

Proceedings of the Tenth Canadian Conference on COMPUTATIONAL GEOMETRY

CCCG '98 School of Computer Science McGill University

Montréal, Québec, Canada August 9 - 12, 1998

Power Diagram Depth Sorting

Paolo Cignoni;

I.E.I - Consiglio Nazionale delle Ricerche, Via S. Maria 46, - 56126 Pisa, ITALY Leila De Floriani[†]

DISI, Università di Genova, Via Dodecaneso, 35 - 16146 GENOVA (Italy)

May 11, 1998

1 Introduction

The problem of depth sorting has received considerable attention in the literature: a lot of research deals with the two dimensional version of the problem. A good overview of the depth sorting problem is contained in the De Berg's PhD Thesis [2]. Beside its theorethic importance, the depth ordering finds many useful real applications, from visibility problems in GIS [4] to the Direct Volume Visualization of unstructured meshes [5, 6].

The main contribution of this paper is the proposal of a new technique for depth-sorting cell complexes that belongs to the class of projective complexes. Given a cell complex Γ in \mathbb{E}^d , the approach is based on the preliminary construction of the convex complex Γ^* in \mathbb{E}^{d+1} corresponding to Γ and on its representation as a power diagram. This approach exhibits a $O(n\log n)$ runtime complexity to sort a complex and requires only linear storage.

1.1 Definitions

Obstruction relation The obstruction relation \prec_p (usually called *infront/behind* relation) for a pair of non self-intersecting cells γ_1 , γ_2 with respect to a viewpoint p, defines a visibility/depth order of a set of objects; that is sequence of such objects such that, if object A obstructs object B when seen from p, then A preceeds B in the sequence.

A cell complex Γ is called *acyclic* with respect to a given viewpoint p if and only if relation \prec_p defines a partial order over the cells of Γ . In this case, it is

possible to order the cells of Γ either front-to-back or back-to-front with respect to the viewpoint.

Cell complexes in \mathbb{E}^d that can be obtained as the orthogonal projection of the lower part of the boundary of a convex polytope in \mathbb{E}^{d+1} are called regular cell complexes [3]. These complexes are also known as projective complexes [1].

An important result due to Edelsbrunner [3] for regular cell complexes is that they are acyclic. Delaunay simplicial complexes are acyclic with respect to any viewpoint [3], and it assures that a volume dataset represented by a Delaunay complex can always be sorted and correctly visualized.

In the following we will use the following concepts and definitions about power diagrams, a complete introduction about power diagrams can be found in [1]. Let S be a finite set of spheres in \mathbb{E}^d , we denote the power diagram of S with PD(S), the power of a sphere s w.r.t. a point p with pow(p,s) and the chordale between two spheres s, t with chor(s,t).

1.2 Power diagrams and convex polyhedra

Let \mathbb{E}^{d+1} be spanned by the coordinate axes x_1, \dots, x_{d+1} and let h_0 denote the hyperplane $x_{d+1} = 0$. The following result, that relates PD in \mathbb{E}^d and convex polyhedra in \mathbb{E}^{d+1} , is presented in [1]:

Theorem 1. (Aurenhammer [1]) For any (d+1)-polyhedron P, which can be expressed as the intersection of upper halfspaces, there exists an affinely equivalent power diagram in h_0 , and viceversa.

This theorem is based on the transform Π that maps a sphere $s \subset h_0$ with center z and radius r

^{*}Email: cignoni@iei.pi.cnr.it

[†]Email: deflo@disi.unige.it

into a hyperplane $\Pi(s)$ in \mathbb{E}^{d+1} and viceversa.

An interesting property of this transform is that, if s and t are two non-concentric spheres in h_0 , then chor(s,t) is the vertical projection of $\Pi(s) \cap \Pi(t)$ onto h_0 . Therefore, given a polyhedron P, it is possibile to obtain a set of spheres S whose PD is equal to the projection of P onto h_0 .

The theorem 1 refers only to polyhedra formed by the intersection of non-vertical upper halfspaces, thus unbounded infinite polyhedra whose projection onto h_0 is a partition of the whole plane. With the following theorem, we extend this relation in order to be able to manage bounded polyhedra such as the lower part of a convex hull.

Theorem 2. Let P be the lower part of a convex polyedron bounded by simplicial facets; there exists a power diagrams PD(S) of a set of spheres S whose cells are superset of the projection of the facets of P onto h_0 .

Using this theorem and some other lemmas we can prove that the obstruction relation betweens cells of a projective simplical complex $\sigma \prec_p \tau$ agrees with the power of the spheres s_{σ}, s_{τ} corresponding to each cell $pow(p, s_{\sigma}) < pow(p, s_{\tau})$. This result suggests a technique for depth sorting a simplicial complex Γ in \mathbb{E}^d that is the projection of the lower part of a convex polyhedron in \mathbb{E}^{d+1} Γ^* . Infact, given the viewpoint p, it is sufficient to sort the d-cells σ_i of the complex according to $pow(p, s_{\sigma_i})$, where s_{σ_i} is the sphere obtained by the transformation Π from the plane h_i affine to the facet σ_i^* of Γ^* . Hereafter we will refer this approach to depth sorting as $Power\ Diagram\ Depth\ Sorting$ or PDD sorting.

Using some corollaries of the above theorem we are able to show that this approach can also be used to sort scattered triangles in space with a complexity of $O(n \log n)$, with just a linear overhead in storage (the center and radius for each sphere).

The most interesting aspect of this approach is the *clearness* of the structure needed for the sorting once the corresponding polyhedron Γ^* has been found: for each d-simplex it is only necessary to store the corresponding power circle.

1.3 Lifting a simplicial complex

In the common cases we have just a simplicial complex Γ in \mathbb{E}^d , but not the complex Γ^* such that Γ is

the vertical projection of Γ^* . We denote the problem of finding Γ^* , if there exists one, as the *lifting* problem. In some special cases it is simple to find the convex polyhedron, for example if Γ is a Delaunay simplicial complex we can exploit the well known correspondence with convex hull in \mathbb{E}^{d+1} to find Γ^* . We show that the lifting problem can be formulated as a linear programming problem. The lifted complex is convex if and only if the dihedral angle between any two lifted (d-1)-adjacent simplex is convex. This condition can be expressed by a linear inequality and a solution of the resulting system can be found used the simplex algorithm.

Some experiments in two dimensions showed that the we can *lift* a complex of one thousand triangles in less than a minute on a small personal computer using a public domain LP solver. This preliminary result seems to show that the lifting of a complex is a reasonable preprocessing step for the subsequent PDD Sorting.

References

- F. Aurenhammer. Power diagrams: Properties, algorithms and applications. Siam J. Comput., 16(1):78-96, February 1987.
- [2] Mark de Berg. Ray Shooting, Depth Orders and Hidden Surface Removal. Number 703 in Lecture Notes in Computer Science. Springer-Verlag, 1993.
- [3] H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimensions. Combinatorica, 10:251–260, 1990.
- [4] L. De Floriani, P. Magillo, and E. Puppo. Geometric structures and algorithms for geographical information systems. In J.R. Sack and J. Urrutia, editors, *Handbook of Computational Ge*ometry. Elsevier Science, 1998.
- [5] Nelson Max, Pat Hanrahan, and Roger Crawfis. Area and volume coherence for efficient visualization of 3D scalar functions. Computer Graphics (San Diego Workshop on Volume Visualization), 24(5):27-33, November 1990.
- [6] Peter L. Williams. Visibility ordering of meshed polyhedra. ACM Transaction on Graphics, 11(2):103-126, April 1992.