies that were unimaginable only a few years ago. YOLO architectures
[3, 4] and Faster-RCNN [5] are today de facto-standard architectures for the
object detection task. They are trained on huge generic annotated datasets,
such as ImageNet [6], MS COCO [7], Pascal [8] or OpenImages v4 [9]. These
datasets collect an enormous amount of pictures usually taken from the web
and they are manually annotated.

With the need for huge amounts of labeled data, virtually generated datasets
have recently gained great interest. The possibility of learning features from
virtual data and validating them on real scenarios was explored in [10]. Unlike
our work, however, they did not explore deep learning approaches. In [11],
computer-generated imagery was used to study trained CNNs to qualitatively
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and quantitatively analyze deep features by varying the network stimuli ac-
cording to factors of interest, such as to object style, viewpoint, and color.
The works [12,13] exploit the popular Unreal Engine 4 (UE4) to build virtual
worlds and use them to train and test deep learning algorithms.

The problem of transferring deep neural network models trained in simu-
lated virtual worlds to the real world for vision-based robotic control was ex-
plored in [14]. In a similar scenario, [15] developed an end-to-end active tracker
trained in a virtual environment that can adapt to real-world robot settings.
To handle the variability in real-world data, [16] relied upon the technique
of domain randomization, in which the parameters of the simulator—such as
lighting, pose, object textures were randomized in non-realistic ways to force
the neural network to learn the essential features of the object of interest. A
deep learning model was trained in [17] to drive in a simulated environment
and adapted it for the visual variation experienced in the real world.

[18,19] focused their attention on the possibility to perform domain adap-
tation in order to map virtual features onto real ones. Richter et al. [20]
explored the use of the video game Grand Theft Auto V (GTA-V) [21] for
creating large-scale pixel-accurate ground truth data for training semantic
segmentation systems. In [22], they used GTA-V for training a self-driving car
and generated around 480,000 images for training. This work evidenced how
GTA-V can indeed be used to automatically generate a large dataset. The use
of GTA-V to train a self-driving car was explored also in [23], where images
from the game were used to train a classifier for recognizing the presence of
stop signs in an image and estimate their distance. In [24] a different game was
used for training a self-driving car: TORCS, an open-source racing simulator
with a graphics engine less focused on realism than GTA-V.

Authors in [25] created a dataset taking images from GTA-V and demon-
strated that it is possible to reach excellent results on tasks such as real people
tracking and pose estimation.

[26] also used GTA-V as the virtual world but, unlike our method, they
used Faster-RCNN and they concentrated on vehicle detection validating their
results on the KITTI dataset. Instead, [27] used a synthetically generated vir-
tual dataset to train a simple convolutional network to detect objects belonging
to various classes in a video.

3 Training Set from Virtual Worlds

In this paper, we show that a low cost and off-the-shelf virtual rendering en-
vironment represents a viable solution for generating a high-quality training
set for scenarios lacking enough real training data. This method allows gener-
ating a very large amount of annotated images, with the possibility of scenery
changes like location, contents, and even weather conditions, with very little
human intervention.

In this work, we used the generated training set to train a You Only Look
Once (YOLO) neural system [3, 4] for its efficiency, and a modification of a
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Faster-RCNN [5] for its high detection accuracy (see Section 4). However, the
applied methodology can be used in other machine learning tools.

We used the Rockstar Advanced Game Engine (RAGE) from the GTA-V
computer game, and its scripting ability to deploy a series of pedestrians with
and without safety equipment in different locations of the game map. The
RAGE Plugin Hook [28] allowed us to create and inject our C# scripts into
the game.

Our scripts use the plugin API to add pedestrians with chosen equipment
in various locations of the game map, place cameras in places where we want
to take pictures, check that objects are in the field of view and not occluded,
recover 3D meshes bounding boxes from the rendering engine, and save game
screenshots (i.e., our dataset images) and their associated annotations (bound-
ing boxes and classes).

Personal safety equipment that we consider includes, for example, high-
visibility vests, helmets, welding masks, and others. In addition to persons
wearing these types of equipment, we also generate pedestrians without pro-
tections, where we annotate, person, bare head, bare chest (see Figure 2 images
as an example).

The generation of the virtual dataset required first to configure the RAGE
engine to create various types of scenarios (Section 3.1). Then, the RAGE
engine was used to capture images along with annotations. For every image,
the annotations (coordinates of the bounding boxes and identities of relevant
elements) were retrieved from the RAGE engine through our script (Section
3.2). We used this approach both for creating the virtual world training set
and the virtual world validation set. The dataset was eventually completed
by adding a real-world test set, composed of real-world images, to test the
accuracy of the trained neural network on real scenes (Section 3.3).

3.1 Scenario Creation

To generate the training scenario we used the plugin API to customize the
following game features:

– Camera: used to set up the viewpoints from which the scenario must be
recorded.

– Pedestrians: used to set up the number of people in the scene and their
behavior, chosen from the set offered by the game engine, such as wandering
around an area, chatting between themselves, fighting, and so on.

– Place: used to set up the place where the pedestrians will be generated;
there is a series of game map preset places, plus user-defined locations
identified by map coordinates.

– Time: used to set up the time of day during which the scene takes place.
– Weather: used to set up the weather conditions during the animation.

We used nine different game map locations with three different weather con-
ditions each to create the virtual training set. From these, we acquired a total
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Fig. 2 Detected objects in a working scenario. The real scene depicted in each column is
analyzed using three different version of the trained networks: YOLO trained with COCO
and fine-tuned with real images (YCR, first row), YOLO trained with COCO and fine
tuned with virtual renderings and real images (YCVR, second row), and Faster RCNN
trained with COCO and fine-tuned with virtual renderings and real images (YCVR, third
row). Note that difference upon networks and datasets pays in both detection accuracy
(rightmost more precise), and run-time resources (see end of Section 5.2).

of 126,900 images with an average of 12 persons per shot. The virtual valida-
tion set spans one location with three weather conditions, and consists of 350
images with an average of 12 persons each. Therefore, in the end, we have 30
different scenarios where virtual world images were extracted from.

3.2 Dataset Annotation

Dataset annotation is the process which creates the annotated images for the
dataset. In our case, we annotate the following elements (see Figure 3):

– Head: a bare head (without protection devices)
– Helmet: a head wearing a helmet
– Welding Mask: a head wearing a welding mask
– Ear Protection: a head wearing hearing protection
– Person: a full-body person
– Chest: the bare chest (without protection vests)
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Fig. 3 Examples of safety equipment objects detected by our system.

– High-Visibility Vest: a chest with a high visibility vest (HVV)

For each viewpoint setup in the scenario, we process every object to extract
its position on the 2D image. This is done by first calculating the geometry of
its transformed 3D bounding box, then approximately testing the box visibil-
ity, and finally extracting the image 2D bounding box by contouring the 3D
box vertices (see Figure 4). The visibility is checked by testing the occlusion of
line-of-sight rays from the camera to a certain fixed amount of point in the box
volume, and the object is considered visible if at least one ray is not occluded.

3.3 Real World Test Set

The motivation of this work is to prove that it is possible to train a system with
a virtual world even when it is supposed to be used in the real-world. To test
the performance of the trained neural network in the real-world, we created a
real-world test set using copyright-free photographs of people wearing safety
equipment. The set is composed of 180 images (see Figure 5) showing persons
with and without the items listed in Section 3.2, each associated with manually
created annotations of bounding boxes and element identities.

4 Method

The backbone of our detection algorithm is based on deep convolutional neu-
ral networks able to detect, in a single image, the objects which they have
been trained for. The detection ends with a list of 2D bounding boxes, each
associated with a class label referring to the recognized object. In our im-
plementation, we experimented with two different detection networks, i.e. the
YOLO v3 [4] (hereafter abbreviated with YOLO) network with the Darknet-
53 in its core, and the improved version of Faster-RCNN [5] network that
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Fig. 4 Bounding box estimation: oversized approximation with respect to on-screen pro-
jections. With the available API, the hooked virtual engine can provide the bounding boxes
of individual 3D meshes, overestimated due to collision proxy expansion for animations. Not
being able to access the original 3D geometry and the current animation frame, a working
strategy is to project on-screen the eight corners of the 3D bounding box, and then take
their containing minimum rectangle as an approximate annotation. In the image, the green
3D box is annotated with the yellow 2D rectangle.

Fig. 5 Real-World Validation Set: composed of 180 copyright-free images, our validation
set is available at the project website.
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includes a Feature Pyramid Network [29] and the ResNet-50 as backbone.
The chosen models are representative of the two major architectures in object
detection: the former belongs to the family of single-stage detectors that are
fast and produce dense detections, while the latter belongs to two-stage de-
tectors, usually slower but more accurate systems that first locate candidate
regions and then provide predictions for them. We trained both to recognize
personal safety equipment components, as shown in the following.

4.1 Transfer Learning

As anticipated, we use the generated virtual world training set to train the
detection networks to detect and recognize our elements of interest in images.
In particular, we adapt the detection networks to our scenario using transfer
learning. Our hypothesis is that a pre-trained network already embeds enough
knowledge that allows us to specialize it in a new scenario, leveraging on
the transfer learning capability of deep neural networks and on training sets
generated from a virtual world.

The purpose of transfer learning is to exploit the knowledge stored in the
network as a starting point to extend the detection capability to the new set
of objects. With a trained deep convolutional neural network, its first layers
have learned to identify features that are more and more complex according to
layer depth; for example, the first layer will be able to detect straight borders,
the second layer smooth contours, the third some kind of color gradients, and
so on while arriving at last layers capable of identifying entire objects.

In our case, we used a detection network pre-trained on the COCO dataset.
Concerning YOLO, we fine-tuned it by blocking the learning parameters up-
date of the first part of the network, and allowing updates only in the last
sections. Specifically, we kept the first 81 (i.e., the feature extractors) of the
total 106 layers, and froze the weights of the first 74. The network was trained
for 24,000 iterations, that is 11 epochs with the following parameters: batch
size 64, decay 0.0005, learning rate 0.001, momentum 0.9, IoU threshold: 0.5,
confidence threshold: 0.25.

For the Faster-RCNN network, we fine-tuned the entire network on the
new objects allowing updates in every trainable part of the detector. Being a
significantly bigger network with respect to YOLO, we trained with a smaller
batch size of two and kept the same values for the other parameters. Inter-
estingly, only two epochs were sufficient for Faster-RCNN to converge on our
virtual dataset.

As explained in Section 3, our virtual dataset is composed of 30 scenarios,
27 of which were used as the training set and three were left for validation.
The three scenarios of the validation set contain 13,500 images. From these,
350 images were randomly selected to form the virtual validation dataset. In
this way, a new set of objects are recognized by the network.
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4.2 Evaluation Metrics

To evaluate the performance of our implementation, we applied the standard
measures used in the object detection literature, i.e., Intersection over Union
(IoU) based on the area of the detected (D) and real (V ) bounding boxes,
and Precision (Pr) and Recall (Rc) based on true (T ) / false (F ) positive (P )
/ negative (N) detections:

– IoU = (D ∩ V )/(D ∪ V )
– Pr = TP/(TP + FP )
– Rc = TP/(TP + FN)

Detected bounding boxes are associated with a confidence score, ranging from
0 to 1, and are considered in the output if and only if their confidence score is
greater than a configurable threshold. Given the above definitions, we calculate
the mean Average Precision (mAP ) as the average of the maximum precision
at different recall values.

5 Experiments and Results

We conducted a series of experiments with the two neural networks on the
virtual and real datasets, as explained hereafter.

5.1 Experimental Setups

We trained and evaluated three variations of the two networks on both virtual
and real images: YCV, which is YOLO base trained on COCO and fine-tuned
with Virtual data; YCVR, which is YCV additionally fine-tuned with Real
data; YCR, which is YOLO base trained on COCO and fine-tuned with Real
data. Following the same rationale, we obtain the same configurations for
Faster-RCNN, that are FCV, FCVR, FCR.

To obtain YCVR and FCVR, we split the real-world dataset in to two
parts with 100 images each: a training part and a testing part. We used the
training part to apply domain adaptation from virtual to real on the YCV and
FCV networks by performing fine-tuning. To choose the set of weights from
which to start, we validated each of them on the training part, choosing the
one with the highest mAP.

To better evaluate the benefit contributed by the virtual world training
set, we also fine-tuned the base networks , pre-trained on COCO, with the
same 100 real images used for obtaining YCR and FCR.

5.2 Results

Results are reported in Table 1. YCV and FCV obtain respectively 87.2% and
95.0% mAP when tested on virtual images, and when tested on real-world
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images, they obtain respectively 55.1% mAP and 42.6%. Most of the AP loss
is caused by the classes Head, Welding Mask, Ear Protection, and Chest. We
believe that this is because in real life there are many more variations of these
object classes than those the game can render.

We want to note that, on virtual world testing, both YCV and FCV obtain
better mAP after more iterations, while on real-world testing better perfor-
mance is reached before in the training phase. This implies that the best
performing set of weights for the virtual world test is not the best also for
real-world validation, as further training seems to induce a bias in the net-
work towards unique peculiarities of the source domain.

Table 1 mAP comparison of our networks on Virtual validation or Real testing

Network Test Head Helmet Weld. Mask Ear Prot. Chest HVV Person mAP

YCV V 89.7% 86.7% 75.5% 89.0% 89.7% 90.0% 89.7% 87.2%

YCV R 36.3% 74.1% 27.3% 55.6% 45.7% 69.9% 76.9% 55.1%
YCR R 44.1% 52.2% 42.3% 62.0% 59.1% 60.7% 80.6% 57.3%
YCVR R 78.8% 73.3% 66.3% 74.0% 74.7% 78.6% 87.1% 76.1%

FCV V 95.2% 98.1% 84.7% 97.9% 95.6% 98.1% 95.2% 95.0%

FCV R 33.7% 64.9% 5.1% 26.9% 38.1% 63.3% 66.2% 42.6%
FCR R 68.8% 76.5% 66.5% 65.7% 72.6% 74.3% 92.1% 73.8%
FCVR R 73.6% 79.2% 69.6% 72.7% 76.5% 81.5% 86.6% 77.1%

YCVR obtains a significant boost and reaches 76.1 mAP. This means that
fine-tuning with only 100 real images is very effective on a network that was
previously fine-tuned with several similar virtual images. We also note that
testing YCVR on the virtual world yields a lower mAP with respect to YCV.
The main drop of AP, in this case, is seen on Head and Welding Mask, which
are the classes with most differences between real and virtual.

YCR obtain 57.3 mAP when tested on the real-world test set. This result is
just slightly better than that obtained by YCV, and by far worse than YCVR.
This means that, to train the network for the new scenario, the contribution
given by the virtual world training set is very relevant, and just a fine-tuning
with a few images is enough to adapt the network back to the real-world
domain.

Concerning Faster-RCNN, we observe the same trend even if the effects are
smaller. Its architectural details enable the network to learn more effectively
even in small data regimes, as suggested by FCV tested on the virtual test
set (95.0% mAP) and FCR tested on the real set (73.8% mAP). However,
this network shows a lower transferability with respect to domain change, as
pointed out by FCV tested on the real dataset that obtains at peak 42.6%
mAP. When domain adaptation by fine-tuning is applied (FCVR), we still
obtain an improvement with respect to FCR, even if the boost is smaller
than the one obtained by YOLO. We deem the inertia of Faster-RCNN to
transferability of representations and its tendency to overfit are to believe the
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main causes for this effect, and we think this could be mitigated using more
clever domain adaptation techniques.

By inspecting the fine-tuned weights, we observed that lower-level filters
do not change that much between models trained with virtual and real data,
while mostly the higher-level network heads were responsible for the improved
performance. This is somewhat expected, as we fine-tune models pretrained on
COCO that already show good configurations of weights for low- and mid-level
layers. We leave for future work a more in-depth analysis concerning feature
attribution and visualization to pinpoint more precisely the differences on a
representation level. On a practical standpoint, we observe two main positive
effects brought by virtual data, that are: a) tighter box predictions, due to
accurate annotations provided by the engine, and b) improvements on high-
variability classes (e.g. head, chest), occluded objects, and corner cases (e.g.
crouched people) for which the network can provide better higher-level repre-
sentations leveraging all the variability that the engine can provide. Figure 2
shows some examples of these effects on samples from the real-world test set.

From a run-time perspective, we obtained a forward pass speed of 2.6 FPS
with Faster RCNN and 6.4 FPS with YOLO, including the whole process
(e.g., disk fetch, data submission to the GPU, and result read-back): given
the measured performances and the application requirements, we can conclude
that both implementations are ready to be implemented in real-time detection
on real video systems without modifications.

6 Conclusions

Training deep neural networks in virtual environments has been recently proven
to be of help when the number of available training examples for the specific
task is low. In this work, we considered the task of learning to detect proper
equipment in risky human activity scenarios.

We created and made available two datasets: the first one has been gen-
erated using a virtual reality engine (RAGE from GTA-V); the second one is
composed of real photos.

In our experiments, we trained object detectors based on deep convolu-
tional networks on the virtual dataset and tested on the real images as well
as using just a small number of real photos to fine-tune the deep neural net-
work we trained in the virtual environment. The experiments we conducted
demonstrated that training on virtual world images, and executing a step of
domain adaptation with a limited number of real images, is effective. Obtained
performance when training with virtual world images and adapting to the do-
main with a few real images is higher than just fine-tuning an existing network
with a few real images for the scenario at hand. We plan to use the same vir-
tual environment to train to detect people using weapons (see Figure 4), and
adopt state-of-the-art domain adaptation techniques (e.g., using transferable
features as in [30]) to better close the gap between virtual a real worlds.
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