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Abstract.

We propose a model that describes the rain attenuation process, which can be useful for designing
atmospheric fade countermeasure systems for sateHite communications. We analyzed a data set of up-
link (30 GHz) and down-link (20 GHz) attenuation values averaged over | second intervals. The data
are samples relative to 10 significant events, for a total of 180,000 s, recorded at the Spino d’Adda
(North of Ttaly) station using the Olympus satellite.

Our analysis is based on the fact that the plot of attenuation versus time recalls the behaviour of a
self-similar process. Starting from this observation, we make various considerations and propose a
fractional Brownian motion model for modeling the attenuation process. We describe the model in
detail, with pictures showing the apparent self-similarity of the measured data, then we show that the
Hurst parameter of the process is a simple function of the attenuation.

In order to produce useful data for simulating fade countermeasure systems, one needs to
interpolate the measured attenuation traces, which have | s granularity, so we describe a method for
producing random data that interpolate the measured samples, while preserving some of their
interesting statistical properties.

We conclude by suggesting a possible application for such a model, which is the subject of current
research.

Introduction

Until recently it was thought that the introduction of fiber optics in high speed digital
communications would dramaticaily reduce the employ of satellites. Since then, satellite
communications systems have been reevaluated. This is not only due to the special features offered by
satellites, such as broadcasting and the ease of creating new user installations regardless of
geographical position, but also to recent progress in technology, which has made possible the use of
satellites which in some cases are economically competitive with fibers. In particular, the fall in cost
of solid state power amplifiers (SSPA) has allowed the use of personal systems in the Ka band, which
offers noticeable advantages, such as a wide spectrum and a significant reduction in the size of on-
board antennas. High gain multispot antennas make access possible for users equipped with 2 W
SSPA and below 1 m dishes for multimedia applications such as videoconferencing. The situation
improves considerably if on-board processing is employed. In this case multimedia applications are
made accessible to mobile users as well.

In order to ensure an acceptable level of link availability (in the order of 99.9% for personal
systems), however, using the Ka band entails dealing with signal attenuation due to rain and
scintiilation, since the amplitude of both these phenomena increases with frequency [11, 12]. Fade
countermeasure systems, such as transmission power [9], bit and coding rates adaptation [, 2],
frequency {12, 13] or space diversity [10} are thus required to avoid loss of economy. _

All these systems need a quick and accurate measuremnent of link degradation, due to atmospheric
events, in order to reduce the power margins over the countermeasure’s thresholds of intervention.
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The estimation accuracy of both the attenuation or the signal to noise ratio (SNR) is generally
inversely proportional to the measurement time. Furthermore, due to the satellite transmission defay
and the algorithm used, there 15 an interval of time, in the order of one or two seconds, between the
countermeasure application and the actual reception of data by the destination user. By observing a
considerable sample of experimental attenuation data we revealed that linear regression methods were
not useful for short term predictions of attenuation. This opinion is also shared in {5]. The short time
attenuation fluctuactions (expressed in dB), in fact, seem to have a Gaussian distribution and a small
autocorrelation. This phenomenon is mostly attributed to scintillation, i.e. signal amplitude variations
due to tropospheric turbulence [20], rather than to raindrop absorption and scattering. Instead of rying
to predict the attenuation value, our approach is to estimate its variance, which is due to the delay
between measurement and data reception. Then, in order to compensate for such a variance and the
measurement inaccuracy, we can introduce a suitable power margin. This paper presents a method to
model attenuation behaviour, which is applicable for time intervals of a few seconds, in order to
optimize both the attenuation measurement time and the needed po+. »r margin. This method is based
on a fractal model which is also used to generate, at any desired ¢ -e instant, synthetic attenuation
data which can be used when simulating fade countermeasure systeras. :

First we give an overview of fractional Brownian motion, and describe our model. Then the
interpolation method, based on the random midpoint displacement algorithm is introduced, followed
by an explanation of some of the model’s characteristics. We conclude with-a brief outline on how the
model can be used to optimize measurement times.

Interpolation of a set of measured attenuation values

Experimental traces of atmospheric attenuation are typically available with a measured value every
second, an interval which is usually much longer than the frame time of a satellite communication
system operating in TDMA, and also about four times a typical satellite round trip time. As we have
noted previously, fade countermeasure Systems need a quick and accurate measureé of the attenuation
value, and this estimate must be disseminated as soon as possible, for the satellite network to apply the
adaptive countermeasure.

Our approach to the problem of simulating rain fade events is to take a rain attenuation trace and
interpolate it, in order to synthetically compute attenuation samples at a rate “gher than the
measurement rate. ’

By looking at the traces, it is quite clear that any kind of elementary interpolation method would
lead to a behaviour of the process which is quite far from reality. Linear or spline interpolation, for
example, would create at small scales — i.e. between measured samples — 2 smooth graphic that is
not similar at ail to what is observed at coarser scales. This discrepancy is important for the problem at
hand, because we need to check the behaviour of the prediction algorithms when the samples are
noisy. We therefore took a different approach, which was inspired by the apparent statistical self-
affinity of the measured attenuation. In Figure 2, the same rain event is magnified and properly
rescaled. One can see what appears to be the footprint of a rescaled self affine random process:
without the help of the numbers on the horizontal axis, it would be difficult to tell whether any one
picture is taken on a greater or smaller scale than the others.

Fractional Brownian motion and statistical self-affinity

A stochastic process A(t) is said to be statistically self-affine if, for any given positive real number
r, its statistics are the same as those of the process kA(¢/ r), where k depends on r. This means that, if
the process is stretched along the time axis, a suitable magnification along the ordinate yields a new
process with the same statistics as the original one. One such process is the Brownian Gaussian
motion, that is, a process with stationary independent Gaussian increments.

Let us denote this process by B. If we consider discrete times f;, B, — B is, by definition, a

Gaussian random variable with null mean and variance G~ The increment B, — B; is stationary,

that-is, it does not depend on the index i, Moreover, it is independent of other increments as well, that
is. different increments B, — B, are iL.i.d. variables. Given these properties, the increment process -
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W(i,j)=B - B, is only dependent on the difference & = i-j, so that it can be written as W(k). From
these properties, a consequence is that W(k) is a Gaussian random variable with null mean and
variance equal to 4. In fact u(W(k)) = ku(W(L)) =0, and o’ (W(k)) = ko (W(1).

The same concepts can be applied to the continuous time domain. where W(T) = B(D)-B(1+7) is the
difference process, which is independent of ¢, but only depends on 7. As with the discrete case. W(r)

has a null mean and a variance proportional to 7. B{r), in the continuous domain, can be viewed as the
integral of white Gaussian noise, or even as the output of a linear system with transfer function G such

that [G(f)’_ o< 7 whose input is fed with white Gaussian noise. Hereafter, uniess otherwise

specified, we wili refer to Brownian motion without distinguishing between discrete and continuous
time,

Gaussian Brownian motion, as defined above, is a statistically self-affine process such that B(z) is

statistically indistinguishable from Vr;B(t/r). This property will be central ‘to the following
discussions. It means that stretching the stochastic process B(t) along the horizontal axis by r times

and along the vertical axis by ~r times yields a new stochastic process which has the same statistics

as B(r) or, more precisely, 8(r) and v7B(t/r) have the same finite dimensional joint distributions.
The reason is that B(r) is completely defined by the variance of the nufl-mean, Gaussian increments
W(7) = B(1)-B(t+1) and, since the variance of W(7) is proportional to 7, B(¢) has increments that are

distributed like those of \/FB(r/r). This fact can also be expressed by saying that the “slowed”
-process B(i/r) is properly rescaled by magnifying it by r™° times.

Fractional Brownian motion (fBm, for short) is an extension of these concepts, Gaussian fBm can
‘be defined as a process with stationary Gaussian increments such that B(t) has the same statistics as

r7B(¢/r). where H & [0; 1] is known as the Hurst parameter of the process. The same process can
be obtained by filtering white Gaussian noise through a linear system with transfer function G such

that |G(f)’2 oc f7%, where 8= 1+2H, hence Be [1;3] (4, §1.4.2]. The increments of fBm are

correlated, apart from the case H = 0.5, when fBm is reduced to “ordinary” Brownian motion, whose
increments are uncorrelated.

The difference process of a Gaussian fBm is called Gaussian Hurst noise (3, pg.249], or fractional
Gaussian noise (fGn for short). For H = 0.5, fGn is the ordinary white Gaussian noise, which exhibits
no persistence, that is, its values at different points are uncorrelated. For 0.5 < H < 1, fGn is persistent
(positively autocorrelated), while it is antipersistent (negattvely autocorrelated) for 0 £ H < 0.5. The

power spectrum of fGn is proportional to f'ﬂ”.

Measure of the parameters of the scintillation process

We started from a data set chosen from the results of the propagation experiment, in Ka band,
carried out on the Olympus satellite by the CSTS (Centro Studi sulle Telecomunicazioni Spaziali}
Institute, on behalf of the Italian Space Agency (ASI). The up-link (30 GHz) and down-link (20 GHz)
attenuation samples considered were 1 second averages. The samples relate to 10 significant events
for a total of 180,000 s recorded at the Spino d’ Adda (North of Italy) station, collected from August to
October, 1992, The slant path elevation angle was 30.6" and the antenna diameter was 3.5m.

The attenuation versus time plot recalls the behaviour of a self-similar or self-affine process.
However, our purpose is to look at the characteristics of the process in the range of a few seconds at
the most, so we do not consider the overall shape of the trace of attenuation event, but we only look at
the details that lie in that time range. In practice we analyze the scintillation process, which is
commonly identified for frequencies above a few hundredths of Hertz (0.02-0.03 Hz in [20]). We
expect to find a characterization of the scintillation process which depends on the instantaneoqs value
of the attenuation. To this end, we analyzed the difference process of the attenuation using the
following procedure.
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Figure 3: An example of the interpolation procedure. Starting from [4 ! s-spaced points we
randomly compute 50 values per second. Values on the horizontal axis are 1/50-th of second, values
on the vertical axis are attenuations in dB.

Physical considerations about the fractal characterization

The interpolation criterion we have described so far is based solely on geometrical considerations.
Indeed, all parameters are deduced from the analysis of the values of the measured samples. It would
be interesting to find some kind of justification for this procedure, that builds on physical findings and
theories. In this section we will try to suggest some possible explanations and analogies, most of
which should be taken as ideus for further research in this potentially fertile field.

The fundamental relaticsiships we found are that the scintillation power o’ and its Hurst parameter
are both dependent on the attenuation. As far as the scintillation power is concerned, most authors
would admit that it should be considered constant with respect to the attenuation value. However,
recent findings [20] suggest that a relationship exists, and it has the same sign as our statistics show.

As far as the variability of the parameter H with the attenuation value is concerned, we will refer to
the spectral analysis of the scintillation process. In fact, it is commonly accepted [20, 22] that the
power spectrum of the scintillation in log-log scale follows an £ slope followed by an f'gl slope, and
that the comer frequency £, is dependent on many parameters. To our knowledge, no studies exist on
the dependence of the comer frequency upon the attenuation value. Anyway, f, is usually assumed to
lie in a range compatible with the time range 1-3 s of our analysis. If f, lies within this range, then its
dependence on the attenuation, whose laws are as yet unknown, can be reasonably thought to cause
the dependence of the Hurst parameter on the attenuation. In fact, as outlined above, the power density
specrtum of an fBm process exhibits a slope of 8, where B = 1+2H. It is commonly assumed that the

slopes of the power density spectrum of the scintillation process around f, are f 'for f< f.and f ¥ for
f > f., which implies that H should lie in the range {0; 0.83]. This observation is noteworthy, because
the range we found is compatibie both with the allowed range of H, which is {0; 1] and with our
measures, which give a range of approximately {0.2; 0.6]. Here we suggest that the dependence we
observed of the Hurst parameter on the attenuation can be attributed to the variability of the
scintillation power spectrum with the attenuation. If the spectrum is approximated by two asymptotes
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with slopes ! for f < f and £ for f > f., then 4 can be thought of as a function of f,, which in turn
depends on the attenuation.

Use of the model to optimize measurement times.

The methods to estimate the signal degradation reported in {14-16] produce a variance of the
estimation which is inversely proportional to the number of inspected bits and thus to the
measurement time interval. Considering that the variance of the attenuation increases with time
according to our model, expressed by relation (1), it is possible to optimize the measurement times.

Let us denote by ¢, the interval of time between the estimation of the signal degradation and the
instant the destination user receives data sent with the adaptive countermeasure chosen according to
the estimation. Let z, be the measurement time, and let us assume that the measurement error and the
attenuaticn difference process are independent and both Gaussian. The total error on the signal quality

estimation is then Gaussian with a variance 0'5 given by

2 2 i
O-q = O-m (rm ) + GA ([Hi + I:_\ )

where O'i 1s the measurement error variance and O‘i is the evolution of signal quality variance at
the time ¢, +¢,, computed according to our attenuation model. Since ¢, depends on the fade

countermeasure system adopted, and can be assumed to be constant, O'j can be minimized with
. 2 . . . .
respect to 7, given that o, decreases, while O’i increases with the measurement time. Once the

minimum O, s obtained, a suitabie power margin can be computed in order to guarantee the bit error

rate {BER) required by the user, This margin is generally dependent on the characteristic of the BER
versus the SNR and is thus dependent on the modulation/coding scheme. This topic needs further
investigation, which will be the subject of future work.

Conclusions

The model we have presented characterizes the short time evolution of the attenuation process,
mostly due to scintillation. We considered attenuation sample data, spread over a two-month period, at
a fixed frequency, and with a fixed elevation angle and antenna size, so no attempt was made to
consider the dependency of the process on these factors. We made the fundamental assumption that
the process is to be considered as stationary in the same bulk rain attenuation beit.

It is well known [21] that the amplitude of rapid level fluctuations of the attenuation depends on a
lot of factors such as elevation angle, antenna gain, season and latitude of the earth station.
Corrections to apply for different elevation angles and antenna sizes can be found in [22], while
reference [23] gives some ideas about the dependence on season and on some other factors in clear air
conditions alone. We conciude therefore that the derivation of a model which has a more general
validity needs a much deeper study and a much larger sample of attenuation data.
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