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Abstract. Techniques of the Hamming embedding, producing bit string
sketches, have been recently successfully applied to speed up similarity
search. Sketches are usually compared by the Hamming distance, and ap-
plied to filter out non-relevant objects during the query evaluation. As
several sketching techniques exist and each can produce sketches with
different lengths, it is hard to select a proper configuration for a partic-
ular dataset. We assume that the (dis)similarity of objects is expressed
by an arbitrary metric function, and we propose a way to efficiently es-
timate the quality of sketches using just a small sample set of data. Our
approach is based on a probabilistic analysis of sketches which describes
how separated are objects after projection to the Hamming space.

1 Introduction

Efficient search for data objects according to their pairwise similarity presents
an important task in data processing. We consider similarity search for complex
objects, e.g. multimedia files. Features of these objects are typically characterized
by descriptors, which are often high dimensional vectors. They can be bulky
and evaluation of their pairwise similarity may be computationally demanding.
Thus techniques to process them efficiently are needed. We consider one to one
mapping between objects and descriptors, thus we do not distinguish these terms
and we use just term object.

Techniques transforming data objects to smaller objects are often used to
speed up similarity search. Their number and number of their inherent param-
eters make their fair comparison difficult. Moreover, the ability of particular
approaches to approximate similarity relationships between objects is data de-
pendent. This paper considers a particular family of techniques – transformation
of objects to the Hamming space – and it provides formal analysis which allows
to efficiently estimate a quality of particular transformation techniques. Our ap-
proach uses a small sample set of the original and the transformed objects, and,
inspired by the separability, which is traditionally used in data clustering and
processing of biometrics, we estimate the ability of the transformed objects to
distinguish different values of genuine similarity. We define the problem precisely
in the following section.

1.1 Problem Formulation

We focus on similarity search in the metric space [18]. The notation used through-
out the paper is provided in Table ??. Formally, the metric space is a pair (D, d)
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Table 1: Notation used throughout this paper
(D, d); X ⊆ D metric space with domain D and distance function d; dataset X

iDim intrinsic dimensionality of dataset

sk(o) sketch of object o ∈ X
λ length of sketches in bits

h(sk(o1), sk(o2)) Hamming distance of sketches sk(o1) and sk(o2)

β balance of bits of sketches

p(x, b) probability that h(sk(o1), sk(o2)) = b for o1, o2 ∈ X : d(o1, o2) = x

pi(x, 1) probability p(x, b) for λ = 1 considering an average bit i

x, b values of the distance functions d and h, respectively

Γ maximum distance x

φ number of degrees of freedom of distance function d(o1, o2)

µ, σ2 mean value and variance of Hamming distance

m, s2 mean value and variance of probability p(x, b) for a given x

where D is a domain of objects and d is a total distance function d : D×D 7→ R.
This function determines the dissimilarity of objects – the bigger the value
d(o1, o2), the less similar the objects o1, o2 ∈ D. The distance can be an arbitrary
function which satisfies the properties of non-negativity, identity, symmetry and
triangle inequality [16].

Having a metric space (D, d), we consider a dataset X ⊆ D, and a sketching
technique sk : D 7→ {0, 1}λ, which transforms objects o ∈ D to bit-strings of
fixed length λ. We call these bit strings sketches, and we assume that dissimilarity
of these sketches is measured by the Hamming distance. Further, we focus on a
family of sketching techniques which produce bits balanced to β:

– Bit i is balanced to ratio β (with respect to the dataset X) iff it is set to 1
in β · |X| sketches sk(o), o ∈ X.

We consider just values 0.5 ≤ β ≤ 1, since if β is smaller than 0.5 for some
bit i, this bit can be flipped in all sketches sk(o), o ∈ X which preserves all the
Hamming distances. The objective of this paper is to propose a way to estimate
ability of sketches to approximate similarity relationships between objects o ∈ X,
using just a small sample set of data and sketches.

1.2 Related Work

Several sketching techniques have been proposed [1, 5, 7, 10–14, 17] and most of
them produce sketches with bits balanced to 0.5. To the best of our knowledge,
there is no prior work which would efficiently estimate, what sketches, their bal-
ance β and length λ are suitable for particular data (on condition that β is
tunable). For instance, Wang et al. [17] provide analysis to estimate recall of
kNN queries for particular sketching technique to select suitable length of sket-
ches. However, their method is not extendible for other sketching techniques and
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the estimation is rather approximate. Mic et al. also provide approach to esti-
mate suitable length λ for their sketching technique [12], but their ideas cannot
be applied for arbitrary sketches. Our proposal is inspired by Daugman’s anal-
ysis [3], who investigates binary codes of human irises. He evaluates separability
of two distance densities to describe the quality of his method to identify people
according to this biometric.

The paper is organized as follows. Section 2 contains analysis to estimate
an ability of sketches to approximate similarity relationships between objects,
Section 3 proposes another approach to estimate this quality, Section 4 contains
discussion about a cost of estimations and results of experiments to compare
measured and estimated quality of sketches, and Section 5 concludes the paper.

2 Analysis to Estimate Quality of Sketches

The goal of this section is to derive formula describing the ability of sketches to
separate two distances from the original metric space. In particular, we consider
four arbitrarily selected objects o1, o2, o3, o4 ∈ X and their distances d(o1, o2) =
x1, d(o3, o4) = x2, x1 ≤ x2. The goal of function sepsk(x1, x2) is to describe how
separated are the Hamming distances h(sk(o1), sk(o2)) and h(sk(o3), sk(o4)).

2.1 A Single-bit Sketch

We start with an average probability pi(x, 1) that one bit i of sketches sk(o1) and
sk(o2) has different value for objects o1, o2 ∈ X with distance d(o1, o2) = x. This
probability can be derived in an analytic way just for some specific sketching
techniques [17]. Therefore, we propose to determine it empirically by its evalua-
tion on a sample set of data. We measure the probability pi(x, 1) on equidistant
intervals of distances x. To make function pi(x, 1) continuous, we use linear in-
terpolation between measured points and we add an artificial point [0, 0] to
catch influence of smaller distances than were observed on the sample set. We
work with an average probability pi(x, 1) evaluated over all bits i. Probability
function pi(x, 1) constitutes one of features describing quality of sketches, as it
should obviously increase with x. An example is provided in Figure 1a.

2.2 Projection of Distance x on Hamming Distance b

As a next step, we derive probability function p(x, b) that Hamming distance
h(sk(o1), sk(o2)) is equal to b for objects o1, o2 with distance d(o1, o2) = x. It
is done by composition of λ instances of probability function pi(x, 1). This step
is challenging due to possible bit correlations. Probability function p(x, b) for a
fixed x can be modelled by a symmetric function1, which allows us to use its
binomial analogue. It is a scaled binomial distribution with the same variance
as function p(x, b). To fit variance of function p(x, b), we need to estimate its
number of degrees of freedom φ [3].

1 Reasoning is provided at https://www.fi.muni.cz/ xmic/sketches/Symmetry.pdf
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Lemma 1. The number of degrees of freedom φ of function p(x, b) is similar to
the number of degrees of freedom φ′ of the density of the Hamming distance on
all sketches sk(o), o ∈ X.

Clarification Daugman [3] evaluates the number of degrees of freedom of the
density of the Hamming distance on sketches:

φ′ =
µ · (λ− µ)

σ2
(1)

where λ is the length of sketches, µ is the mean value and σ2 is the variance of
the Hamming distance. According to analysis in [13], the µ is given by λ and
β, and σ2 is given by λ, β and pairwise bit correlations. Therefore, iff sketches
of objects o1, o2 : d(o1, o2) = x have bits balanced to β and they have same
pairwise bit correlations as all the sketches sk(o), o ∈ X, the Lemma 1 describes
equality, i.e. φ = φ′. Our first approach to estimate quality of sketches assumes
this equation, and the error caused by this assumption is discussed in Section 2.4.

We connect Equation 1 with the term intrinsic dimensionality (iDim), which
describes an amount of information in data. Several ways to estimate the iDim
have been developed but just a few of them can be used in a general metric
space. We use the formula of Chávez and Navarro [2]:

iDim ≈ µ2

2 · σ2
. (2)

The mean value µ equals 2λ · β · (1− β) [13], and thus, using the Equations 1, 2
and Lemma 1, we may express the number of degrees of freedom φ using the
intrinsic dimensionality of sketches iDim and balance of their bits β:

φ =
µ · (λ− µ)

σ2
=
µ · µ

2·β·(1−β)

σ2
− µ2

σ2
≈ 2 · iDim ·

(
1

2 · β · (1− β)
− 1

)
. (3)

In order to model probability p(x, b), we propose to use binomial distribution
with φ degrees of freedom which we scale and interpolate to get the final function.
The only input necessary for the usage of this binomial analogue is iDim of
sketches, empirically evaluated on a sample set of sketches, and balance of their
bits β. We round number of degrees of freedom to the nearest integer and denote
it φ in the rest of this paper. In the following, we describe the estimation of
p(x, b) formally. We approximate this function by a linear interpolation plin(x, b)
normalized with a coefficient coef(x):

p(x, b) ≈ plin(x, b)

coef(x)
. (4)

The normalization coefficient coef(x) is evaluated as:

coef(x) =

φ∑
i=0

plin(x, i)
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(a) Dependency of pi(x, 1) on x (b) Measured and modelled p(x, b)

Fig. 1: Example of functions pi(x, 1) and p(x, b) used in the model

and the linear interpolation plin(x, b) as:

plin(x, b) = pint(x, bb′c) + (b′ − bb′c) · (pint(x, db′e)− pint(x, bb′c))

where b′ is the scaled value b:

b′ = b · φ
λ

and where function pint(x, bint) (which requires the second parameter to be an
integer), evaluates the binomial distribution:

pint(x, bint) =

(
φ

bint

)
· pi(x, 1)bint · (1− pi(x, 1))φ−bint .

We use linear interpolation plin since b′ is usually not an integer. Due to the
transformation of the binomial distribution, it is necessary to normalize prob-
ability using coef (x) coefficient: we normalize function pint by the sum over all
values, since p(x, b) is discrete with respect to b.

We show an example, how this binomial analogue fits the distribution of
the measured p(x, b) in Figure 1b. The black points show values empirically
measured, and grey points show values estimated by the proposed binomial
analogue described by Equation 4. In this experiment, we used sketches with
λ = 205 bits balanced to β = 0.5, and just sketches of objects within distance
x = 86 evoking probability pi(x, 1) = 0.51. These measurements confirm that
the binomial analogue is a good approximation of probability p(x, b).

2.3 Quality of Sketches

Quality of sketches used for the similarity search is given by their ability to
preserve similarity relationships between objects. Let us consider four arbi-
trarily selected objects o1, o2, o3, o4 ∈ X and distances d(o1, o2) = x1 and
d(o3, o4) = x2, x1 ≤ x2. In the following, we focus on a separation of proba-
bility functions p(x1, b) and p(x2, b) and we describe it by formula adopted from
work of Daugman [3]:

sepsk(x1, x2) =
m2 −m1√

s21+s
2
2

2

(5)
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where m1 and m2 are mean values of p(x1, b) and p(x2, b), and s21 and s22 are
their variances. These values can be expressed by analysis of Equation 4:

Lemma 2. Mean value m of probability function p(x, b) is pi(x, 1) ·λ. Variance

s2 of probability function p(x, b) is λ2

φ · pi(x, 1) · (1− pi(x, 1)).

Proof. Function p(x, b) is formed by binomial distribution (see function pint in
Equation 4), which is scaled with respect to value b by coefficient φ

λ . Since mean
of function pint is pi(x, 1) · φ and its variance is φ · pi(x, 1) · (1− pi(x, 1)), then:

m = pi(x, 1) · φ · λ
φ

= pi(x, 1) · λ,

and

s2 = φ · pi(x, 1) · (1− pi(x, 1)) ·
(
λ

φ

)2

=
λ2

φ
· pi(x, 1) · (1− pi(x, 1)).

Theorem 1. Considering four arbitrary objects oz ∈ X, z ∈ [1..4] with distances
d(o1, o2) = x1, d(o3, o4) = x2, x1 ≤ x2, and an arbitrary sketching technique sk
producing sketches with bits balanced to β, the separation sepsk(x1, x2) of the
Hamming distances h(sk(o1), sk(o2)) and h(sk(o3), sk(o4)) can be expressed:

sepsk(x1, x2) ≈ 2 ·
√
iDim · fsk(x1, x2) ·

√
1

2 · β · (1− β)
− 1 (6)

where

fsk(x1, x2) =
pi(x2, 1)− pi(x1, 1)√

pi(x1, 1) · (1− pi(x1, 1)) + pi(x2, 1) · (1− pi(x2, 1))
(7)

Proof. Theorem holds as a consequence of Equation 3, Equation 5, and Lemma 2.

Theorem 1 reveals features of sketches sk(o), o ∈ X, which improves their
capability to approximate similarity relationships between objects. For instance,
sufficiently high iDim of sketches is necessary to allow them distinguish distances
d(o1, o2) < d(o3, o4). Please notice, that just function fsk(x1, x2) (defined by
Equation 7) takes into account values x1 and x2, and that there is no direct
dependency of sepsk(x1, x2) on sketch length λ.

To describe quality of sketches, we propose to evaluate sepsk(x1, x2) over
whole range of distances function d. Without loss of generality, we assume that
d is continuous and its range is [0, Γ ]. Then:

quality(sk) =

∫ Γ

0

∫ Γ

x1

sepsk(x1, x2) ∂x2 ∂x1 (8)
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Fig. 2: Measured and modelled p(x, b) for x = 38 implying pi(x, 1) = 0.2

Semantics of this integral is in compliance with the sign of sepsk(x1, x2): value of
sepsk(x1, x2) is negative iff the distances x1, x2 are swapped after the transfor-
mation to sketches2. Such distances x1, x2 then naturally decrease the quality of
sketching technique, as described by this equation. Since quality(sk) cannot be
meaningfully compared for metrics with different Γ , we propose to normalize it.
Equation 8 allows direct normalization by Γ 2. Finally, if sketches are going to
be applied for similarity search, they are needed to well separate small distances
from the others. Therefore, it is meaningful to evaluate quality of sketching
technique using some threshold t < Γ :

qualitynorm(sk, t) =

∫ t
0

∫ Γ
x1

sepsk(x1, x2) ∂x2 ∂x1

Γ 2
. (9)

Therefore, we propose to evaluate qualitynorm(sk, t) using a sample set of
data and use it to compare quality of sketches. The cost of this estimation is
discussed in Section 4.1.

2.4 Sources of Error

The main source of error of proposed quality estimation is caused by Lemma 1,
as we assume that balance β and pairwise correlations of bits of sketches sk(o1),
sk(o2), o1, o2 ∈ X : d(o1, o2) = x for an arbitrary given x are the same, as on
the whole dataset X. The precision of this assumption is data and sketching
technique dependent. We have observed, that the proposed binomial analogue is
quite precise for non-extreme distances x (as shown by Figure 1b), but its preci-
sion decreases mainly for tails of x. Therefore, this feature causes an erroneous
estimation for some sketching techniques and datasets. An example is given in
Figure 2, where the binomial analogue p(x, b) for a very low x is examined.

Another errors are caused by our intention to use a small sample set to
evaluate qualitynorm(sk, t), and by the fact that the provided analysis is based
on expected values and it does not consider deviations from modelled functions.
We evaluate experiments with this approach in Section 4, and we denote it
Approach A (as analytique). In the following section, we propose the second way
to estimate quality of sketches, which aims to mitigate the error of Approach A.

2 Please see, that the sign of sepsk(x1, x2) is given by the sign of function fsk(x1, x2),
and this is negative iff pi(x2, 1) < pi(x1, 1). We have assumed x1 ≤ x2, and these
two inequalities are equivalent to swapping distances x1, x2.
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3 Approach PM

The second way to estimate qualitynorm(sk, t) is based on direct evaluation of
means m1,m2 and variances s21, s

2
2 of the p(x, b), used in Equation 5. If these

values are evaluated directly on a sample set of data, just this equation and
Equation 9 are utilized to estimate qualitynorm(sk, t). However, this approach
requires evaluation of mean m and variance s2 of p(x, b) for the whole range of
distances x ∈ [0..Γ ].

In particular, we use equidistant intervals of x and we evaluate distances
b = h(sk(o1), sk(o2)) for each pair of objects o1, o2 from the sample set such
that d(o1, o2) is from a given interval of x. Then we evaluate the mean m and
variance s2 for each interval of x and we add an artificial mean m = 0 and
variance s2 = 0 for distance x = 0. Finally, we use linear interpolation to get
values m and s2 for an arbitrary distance x.

We denote the estimation of qualitynorm(sk, t) according to this procedure
Approach PM (partially measured) and we evaluate its capability to estimate
quality of sketches in Section 4. At first, let us discuss sources of errors of this
approach. The cost of this estimation is discussed in Section 4.1.

3.1 Sources of Error of the PM Approach

Approach PM mitigates an error brought to the Approach A by too strong
usage of Lemma 1. Instead of this error, Approach PM is more sensitive on a
low number of objects o1, o2 within very small distances d(o1, o2) = x in the
sample set. Since the mean m and variance s2 of p(x, b) is examined for the
whole range of distance x, it needs a representative number of objects o1, o2
within each interval of x to measure it precisely, which is obviously a problem
for tails of distances x. However, exactly the ability to precisely handle extremely
small distances is crucial to well estimate quality of sketches for similarity search.

The rest of errors is caused by similar features as in case of Approach A
(see Section 2.4 for details). Therefore, both approaches provide estimation with
some probable level of error, and we evaluate them both in the next section.

4 Experiments

This section provides verification of the proposed approaches to estimate quality
of sketches. At first, we discuss costs of proposed estimations in comparison with
a traditional approach to evaluate quality of sketches.

4.1 Queries Evaluations vs. Proposed Estimations

Testing quality of sketches is usually performed via evaluation of sufficient num-
ber of representative queries on sample data. Therefore, the precise answer for
these queries must be known, and the sketches for both, the dataset and query
set must be created.
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(a) DeCAF (b) SIFT

Fig. 3: Distance densities of d(o1, o2), o1, o2 ∈ X

We use the recall of k nearest neighbours queries (kNN) evaluated via simple
sketch-based filtering. In particular, sketches are applied to filter a fixed number
of the most similar sketches to the query sketch sk(q), and then the set of corre-
sponding objects CandSet(q) is refined by the distances d(q, o), o ∈ CandSet(q).
Finally, the k most similar objects from the CandSet(q) are returned as the query
answer. The recall expresses the relative intersection of this answer with the pre-
cise answer returned by the sequential evaluation of all distances d(q, o), o ∈ X.
Please, notice that a suitable size of the CandSet(q) considering applied sketch-
ing technique must be selected, which is another difficult and data dependent
task. Finally, even if this expensive procedure is performed, it is relevant just for
a tested dataset and it is dependent on a selection of queries.

We evaluate one thousand 100NN queries on two datasets of size 1 million ob-
jects. Therefore, both ground truths cost 2 billion evaluations of distance d(q, o),
several (30) different sets of million sketches are created, and finally, billion Ham-
ming distances are evaluated for each set of sketches. In our experiments, we use
16 and 14 different sets of sketches for our datasets. The cost of their creation
is in order of billions of distance computations, and several GB of data are read
from hard-drives during these experiments.

Conversely, proposed quality estimations do not use any queries. We use just
a sample set of 5000 objects and their sketches in our experiments. In case of
Approach A, we use 2 million distances to get function pi(x, 1) and iDim of
sketches. The efficiency of the estimation is given mainly by the precision of
integral evaluation (defined by Equation 9). Since we use parameters providing
high precision, an evaluation of qualitynorm(sk, t) by Approach A for one set of
sketches takes about 50 seconds on average. Approach PM is even more efficient,
as it uses 2 millions distances to get means m and variances s2 of p(x, b) directly.
Its evaluation takes approximately 30 seconds per set of sketches on average.

4.2 Test Data

We use two real-life datasets, both consisting of visual descriptors extracted
from images. The first one is formed by 1 million DeCAF [4, 15] descriptors
from the Profiset collection3. These descriptors are 4,096-dimensional vectors of

3 http://disa.fi.muni.cz/profiset/
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(a) GHP to set values in one bit (b) Two GHPs to set two bits of
sketches

Fig. 4: Generalized hyperplane partitioning for sketching technique

float numbers taken as an output from the last hidden layer of a deep convo-
lutional neural net [8]. Although this neural net has been trained for ImageNet
classification, the last hidden layer is suitable for solving recognition problems [4,
15]. These descriptors with Euclidean distance L2 form the metric space (D, d).
The distance density is depicted in Figure 3a and the intrinsic dimensionality of
dataset (defined in Section 2.2) is 26.9.

The second dataset is formed by 1 million SIFT descriptors [9] from ANN
dataset4. These descriptors are 128-dimensional vectors of unsigned integers. We
compare them with Euclidean distance as well, and density of this distance is
depicted in Figure 3b. The intrinsic dimensionality of this dataset is 13.4.

4.3 Sketching Techniques

We examine four sketching techniques in this paper. The GHP 50 technique
is adopted from paper [12]. It is based on generalized hyperplane partitioning
(GHP) depicted in Figure 4. A pair of pivots pi1, pi2 ∈ D is selected for each
bit i of sketches sk(o), o ∈ X, and value of bit i expresses which of these two
pivots is closer to o. Therefore, one instance of GHP determines one bit of all
sketches sk(o), o ∈ X. The pivot pairs are selected to produce balanced and low
correlated bits.

In particular, the pivot selection [12] works as follows: (1) an initial set of
pivots Psup is selected at random from domainD, (2) balance of GHP is evaluated
using a sample set of X for all pivot pairs (p1, p2), p1, p2 ∈ Psup, (3) set Pbal is
formed by all pivot pairs that divide the sample set into two parts balanced
with tolerance 5 % (at least 45 % to 55 %) and corresponding sketches skbal
with balanced bits are created. (4) The absolute value of Pearson correlation
coefficient is evaluated for all pairs of bits of sketches skbal to form correlation
matrix M , and (5) a heuristic is applied to select rows and columns of M , which
form its sub-matrix with low values and size λ × λ. (6) Finally, the pivot pairs
which produce the corresponding low correlated bits define sketches sk(o), o ∈ X.
A pseudo-code of this heuristic is available online5.

The second technique GHP 80 is similar to GHP 50, but the pivots Pbal

are selected to produce bits balanced to β = 0.8. This sketching technique have

4 http://corpus-texmex.irisa.fr/
5 https://www.fi.muni.cz/ xmic/sketches/AlgSelectLowCorBits.pdf
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Fig. 5: Box-plot

been discussed to produce sketches of the similar quality as GHP 50, considering
sufficiently high sketch length λ [13]. However, such sketches should be indexable
more easily due to their lower intrinsic dimensionality.

Technique BP 50 uses ball partitioning instead of GHP. BP is defined by a
pivot and radius to split data into two parts. We evaluate distances to pivot for
each object from a sample set to select radius dividing sample set into halves.
Therefore λ pivots are selected to create sketches of length λ. To ensure as small
pairwise bit correlations as possible, we employ the same heuristic as in case of
techniques GHP 50 and GHP 80.

The last technique THRR 50 is inspired by papers [10, 6], and it is the only
one of examined sketching techniques which is applicable just in vector space,
not in the more generic metric space. It uses the principal component analysis
(PCA) to shorten vectors to length λ. Then these shortened vectors are rotated
using a random matrix, and finally they are binarized using the median values
of each their dimension: the bit value expresses, whether the value in a given
position of rotated shortened vector is higher or lower then the median evaluated
on a sample set. Therefore, the balance β of bits is 0.5. The random rotation of
shortened vectors helps to distribute information equally over the vector, as the
PCA returns vectors with decreasing importance of values in particular positions.
Since the binarization dismiss this different importance, it is suitable to rotate
shortened vectors randomly and then binarize [6].

We create sketches sk(o), o ∈ X of four different lengths: 64, 128, 192 and
256 bits, by each of the sketching technique for the both, DeCAF and SIFT
datasets. The only exception is constituted by THRR 50 on SIFT dataset, as this
technique cannot produce sketches longer then the original vectors. Therefore,
for this combination we examine just lengths 64 and 128 bits.

4.4 Results

To verify capability of Approaches A and PM to estimate quality of sketches,
we compare these estimations with the recall of kNN queries, using the proce-
dure and parameters described in Section 4.1. We use CandSet(q) of size 2000
objects (i.e. 0.2 % of the dataset X), and we depict results by box plots to show
distribution of values for particular query objects (see Figure 5 for its definition).
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Fig. 6: DeCAF dataset: the measured recall and quality estimations by Ap-
proaches A, PM and their average

Fig. 7: SIFT: the recall, quality estimations by Approach A, PM and their average

The results for the DeCAF dataset are depicted in Figure 6. The box-plots,
which describe the measured recall use the primary y axis. The names of par-
ticular sketching techniques (on x axis) are of the form skTech β λ where β is
the balance of bits in percentages and λ is the sketch length in bits. Quality
estimations use the secondary axis y : Approach A is expressed by dashed line
and Approach PM by full line. As we have two estimations of the same feature,
we evaluate even the average of these two estimations, which is expressed by
black curve with points.

The results for the SIFT dataset are depiected in the same way in Figure 7.
There is a clear correspondence for both datasets between the recall and estima-
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Table 2: Correlations of quality estimations and measured medians of the recall
Approach A Approach PM Average

DeCAF +0.96 +0.97 +0.98

SIFT +0.55 +0.74 +0.93

tions. However, in case of SIFT, the Approach PM significantly overestimates
sketches THRR and Approach A underestimates it. Another remark is, that the
quality of sketching techniques is data dependent, as for instance the BP tech-
niques perform bad on DeCAF dataset but for SIFT they are still reasonable.
The interpretation of these results should take into account, that the recall is
strongly dependent on the size of the CandSet(q) as well.

We show the Pearson correlation coefficient between the estimated values
and the medians of measured recalls in Table 2. The both approaches provide
top quality results in case of DeCAF dataset, but the estimations are not as
good in case of SIFT due to THRR technique. Nevertheless, the Approach PM
still provides a strongly correlated estimation with the measured values, and the
quality of averaged estimation is of a top quality even in case of this dataset.

We do not discuss an efficiency of query processing, as we consider sequential
evaluation of all Hamming distances h(sk(q), sk(o)), o ∈ X during query evalu-
ation. In this case, query processing times are equal for all sets of sketches, as
they are given by the size of candidate set. Indexing of sketches pays off mainly
for huge datasets, and its efficiency is influenced by iDim of sketches. However,
our preliminary experiments on just two very different datasets do not justify
any reasonable conclusions about this feature, and thus we postpone it to the
future work.

5 Conclusions

Several techniques of the Hamming embedding have been proposed to speed up
similarity search. Since their parameters (including the length of the transformed
objects – sketches) must be selected in advance, and their ability to approximate
similarity relationships between objects is data dependent, the selection of par-
ticular sketches for similarity search is a challenging problem.

We proposed two efficient approaches to estimate the quality of sketches with
respect to particular data. These approaches do not need any ground truth or
query evaluations but just a small sample set of data objects and their sketches.
Both approaches are based on analytic study of sketches. Experiments with two
real-life datasets show that they provide a reasonable estimation of the quality
of sketches when compared with the recall of kNN queries. The average of the
proposed estimations follow the medians of the measured recall with correlations
+0.98 and +0.93, in cases of our two datasets.
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