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Abstract

A promising application of system-level diagnosis is the testing of VLSI chips during the man-
ufacturing process. A comparison-based diagnosis is easier to implement on the wafer than the
PMC-conform one. However, existing comparison models essentially overlook the test invalidation
due to the physical faults in the comparators, This paper proposes a comparison-based model and a
diagnosis algorithm which takes into account the effects of faults that affect the comparators. In order
to deal with faults in the comparators, a preliminary comparator test session is included. This session
reguires the adjacent units to be able to feed the comparator with all needed patterns independently
of cach other. As shown in the paper, this requirement can be satisfied at a relatively small wafer
design cost. The test session can also be extended to handle the faults in the syndrome collection
circuitry.

Categories and Subject Descriptors: B.7.m [Integrated Circuits]: Miscellaneous; B.8.1 [Perfor-
mance and Reliabiltity]: Reliability, Testing, and Fault-Tolerance

General Terms: Algorithms, Design, Reliability

1 Introduction

System level diagnosis, also called self-diagnosis, has been introduced by Preparata et al. in 1967 [1]. In
self-diagnosis, a system composed of several units connected by bidirectional links can be diagnosed using
the information provided by fests. These tests are performed by the units comprising the system itself,
and each of them involves two units, called the festing and the tested unit. The testing and the tested
unit must be adjacent (that is, interconnected by bidirectional links). Essentially, a test is performed as
follows:

e the testing unit requests the tested unit to run a test;
¢ the tested unit returns a result to the testing unit;

¢ the testing unit compares the actual and the expected results and provides a binary test outcome.
The outcome is 0 if the actual and the expected results match (the test passes), I otherwisc (the
test fails).

The set of tests utilized for the purpose of diagnosis is defined by the directed graph DG = (V, E),
where V' is the set of units and E = {(u,v) such that unit u tests unit v}. DG is called the diegnostic
graph of the system. Observe that the tests involving different units can be run simultanecusly. The set
of all test outcomes is called syndrome.

The test results are not necessarily reliable, since testing units themselves may be faulty. Different
hypotheses upon the test outcome generated by faulty units lead to different invalidation rules, and
consequently to different diagnostic models. The most widely used diagnostic model is the PMC model
introduced in (1], which assumes arbitrary test outcomes for tests performed by faulty units. The invali-
dation rule of the PMC model is shown in ‘Fable .

Comparison models for self-diagnosis have also been introduced in literature. In comparison models,
tests are performed by comparators which compare the outputs of pairs of units that run the same test.
The diagnostic graph corresponding to a comparison model has an undirected edge between a pair of
nodes if there exists a comparator between the corresponding units. The outcome of the comparison is 0
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testing unit | tested unit | test outcome |
fault-free fault-free 0
fault-free faulty 1
faulty fault-free Qorl
faulty faulty Dori

Table 1: Invalidation rule in the PMC model

if the outputs agree, and 1 if they disagree. Again, different assumptions on the behaviour of the faulty
units and comparators lead to different diagnostic models. In Malek’s model [2] the comparators are
implicitly assumed to be fault-free and the comparison outcome is 0 only if both units being compared
are fault-free. The model introduced by Chwa and Hakimi [3], which also assumes reliable comparators,
allows arbitrary comparison outcomes when both the compared units are faulty. In [4], Maeng and Malek
proposed a modification of Malek’s model, in which comparisons are performed by the system units
themselves: if unit ¢ is adjacent to units j and k, then ¢ may be utilised to compare the outputs of § and
k. This requires the system units to be homogeneous and able to perform comparisons, which condition
is satisfied when the units are processors.

Rangajaran, Fussel and Malek [5] suggested that system level diagnosis may find application in the
testing of VLSI chips on the wafer during the manufacturing process (wafer-scale testing}. In this case the
main goal of the diagnosis is identification of good integrated circuits (ICs) within the wafer, which will
be packaged, while the faulty circuits will be discarded. This approach reduces the complexity and cost
of the Automated Test Equipment (ATE) needed to test the chips with current technology. Moreover,
the time needed to test the ICs on the wafer can be significantly reduced as well.

If the nature of the manufactured chips is unrestricted, the comparison model is the best choice for
this application. In order to implement self-diagnosis on the wafer, hardware support is necessary. First,
interconnection links need to be introduced and comparators need to be wired on each link. To keep the
number of comparators relatively small, the interconnection structure should be regular and the degrec
of nodes small. Additional hardware support is required to provide the test sequence for the chip inputs
and to collect the outcomes of the comparators. The latter task may be executed by the probing unit,
which reads the outputs of the comparators and transmits them to a reliable external computer. Once
the external computer receives the syndrome, it will execute the diagnosis algorithm.

Unfortunately, the comparators and the hardware added for the purpose of diagnosis may be faulty.
This may lead to incorrect diagnosis if the diagnostic model does not take sach faults inte account:
therefore a modification of the existing models is necessary.

In this paper we introduce an implementation of a comparison model in which faults in the comparators
and in the additional hardware are consiGared.

"The paper is structured as follows. In Section 2 we introduce a diagnosis algorithm assuming the PMC
model. Section 3 extends the algorithm to comparator-based models and identifies the problems caused
by faults in the comparators. Section 4 and 5 describe a technique which ensures correct diagnosis even
in the presence of comparator faults. Some additional implementation issues are discussed in Section 6,
and the implementation of the circuitry needed for the safe collection of test outcomes is described in
Section 7.

2 A self-diagnosis algorithm for the PMC model

In order to perform the self-diagnosis, we need a diagnosis algorithm which, given a diagnostic graph
and a syndrome, provides a diagnosis of the system; i.e. classifies every unit as either foulty or fouli-
free or unknown. The diagnosis algorithm usually runs on an external and reliable computer, called the
diagnoser. The diagnoser is also assigned the task of collecting the test outcomes from the units in the
system.

‘The diagnosis is said to be correct if no faulty unit is diagnosed as fault-free and no fault-free unit
is diagnosed as faulty. The diagnosis is said to be complete if every unit is classified as either faulty or
fault-free. It is known that a correct and complete diagnosis is possible only when the namber of faults in
the system is no more than the so-called diagnosability, which is bounded above by the minimum indegree
of the nodes in the diagnostic graph [6].

In large scale systems where units are connected to a small number of neighbours, correct and complete
diagnosis is guaranteed in the presence of a small number of faults. This is the case of wafer-scale testing,




where, however, the expected percentage of faulty ICs may be as large as 50%. For this reason, algorithms
aiming at providing correct and complete diagnosis are not suitable for wafer-scale testing. In fact, the
algorithms proposed so far provide a diagnosis which is either complete but possibly incorrect (probabilistic
diagnosis) or correct but in general not complete (incomplete diagnosis}. Huang et al. [7], Agarwal et al.
(8], and LaForge et al. [9] use probabilistic PMC-based algorithms. Maestrini et al. [10] [11] aim at the
proven correct diagnosis whose completeness is not guaranteed.

In all cases, PMC-based diagnosis algorithms extensively exploit some immediate consequences drawn
from Table 1:

1. If two units A and B declare each other fault-free (we denote this by A&B, or simply call it a 00
result), then they are of the same state.

2. If B is faulty and there exists a 0-labeiled path in DG ending at B and, then all the units in the
path are faulty.

3. If unit A accuses B to be faulty but B declares A fault-free (A&)B), then B is faulty.

4. If units A and B accuse each other to be faulty (A%li}B, or a 11 result), then at least one of them
is faulty.

Maestrini’s algorithm, which will be further developed in this paper, performs the diagnosis of bi-
dimensional grids. However, it can be adapted to perform the diagnosis of other structures {arrays,
octagonal meshes, hypercubes and so on) as well. The algorithm proceeds as follows:

¢ Initially, units proven to be faulty are identified using property 3.

e Then pairs of units of a still undetermined state, declaring each other faulty, are selected and
classified as dual units. The goal of this step is to trade a faulty unit for an unknown one, as one
of them is surely faulty; this way, some faults are separated and more reliable assumptions can be
made about the number of faults in the remaining part.

¢ The remaining units are built up into aggregates based on 00 test results, and the largest aggregate
(or the collection of those with the largest cardinality) is selected as the fault-free core (FFC).

e In the last step of the algorithm, the fault-free core is extended recursively, relying on the test
results made by the units in the FFC.

The algorithm is proven to be correct if the number of faults in the system does not exceed a certain
number (the syndrome-dependent bound, denoted by T, ), asserted by the algorithm itself. The algorithm
has the favourable property that this fault limit is bounded below by the syndrome-independent bound,
which is O(N?/?), where N is the number of the units in the system.

3 Comparator-based diagnosis

Under the assumption that no faults occur in comparators, a comparator-supplied syndrome can he easily
converted into a PMC syndrome. A comparison result can be regarded as if mutual tests were performed
by adjacent units with the outcomes shown in Table 2.

comp. PMC situation
output | equivalent in effect
0 00 both units faulty or
both units fanlt-free
i 11 at least one unit faulty

Table 2: Equivalent PMC syndromes

With this transformation, which is basically the Chwa-Hakimi model, PMC-based algorithms will work
without modification. Note that no comparator-based syndrome is converted to a 01 PMC syndrome, but
any PMC algorithm should work without 01 mutual outcomes, since faulty units that would produce 0
“have the right” to declare other units faulty any time. Regarding the distribution of possible syndromes




over a specific system state, the loss of 01 results entails a somewhat decreased average efficiency, but
the worst-case performance of a PMC diagnosis algorithm is still the same as that achieved by the same
algorithm in a comparator-bagsed implementation.

3.1 Impact of comparator faults

Using the outcome conversion described in the previous section leads to serious probiems if comparators,
containing physical faults, produce incorrect results, Table 3 describes how the PMC model is disturbed
in the presence of comparator faults (CFs).

case | umity | unity | comp. | comp. PMC
state | state | state | result | conform
a good | good | good 0 yes
b good | good | faulty 0 ves
¢ good | good | faulty 1 no
d good | faulty | good 1 yes
e good | faulty | faulty 1 yes
f good | faulty | faulty 0 Lo
g faulty | faulty | any any yes

Table 3: CFs and PMC compatibility

Note that masked CFs, such as in cases b and e, do not present a problem in the wafer-scale testing
application, because the comparators will never be used again after the diagnosis is performed. Case g is
also compliant with the PMC assumptions, since the test results of faulty units are regarded as unreliable.
On the other hand, active CFs (cases ¢ and f) may prevent test results from complying with the PMC
invalidation model.

Case c is not critical in itself, because still a correct diagnosis can be obtained by a certain degradation
of the diagnosis algorithm. The degradation consists in restating Assumption 4 as “at least one among
units A, B, and the associated comparator is faulty.” Since this means that both units A and B might
be good, this degradation prevents the algorithm from falsely diagnosing a cycle of good units and one
faulty comparator as faulty (Figure 1).

0
—(O— good unit

0 0 (O good comparator

@ faulty comparator

1
Figure 1: Cycle of good units with one faulty comparator

Weakly correctness means that faulty units are not declared fault-free. With only case ¢, Maestrini’s
algorithm [10] [11] is still weakly correct if the condition on the total number of faults (affecting units
and/or comparators) holds. However, there is a chance that units declared faulty are actually fault-free
when 11 results are not reliable. The syndrome-dependent bound T, also accounts for both unit and
comparator faults, thus fewer unit faults are sufficient to occur to make the diagnosis incorrect.

Case f poses a much more serious problem. The correctness of every diagnosis algorithm known
to the authors depends on the validity of the aggregation step, which is based on Assumption 1: units
testing each other with 0 are in the same state. In this hypothesis, units in any set where every pair
is connected by a 00 path can be declared as having identical states. The possible occurrence of case f
entirely invalidates this hypothesis, since an erroneous 0 comparison may lead to the aggregation of a
good and a faulty unit.




4 Pre-diagnosis comparator test session

In this section a preliminary test session is proposed which is capable of eliminating the situation described
in line f of Table 3, for a wide class of comparator faults. For the sake of simplicity, single-bit comparators
are examined first. The multiple-bit case will be discussed in the next section.

Our goal is to detect an erroneous 0 comparison between a fault-free and a faulty unit. We assume
that we can feed any two adjacent unite with independent inputs, and that we can force desired values
to the output of any fault-free unit (these properiies can be granted by a special wafer design, as shown
later). If both units are good, the comparator can be tested exhaustively. Faulty units, however, may
fail to feed the comparator with proper test patterns, and the fault of a unit may mask the fault of the
comparator. Even in this situation, the test can still be performed, provided that & faulty unit always
produces the same responses for identical inputs. (This condition means that we limit our consideration
to permanent faults, and that units should be combinational. The latter requirement can be easily met
by using the specific wafer design described in Section 6, where sequential units are bypassed with a
combinational part.)

Figure 2 depicts the behavicur of the adjacent units during a complete comparator test session when
everything is fault-free (Fig. 2/a) and when one of the components, say B, may be faulty together with
the comparator (Fig. 2/b). {(We assume that fault-free units produce outputs 0 and 1 for inputs éng and
iny, respectively, while faulty units produce outpuis z and y for the same inputs.)

0
1
L 1
o
0 P 1 0 P ¥
1 0 1 X
1 1 1 y
A B A B
inQ inQ in0 in0
inQ in1 nd in1
in1 inG in1 in®
int int in1 ini
a. fault-free case b. A fault-free, B and crp

may be faulty

Figure 2: Comparator test session

‘Table 4 shows what effect a faulty unit may have on the comparator test. If the faulty unit B does
not alter the comparator test patterns (line 1), then the comparator will undergo an exhaustive test. If B
produces identical responses for ing and iny (lines 2 and 3), then the comparator will fail to produce the
expected sequence 0110. Line 4 is, however, problematic, because the fauity unit B negates its responses
for ing and ing, and the faulty comparator might invert them again, thus passing the test in spite of
faults. This situation will be referred to as inverting behaviour.

[case [x [y | effect |
1 011 full comparator test
2 0 | 0 { no 0110 output sequence
3 1| 1| no 0110 output sequence
4 1[0 problematic

Table 4: Impact of the behaviour of B

Fortunately, most practical comparator designs have the property that an arbitrary unit fault together
with a wide class of comparator faults cannot remain undetected. For example, this is the case for the
simple 1-bit comparator in Figure 3.

Lemma 1: In the 1-bit comparator in Figure 3, the inverting behaviour cannot occur for any multi-
plicity of gate-level stuck-at faults.
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Figure 3: A simple 1-bit comparator

Proof: Table 5 enlists all stuck-at fault combinations, together with their corresponding detection
patterns.* Some fault combinations (deriving from don’t care entries in Table §) require two input
patterns to be detected. Although the faulty unit B may fail to drive the expected values to line b, this
case will still produce a discrepancy. Since for every row the expected value of b in the input pattern(s)
is constant (0 or 1), the “inverting” behaviour of unit B, displayed in row 4 of Table 4, ig detected by
detecting an equivalent stuck-at fault (so-f or sa-) of line b. For example, in row 3 pattern 11 detects the
cage of line g1 stuck at 0 combined with any assignment of faults to don’t cere entries, except sy stuck at 1
or, equivalently, both ¢ and b stuck at 0. The input pattern 01 is needed to handle such exceptions. The
inverting behaviour of B is equivalent in this row with the fault of & se-0, which is covered by assigning
sa-{0 to the don’t care entry of column b, O

[w]
=
ES

s1 | s2 [ a | b pattern {ab}
01
00

11 and 01
01

00 and 16
01

10 and 00

01 and 11
01

1 00

e
oMt — O
N Y
B o

[uie)

Table 5: Comparator faults and detecting patterns

4.1 Multiple-bit comparators

A single-bit output is a rare practical case. However, considering the “bit-sliced” design of Figure 4, we
will show that the technique of Lemma I can be extended to an arbitrary width, while the test length
increases proportionally with the number of slices.

Theorem 1. Consider the n-bit comparator of Figure 4. Assume that unit A is fault-free and unit
B produces identical responses for identical inputs. Then, the test patierns in Table 6 will detect every
combination of stuck-at faults in the comparator combined with any faulty behaviour of unit B.

Proof: The table contains a 4-vector long test sequence for each comparator bit slice, line 0 {a shared
vector for each slice), and lines 3¢ + 1 to 3 + 3 for the ith slice (i = 0,...,n — 1}. They trivially detect
any fault combination involving a stuck-at fault on line out. For the remaining faults, we will show that
the test of slice ¢ can be performed in spite of the effect of faults in other slices. Two cases may oceur
during the slice test:

1. As an effect of a fault in urit B or in the comparator, a faulty 1 value appears on some OR-gate
input line, belonging to a slice other than 4. Let us call the vector producing it ». Since there are 4
different vectors, differing only in input values feeding slice 7 (the others are all 0), these four vectors
will contain another one (let us call it w) where only a; differs from v. The slices other than i will

!The meaning of the table entries is the following:
0 (1}: sa-0 (sa-1) fault; F: fanlt-free state;
empty box: any state {don’t care)
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Figure 4: A simple n-bit comparator

Lag | bg | | s | bi I | Ap—1 ‘ bﬂ_l
010 0190 0 0
0]1 010 0 0
110 010 0 0
1 1 0| 0G 0 0
00 0|1 G 0
010 1,0 0 0
6|0 111 0 0
0|0 0:0 0 1
00 010 1 0
010 0410 1 1

Table 6: Test patterns for n slice

receive the same actual input values (even i modified by B} when we apply v and w, therefore the
comparator output will be 1 for both patterns. On the other hand, the fault-free outputs should
be different for v and w, i.e. the fault is detected.

2. The OR-gate input lines belonging to slices other than i always hold the value 0. In this case, the
presence of faults in unit B or in the other comparator slices does not disturb the test of slice 4,
which detects any stuck-at fault in it according to the previous lemma.

Repeating the test for all slices, every combination of stuck-at faults in the comparator will at least
once produce an output different from the expected one. O

In conelusion, it has been shown that the patterns of Table 6 are a complete test sequence for this
comparator, and additionally, that a simple comparator has the property that a faulty B unit cannot
mask comparator faults. ;From the point of view of the diagnosis algorithm, we can summarize the
results above as follows. If only permanent faulls are present in the units and only stuck-at faults are
present in the comparators, then after a comparator passes the proposed preliminary test, the diagnosis
algorithm can rely on its 0 output during the normal diagnostic session. This eliminates the problem of
case f in Table 3, so the aggregation step can be done safely.

It is also true that the applied preliminary test session excludes the undetected occurrence of line ¢,
so the algorithms can also rely on the 1 results of comparators having passed the test. However, this
fact has smaller practical significance, because a faulty unit may fail to provide one or more test vectors,
and this will most probably cause the test to fail regardless of the state of the comparator: thus reliable
1 comparisons may occur rarely. A failed comparator test could mean therefore either case ¢, d, e, or
g, in contrast to our intention of distinguishing between PMC-conform and non-compliant cases. On
the other hand, if the comparator is fault-free and the fault in the unit does not modify the comparator



test patterns, then the comparator test will pass, and the comparison resuit will be a reliable 1. The
comparator test implementation, suggested in Section 6, highly exploits this feature, achieving a good
ratio of meaningful and reliable 1 results.

5 Diagnosis strategy

The introduction of the comparator test phase allows for a refinement in the handling of cutcomes. The
combined outcome of the comparison-based test of units (in short, diagnostic test) and the comparator
test is determined according to Table 7:

comparater | diagnostic cornbined
test test outcome result
passed 0 reliable 0
passed 1 reliable 1
failed 0 unreliable
failed 1 unreliable

Table 7: Ternary corzbined outcomes

Since the reliable § and f results indicate a passed comparator test, i.e. a comparator proven not
to contain stuck-at faunlts, the diagnosis algorithm can act by regarding these results as valid. However,
it takes no actions based on unrelieble outcomes, because they may have been produced hy a faulty
comparator.

As mentioned earlier, reliehle I combined results will exist only when faulty units do not modify the
comparator test patterns. This property can be achieved with good probability by a careful design of the
water environment. It should be observed that if the occurrence of reliable Is is not exploited, i.e. the
case when a good comparator is declared unreliable in any case, the correctness of the algorithm is not
impaired, although its performance may de somewhat decreased.

5.1 The CF tolerant algorithm

The comparator-based adaptation of Maestrini’s algorithm {see Section 2 and [10]), which tolerates

multiple stuck-at CFs, is as follows. Note that the indicated +— and < diagnosis results are always
reliable ones, whereas no action is taken at all for unrelichle results.

1. Perform the comparator test and perform the
diagnosis session. Remove diagnosis test results
wherever the comparator test failed, and treat
the remaining ones as religble.
2. (search for foulty wrnits)
For every unit u
status, = initial.
Let the fault set F be empty.
While there exist initial units
Choose a unit v of status initial.
Let set S be empty.
Let sflag status flag be non faulty.
search faulty(u).
If sflag = faulty
F=FJS.
For every unit » in set S
status, = faully.
procedure search foulty( unit )
Put u into S.
status, — undetermined.
For every neighbour n of u



If u+>sn and status, = initial
search faulty(n).
If un and neS
sflag := faulty.
3. (determination of dual units)
Let the dual set D be empty.
For every unit u
if status, = undetermined and there
exists a neighour n of w that

status, = undetermined and e
status, = dual.
status, = dual.
Put % and n into D.

4. (aggregation)

i := 0.

While there exist undetermined units
=1+ 1.

Choose a unit u of status undetermined.
Let aggregate 4; be empty.
aggregate(u).

procedure aggregate] unit u)

Put = into set .4;.

status, = aggregated.

For every neighbour n of w
If status, = undetermined and un

aggregate(n).

5. (determination of the fault-free core)
Select aggregate A; where |A;] > [ A4;] for Vj.
(If more than one such aggregates exist,

select all of them.)

Let A0, be the union
of the selected aggregates.

For every unit w in set Aimgs
status, = faultfree.

Ty = ‘*Amaml + J‘DI/Q - |f!

6. (augmentation of the FFC)

‘While there exist faultfree units
Select a unit w of status faultfree.
status, = aqugmented.

For every neighbour n of u
If status,, = dual or
statusy, = aggregated

If uesn

status,, := faultfree.
If u¢—n

augment faulty(n).

procedure augment foulty( unit u)

status, = faulty.

For every neighbour n of u

If usn and status,, # faulty
augment faulty(n).

7. {conclusion)
Units of status augmented are fault-free. Units of
status foulty are faulty. This diagnosis is correct if
t < T, where ¢ is the actual number of unit faults
in the system. Units of status aggregated or dual
can be either fault-free or faulty. H such units exist,



the diagnosis is incomplete.

6 Implementation issues

To be able to carry out the proposed comparator test session, the wafer diagnosis environment should
meet the following requirements.

¢ The fault-free circuits should be able to provide the comparator with every comparator test pattern
(see Table 6).

¢ A circuit containing permanent faults should produce identical responses for identical inputs.

¢ Although the units are fed by the same input during the diagnostic test session, during the com-
parator test phase two adjacent units should be driven with different input values.

The first two conditions, if not already fulfilled by the actual unit design, can be easily satisfied by a
simple modification in the circuit design, e.g. by multiplexing the output of the unit.

The third requirement is a more difficult one. It requires either that the input bus {or at least one
bit) be duplicated in the wafer diagnosis circuitry, or that the chips on the wafer be non-identical {in case
of a rectangular grid diagnosis structure, there must be two kinds of chips).

A comprehensive solution to these problems could be the addition of some simple combinational logic
that generates the comparator test patterns for the comparator test sesgion (Figure 5}. One bit, encoding
the position of the chip (4/B), is introduced only in the final stage of the design of the wafer masks.
During the comparator test session, the diagnosis circuitry receives a wafer-wide signal which tells it to
switch to the output of the test pattern generator (TPG) instead of that of the unit. The function of
the TPG can be implemented with a small ROM module indexed by the common input, or with a more
concise combinational logic, since the test patterns are easily compressable. It should be emphasized that
a sequential design for the TPG logic would contradict our assumption that a repeated test pattern is
always altered the same way by permanent faults.

Figure 5: Non-identical chips on the wafer

Thig solution has a number of favourable features:

e The chips are capable of playing the role of either unit A or B without the intervention of the
diagnosis algorithm and without requiring the duplication of the input bus. The additional cost is
percentually small, especially in the case of complex chips.

¢ The wafer-based testing implementation remains hidden to the circuit designer, because the TPG
and comparator subcircuitry can be added by the silicon factory, and the circuit user, because
during packaging diagnostic links are not connected to pins.

s The design of the TPG and the comparator is independent of the nature of the IC to he manu-
factured, since including this additional logic does not require information other than the output
width.

An even more desirable property of the TPG implementation is the satisfactory treatment of case ¢ in
Table 3. If the unit is faulty but the TPG logic is intact, a fault-free comparator will pass the comparator
test and will signal the different behaviour of the units during the diagnosis session. In other words, a
fault-free comparator will fail the test and be declared as unreliable only if a feeding TPG is faulty, which
has relatively low probability.

10




7 Observing results

The bottleneck in the performance of comparison-based testing is the observation of comparison results.
Since the diagnostic test can be very long, the diagnoser should not be required to read the entire sequence
of comparator outputs; instead, a syndrome collection circuitry should be wired to every comparator.
Excluding the faults in the diagnostic circuitry, this could essentially be a 1-bit RS flip-flop, which is
reset before executing the diagnostic test, and set by any mismatch the compared chips produce.

This technique can also be used in the approach extended with a comparator test session, but some
problems must be solved. First, a simple 1-triggered flip-flop is not sufficient, because the comparator
produces 1 results during the comparator test session even if everything is fault-free. Furthermore,
potential faults in the flip-lop must be taken into account, therefore the comparator test must be extended
to cover faults in the collection circuitry as well. Finally, the number of read-out operations should be
minimized.

We will present a syndrome collection strategy and a general overview of the supporting hardware,
which handles all these problems. We suggest that an RS flip-flop (Figure 6) be used for syndrome
collection, with the following features:

o It contains a guard signal, controllable by the external diagnoser, which masks the transients that
occur on the set input of the FF.

e An auxiliary signal auz, also controllable, is used to control the set line. During the comparator
and diagnostic test sessions, this line always holds the same value as the expected output of the
comparator, so that one flip-flop is sufficient for collecting both 1s and 0s. Furthermore, during the
flip-flop test (see later), the signal improves controllability.

dlegnestic
inpul bus

E sel

guard
reset

Figure 6: Syndrome coliection circuitry

guarded q
RS

We extend the comparator test session to include a fiip-flop test, which, if passes, ensures that the
collection circuitry is also free from faults. We will prove that the flip-flop test detects all combinations
of stuck-at faults in the collection circuitry as well.

The complete test session, including the extended comparator test session and the diagnostic test
session, requires only 3 read-out operations, and proceeds as follows.

e Initially, we feed units A and B with a comparator test pattern that normally produces a 0 com-
parator output (e.g. the first line of Table 6}, we set auz to 1, and disable guard. This should make
line sef hold value 1 in the fault-free case. We issue a reset comnmand, then enable guard (which
should set the output, since set s$ill holds 1), and check if the FF has been indeed set.

¢ Next, we disable the guard, reset again, and perform the comparator test, taking care that auz
always holds the same value as what is expected from the comparator, and that guard is only
active when the comparator output settles down. After the comparator test, we switch auz without
enabling the guerd, and read out the comparator test result, which is expected to be (.

e PFinally, we perform the diagnostic test, keeping euz () and enabling guard after each vector, and
read out its result.

The next theorem says that the result of the diagnostic test is reliable if we receive a 10 sequence for
the first two read-outs.

Theorem 2: For the gate level model shown in Figure 7, all combinations of gate-level stuck-at faults
in the syndrome collection circuitry will cause the combined flip-flop—comparator test to fail.

Proof: We show in particular that every combination of stuck-at faults entails a test result other than
10. Table 8 lists all stuck-at fault combinations, along with the possible read-out results for the first two
read operations. The meanings of the table entries are the same as in Table 5.
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Figure 7: RS flip-flop at the gate level
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Table 8: Gate level fault coverage of the test

Some faults may produce several output sequences, depending on the actual behaviour of the driving
circuitry (A, B, and the comparator), and on the signals of which the state is listed as don’t care in the
given line. For example, the line where signals ¢, reset, ng, gs, and set are fault-free but auz is sa-0
summarizes the following:

o If the guard is sa-0, the read-ont sequence will be Q0.

o If the guard is sa-1 or fault-free, and the comparator correctly produces 0 for the initial pattern,
then the first bit read out will be 0.

e If the guard is sa-1 or fault-free, and the comparator incorrectly produces 1 for the initial pattern,
then the read-out sequence will be 11, since the initial pattern is part of the comparator test, which
will therefore fail.

Note that we exploit again the fact that the circuitry comprising the comparator and the TPG part
of the two units is combinational, therefore the same faults with the same input will produce an identical

output. Since no fault set listed in the table allows for a 10 read-out sequence, a passed FF-comparator
test guarantees that the circuitry is free from stuck-at faults. O

8 Conclusion

In the present paper the sensitivity of comparison-based wafer diagnrosis algorithms to comparator faults
has been examined. It has been pointed out that the most serious problem is the possibility of incorrect
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aggregation. A preliminary comparator test session has been proposed to eliminate this risk. It has
been proven that this session will prevent a false U-comparison for eny permanent unit fault with any
combination of stuck-at faults in the comparators. This approach excludes the need of a complex fault-
tolerant comparator circuitry. The comparator test session requires the chips to be capable of driving
the comparator test patterns, and any two adjacent chips to behave in a different way during the test.
A simple wafer design solution, ensuring this property, has been shown as well.

The incorrect 1-comparison has been identified as a less serious problem. With the application of
the comparator test session, situations with this risk are also detected, at the price that perhaps fault-
free comparators are also declared unreliable. The proposed wafer implementation strongly reduces the
probabaility of this conservative diagnosis.

An extension of the comparator test has been also given which detects multiple stuck-at faults not
only in the comparators but in the syndrome collection circuitry as well.
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Abstract

A promising application of system-level diagnosis is the testing of VLSI chips during the man-
ufacturing process. A comparison-based diagnosis is easier to implement on the wafer than the
FPBIC-conform one. However, existing comparison models essentially overlock the test invalidation
due to the physical faults in the comparators. This paper proposes a comparison-based model and a
diagnosis algorithm which takes into account the effects of fanlts that affect the comparators. In order
to deal with faults in the comparators, a preliminary comparator test session is included. This session
requires the adjacent units to be able to feed the comparator with all needed patterns independently
of each other. As shawn in the paper, this requirement can be satisfied at a relatively small wafer
design cost. The test session can also be extended to handle the faults in the syndrome collection
circuitry.

Categories and Subject Descriptors: B.7.m [Integrated Circuits]: Miscellaneous; B.8.1 [Perfor-
mance and Reliabiltity]: Reliability, Testing, and Fault-Tolerance

General Terms: Algorithms, Design, Reliability

1 Introduction

System level diagnosis, also called self-diagnosis, has been introduced by Preparata et al. in 1967 [1]. In
self-diagnosis, a system composed of several units connected by bidirectional links can be diagnosed using
the information provided by tests. These tests are performed by the units comprising the system itself,
and each of them involves two units, called the testing and the fested unit. The testing and the tested
unit must be adjacent (that is, interconnected by bidirectional links). Essentially, a test is performed as
follows:

e the testing unit requests the tested unit to run a test;
e the tested unit returns a result to the testing unit;

» the testing unit compares the actual and the expected results and provides a binary test outcome.
The outcome is 0 if the actual and the expected results match (the test passes), 1 otherwise {the
test fails).

The set of tests utilized for the purpose of diagnosis is defined by the directed graph DG = (V, K,
where V' is the set of units and £ = {(u,v) such that unit u tests unit v}. DG is called the diagnostic
graph of the system. Observe that the tests involving different units can be run simultaneously. The set
of all test outcomes is called syndrome.

The test results are not necessarily reliable, since testing units themselves may be faulty. Different
hypotheses upon the test outcome generated by faulty units lead to different invalidation rules, and
consequently to different diagnostic models. The most widely used diagnostic modet is the PMC model
introduced in [1], which assumes arbitrary test outcomes for tests performed by faulty units. The invali-
dation rule of the PMC model is shown in Table 1.

Comparison models for self-diagnosis have aiso been introduced in literature, In comparison models,
tests are performed by comparators which compare the outputs of pairs of units that run the same test.
The diagnostic graph corresponding to a comparison model has an undirected edge between a pair of
nodes if there exists a comparator between the corresponding units. The outcome of the comparison is
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