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RankEval is a Python open-source tool for the analysis and evaluation of ranking models based on
ensembles of decision trees. Learning-to-Rank (LtR) approaches that generate tree-ensembles are
considered the most effective solution for difficult ranking tasks and several impactful LtR libraries
have been developed aimed at improving ranking quality and training efficiency. However, these
libraries are not very helpful in terms of hyper-parameters tuning and in-depth analysis of the learned
models, and even the implementation of most popular Information Retrieval (IR) metrics differ among
them, thus making difficult to compare different models. RankEval overcomes these limitations by
providing a unified environment where to perform an easy, comprehensive inspection and assessment

of ranking models trained using different machine learning libraries. The tool focuses on ensuring
efficiency, flexibility and extensibility and is fully interoperable with most popular LtR libraries.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Motivation and significance

The widespread adoption of complex machine-learned rank-
ing models has generated a demand for novel tools aimed at
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inspecting and analyzing them so to enforce ranking trust and
to understand how they can be fine-tuned and improved.

In this paper we present RankEval, an open-source tool for
the analysis and assessment of ranking models based on addi-
tive ensembles of regression trees. These ensembles are gener-
ated by efficient Learning to Rank (LtR) algorithms that leverage
large amounts of training data to iteratively learn simple deci-
sion trees incrementally optimizing the given loss function. A
training dataset consists in a collection of query-document pairs
where each example is annotated with a relevance label. The goal
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of the LtR algorithm is learning a document scoring function
that approximates the ideal ranking induced by relevance labels
observed in the training samples.

Nowadays, tree-based models are considered the most com-
petitive LtR solution for “difficult” ranking tasks [1], including
the ranking of web search results or the ranking of items/posts
in e-Commerce platforms and online social networks [2]. In such
large-scale production systems, complex ensembles with thou-
sands of trees are commonly deployed to achieve high quality
results that meets user requirements. In these contexts, the mod-
els based on Gradient Boosted Regression Trees (GBRTs) [3] were
adopted by the majority of the winning solutions of both the
Kaggle and KDD Cup 2015 competitions. Among the most popular
open-source implementations of GBRTs we cite LightGBM [4],
XGBoost [5] and RankLib.2 We also contributed to the open-
source implementations with our QuickRank [6] framework. The
need for RankEval stems from the fact that all these libraries of-
fer very limited support for fine-tuning the models and evaluating
their performance under different aspects. Moreover, engineers
suffer from the lack of a common open-source framework for
comprehensively evaluating LtR models trained with different
tools. The evaluation of a ranking solution in isolation is not
trivial. For example, the implementations available for most com-
mon Information Retrieval (IR) evaluation metrics differ between
each other: for what the Normalized Discounted Cumulative Gain
(NDCG) metric [7] is concerned, a query with no relevant results
is assigned a score equal to —1 in LightGBM, equal to O in
QuickRank and RankLib, and equal to 0.5 in the Yahoo Learning
to Rank Challenge.

By providing a single comprehensive framework for tuning,
evaluating and comparing GBRT LtR models, possibly learned
with different gradient boosting libraries, RankEval aims to fill
the above gap. While the open-source libraries mentioned above
provide efficient and effective implementations of the state-of-
the-art LtR algorithms, RankEval offers an easy-to-use frame-
work that is interoperable across the most popular libraries, and
to engineers the possibility to deeply understand the models
and tune their effectiveness. RankEval is implemented as a
lightweight Python library and can be used within a Jupyter
notebook? to take advantage of its recently introduced interac-
tive visualization capabilities. Finally, RankEval can exploit a
high performance infrastructure to speedup the most demanding
analytics functionalities.

1.1. Major improvements in the current release

A demo paper presenting the preliminary implementation of
RankEval can be found in [8]. Since first published in 2017, the
RankEval framework has been constantly maintained and up-
dated with several releases of the code. Improvements introduced
over time and available in the current release include:

e PyPl availability. Starting from 0.61 release version,
RankEval is available from the Python Package Index (PyPI).
You can easily install the tool by running the command:

pip install rankeval

Additionally, the code is packaged into several binary wheels
according to the most adopted platforms (UNIX and MacOS,
python versions 2.7, 3.4, 3.5, 3.6 and 3.7). These binary
packages are provided through PyPi thus allowing for a fast
and simple installation without the need to compile low-
level code from scratch (some functionalities are written
using cython for efficiency reason).

2 https://github.com/codelibs/ranklib
3 http://jupyter.org/
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e Interactive Notebooks. Starting from 0.61 release version,
several Jupyter notebooks are delivered with the source
code as to provide to the users an interactive introduction
to the main functionalities implemented in RankEval, and
a user-friendly how-to guide on the usage of the library and
on an in-depth understanding of the code structure.

e Support for CatBoost and Jforests. Starting from 0.7 re-
lease version, RankEval provides two new model proxies
extending its interoperability capabilities to two additional
LtR libraries.

e Python 3 compatibility. of RankEval. Starting from the 0.7
release version, RankEval fully supports Python 3 function-
alities and code conventions.

o New analysis and visualization functionalities. Starting
from the 0.7 release version, several new functionalities
have been introduced for analyzing and visualizing the
shape of the trees in the ensemble, with the possibility to
personalize the plots in several ways. This feature permits a
better understanding of the output predicted by each tree, as
well as to have a clear picture of the trees’ shape (impact-
ing, for example, the scoring time [2]). See Section 2.2 for
additional information on tree-wise and topological analysis
functionalities.

e Continuous Integration. Modern software development
often uses Agile principles which focus on the customer’s
requirement for continuous delivery of new functionality. In
light of this vision, starting from the 0.81 release version, we
introduced Continuous integration (CI) using Travis,* adding
automated tests and controls to the RankEval pipeline in
order to save programming and debugging time and in-
crease the reliability to the software. Each commit/release/
PR is now tested before being merged into the repository.
Even releasing the library on PyPi has been automatized:
each tagged commit on the master will now activate the
deployment actions that will test again the code, package
and release it for the various supported platforms.

e Bug fixes. Since the first release of the library, many issues
have been solved, with the help of the community that
contributed by signaling them by email or using the issue
panel on GitHub. Similarly, many of the features listed above
(and others as well, e.g., the K-Fold splitting of a Learning-
to-Rank dataset on a per-query basis) were requested by the
users and implemented in the library as to provide support
to the user base.

The GitHub repository of RankEval is currently watched by 13
developers and has 65 stars, and the community engages with the
software by adding issues and pull requests.

2. Software description
2.1. Software architecture

RankEval is implemented in Python, and its architecture is
depicted in Fig. 1. Green boxes highlight major software com-
ponents, blue boxes are Python modules, while the yellow box
provides purely static functionalities. The red boxes highlight the
functionalities implemented in Cython for efficiency reasons. The
software is logically split in two layers: (i) the core components
which include the base classes (Dataset, Model, Metric) and some
utility methods (e.g., the static Proxy classes for loading models
from different libraries, or the Cython implementation of the
scoring process); (ii) the high level components, providing the
implementation of several analysis tools with integrated visual-
ization capabilities that can be easily exploited within Jupyter
notebooks.

4 https:/[travis-ci.org
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Fig. 1. RankEval software architecture. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.2. Software functionalities

RankEval functionalities can be grouped into five categories:
effectiveness analysis, feature analysis, structural analysis, topo-
logical analysis, interoperability among GBRT libraries. RankEval
supports the analysis of multiple ranking models and multi-
ple datasets simultaneously, so as to permit a clear and direct
comparative evaluation of different models.

Effectiveness Analysis This group of functionalities aims at eval-
uating models performance in terms of accuracy.

e Model performance implements several ranking metrics for
model evaluation. The metrics include: Precision, Precision-
Max, Mean average precision (MAP), Ranked biased Preci-
sion (RBP), Recall, Expected Reciprocal Rank (ERR), Mean Re-
ciprocal Rank (MRR), Mean squared error (MSE), Root mean
squared error (RMSE), Discounted cumulative gain (DCG),
Normalized discounted cumulative gain (NDCG), Kendall's
Tau, Spearman’s Rho and Pfound. This large offer of different
evaluation metrics permits the user to choose the right
metrics for the specific retrieval task by avoiding common
IR evaluation mistakes (see for example Fuhr's® and Sakai’s®
opinion papers).

o Tree-wise performance allows to evaluate different effec-
tiveness metrics incrementally by varying the number of
trees in the model, i.e., top-k trees. This analysis allows to
investigate efficiency/effectiveness trade-offs [9] by scoring
a large model on different datasets by varying the number
of trees considered. In Fig. 2 (left) we show the incremental
per-tree break-down for NDCG@10 on the three dataset
splits: Train, Validation and Test. It shows that increasing
the number of trees on the Train set improves performance
in terms of NDCG, while on the other two splits the perfor-
mance tends to flatten after approximately 400 trees. This
indicates that the model starts to overfit from 400 trees
on. In Fig. 2 (right) the analysis shows the average per-tree
contribution to the final accuracy score, regardless of the
tree ordering in the forest. This allows, for example, to rank
trees by importance. The figure shows that the trees in the
beginning of the forest (0-200) contribute more and should
come first in the model compared to the others. This analysis
can give an indication of which trees can be pruned due to
their limited contribution if the developer is looking for a
smaller, more efficient model.

e Query-wise performance computes the metric scores cu-
mulative distribution over a given query set.

e Document graded-relevance performance similarly as
above, it provides the cumulative performance distribution
with a breakdown over the available relevance labels.

3 http://sigir.org/wp-content/uploads/2018/01/p032.pdf
6 http://www. sigir.org/wp-content/uploads/2020/06/p14.pdf

e Query class performance allows to investigate the qual-
ity performance breakdown over different query classes
(e.g., navigational, informational, transactional, etc.).

o Rank confusion matrix provides a rank-oriented confusion
matrix, where for any given relevance label [;, the number of
documents with a predicted score smaller than documents
with label J; is given.

Feature analysis RankEval makes available several feature anal-
ysis tools that allow the investigation of: (i) how features are used
by a trained model and (ii) their impact on the final accuracy of
the model. While LtR libraries allow to perform a similar analysis
only in terms of a single metric, i.e., root mean squared error
(RMSE), RankEval allows for an improved analysis across all the
ranking metrics supported.

o Feature importance provides an evaluation of the contribu-
tion of each feature to the global error reduction (i) on the
whole ensemble or (ii) incrementally, by considering each
estimator of the forest in isolation.

o Feature usage statistics provides further details on the
use of features, i.e., advanced statistics on where and how
features appear in the forest, e.g., the number of nodes of
the forest using a given feature, their average depth in the
model, the distribution of the thresholds used by the model,
etc.

Statistical analysis provides the following novel functionalities:

e Statistical significance allows the evaluation of when and
how a model provides statistically significant performance
Ww.I.t a given competitor. Several state-of-the-art signifi-
cance tests are implemented, including the “randomization
test” [10].

o Bias vs. variance decomposition investigates the strengths
and weaknesses of a given LtR algorithm with the help of
the bias vs. variance analysis.

Topological analysis provides the topological properties of a LtR
model. The analysis provided by RankEval covers min/max/avg
depth of trees, and the investigation of the shape of the trees. In
Fig. 3 (left) the XGBoost tends to build ensemble models that are
on average more balanced (i.e., with a similar number of nodes on
the left and right sides) compared to the QuickRank framework
in Fig. 3 (right), which on average tends to build very skewed
models with long chain of nodes on the left branch.

Interoperability RankEval aims at providing a unified and user-
friendly framework for the analysis of LtR solutions. RankE-
val is able to analyze models stored in different formats used
by the five most popular libraries for learning ensembles of
trees, namely XGBoost, LightGBM, scikit-learn, CatBoost,
Jforests, QuickRank, and RankLib. RankEval also provides
format conversion tools to easily move from one format to an-
other one.
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Tree-wise Model Comparison
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Fig. 2. Tree-Wise model comparison (left) and average contribution of each tree to the final score (right).
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Fig. 3. The topological analysis tool investigates the shape of tree-based ensembles in two different models: XGB.1k (left) and QuickRank.1k (right).
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Fig. 4. Model performance evaluation generated with the code snippet above..

3. Hlustrative examples

RankEval is flexible as it can be used in several different
ways. For example, it can be used as a Python module and,
with the help of the shell, python scripts invoking the desired
functionalities can be run. The other way to use it is by import-
ing it in a Jupyter notebook. Interested readers can test all the
functionalities presented in Section 2.2. RankEval offers a com-
prehensive way of visualizing the results as report tables (with
the support of Pandas dataframes) and plots (with the support of
Matplotlib). The results can be stored in files or visualized inline,
when running RankEval in a Python Jupyter notebook.

Fig. 4 reports a code snippet showing how easy, user-friendly
and customizable is the evaluation process offered by RankE-
val. The example illustrates a simple code snippet for mea-
suring model performance between three pre-trained models,
two trained with QuickRank (QR_lmart_1k, QR_lmart_15k)
and one with XGBoost (XGB_lmar_1k). The effectiveness of the
models is assessed based on three different metrics, i.e. P@10,
R@10 and NDCG@10. Several other examples of code snippets and

use of functionalities can be found in the Notebook examples of
the RankEval GitHub.

fron rankeval.model import RTEnsemble

from rankeval.metrics import Precision, Recall, NDCG

from rankeval.analysis.effectiveness import model_performance

from rankeval.visualization.effectiveness import plot_model_performance

@ e W

msn_qr_1lm_1Ktrees = RTEnsemble('msn_qr_lmart_iKtrees.xml", name="QR_lmart_iK'",

format="(uickRank")

7 msn_qr_lm_15Ktrees = RTEnsemble("msn_gr_lmart_15Ktrees.xml", name="QR_lmart_15K",
format="QuickRank")

8  msn_xgb_lm_iKtrees = RTEnsemble('msn_xgb_lmart_iKtrses",

format="XCBocst")

name="XCB_lmart_1K",

10 msn_model_perf = model_performance(datasets=[msn_test],
11 models=[msn_gr_lm_1Ktrees, msn_gr_lm_15Ktrees, msn_xgb_lm_iKtrees],
12 metrics=[Precision(cutoff=10), Recall(cutoff=10), NDCG(cuteff=10)])

14  fig - plot_medel_performance(msn_model_perf, compare="models", show_values=True)

4. Impact

RankEval brings a significant added value to both the scien-
tific community and IR engineers and practitioners. RankEval

7 https://github.com/hpclab/rankeval/tree/master/notebooks
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can positively impact both communities since it allows a fair
comparison and analysis among state-of-the-art LtR methods.
It unifies the evaluation of models trained with several differ-
ent tools (e.g. XGBoost, LightGBM, scikit-learn, QuickRank,
RankLib) in a single framework offering objective and straight-
forward metrics. What before was done in a very minimal and
non-unified way by the LtR libraries themselves, RankEval suc-
ceeds at putting together in a comprehensive framework of model
analysis and evaluation, with tools for integration and interop-
erability. Indeed, RankEval was successfully used in different
LtR tutorials presented at major conferences [11-13] in which
the audience could test out and compare their models, trained
with tools of their choice. Such a “high value, low cost” tool can
speed up the process of model tuning by supporting also fea-
ture analysis and engineering. Lastly, RankEval is designed with
the goal of speeding up the process of investigating strengths
and weaknesses of given LtR models, and to support users in
achieving an optimal model fine-tuning.

5. Conclusions

RankEval is a unique tool focusing on the evaluation of
ensemble-based LtR models. It gathers and implements, in a
unifying framework, all the evaluation methods and metrics com-
monly used for measuring the effectiveness of ranking models,
by also adding new functionalities and features to their objective
evaluation, interpretation and in-depth analysis.

The tool is designed to give a comprehensive view on model
performance but also to improve reporting. It provides a topo-
logical view on the model structure, an analysis on feature im-
portance, statistical significance tests and several performance
indicators on LtR datasets, making it easier for users to under-
stand where the model fails to achieve maximum accuracy and
highlighting problematic issues.

RankEval is an open source project available on GitHub under
the Mozilla Public License 2.0. We acknowledge all the contrib-
utors who participated in the project and added/improved the
RankEval functionalities.
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