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If instead y belongs to an interval lyi. w,l, different in the two cases, then the solutions
involve arising of inelastic strains, which as y decreases spread from the inner radius
toward the outer one. The solution is unique for both stress and displacement.
Subsequently, we deal with a problem having cylindrical symmetry, in which an indefinite
hollow cylinder is subjected to its own weight and two radial pressures acting on its inner
and outer boundaries and linearly varying along a generatrix. In this case a relatively simple
solution can be attained only when v = 0. As a last problem, we consider and solve a version
of the circular ring case, where boundary conditions are chosen in such a way as to
generate stress and displacement fields devoid of polar symmetry; this inevitably yields
more complex analytical expressions for them.

All the problems except the first are solved by setting ¢ = O in the constitutive
equation, a choice which allows for a less tedious exposition of the results. On the other
hand, extending the solution to the case in which ¢ > 0 is natural on a purely analytical

basis as well.

II. PRELIMINARY CONSIDERATIONS

The constitutive equation of sc-called masonry-like materials has been studied by a
number of authors [see, for example, Del Piero, 1989]. Here we shall recall its main
properties and generalise it to the case in which the material can withstand normal
positive stresses, providing that they do not exceed an assigned value o.

Before beginning, we recall that if A and B are two tensors, that is two linear
applications of V in ¥, where V is a three-dimensional linear space, A is positive (or,
respectively, negative) semi-definite if u+ Au>0(u- A u<0) for each u € V : in this case
we shall write A 2 0 (A < 0). Analogously, if an orthonormal basis { €. e, €5} of U is chosen,
we shall write u £ 0 (u 2 0), with u € Y, if the components of u turn out to be non positive
(non negative). Moreover, with A - B = tr (A BT), where BT is the transpose of B, and tr (A) is
the trace of A, we shall indicate, as usual, the scalar product of A and B. Finally, we recall
that if A and B are symmetric, with A>0and B< 0, thenA- B <0.

To begin with, we assume that the strain tensor E is the sum of an elastic part E¢ and

of an inelastic one E2, with E2 positive semi-definite:
E=E® +E3; E2 >0. (1}

In addition, the stress tensor T is assumed to depend linearly and isotropically on E® :

= e vE e (2)
T=2GE +(1+v)[1-2v] tr(E* ) I,



where E, vand G = ﬁ are the Young's modulus, the Poisson ratic and the medulus of

elasticity in shear, respectively. Finally, given a non-negative number o, the assumption is
made that tensor T - oI, with I the identity tensor, is negative semi-definite and orthogonal
to E2 :

T-oI<0; (T-oD-E2? =0. (3)

it is a simple matter to prove that as a consequence of (1) and (3}, tensors T and E®
are coaxlal. In fact, due to the symmetry of T and E? , there exist two bases of ¥, say
{fy. £, f3} and ( g,. g,. g3}, such that

3 3
T= >tf®f, E= a1 gi®g:
=1 f=1

where t|. t; and t3 and a;. a; and ag are respectively the eigenvalues of T and E?, satisfying
the inequalities

ticso,a20.,i=1, 2, 3. (4)
Thus, it follows from (3)s and (4) that
(tj - ) aifj cg1=0,11=1223,

and, consequently,

3
(T-oDE* 3 (t-0)a (f1g) (§®gi) = O.
i, J=1

In a similar way we can prove that E2 (T - ¢I) = 0 : therefore, T and E? commute and as
they are symmetric, they must necessarily be coaxial. If E and v satisfy the inequalities E >
0, -1<v<1/2, relation (2) can be inverted, yielding

E¢=-_1_1 .

X tr(T} I
56 g Tm1,

and equations (1); and (2] result to be equivalent to the following,

CRR o 1 + .V 0(1'2V} 5
E-E #E S E:tr(S)l«*-—E I, {5)

where we set 8 = T - o I. Now, let (e, &5, €3}, [a), aq, agl, {8, S9. s3} be the eigenvalues of E,

E2 and 8. Since E, E2 and § are coaxial, the constitutive relations ( 1),, (3) and {5} can be



expressed in terms of their eigenvalues, leading to the system

e = Ds +a,

<0,
azz0, (6)
gs+a=0,

in which the symmetric tensor D, positive definite, and the vectors €, a and s have the

following components:

1 -V -V
~ 1-2v) gl - 2v) G {l-2v)
D= 1_ - - * = [ -o( ’ = r = r
E{ v 1 Y }e €1 E €2 E €3 E
-V =Y 1
a={a1-a2- 3-3] f s=[SI. 89, Sal.

System (6} defines a linear complementarity problem, for which it can be proven that, not
only does the solution exist, but that it is unique as well {Glannessi, 1982]. The foregoing
shows that relations (1)-(3) associate one and only one stress T to each strain E and
therefore a unique inelastic strain E® and a unique elastic strain E®: as such they provide
the constitutive equation of a non-linear elastic material able to withstand tensile stresses

less than or equal to an assigned value .
The constitutive equation defined by relations (1)-(3) exhibit a property useful in the
presence of plane strain fields. Let us suppose, for example, that the direction f5 is a

principal one and that the corresponding principal strain es is nil:

33 =f3 'Ef3=0-

Let us tentatively assume, furthermore, that the inelastic strain az along f; is greater than

zero. Then, the following equations,

o= B - vE . 5 =0
fa-o 1+v{[33 a3)+(1+v)(1_2v)[61+82 (ap +ag+ag)i-o ,

must hold, or equivalently,

={1+VH1‘2V) v E (el+ez-a1-a2)-0.

E(l-v) l+v)l-2v)

If v = 0, from the previous equation it at once follows that a; < O, contradicting one of the
initial assumptions. For v > 0, as occurs in the applications of interest to us here, the same

equation imposes that



(1 +v)(1 - 2v)
v E G. (7)

ey +eg-aj-ag >

On the other hand, it must also hold that

-G = - vE _ co<
ti-¢ —E——1+v(e1 a1)+(1 T [e1+ex-(aj+ag+a3)]-0<0,

-0 =1 ) vE - -650.
tz-o 1+v[e2 a2)+(1 V) 5 lej+ex-(aj+az+as)]-o

It can be easily verified that the previous relations taken together yield the following
inequality:

2(1 - 2v) 5

N (8)

€j+eqg-ar-az <

Then, simple comparison of (7) and (8) implies that v satisfles the inequality
2v2- 3v + 1 < 0 which is incompatible with the constraint v < 1/2. Thus, az = 0 must be
true. In conclusion, if v 2 0 and f5 is a principal direction along which the principal strain is
ni], then we have:

t3=V{tl+t2} .

Let us now turn our attention to a body Q, made of an elastic material with a low
tensile strength, in equilibrium under the action of body forces b and surface forces f
assigned on the boundary 3Q of Q. We shall state that a piecewise C? displacement field u ,

a strain field E and a stress field T provide a regular solution to the equilibrium problem, if
in Q they satisfy the constitutive equation (1}-(3), the strain-displacement relation

E = % grad u+ (gradu)T ,

the equilibrium equation
divT+b=0,

and, furthermore, if they satisfy the boundary condition
Tn=f

on JQ, where n is the outward unit normal to 3Q. Let us suppose now that {u;, E,. T,) and

(uy, By, Ty) are two distinct regular solutions to the boundary problem, and that (i E, T),
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with
ﬁ:ui-uz . E=E1‘E2 . T_=T1-T2

Is the difference solution. It can be immediately verified that this latter solves the
corresponding equilibrium homogeneous problem, that is in which b= 0 and f = 0. Thus,
taking into account the hypothesis of regularity, a simple application of the theorem of
virtual work proves that

['?-E_=O.
9]

On the other hand,

E=-E +E]-E],

where EJ e Eg are the inelastic strain flelds corresponding to E 1 and E,. For (3) we then
have

[ T-E° av:J T(E§-E}) av =[ [T1-0I- (T2 - D}HEZ - Ef) dV.
Q Q Q

The last integral is negative or nil; thus T = 0 and, consequently, T, = T,. It has thus been
shown that, if the constitutive equation is that described by relations (1)-(3), for every
equilibrium problem there exists at most one regular stress field, that is piecewise cl,
satisfying all the field equations and the boundary conditions.

IO. THE CIRCULAR RING

An indefinite cylindrical body, whose cross section is a circular ring Q, made of an
isotropic elastic material, is subjected to a plane strain condition as a consequence of two
pressures p, and p; acting uniformly on the outer and inner surfaces. We choose a
cylindrical reference system {O, p, 8, z} with the origin at the center of the ring and the z-
axis orthogonal to its plane (Figure 1), Because of the symmetry, the only non-zero
displacement component is the radial one, u(p). If the material is linearly elastic, the
principal stresses are



Figure 1. The circular ring.

_ 1 2. .2 24,2 } a1
Gp(p)—bz_az[a p,-b p.+a’b’(p, pi)pz].

1 2 2 1
UO(P)=b2_a2{a2p1-b pe‘azb (Pe'P{)F}.
oz(p) = vicplp)+oelp )] = —ZZJL—{eﬂpi-bzpe)}.

bc-a2

where a and b are the inner and outer radius of the ring, respectively {(Lame’, 1852).
Stresses Sp and og are monotonic functions of p. Moreover, by hypothesis op(a) and cp[b)
are both non positive. On the inner boundary the circumferential stress is less than ¢ if the
condition

2
pe«z—cx'z{pi+o')-1--~tl

212

holds, where 1 = b/a. In turn, oy(b} is less than ¢ if



2
when y decreases from Yo = 12'”; to v; = 711- Ppo Vvaries correspondingly from a to b. It
|

Is now easy to verify that the stress field

-‘-)a~(p1+6}+0'. aspspg.

Solp) =
Po . 1
-a(pi+c}{$2-+§~p—o}+0'. Pop <ps b,
(9}
g as<sp SDO
0'9(0)'—‘
Po 1 }
alp;+0){ —%5-5—1+0, pya<p<h,
P; {292 2p0 0
oz (P = vioplp)+aelp)]l , a sp< b,
1s equilibrated and it is such that principal stresses are less than or equal to .
According to the constitutive equation, in Q,
& (p} = IEV{[I—V]O’p{p]-voe{p)}=
= l_j'J. {1'2V)G-(1“V)M— ,as P Spo'
E i p
(10}
eo (p) = IEV {(1-v)os (p)-vop ()] +e§ p) =
= 1""’{(1-2\/}0 +xi%ﬁ’—l+eg(p), a<pc<opo,
E

where £§ (p) is a non-negative function of p to be determined. In the region ), , where o,

and oy are less than o, the strain components coincide with the linear elastic ones:

alpi+c)l apolp+o)
2p0 | 2p?

g (p) = l?‘L{(I - 2v)jo -

}, p< po < b,
(11)

a +a)
ee[p):1—g.~l{(1-2v](d-a(g*p;0))+ 902“;‘2 },p<p0Sb.

Since u(p) = p g4(p), it is at once evident that

-10-



u(pl=m{(1 coyfo - BEira)  apoBiral| oy (19
E 2p0 | 2p
On the other hand, u'{p) = £5(p); thus

u(p}=——gi{(l -2vlg p-(1 -v)(p1+c)alnp}+cl. a <p<po {13)

where

Cl=-1—;-¥ a(Pi+c]{v+(l-v]lnpo}

Is a constant whose value is determined by imposing the continuity of the radial
displacement at p = p,. Then, the circumferential inelastic strain is

a(p;+co)(1-v2)m{p_o) a sp<po

Ep
a
eg (P} = (14)
0. pg<psh.

Given that the function €§ (p) just determined is always non-negative, the foregoing allows
us to conclude that, if the masonry-like material has the contitutive equation (1)-{3), and if
VY1 €Y < vy, then a solution for the equilibriurn problem is given by the stresses, strains
and radial displacement yielded by equations (9)-{14). A result proven in Section II shows
that, if we limit ourselves to regular solutions, the solution found is unique In terms of
stress. It seems worthwile to point out that, unlike other simple equilibrium problems, in
this case, if y # y, the inelastic strain and radial displacement are also unique. This'appears
related to the fact that the region Q|, in which inelastic strains are different from zero, is
included in another region Qg, in which the solution coincides with a linear elastic one. We
observe furthermore that the radius pg, as well the inelastic strain themselves do not
depend separately upon the external pressures; more precisely, for all problems in which
the sums p; + 6 and p, + ¢ are the same, they will coincide. When ¥ =y, and the whole
ring is the seat of circumferential inelastic strains, constant C 1» as well as the inelastic
strains themselves and the radial displacement are not univocally determined.

Finally, it is easy to prove that, if w < 1/, there are no stress flelds in equilibrium with
the external pressures and satisfying inequalilty (3)5. To this end, let us consider the region
of the circular ring between straight lines 8 = 0 and 8 = 8o . with, for instance, 0 < 8g < n/g
(Figure 2}, For equilibrium reasons the resultant of the external forces must have a nil

component in the 8 = O direction, that is to say,

-11-



03(0Q)

Figure 2. The equilibrium of a portion of the circular ring.

8o 8g b
-J ap,cos 6 dé +J b p,cos 0 do I og (p) sin 8gdd® =0,
0 0 a

or also
b
bp, = ap, - | ce(p) do .
a

Given that olp) < o,

bp Eapi 'G(b'a]v

e

must hold, or equivalently, y = 1/ 7.

Figures 3, 4 and 5 show the behaviour of the radial and circumferential stresses and
the radial displacement in the linear case and for two different values of . The values
a=1m,b=2m, p. = 0.502 MPa, pj = 1 MPa, have been chosen in such a way that in the
first case (¢ = 0.1 MPa) p, = 1.299 m: in the second (6 = 0) Po = 1.828 m; moreover, we set
E = 5,000 MPa and v = 0.1. From Figure 5 it is evident that ¢ exerts considerable influence,
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not only on the pattern of circumferential stress, as is obvicus, but on the intensity of the
radial displacement as well, Moreover, Figure 6 shows the radial displacement of the points
belonging to the external surface as a function of v with y ranging from y, to v, ; one of two

curves refers to the non-linear case with ¢ = 0, the other to the linear one.

Z

linear case %
-0.7 4

o
—

g=0.1 MP&
No=00MPa
'0.8 7
-0.9 /
= 10 T T 1 —
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Figure 3. Radial stress oplp)-
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Figure 4. Circumferential stress ag(p).
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Figure 6, Radial displacement u(b) as a function of y.



It is quite interesting to deal with the limit case in which the ring's external radius
becomes infinite. It is easy to show that, if ¥ > % . then the solution coincides with the
linear elastic one. On the contrary, if ¥ <% . calculations, here ometted for the sake of

brevity, lead to the following expression for the radial displacement:

PO

api Y1 - vIn|B2 + v ,a £p<po.
E
u(p) =
o2
- pe 1Y {(1-2v}p-——9}. P> po.
E P
un(G)EJl
Pi
0.2

Q.0 '\
\ non linear

-0.2 \
-0.4 —
linear
-0.6 -
o) 10 20 30 40 50 60 dtand

Figure 7. Displacement up, vs. d tan(8} for a linear elastic and a masonry-like material.

In the foregoing equations pg = §a_ is the value of the radius of the circumference
v

separating the inner region, which is the seat of the circumferential inelastic strain
ov2
Eg(p] = a piléllr{gg.]’
E P P

from the other, where it is nil. Setting ¥ < -21— . let 7t be a straight line at distance d > p,
from the centre of the ring. The points belonging to the line undergo displacements whose

component perpendicular to the line is



une 8) = ‘Wpi-]'—gl
4y

(1-2v)d-—a%_ cos2(9) :
4dy2

if the material is instead linear elastic, this component is
un) {8) = pil—f;l’-{@v -1)d vy - %2-(\;: - 1) cos2(8)}.

Figure 7 shows, as an example, the behaviour of u,(0) and u,,(8) as functions of the
distance dtan(). In the figurea=1m, d = 10 m, ¥ =0.05, E=5000MPa and v = 0.1. As it
can be seen, switching from the linear elastic case to the non-linear one causes the
displacement fleld to undergo remarkable changes in both intensity and shape.

IV. THE HOLLOW SPHERE

Let us consider a hollow sphere Qg, with inner radius a and outer radius b, which we
will suppose for the moment to be made of a linear elastic material. The hollow sphere is
subjected to two uniform radial pressures: a pressure p, acting on the external boundary
and a pressure p; acting on the internal boundary. Let {O, p, 6, ¢} be a spherical reference
system, with origin O coinciding with the centre of the sphere. For symmetry reasons, the
only displacement component different from zero is the radial one ul(p); moreover, the

non-zero stress components are the following [Lame’', 1852]:

3 3
%Py =5 G+ ———,
b"-a [ b -a
3.3 3 3
a“b™(p,-p,) ap,-b'p
oe(p) = Gy (p} = - T L T
2323 o b3 a

As for the circular ring in the previous Section, it is easy to verify that the principal
stresses are negative in Qg if the inequality og(a) < O is satisfied. namely if

3

¥y

2+1
31°

v >

where we have again set 1 =b/a and W = P /Py . respectively. If the inequality does not hold,

tractions arise on the inner boundary and, when ¥ decreases, spread to the interior and

3

reach the outer boundary for ¥ = ——.
' 1+ 2n
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If the elastic material cannot withstand tensile stresses and its constitutive €quation is
described by relations (1)-(3), where ¢ = 0, In looking for the solution we may suppose that
the spherical reglon Qg; = {(p, 6, ¢}, p € |a. pill. where p| € [a, b], {s subjected to the
equilibrated stress field

a‘p
oplp) = - —!
P

{15)
ca(p) =GP} = 0.

As a consequence, the remaining spherical region Qg5 is subjected to external pressure Pe
a2 P,
and to internal pressure p, = — 3 . On the other hand, for continuity reasons. equalities
1

gelp,") = os(p 1+) = O must hold. Then, in view of (15), ratio x = p1/a is a solution to the

cubic equation

X +ayx2+az3=0,

30y 7
where aj(y) = - 2+ 83 = 5. As is well-known, the roots of the equation are

p a1 Pez @ PE) a4
Xj=uy~g—-%, = Uy - —= - =, = uyé€og- - -,
S R T A R TP I 152737 3

where €)= -%+12"_3-i and eg = %%g-t are the cubic complex roots of unity, and,
MOTe0Ver,
1/3
2 3
g
“1-{'5+ %+£7_}
with
a"l3 2 a‘?+ 27a4 ]
P=r3 9% Ty
furthermore, u; 1is the only one of the three cubic roots such that

Iml[u
AP arctan Imuy) < Z. Other inequalities, omitted here for the sake of brevity, allow
3 Re [ 1 ) 3
s

us to prove that the only real root belonging to the interval [1, 1l is x5, Thus,
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= aiujtg- 53— - =1,
p]_ {12 3 {16]

As y varies from y_, = &__ﬂé___ to yg = -1—2 . radius p, varies correspondingly from a to b.

Thus, for y € [y, Wgol . stress field

- a

{
, aspPsp,,
p? !
cp(p)= - \ .
P1b (p.-py) L, e, -bp, b, <p<b
-3 1 = '
b2-p3  p b?-p3
(17)
0, a<p<op,,
cglp) = aylp) =
p?ba{pe-pl) 1 +p?p1'b3pe 0, <p< b
. L 2" Fe ) < b,
2[%-p3) 0% p3.p3

is negative semi-definite in Qg. Then, according to the constitutive equation, the strain field

is the following:

i ap
% p2‘ as<psgp,
ep(p) =
D1 2pf .
—E 2V'1-—£’3—(1+V) ,» Pl <pS b:
(18)
2
%%’luglp}. a<p<op,
eg(p) = €p (p) =

3
H{ZV -1+p—‘(1+v)}. p1 <p< b,
03

In equation {18) the inelastic strain 83 (p) is an unknown non-negative function to be

determined. In turn, radial displacement u{p) has the following expression:
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ulp) = {19)

p3
~§—é{(1-2v)p~p—12(1+v] v P1 <p= b.

Since u(p") = u(p *). the value of C, is
(1-v32P (20)
Epy

On the other hand, as ulp) = p gg(p). the inelastic circumferential strain

2
as(p1=ea(p)-e§(p1=‘f“~E—p‘(1-v)

A1 (21)
p? Pl P}
results to be non-negative in Q). and is equal to zero only for p = p;. This last result proves

that, if y € [y, Wgal, the solution to the boundary problem is described by equations (15)-
(21). Once again in this case the inelastic strain and the radial displacement are unique,

V. THE WELL

Let us now suppose that the cylindrical indefinite body, whose cross section is the
circular ring Q described in Section III, belongs solely to the haif-space z < 0 (Figure 8),
and is subjected to its own weight and the pressures vzl e t1z(, varying linearly with z and
acting on its inner and outer surfaces, respectively. The loading condition provide a rough
representation of that occurring in a very deep well filled inside up to the free surface and
externally subjected to the pressure of the surrounding soil. Due to the existing cylindrical
symmetry, the only non-zero displacement components are the radial one u(p,z) and the
axial one wi{p,z). If the material is linearly elastic, it can be immediatley shown that the
stress field has the components

o'p (poz)= -b2?az

{a27-b21+32—2bg(1-7)},
p
op (p. 2) = -b—zz——{azv-bzr-ai—gi('r-v)},

-a2

oz(p.zl=pz., Thr=198 = 19, = O,
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where p is the material's specific weight. Stress o, is non-positive; moreover, a direct
calculation reveals that the principal stresses op and og are non-positive, providing that
1+ 112

o >
21?2

where © = % - Let us now consider the case in which the previous inequality is not
satisfied and the non-linear elastic material has constitutive equation (1)-(3), where, for
simplicity's sake, we set ¢ = 0. Following a line of reasoning quite similar to that in Section
I, it can be easily shown that for values of belonging to the intaerval [@;. w,], with

2
W) = L , @9 = 1+1 , the stress field
n om?2
ay
_p"z a < p < p0|
cp[p. zZ) =
arPo 1
5 [p2+p0}z Po< P< Db,
(22)
0 asp¢s po-
G4lp, 2) =
ay | Po 1
=+t =z, < pg b,
2 { p "0} Po <P
Cz(P.2)= pz, Tpz=Tpo = Tez = O ,
{s equilibrated and negative semi-definite. In equations (22)
po =an [no-¥nZe® 1) (23)

Is the radius of the cylindrical surface [y which separetes the body into two regions, an
external one, for which the solution coincides with a linear elastic one, and an internal one,
where the circumferential stress is nil and the solution is non-linear, Trivial calculations,

omitted here for brevity's sake, show that the following strains correspond to the previous
stress components:

=20



-

é—[-vp+%)z ., asps<po.

g (p, z) = (24),
Yafpo 1 y_( ya )
Tl 7t - + —\z, <p<b;
{43 (p2 PO) B Po} Po <P
H'%(D”},—aZHS(p.z}. a £p<pg,
eo(p,2) = (24),
yaf po _1_-)’_{ ’IE) b
{4‘3’( P2+Po) E P polf?r PO <P
Zlp. Y3 <
E’Z(p- Z} = (24)3

Al

yard 7|z

Figure 8. The well.
In (24); €§(p, z) is a non-negative function to be determined. On the other hand, since

u=peg and U.g =Ep . by taking the continuity of the radial displacements at p= Po into

account, we have:
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%(ayln(%)-V(a7+pp)) . a<pspg,
ulp, z) = (25)
1a E_-ﬂi_i( IE) } <b
t4G(po p} E{P " pofPfPr PO <PsD.
eg[p.z}z-aEXIn(F;—o)z,aSpSpo. (26)

The displcement component w(p.z) remains to be determined. However, w.; = ¢,, and,
furthermore, Tpz = 0! so, it must hold that u, z + W.g = 0. The foregoing equations imposes
that

glg(p-%ngz+g(p). a<p<po,

wip, z) = _ (27)
2
P v "'_31122 Po v__1} P <b
{QG EIP " pojfz ¥ 72 4G]np+(E 4G}2po rPo <P

with g(p) verifying the differential equation

va y z2 1
2Ep2 E

g'lp)=- [ayln(p%)-v{ay+pp)}. {28)

The last expression clearly shows that the solution built up to this point looses all meaning
if v is different from zero: indeed, if this is the case, equation (28} can never be satisfied
and no regular displacement field generate strain field determined above. Vice versa, if v =
0, by accounting for the continuity of w{p,z) at p= Po. it is easily proved that for a < p < Pg »

pz2 avy Po a4Ypo
,z)= EE .90 Fo 2rro - i 2
w(p, z) 5 + [ +In(p”p+ [2 In pg 5] (29)

and the non-linear elastic solution is described by equations {22)-(27) and {(29). Such a
result underscore how an admissible stress field , that is equilibrated and negative semi-
definite, will often have no corresponding regular displacement field compatible with the

constitutive equation.

V1. THE CIRCULAR HALF-RING
The previous solutions are all characterized by one form of symmetry or other, be it

spherical, cylindrical or polar. In the following we deal with a problem lacking any of the
above symmetries.
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Let us consider an indefinite cylindrical body made of elastic isotropic material whose
cross section is a circular half-ring Qp of inner radius a and external radius b. The body is
referred to a cylindrical reference system (0, p, 8, z} (Figure 9) and subjected to a plane
strain field, with pressures

~ _ sin® _ sin 8

acting on the external and Internal boundaries, respectively. In equations (30} p, e p. are
positive constants and yx is a parameter belonging to interval (- oo, ap;l: moreover, we
suppose the existence of surface forces on the rectilinear portions AB and CD of an,
perpendicular to the boundary and of such intensity as to insure the equilibrium of the half-
ring.

Figure 9. The circular half-ring.

If the elastic material is linear, it can be immediately verified that the principal
stresses
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2,2 5
09(9.9)=b21a2 [azpt-bngapg (Pe-Py) ] +x 882

_ 1 2. 1.2 a2p2
GO(P-e)“bz-az {a Py b Pe- p2 {pe-pi)]'

6z (p.0) = viop(p. 8 +0elp,0)] = ;éz-y—z—{azpi-bzpelhvxﬂ’gj--
-a

correspond to one of the infinite solutions to the equilibrium problem, in which normal

2
stresses are non-positive providing that the ratio y = Pe /Py Is greater than 1 +2 ., once
2n
2
again with n = b/a. On the other hand, it is a trivial matter to prove that, if % L y¥< 1+ 121 .
21
the stress field
0
Epvx¥BE, ac<p 2,
G,lp, ) =
Po 1 sin 0
. —2 < b,
ap1[2p2+2p0}+x o Pgp<P=D
(31)
0 asp-=s PO
Ge[ps 9) -
Po 1
a —5-5t ., Php<Ps b,
Py { 2p2 Zpo} 0

6z (p.0) = viop(p.8)+0alp.8)] , a sps b,

in which p, =anm {nw--\/nzwz- 1} does not depend on 6, is equilibrated and negative
semi-definite in Qp. It is therefore reasonable to ask if the above field has associated strain
and displacement fields which taken together can solve the problem when the elastic
material {s non-resistant to tensile stresses.

We begin by observing that the stress field separates the body into two half-rings, Q)
and Qg . the first of which has internal radius a and external radius Po- In Qp the inelastic
strains are nil and it is an easy matter to show that the strains and the radial and

circumferential displacements are, respectively,

=l+v 8P gy .2PPO . sinf
ep (p. 0) = 1t { o (1729 - 200 1 (1 - vy sine)
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, B =m-ﬂ]_-2v}+m-v .
calp. )= 1 {2p0( 2 vk

=1xv[aP[PO (1 o P - v) y sin@
u {p. 8) = 2 |p (1 2\r}p0 +(1-v)yg o Inp +:
1.9 .
l—Jz x[sin9+(9 2] cos 9]}
- 1L +v (1-2v)
vip, 8= % = [v+(1-v)]np]cose-——2--—sin9(121-9) )

In Qp 1

(1 -v2) (a p; -  sind)
Ep )

€p(p. 68) =¢§ (p. 0) = -

Moreover, since € = U,;, we have

P

(1-v2)ap-x sing)inp

= +C1(8),

ulp, 8) =-
where

Ci (9} = L%':J’— apitv+{l-vilnpg} - l‘Tzlx{sine + (0 -g-)cos 9)”
is a function determined by imposing the continuity of u(p, 8) at p = po. In turn,

V(1+v)(ap1-xsin9)+

a
, 8),
Eo gy (p. 0)

eg {p, 8) = €§ (p, ) + €& (p, ) =

where €§ (p, 8) is again a non-negative function, for the moment unknown. Finally, it can be
shown that by accounting for the continuity of v(p, 6) at p = p,, then

a-2v

[v+{1-v)np]cosé - 5

vi(p, 8] = x..l_;:.J’_

sin 6 (321-6) .a<p<po
must hold, and, consequently,

(1-vY)apn (Z—O}
Ep

8 (p, 8) =
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2
—ll—g—-. stress field (31) may be completed by a strain
2n
field and a piecewise C? displacement field which together provide a solution to the

Thus, in this case as well, if % < W<

equilibrium problem when {2, is made of a material with constitutive equation (1}-(3) in

which o has again been set equal to zero, for the sake of simplicity.

VII. CONCLUSIONS

In order to conclude, some remarks are proper. The foregoing explicit solutions have
been obtained by assuming that the behavior of the material might be described by an
elastic constitutive equation with a non-linear stress-strain law. Such a model is only
roughly representative of the complex behavior of materials with low tensile strength such
as stone and masonry. In particular, if ¢ > 0, it is assumed that the material is able to
withstand a tensile stress equal to its tensile strength without incurring fractures.
Moreover, its bounded compressive strength is also neglected. Although it is not difficult to
account for this latter by appropriately modifying the constitutive equation [see Lucchesi et
al., 1995], the objection arises that a load-history dependent material cannot be described
by a purely elastic model. However, it is worthwhile noting that the constitutive equation
accounts for an essential feature of the response of masonry and stone structures, that is to
say their non linearity (see Figures 4 and 6). This is perhaps the reason why, despite its
simplicity, the model often delivers useful indications to understand them [Lucchesi et al.,
1994b]. Finally, it is to be observed that, although inelastic strains are present in extended
region of the solid, the displacement fields are regular, that is C2 piecewise.
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