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Abstract. Topological Spatial Model Checking is a recent paradigm
that combines Model Checking with the topological interpretation of
Modal Logic. The Spatial Logic of Closure Spaces, SLCS, extends Modal
Logic with reachability connectives that, in turn, can be used for express-
ing interesting spatial properties, such as “being near to” or “being sur-
rounded by”. SLCS constitutes the kernel of a solid logical framework for
reasoning about discrete space, such as graphs and digital images, inter-
preted as quasi discrete closure spaces. In particular, the spatial model
checker VoxLogicA, that uses an extended version of SLCS, has been
used successfully in the domain of medical imaging. However, SLCS is
not restricted to discrete space. Following a recently developed geomet-
ric semantics of Modal Logic, we show that it is possible to assign an
interpretation to SLCS in continuous space, admitting a model check-
ing procedure, by resorting to models based on polyhedra. In medical
imaging such representations of space are increasingly relevant, due to
recent developments of 3D scanning and visualisation techniques that
exploit mesh processing. We demonstrate feasibility of our approach via
a new tool, PolyLogicA, aimed at efficient verification of SLCS formulas
on polyhedra, while inheriting some well-established optimization tech-
niques already adopted in VoxLogicA. Finally, we cater for a geometric
definition of bisimilarity, proving that it characterises logical equivalence.

Keywords: Spatial Logic · Model Checking · Geometric Logic

1 Introduction and Related Work

Recently, novel variants of model checking have been developed, moving the
focus from checking temporal properties to spatial properties, see for exam-
ple [33,20,21,24,41,34], and, in fact, also to the combination of reasoning on
time and space in spatio-temporal model checking [18,25,19,23,22,31,43].

? Research partially supported by the MIUR Project PRIN 2017FTXR7S “IT- MaT-
TerS”. The authors are listed in alphabetical order, as they equally contributed to
this work.
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The so-called topological approach to spatial logic and spatial model checking
has its origin in the ideas by McKinsey and Tarski, who recognised the possibility
of reasoning about space using topology as a mathematical framework for the
interpretation of modal logic (see [3] for a thorough introduction). The work by
Ciancia et al. (see e.g. [20,21]) builds on these theoretical developments using
Closure Spaces, a generalisation of topological spaces encompassing also general
discrete spatial structures such as graphs [28,29], as underlying model for the
Spatial Logic for Closure Spaces (SLCS). The original version of this spatial logic
included two spatial operators, the near operator and the surrounded operator.
Points in space satisfying ‘near φ’ are all those points close to any point satisfying
φ. Points satisfying ‘φ surrounded by ψ’, instead, are all those points satisfying
φ from which no path can be found that passes by a point not satisfying φ
without first passing by a point satisfying ψ. In other words, these are those
points, satisfying φ, that are surrounded by points satisfying ψ.

Two different spatial model-checkers for finite (quasi-discrete) closure spaces
were developed based on this foundational work: Topochecker and VoxLogicA.
These tools have been used in several application areas, ranging from collective
adaptive systems [25,23,22] to signals [41] and medical image analysis [33]. Re-
cently, in this latter domain of application, promising results have been obtained
for the segmentation of malignant brain lesions [10] and normal brain tissue such
as white and grey matter [9], as well as for segmentation of nevi4 [8]. Note that
in medical image analysis, model checking addresses static properties of space
instead of dynamic properties of agents moving through space as in [23].

So far, spatial model checking focused on discrete spatial structures, seen as
discrete sets of points, i.e. nodes of graphs. Here, instead, we focus on the devel-
opment of the foundations to reason about and model-check continuous space.
This is certainly motivated by the theoretical foundations of the research line
(after all, closure spaces comprise both continuous and discrete space) but also
by the developments in the domain of medical image analysis and visualisation.
In particular, computerised 3D visualisation of medical images can help physi-
cians to make better diagnoses or treatment plans. Images used for visualisation
often consist of continuous spatial structures that are divided into suitable ar-
eas of different size using mesh techniques such as triangular surface meshes or
tetrahedral volume meshes (see for example [38]). In order to develop a formal-
ism capable of feasible model-checking on such structures, we build upon recent
developments in polyhedral semantics for modal and intuitionistic logic [12,2,1].
Unlike the topological semantics, where formulas are interpreted in the powerset
algebra of a topological space, in this semantics formulas are assigned polyhedral
subsets of an n-dimensional Euclidean space. Polyhedral subsets can be thought
of as finite unions of simplexes (n-dimensional triangles). Using piecewise linear
geometry (triangulations, nerves), [12] gives a full characterization of the intu-
itionistic and modal logics of the class of all compact polyhedra and [2,1] provide
an infinite family of polyhedrally complete modal and intermediate logics.

4 Benign and malignant lesions of the skin.
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In this paper we take the polyhedral semantics one step further by extending
the language with a spatial reachability modality, namely a variant the ρ operator
originally proposed in [10]. The reachability modality γ we use in the present
paper is a binary logical operator that can be seen as a variant of the spatial
interpretation of the Existential Until temporal operator. Roughly speaking,
γ(φ, ψ) (pronounced as ψ is reachable through φ) means that a point satisfying
ψ is reachable by a path satisfying φ along the way. The reachability modality is
quite expressive and other operators, relevant for the intended applications (such
as “surrounded”, or “grow”, discussed in more detail throughout the paper), can
be defined using it. We show that the reachability modality can be defined in
polyhedral models. We define a notion of bisimilarity between two polyhedral
models, and we prove that bisimilarity preserves and reflects logical equivalence.
Moreover, we prove that the continuous model of the extended language can be
turned into a finite relational model for the same language without losing any
of the logical information.

In fact, one of the main conceptual results of the present paper is that a
formula φ is satisfiable in a polyhedral model X iff φ is satisfiable in a rela-
tional (Kripke) model M(X ) obtained from X in a uniform way. In particular,
M(X ) is the face poset of an underlying triangulation of X . Triangulation is a
standard technique of piecewise linear geometry letting one to approximate each
polyhedron via simplexes. That triangulations play an important role in logical
analysis of polyhedra has already been observed in [12,1,2]. However, here we
demonstrate this also for the language enriched with the reachability modality
γ. Thus, M(X ) provides a full logical invariant for X .

The finite state, Kripke-style semantics that we define preserves all the infor-
mation that can be discerned by SLCS formulas. This is the key for introducing a
novel geometric model checking technique to analyse continuous space. A model
checking algorithm, along the lines of [10], has been implemented in the free and
open source geometric model checker PolyLogicA, which brings to the continu-
ous domain the core features of VoxLogicA (global model checking, concurrent
multi-core execution, “memoization” at the syntactic level).

Further related work. The theoretical framework for spatial model checking of
continuous space in the present paper is based on spatial models involving poly-
hedra. Polyhedra also play an important role in development of model checking
algorithms for the verification of behavioural properties of real-time and hybrid
systems (see for example [36,5,13,35,6] and references therein). In that context
polyhedra, and their related notions such as template polyhedra [42,13] and
zonotopes [30], are obtained from sets of linear equations involving real-time con-
straints on system behaviour and are a natural representation of sets of states of
such systems. In the present paper we focus on spatial properties of continuous
space rather than behavioural properties.

Outline. Section 2 introduces the basic geometrical notions and notation. Sec-
tion 3 recalls SLCS and provides its semantics on polyhedral models. In Section 4
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the concept of simplicial bisimilarity is introduced and it is shown that it charac-
terises logic equivalence for SLCS formulas. Section 5 and Section 6 present the
foundations for geometric model checking and the related model checker Poly-
LogicA, resp. Section 7 concludes the paper with an outlook for future work.

Proofs of most relevant facts are reported in Appendix A.

2 Background

In this section, we establish the basic geometric notions that we use in this work.
See [40, Chapter 2] for more details on these matters.

Definition 1 (Simplex). An n-simplex σ is the convex hull of a finite set
V = {v0, v1, . . . , vn} ⊆ Rd of affinely independent points5, that is the set σ =
{λ0v0 + · · ·+ λnvn | ∀i.λi ∈ [0, 1] and

∑n
i=0 λi = 1}. The number n is called the

dimension of σ and v0, . . . , vn are called its vertices.

In Definition 1, any subset of {v0, . . . , vn} is also a set of affinely independent
points, and thus it spans a simplex τ : we call τ a face of σ (in symbols τ � σ),
and we call it a proper face if τ 6= ∅ and τ 6= σ. Next, we identify the “internal
part” of a simplex.

Definition 2 (Relative interior). In the notations of Definition 1, let the
relative interior of σ be the set σ̃ := {

∑n
i=0 λivi | ∀i.λi ∈ (0, 1] and

∑n
i=0 λi = 1}.

Note that if σ is non-empty then also σ̃ is non-empty. For instance, bσ :=∑n
i=0

1
n+1vi (i.e., the barycentre of σ) is an element of σ̃. In particular, the

relative interior of a point p is p itself. Each simplex σ is partitioned by the
relative interiors of its faces, that is, σ =

⋃
{τ̃ | τ � σ}.

Given a topological space, let us indicate with C and I the closure and inte-
rior operations respectively. Being subsets of an Euclidean space Rm, simplexes
inherit the topology from the “ambient space”. In particular, each simplex σ is
the topological closure of σ̃, that is, σ = C(σ̃). More complex spaces are obtained
by “gluing together” simplexes.

Definition 3 (Simplicial complex). A simplicial complex K is a finite set of
simplexes of Rm such that:

1. If σ ∈ K and τ is a face of σ, then τ ∈ K;
2. If σ, τ ∈ K, then σ ∩ τ is a face of σ and τ (eventually the empty simplex).

The dimension of K is the maximum of the dimensions of its simplexes. The set
of points that lie in at least one of the simplexes of K is a topological space called
the polyhedron of K, formally defined as |K| :=

⋃
K. A point of |K| may belong

to several of the simplexes in K. However, there is a natural way to associate to
each point of |K| the “smallest” simplex it belongs to.

5 v0, . . . , vn are affinely independent if v1 − v0, . . . , vn − v0 are linearly independent.
In particular, this condition implies that n ≤ d.
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A � A B � A B

C

Fig. 1. An example of simplicial complex (the rightmost triangle), and some of the
faces that compose it in the � relation.

Lemma 4. Each point of |K| belongs to the relative interior of exactly one non-

empty simplex in K. That is, K̃ := {σ̃ |σ ∈ K \ {∅}} is a partition of |K|.

We call K̃ a simplicial partition of |K|, and we call its elements the cells of the
partition.6 Note that distinct simplicial complexes induce distinct partitions,
even when they are associated to the same polyhedron. From now on, to ease
readability, we fix a simplicial complex K, with the associated |K| and K̃.

Finally, we recall the topological notion of path.

Definition 5. A topological path is a total, continuous function π : [0, 1]→ P ,
where [0, 1] is equipped with the subspace topology of R.

With a mild abuse of notation, for S a subset of [0, 1] and π a path, we write
π(S) to denote {π(x) | x ∈ S}.

3 Interpreting SLCS on Polyhedra

In this section we introduce the main theory driving our model checking ap-
proach to polyhedra. In the classical topological tradition, valuations of atomic
propositions can be arbitrary subsets of the space. In this work, instead, we
restrict our attention only to a specific class of spatial regions, namely union
of cells of a fixed simplicial partition. This simple change permits us to define
SLCS on continuous space, while retaining decidability of the model checking
problem. First of all, we introduce the syntax of the variant of SLCS that we
use in this paper, that is based on the binary modality γ instead of ρ of [10]; the
relationship between ρ and γ will be shown in Proposition A.1.

Definition 6 (Syntax). The syntax of the logic SLCS is:

φ ::= > | p | ¬φ | φ ∧ φ | 2φ | γ(φ, φ)

where p is an atomic proposition, taken from a fixed finite set AP.

6 We use the terminology cells in this way for the purposes of this paper; there is no
relation between such cells and the so-called cell complexes of algebraic topology.



6 Bezhanishvili, Ciancia, Gabelaia, Grilletti, Latella, Massink

Thus, we enhance the basic modal language with a reachability operator γ. As
in the standard topological semantics for modal logic, we interpret formulas as
sets of points. Boolean operators (disjunction ∨ and negation ⊥ are derived via
De Morgan laws) are given their standard set-theoretical interpretation. The
2 modality corresponds to topological interior. The formula γ(φ, ψ) (“reach ψ
through φ”) is satisfied by a point if there is a path rooted at that point, leading
to a point satisfying ψ and whose intermediate points all satisfy φ.

Next, we shall introduce the models and semantics of our logic. We indicate
with P(P ) the powerset of P .

Definition 7 (Model). A Polyhedral Model is a triplet X = 〈P,K, V 〉, where
P ⊆ Rd is a polyhedron, K is a simplicial complex such that P = |K|, and

V : AP→ P(P ) is a valuation such that V (p) is a union of cells of K̃.

Polyhedral models are essentially topological models with some extra restrictions
on the valuation: P plays the role of the topological space (with the topology
induced by the ambient space Rd) and V is used to interpret atomic propositions
as specific subsets of this space, namely those that are the union of a finite
number of simplicial cells. From now on, fix a polyhedral model X = 〈P,K, V 〉.

Definition 8 (Semantics). Given x ∈ P , satisfaction X , x � φ over formulas

φ is given by the following inductive clauses, where we let JφKX denote the set
{x ∈ P | X , x � φ}:

X , x � > always holds
X , x � p ⇐⇒ x ∈ V (p) for p ∈ AP
X , x � ¬φ ⇐⇒ X , x 2 φ
X , x � φ ∧ ψ ⇐⇒ X , x � φ and X , x � ψ
X , x � 2φ ⇐⇒ x ∈ I(JφKX )
X , x � γ(φ, ψ) ⇐⇒ there exists a path π such that

π(0) = x, π(1) ∈ JψKX and π((0, 1)) ⊆ JφKX

The definition of the satisfaction relation for the standard operators of modal
logic is the usual one for the classical topological interpretation. In particular,
note the topological interior interpretation of 2φ, intuitively expressing that
point x is in the “internal” part of the set of points satisfying φ. Regarding
reachability, a point x satisfies γ(φ, ψ) in model X if there is a path π rooted
in x leading to a point y satisfying ψ; in addition, all the points that lay in π,
except x and y, are required to satisfy φ. Indeed, several different variants of
reachability could be defined using this operator.

As a prominent example, the reachability modality ρψ [φ] introduced in [10],
that we also employ to introduce some derived operators, can be defined as
ρψ[φ] := ψ ∨ γ(φ, ψ). Actually, the two operators are inter-definable, by letting
γ(φ, ψ) := ρ (φ ∧ ρψ[φ])[φ] (see Proposition A.1). In this work we opt to use γ
since, in the context of polyhedral models, its definition is more concise.

Another relevant spatial modality is the surrounded operator S (e.g., [21,39,43,41]
use it as a primitive of the language). A point x satisfies φS ψ if it lays in an
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(a) Model (b) γ(g, b) (c) grow(r, g) (d) g ∧ γ(g, γ(b, r))

Fig. 2. Examples of SLCS formulas on Polyhedra. 2a) Polyhedral model. Circles denote
points (1-dimensional simplexes). The valuation of atomic propositions r, g, b is given
by the colours red, green, and blue. Dashed segments and white points and triangles
do not satisfy any atomic proposition. 2b) Points (in orange) satisfying γ(g, b) applied
to the model in 2a. Note how some white points in 2a also satisfy such proposition.
2c) Points (in orange) satisfying grow(r, g). Note that only the points corresponding
to the red area and one green triangle in the model in 2a are coloured, and no white
point. 2d) Points (in orange) satisfying g ∧ γ(g, γ(b, r)); composing reachability, quite
complex formulas may be defined.

area whose points satisfy φ, and that is limited (i.e., surrounded) by points that
satisfy ψ. In other words, it is not possible to exit this area without passing by
a point satisfying ψ. Following [10], we can define the operator S on polyhedral
models in terms of ρ through the following expression: φ ∧ ¬ρ (¬(φ ∨ ψ))[¬ψ].

Some examples are shown in Figure 3. We refer to the caption of that fig-
ure for more detailed explanation. Notably, we illustrate the derived operator
grow(a, b), that also played an important role in the brain tumour segmentation
procedure presented in [10]. The operator grow is reminiscent of the technique of
region growing in Medical Imaging, and it is used to characterise those areas of
space satisfying b that are in contact with areas of space satisfying a, or, in other
words, the operator lets a “grow” inside b (and no further). The formal definition
is grow(φ1, φ2) := φ1 ∨ touch(φ2, φ1), where touch(φ3, φ4) := φ3 ∧ ρ φ4[φ3].

Note that the same polyhedron P can be associated with different simplicial
complexes: our semantics is not sensitive to such presentational ambiguity in the
description of P .7 This is because, although we need to specify K to spell out
the restriction on the range of V , K itself does not play a role in the semantics,
as shown in the following proposition.

Lemma 9. Let X = 〈P,K, V 〉 and X ′ = 〈P,K′, V 〉 two models sharing the same
P and V . For each x ∈ P and φ we have: X , x � φ ⇐⇒ X ′, x � φ.

Therefore, for the sake of readability, we will sometimes indicate a polyhedral
model with the notation X = 〈P, V 〉, abstracting from the particular choice of
K. Nevertheless, we require V to range over unions of cells of some polyhedral
partition, thus restricting the semantics to spatial regions definable in terms of
polyhedra. We will call a simplicial complex K as in Definition 7 coherent with
the model X = 〈P, V 〉.
7 Such ambiguity can be thought of as being similar, in spirit, to the infinitely many

different programs that may result in equivalent Kripke frames, in a specification
language for classical model checking applications.
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We mentioned that employing polyhedra allows for a finitary treatment of the
semantics. The following results are essential to formalize this intuition, which
will be further investigated in Section 5.

Definition 10. Let X = 〈P, V 〉 be a polyhedral model. Logical equivalence ≡ is
the binary relation on P such that x ≡ y if and only if, for every formula φ:
X , x � φ ⇐⇒ X , y � φ.

Lemma 11. Let X be a polyhedral model and K a simplicial complex coherent
with X . Then for each cell σ̃ ∈ K̃ and x, y ∈ σ̃ we have x ≡ y.

In particular, for every formula φ, JφKX is a (finite) union of cells of K̃.

Proposition 12. Given a polyhedral model X , the relation ≡ has only finitely
many equivalence classes. Furthermore, each equivalence class C has a charac-
teristic formula φC such that X , x � φC ⇐⇒ x ∈ C.

The above facts are also useful to prove an interesting feature of polyhedral
models, namely that the 2 modality can be considered a derived operator, as it
expressible using γ. This considerably simplifies proofs.

Theorem 13. For each formula φ, we have X , x � 2φ ⇐⇒ X , x � ¬γ(¬φ,>).

Another property of polyhedral models which turns out to be fundamental in this
work is that we can restrict our attention to a special class of paths—rather than
arbitrary paths—to study the reachability operator γ: piecewise linear paths.

Definition 14 (PL-path). We call a path π : [0, 1] → P piecewise linear (or
simply PL-path) if there exist values r0 = 0, r1, . . . , rk = 1 such that for every
i = 0, . . . , k − 1 and t ∈ [0, 1]: π

(
tri + (1− t)ri+1

)
= tπ(ri) + (1− t)π(ri+1).

We indicate that a path is piecewise linear with the notation π : [0, 1]
PL→ P .

Intuitively, a PL-path is obtained by connecting a finite number of segments
and parametrizing them in a suitable way. Even if PL-paths are much simpler
than arbitrary paths, when it comes to connectivity in polyhedral models the
two classes are interchangeable, as shown in the following lemma. We call a set
X PL-connected if for all x, y ∈ X there exists a PL-path from x to y.

Lemma 15. Let K be a simplicial complex and Π ⊆ K̃.
⋃
Π is connected iff⋃

Π is PL-connected.

Using the previous result, we can give an alternative semantic characterization
of the reachability operator, which is relevant for the proofs of decidability of
model checking (Section 5) and the characterisation of logical equivalence via
bisimilarity (Section 4).

Lemma 16. We have: X , x � γ(φ, ψ) if and only if there is a piecewise linear

path π : [0, 1]
PL→ P such that π(0) = x and π((0, 1)) ⊆ JφKX and π(1) ∈ JψKX .
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4 Simplicial Bisimilarity

In this section we characterise logical equivalence via bisimilarity. Recall the
results summarised in [4], defining bisimilarity for topological spatial logics, so
that any two points are bisimilar if and only if they are logically equivalent.
Bisimilarity is a fundamental tool in modal logic (see e.g. [44]).
In order to characterise reachability, the definition of bisimilarity requires a spe-
cial class of paths defined below. In the following, fix a model X := 〈P,K, V 〉.

Definition 17. A path π : [0, 1]→ P is simplicial if and only if there is a finite

sequence s0 = 0 < . . . < sk = 1 of values in [0, 1] and cells σ̃1, . . . , σ̃k ∈ K̃ such
that, for all i = 1, . . . , k, we have π((si−1, si)) ⊆ σ̃i.

Notice that the property of being simplicial depends on the simplicial complex
K. However, we already encountered a family of paths which are simplicial in-
dependently from the choice of K.

Lemma 18. Any piecewise linear path is simplicial.

The definition of bisimilarity makes use of the point-wise lifting of a relation to
a path, defined in a formal way below.

Definition 19. Given a relation R ⊆ P ×P , let the extension of R to paths be
the binary relation between paths R̂, such that π1R̂π2 if and only for all t ∈ [0, 1]
we have π1(t)Rπ2(t).

Definition 20 (Simplicial bisimilarity). A binary relation ∼⊆ P × P is a
simplicial bisimulation if and only if for all x, y with x ∼ y:

1. for all p ∈ AP, x ∈ V (p) ⇐⇒ y ∈ V (p);
2. for each simplicial path πx, with πx(0) = x, there is a simplicial path πy with

πy(0) = y, and πx∼̂πy;
3. for each simplicial path πy, with πy(0) = y, there is a simplicial path πx with

πx(0) = x, and πx∼̂πy.

The largest simplicial bisimulation, if it exists, is called simplicial bisimilarity.

Definition 20 generalizes the classical bisimilarity of Kripke structures by consid-
ering simplicial paths instead of transitions. We can interpret this novel bisimi-
larity as a spatial observational equivalence: if a path starts from x and traverses
a finite sequence of spatial regions (i.e., cells), then there is an observably equiv-
alent path starting from y which traverses equivalent spatial regions (possibly a
different number) in the same order.
Next, we state the three main facts that conclude this section.

Theorem 21. Logical equivalence is a simplicial bisimulation.

Theorem 22. Each simplicial bisimulation is included in logical equivalence.
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(a) Model (b) Bisimulation

x

(c) Path 1

y

(d) Path 2

Fig. 3. An example of bisimilarity. 3a) Model with atomic propositions in green and
red. 3b) bisimilarity, encoded via colours (points of the same colour are bisimilar). 3c)
A point x and a simplicial path starting from x. 3d) Another point y, bisimilar to x,
and a simplicial path starting from y. The two paths are, in turn, bisimilar; note that
these paths are also piecewise linear. The two paths cross a different set of cells, and
have a different number of segments.

Corollary 23 (of Theorem 21 and 22). In a polyhedral model, the largest
simplicial bisimulation always exists, and it coincides with logical equivalence.

Example 24. Consider the polyhedral, 1-dimensional model with cells the points
x = −1, y = 0, z = 1, and the open segments s = (−1, 0) and t = (0, 1). Consider
the set of atomic propositions {a, b}. Let V (y) = {a} and V (z) = b. According to
topo-bisimilarity [11], which characterises the modal fragment of our language,
all the points in s ∪ t are equivalent, as there is no modal formula telling s and
t apart. However, if γ is added to the picture, let φ = γ(¬a, b). The points of s
do not satisfy φ, but the points of t do. No point of s is bisimilar to a point of t.

Example 25. In Figure 3, we propose a simple illustration of the concept of sim-
plicial bisimilarity. Note how the two presented paths pass through a different
number of equivalent cells (in a way akin to classical “stuttering” forms of bisim-
ilarities for process calculi [7]).

5 Geometric Model Checking

Given a polyhedral model X , this section is devoted to identifying a correspond-
ing Kripke-style, finite modelM(X ). Notably,M(X ) is also a topological model
in the sense of [11] when equipped with the Alexandrov topology, and it is a quo-
tient of X that preserves and reflects the semantics of each formula. The goal of
this section is to extend the standard Kripkean semantics of modal logic to the
language of SLCS, by defining a suitable semantics for γ and by showing that
X and M(X ) are logically equivalent. To do so, we introduce a suitable notion
of path inM(X ) corresponding to a simplicial path in X . Model checking on X
can then be carried on using M(X ).

Definition 26. Given a polyhedral model X = 〈P,K, V 〉, we define the Kripke
model M(X ) = 〈K,�, V ′〉, where � is the face relation of the simplicial complex
K, and σ ∈ V ′(p) iff σ̃ ⊆ V (p).
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B

A

D

C

F

E

(a) Polyhedral model X
BA DC FE

AB BDBCAC CD DFDECE EF

BCDABC DEFCDE

(b) Kripke model M(X )

Fig. 4. The polyhedral model X of Figure 3 (4a) and its corresponding Kripke model
M(X ) (4b). We indicate a simplex by the set of its vertices. The accessibility relation
� is represented via its Hasse diagram (reflexive and transitive relations are omitted).
The atomic propositions g and r are indicated in green and red respectively.

We emphasize thatM(X ), although disregarding much of the information about
a polyhedral model (e.g., the position and size of the simplexes) encodes all the
information which is expressible using SLCS, while being a finite—thus com-
putationally tractable—representation of X . An example of polyhedral model
together with its corresponding Kripke model is depicted in Figure 4.

Definition 27. Given a polyhedral model X , with M(X ) = 〈K,�, V ′〉 as in
Definition 26, let �± be the relation � ∪ �. We say that π : {0, . . . , k} → S

is a ±-path (and we indicate it with π : {0, . . . , k} ±→ S) if k ≥ 2 and π(0) �
π(1) �± π(2) �± . . . �± π(k − 1) � π(k).

Notice that for σ, τ ∈ K, the condition σ �± τ amounts to the cells σ̃ and τ̃ being
adjacent. So Definition 27 ensures that the path is comprised of adjacent spatial
regions. Observe also that the first step of a ±-path follows the relation �, that
is, either the first two simplexes in the path coincide or the dimension of the
visited simplexes has to strictly increase along the first step; and similarly, the
last step of the path is either reflexive or the dimension of the visited simplexes
has to strictly decrease.

For typographical reasons, we will use the notation π̃(j) to indicate the rel-
ative interior of the simplex π(j).

Definition 28 (Semantics on M). Consider M(X ) = 〈K,�, V ′〉. Given σ ∈
K, satisfaction M, σ � φ over formulas φ is given by the following inductive
clauses, where we let JφKM denote the set {σ ∈ K |M(X ), σ � φ}:

M(X ), σ � > always holds
M(X ), σ � p ⇐⇒ x ∈ V (p) for p ∈ AP
M(X ), σ � ¬φ ⇐⇒ M(X ), σ 2 φ
M(X ), σ � φ ∧ ψ ⇐⇒ M(X ), σ � φ andM(X ), σ � ψ
M(X ), σ � 2φ ⇐⇒ ∀τ ∈ K. if σ � τ thenM(X ), τ � φ

M(X ), σ � γ(φ, ψ) ⇐⇒ there exists a ±-path π : {0, . . . , k} ±→ K such that

π(0) = σ, π(k) ∈ JψKM and π({1, . . . , k − 1}) ⊆ JφKM
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The clauses for the boolean operators and for 2 are the standard interpretation
of modal formulas on Kripke models (and on topological spaces, via the Alexan-
drov topology, see [11]). However, the semantic clause for γ involves a rather
complex notion of path: this is a clause tailored to simulate the behaviour of γ
on polyhedral models. An example of a ±-path corresponding to a topological
path is shown in Figure 5. The following theorem shows that this is indeed the
correct notion to consider.

B

A

D

C

F

E

x

BA DC FE

AB BDBCAC CD DFDECE EF

BCDABC DEFCDE

Fig. 5. On the left, a simplicial path π (in blue) witnessing x ∈ Jγ(r,¬(r ∨ g))KX ; on the
right, the corresponding ±-path π′ (again in blue) witnessing AB ∈ Jγ(r,¬(r ∨ g))KM.
Only π(0) belongs to the simplex AB and the path enters immediately the simplex
ABC: this is possible since AB � ABC. Likewise, the path ends with a transition
from the simplex BCD to the simplex D, which is possible since BCD � D. These are
exactly the requirements on the first and last steps of a ±-path.

Theorem 29. Let x be a point of P . Let σ ∈ K be the unique simplex such that
x ∈ σ̃. For every formula φ of SLCS we have X , x � φ ⇐⇒ M(X ), σ � φ.

6 PolyLogicA: a Model Checker for Polyhedra

Based on the theory of Section 5, we developed the prototype model checker
PolyLogicA: a Polyhedral Logic-based Analysis tool. The tool is written in the
functional language FSharp8. PolyLogicA is Free and Open Source Software,
distributed under the Apache 2.0 license9.

In this section, we provide a functional description of the tool. For space
reasons, implementation details, including the pseudo-code for model checking
the reachability operator, and a discussion of the complexity of the encoding
from simplicial models to Kripke structures, and of the (global) model checking
algorithm, are given in Appendix B. Here we only mention that, once the dimen-
sion d of the space is fixed, as in our intended applications to processing of 3D
meshes, in our current implementation the time complexity of model checking
a formula f—including the intermediate computation of the Kripke structure
starting from a standard 3D mesh format—is in O(n · h) where n is the num-
ber of simplexes and h the number of subformulas of f . Such complexity grows

8 See https://www.fsharp.org
9 The tool is currently available in a branch of the main VoxLogicA repository, see
https://github.com/vincenzoml/VoxLogicA.

https://www.fsharp.org
https://github.com/vincenzoml/VoxLogicA
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exponentially in d. The design space for algorithms that scale better with d,
possibly exploiting specialised data structures (see e.g. the recent work [14]) will
be explored in future research, depending on the considered use case.

A PolyLogicA specification consists of a text file that can make use of four
commands: let, for declaring functions and constants; import, for importing
libraries of such declarations; load, to specify the file to be loaded as a model,
save, to specify the logic formulas that need to be computed, and saved, possibly
making use of previous let declarations.

Models are required to be based on a fixed simplicial complex. A model file
uses a custom json-based10 format. The information contained in the file consists
of: a list p of d-dimensional vectors, denoting the coordinates of the 0-cells of
the polyhedron, and implicitly specifying the dimension of the underlying space
Rd; a list of atomic proposition identifiers; a list of simplexes. Each simplex is
specified by the list of the indexes of its vertices in p, and its specification also
contains the list of atomic propositions holding at the simplex.

Logic formulas are just a concrete syntax for SLCS. Currently it does not
implement additional extra-logical operators (contrary to VoxLogicA, which also
implements imaging primitives). PolyLogicA is in spirit a global, explicit-state
model checker, that is, the set of simplexes satisfying a given formula is computed
and returned at once. The tool outputs a list in json format, having an element
for each formula φ that the specification requires to be checked. Each element of
such list contains in turn a list representing the truth values of φ at each point
(simplex) of the input model. Finally, a simple 3D, web-based visualizer has been
implemented along the prototype (see the screenshot in Figure 6), which will be
refined in future work.

So far, PolyLogicA has been experimented on some example 3D medical im-
ages, such as the one in Figure 6(b). The mesh visualized is a simplified version
(circa 20000 polygons) of a larger mesh (circa 400000 polygons). A custom con-
verter has been implemented to obtain a json file from the input obj mesh.11 On
a desktop machine equipped with an Intel core i7 7700 cpu and 16gb of RAM,
the execution time to compute the properties shown in the figure is of circa
4.6 seconds, of which 3.5 seconds are spent parsing the (very large) json file,
circa 0.7 seconds are spent computing the Kripke model, and the actual model
checking procedure takes just 0.4 seconds. The tool also manages to compute
the same specification on the original image, taking total time of 128 seconds, of
which 56 seconds are spent in parsing, 65 in computing the Kripke model, and
model checking takes 7 seconds (indeed, memory management for very large files
can certainly make the execution time scale less-than-ideally with the problem
size, especially since garbage collection can be triggered several times along the
computations). Future work will also include implementing a fast loader for obj
meshes, in order to eliminate the parsing of (very large) json files, and optimiz-
ing the translation from simplicial complexes to Kripke models, which currently

10 See https://www.json.org/.
11 Wavefront obj is a widely used file format for 3D meshes. See https://en.

wikipedia.org/wiki/Wavefront_.obj_file

https://www.json.org/
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/Wavefront_.obj_file
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exploits purely-functional data structures for ease of prototyping. We note in
passing that the intermediate Kripke model could be cached for speeding up the
execution of several analyses.

The current version of the tool has been implemented sharing part of the
code base with VoxLogicA. PolyLogicA inherits from its parent tool the multi-
threaded, memoizing computation engine, and the parser for the input language
of the tool. Basically, after expanding let bindings, each formula is converted
into a directed acyclic graph where nodes are tasks, and arcs are dependencies.
Each task is a basic logical primitive, to be applied to specific arguments. Task
A depends upon task B if and only if the result of B is an argument of A. The
implementation guarantees that, while being constructed, the task graph is kept
minimal in the sense that the same primitive on the same arguments will never
be computed twice. After having been constructed, the task graph is executed
in parallel as much as possible, exploiting the available CPU cores.

7 Conclusions and Future Work

In this work, we presented a novel methodology to verify spatial properties of
polyhedral spaces, stemming from topological modal logics enhanced with reach-
ability. We showed that a natural notion of bisimilarity characterises logical
equivalence, and we demonstrated a model checking algorithm for the reacha-
bility operator based on a particular finite representation. For the purpose, we
developed a prototype model checker which is already able to efficiently com-
pute the interpretation of formulas on 3D meshes. Future work will span several
theoretical and applied directions.

Regarding bisimilarity, by looking at the simplicial paths that are used in
Definition 20, one may wonder what logical operators (alternative to γ), and in
what classes of models, can be characterised by lifting the restrictions or com-
pletely changing the kind of paths that are used therein. Furthermore, bisimi-
larity hints at minimization in order to reduce the complexity of the analysis.
The preliminary results presented in [26], including the tool MiniLogicA could
be useful in this research direction. Note that the quotient mapping each simplex
in P to a point in K in Definition 28 is open, thus it preserves and reflects logi-
cal equivalence of the modal fragment of our language; additionally, it preserves
and reflects logical equivalence of the full language, thus simplicial bisimilarity.
Not all open maps do so (just consider, e.g. the quotient with respect to classical
modal logical equivalence). In future work, we plan to formalise the conditions on
an arbitrary open map that make it preserve and reflect simplicial bisimilarity.
The relationship between spatial logics and temporal logics, and related bisim-
ilarities [37] is also of interest, and in particular, comparing path-based spatial
notions such as simplicial bisimilarity, to the so-called stuttering equivalences,
and their associated minimization algorithms (see e.g. [16,32]).

Spatio-temporal model checking in the style of [31,19] is a planned future
development, the simplest case being the one where the underlying polyhedron
does not change over time, and only the valuation of atomic propositions depends
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(a) Visualizer (b) Simple 3D medical
image

(c) Heart

(d) Liver (e) Some veins (f) Selected vein

Fig. 6. PolyLogicA and its visualizer. 6a) Screenshot of the prototype visualizing the
result of an analysis. 6b) A 3D medical illustration, courtesy of www.sketchfab.com

(copyright: COEUR et vaissaaux by Chair Digital Anatomy – The Unesco Chair of
digital anatomy (Paris University) – is licensed under Creative Commons Attribu-
tion, see https://creativecommons.org/licenses/by/4.0/legalcode), visualized us-
ing MeshLab [27]. PolyLogicA is used to segment the heart (6c), liver (6d), and some
veins (6e), using face colours, and then to segment a specific vein (the one that reaches
the liver) using a reachability predicate (6f). Such regions are shown in green.

upon the temporal state of a system. More complex forms of dynamic spatial
structures where the underlying polyhedron evolves over time are also of interest.

A promising application of PolyLogicA is fully automated, declarative analy-
sis of 3D meshes. Clearly, we foresee 3D medical imaging to be a promising land-
scape for future research. Furthermore, note that 3D meshes play a central role
in several fields, including e.g. architecture and computer-aided design (CAD),
or the entertainment industry (consider 3D games or 3D animation movies).

Implementation-wise, GPU computing could provide a computational boost
to PolyLogicA. See [17] for a GPU implementation of the parent tool VoxLogicA.
Finally, a user interface could be useful to explore large datasets, and to better
visualize the interpretation of logic formulas, possibly exploiting results in [15]
for validation.

www.sketchfab.com
https://creativecommons.org/licenses/by/4.0/legalcode
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A Additional lemmas, and Proofs

Proposition A.1. Consider the operator ρ of [10]. We have X , x � ρψ[φ] ⇐⇒
X , x |= ψ ∨ γ(φ, ψ), and X , x � γ(φ, ψ) ⇐⇒ X , x � ρ (φ ∧ ρψ[φ])[φ].

Proof (Proposition A.1). We note in passing that the following proof (and the
definition of ρ and γ) generalise to arbitrary topological models. We first recall
the formal definition of ρ, which uses right-open paths (that is, total continuous
functions having R≥0 as a domain). Note that in [10], ρ was defined only on
discrete spaces. However, following the direction of [21], the definition applies
in a natural way to continuous spaces as follows: X , x � ρψ [φ] whenever there
is a right-open path π : R≥0 → P and an index r such that π(0) = x, π(r) ∈
JψKX and π((0, r)) ⊆ JφKX . We proceed by proving the four implications in the
statement separately.

First, we show that X , x |= ρψ[φ] implies X , x |= ψ∨γ(φ, ψ). If X , x |= ρψ[φ]

then there is right-open path π and ` ∈ R≥0 such that π(0) = x, π((0, `)) ⊆ JφKX

and π(`) ∈ JψKX . We consider two distinct cases:

Case 1: ` = 0. In this case x ∈ JψKX and so X , x |= ψ ∨ γ(φ, ψ).
Case 2: ` 6= 0. In this case, let π′ with π′(r) = π(r`) for all r ∈ [0, 1]. We have

π′(0) = π(0) = x, π′((0, 1)) = π((0, `)) ⊆ JφKX and π′(1) = π(`) ∈ JψKX . This
means that X , x |= γ(φ, ψ), and so X , x |= ψ ∨ γ(φ, ψ).

We now show that X , x |= ψ ∨ γ(φ, ψ) implies X , x |= ρψ[φ]. Suppose that
X , x |= ψ ∨ γ(φ, ψ). We consider two distinct cases:
Case 1: X , x |= ψ. In this case it trivially holds X , x |= ρψ[φ] (for any right-
open path starting at x, just consider ` = 0).
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Case 2: X , x |= γ(φ, ψ). In this case there is a path π such that π(0) = x,

π((0, 1)) ⊆ JφKX and π(1) ∈ JψKX . We obtain X , x |= ρψ[φ] by taking ` = 1 in
the definition of the semantic clause of ρ.

We now show that X , x |= γ(φ, ψ) implies X , x |= ρ (φ ∧ ρψ[φ])[φ]. Suppose

X , x |= γ(φ, ψ), that is, there is a path π such that π(0) = x, π((0, 1)) ⊆ JφKX

and π(1) ∈ JψKX . Since π is a total continuous function, there is an ε ∈ (0, 1)

such that π(ε) ∈ JφKX . We define two additional paths π1(t) = π(tε) and π2(t) =

π((1 − ε)t + ε). Notice that π2(0) = π(ε) ∈ JφKX , π2((0, 1)) = π((ε, 1)) ⊆ JφKX

and π2(1) = π(1) ∈ JψKX : this shows that X , π(ε) |= φ ∧ ρψ[φ]. Moreover, we

have π1(0) = π(0) = x, π1((0, 1)) = π((0, ε)) ⊆ JφKX and π1(1) = π2(0) ∈
Jφ ∧ ρψ[φ]KX : this shows that X , x |= ρ (φ ∧ ρψ[φ])[φ].

Finally, we show that X , x |= ρ (φ∧ρψ[φ])[φ] implies X , x |= γ(φ, ψ). Suppose
that X , x |= ρ (φ ∧ ρψ[φ])[φ], that is, there is a right-open path π1 and a value

`1 ∈ R≥0 such that π1(0) = x, π1((0, `1)) ⊆ JφKX and π1(`1) ∈ Jφ ∧ ρψ[φ]KX =

JφKX ∩Jρψ[φ]KX . By the last condition, there is a right-open path π2 and a value

`2 ∈ R≥0 such that π2(0) = π1(`1), π2((0, `2)) ⊆ JφKX and π2(`2) ∈ JψKX . We
consider two distinct cases:
Case 1: l1 = l2 = 0. In this case π1(l1) = π2(l2) = x, and so x ∈ JφKX ∩ JψKX .
In this case X , x � γ(φ, ψ) holds trivially.
Case 2: l1 > 0 or l2 > 0. In this case define the path π′ by imposing π′(t) =
π1(2tl1) and π′( 1

2 + t) = π2(2tl2) for t ∈ [0, 12 ] (notice that the path is well-
defined since π′( 1

2 ) = π1(l1) = π2(0)). Clearly π′(0) = x. Moreover, π′((0, 1)) =

π′((0, 12 ]) ∪ π′(( 1
2 , 1)) = π1((0, l1)) ∪ π2((0, l2)) ⊆ JφKX (under the assumption

that l1 > 0 or l2 > 0). And finally π′(1) = π2(l2) ∈ JψKX . This shows that
X , x � γ(φ, ψ), as desired.

Proposition A.2. Let σ be a non-empty simplex and consider x ∈ σ̃ and y ∈ σ.
Then there is a linear path (a segment in Rd) π : [0, 1] → σ with π(0) = x,
π(1) = y and π([0, 1)) ⊆ σ̃; more precisely, π(t) = ty + (1− t)x.

Proof (Proposition A.2). Let V = {v0, . . . , vn} be the set of vertices of σ. By
definition of σ, x and y are in the convex hull of V , that is, there exist λi
and δi such that x =

∑n
i=0 λivi and y =

∑n
i=0 δivi. Since x ∈ σ̃, every λi

is strictly greater than 0. For π as defined in the statement we have π(t) =∑n
i=0 (tδi + (1− t)λi) vi. This function is clearly continuous (thus a path), and

we have π(0) = x and π(1) = y. Moreover, for every t ∈ [0, 1) and every i ≤ n
we have tδi + (1− t)λi ≥ (1− t)λi > 0, and so π([0, 1)) ⊆ σ̃.

Lemma A.3. Let K be a simplicial complex and σ, τ ∈ K. Then σ � τ iff
σ̃ ⊆ C(τ̃) iff σ̃ ∩ C(τ̃) 6= ∅.

Proof (Lemma A.3). First, we show that σ � τ implies σ̃ ⊆ C(τ̃). In fact, if
σ � τ we have σ ⊆ τ , and so σ̃ ⊆ σ ⊆ τ = C(τ̃). Secondly, note that since
cells are nonempty sets we have that σ̃ ⊆ C(τ̃) implies σ̃ ∩ C(τ̃) 6= ∅. Finally,
we show that σ̃ ∩ C(τ̃) 6= ∅ implies σ � τ , concluding the proof. Notice that
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C(τ̃) = τ =
⋃
{τ̃ ′ | τ ′ � τ}. So by Lemma 4 we have that either σ̃ ∈ {τ̃ ′ | τ ′ � τ}

or σ̃ ∩ C(τ̃) = ∅. Since the latter is not the case by assumption, we conclude
σ � τ .

Lemma A.4. Let π1 and π2 be two paths, with π1(1) = π2(0); let x, y ∈ [0, 1],
with x < y. Define in the obvious way the concatenation π1;π2, with π1;π2(0) =
π1(0) and π1;π2(1) = π2(1) and the sub-path π1

[x,y], with π1
[x,y](0) = π1(x)

and π1
[x,y](1) = π1(y). We have that: whenever π1 and π2 are piecewise-linear

(simplicial), also π1;π2 is piecewise linear (simplicial); whenever π1 is piecewise
linear (simplicial), also π1

[x,y] is piecewise linear (simplicial). Furthermore, for
any two (additional) paths π′1, π′2 with π′1(1) = π′2(0), and relation R, if π1R̂π

′
1

and π2R̂π
′
2, then π1;π2R̂π

′
1;π′2.

Proof (Lemma A.4). We omit the proof, which is straightforward.

Proof (Lemma 9). Just note that K does not appear in Definition 8.

Proof (Lemma 11). We prove the result by induction on the structure of φ. Since
most of the cases follow easily from the semantic clauses of the logic, we show
only the cases for φ = 2ψ and φ = γ(ψ, χ).

Case φ = 2ψ: By inductive hypothesis, JψKX is a union of cells of K̃, and by

Lemma 4 also P \JψKX is a union of cells. Since there are only finitely many cells

in K̃, we have C(P \ JψKX ) =
⋃
{C(σ̃) | σ̃ ⊆ P \ JψKX }. And since C(σ̃) = σ =⋃

{τ̃ | τ � σ}, it follows that C(P \ JψKX ) =
⋃
{τ̃ | ∃σ. τ � σ and σ̃ ⊆ P \ JψKX },

that is, C(P \ JψKX ) is a union of cells. To conclude, by Lemma 4 we have that

JφKX = I(JψKX ) = P \ C(P \ JψKX ) is again a union of cells.

Case φ = γ(ψ, χ): Suppose that X , x � γ(φ, ψ): we aim to show that X , y �
γ(φ, ψ). This means that there exists a path π such that π(0) = x, π((0, 1)) ⊆
JφKX and π(1) ∈ JψKX . By inductive hypothesis JφKX is a union of cells, and since

JφKX ∩ π((0, 1)) is not empty also the set Π = {τ̃ |∃r ∈ (0, 1).π(r) ∈ τ̃ ⊆ JφKX }
is not empty.

Since π((0, 1)) ⊆
⋃
Π, we have x ∈ C(π((0, 1))) ⊆

⋃
{τ |∃r ∈ (0, 1).π(r) ∈

τ̃ ⊆ JφKX }. Thus there exists a value r ∈ (0, 1) and a cell τ̃ such that x ∈ τ
and π(r) ∈ τ̃ . Since x ∈ σ̃ ∩ C(τ̃), by Lemma A.3 we have σ̃ ⊆ C(τ̃) = τ and
consequently y ∈ τ . By Proposition A.2 (modulo inverting and reparametrising
the path) there exists a path π′ : [0, r] → τ such that π′(0) = y, π′(r) = π(r)

and π′((0, r)) ⊆ τ̃ ⊆ JφKX . If we extend π′ by imposing π′(t) = π(t) for t ∈ (r, 1],

we obtain a path such that π′(0) = y, π′((0, 1)) ⊆ JφKX and π′(1) ∈ JψKX . In
particular π′ witnesses that X , y � γ(φ, ψ), as desired.

Proof (Proposition 12). Fix K coherent with X . By Lemma 11, each equivalence

class is a union of distinct cells of K̃. But since there are only finitely many
cells, there are finitely many equivalence classes too. For two distinct equivalence
classes C and C ′, let φC,C

′
be a formula satisfied by the elements of C but not by

the elements in C ′—such a formula exists by definition of ≡. Then the formula
φC =

∧
C′ 6=C φ

C,C′
is satisfied only by elements in C, as desired.
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Proof (Theorem 13). Recall the definition of 3φ := ¬2¬φ and that X , x |=
3φ ⇐⇒ x ∈ C(JφKX ) (see e.g. [11]), where C is the topological closure operator.
Thus, we prove the equivalent statement X , x � 3φ ⇐⇒ X , x � γ(φ,>).

If X , x |= γ(φ,>), by definition, there is a path π with π(0) = x and

π((0, 1)) ⊆ JφKX . In particular we have x = π(0) ∈ C(π((0, 1)) ) by properties of

paths, and C(π((0, 1)) ) ⊆ C(JφKX ) by monotonicity of C. Therefore x ∈ C(JφKX ),
which amounts to X , x � 3φ.

If X , x |= 3φ, we have x ∈ C(JφKX ). Fix K a simplicial complex coherent with

X . By Lemma 11 JφKX is a union of cells in K̃, and so C(JφKX ) =
⋃
{C(σ̃) | σ̃ ⊆

JφKX }. In particular, x ∈ C(σ̃) = σ for one of these cells. Fix an arbitrary element
y ∈ σ̃—recall that σ̃ is nonempty whenever σ is nonempty. By Proposition A.2
(note that the names x and y are inverted in the statement of the proposition)

there is a path π with π(0) = y, π(1) = x, and π([0, 1)) ⊆ σ̃ ⊆ JφKX . The
“converse” path π′(i) := π(1− i) witnesses that X , x |= γ(φ,>).

Proof (Lemma 15). The right-to-left direction is trivial, so we focus on the left-
to-right direction. We are going to prove the result by induction on the cardi-
nality of Π.

Base case: If #Π = 1, then any two points x, y ∈
⋃
Π belong to the same

cell σ̃, and since cells are convex there is a linear path (thus piecewise linear)
connecting x and y.

Inductive step: Suppose that #Π = n+1 and that the result holds for sets with
lower cardinality. Consider two points x, z ∈

⋃
Π and call σ̃ the cell containing x.

If z ∈ σ̃ too we can reason as in the base case, so we can assume otherwise. Define
Z to be the connected component of

⋃
(Π \ {σ̃}) containing z. Z is itself the

union of a set of cells Π ′—since cells are connected. As #Π ′ < #Π, by inductive
hypothesis Z is PL-connected. Notice that Y := σ̃∪Z is connected, for otherwise
Z would be disconnected from

⋃
Π \Z, against the initial assumption that

⋃
Π

is connected.
C(σ̃) = σ and C(Z) are closed sets whose union covers Y . If the intersection

Y ∩σ∩C(Z) were empty, then Y ∩σ and Y ∩C(Z) would disconnect Y . So there
must be a point y ∈ Y ∩σ∩C(Z). By Proposition A.2 there exists a linear (thus
PL) path π1 connecting x ∈ σ̃ and y ∈ σ, and with π1([0, 1)) ⊆ σ̃ ⊆ Y . Moreover,
since y ∈ C(Z) = C(

⋃
Π ′), there exists a cell τ̃ ∈ Π ′ such that y ∈ C(τ̃) = τ .

So, again by Proposition A.2 (with w playing the role of x in the statement of
the proposition), there exists a linear path π2 from y ∈ τ to an arbitrary point
w ∈ τ̃ , fully contained in Y . Finally, since Z is PL-connected, there exists a
PL-path π3 from w to z in Z ⊆ Y . By concatenating π1, π2 and π3 we obtain a
PL-path connecting x and z contained in Y ⊆

⋃
Π, as desired.

Proof (Lemma 16). The right-to-left implication follows trivially from the se-
mantics clauses of the reachability operators, so we focus on the left-to-right im-
plications. Fix a simplicial complex K coherent with X . Suppose that there exists
a path π : [0, 1]→ P such that π(0) = x, π((0, 1)) ⊆ JφKX and π(1) ∈ JψKX . Con-

sider the set of cells Π := {σ̃ ∈ K̃ |π((0, 1)) ∩ σ̃ 6= ∅}. Clearly
⋃
Π is connected,

and so by Lemma 15 it is also PL-connected. Moreover x, π(1) ∈ C(
⋃
Π).
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Since x ∈ C(
⋃
Π), there exists a cell σ̃ ∈ Π such that x ∈ C(σ̃) = σ. So

by Proposition A.2 there exists a linear path π1 from x to a point (arbitrarily
chosen) y ∈ σ̃ ⊆

⋃
Π such that π1((0, 1)) ⊆ σ̃ (note that the names x and

y are inverted in the statement of the proposition). By a similar argument,

there exists a linear path π3 from a point z ∈
⋃
Π to π(1) ∈ JψKX , such that

π3((0, 1)) ⊆
⋃
Π. Finally, since

⋃
Π is PL-connected, there exists a PL-path

π2 from y to z completely contained in
⋃
Π. By concatenating π1, π2 and π3

we obtain a PL-path π′ such that π′(0) = x, π′((0, 1)) ⊆
⋃
Π ⊆ JφKX and

π′(1) ∈ JψKX , as desired.

Proof (Lemma 18). As cells are convex sets, the intersection between a cell and
a segment is a segment. So any segment crosses each cell at most once. Observing
that there are finitely many segments in a PL-path, one obtains the proof.

Proof (Theorem 21). In the proof, for S a set of logically equivalent points, we
call “characteristic formula” of S the characteristic formula of the equivalence
class that includes S; similarly, we also speak of the “characteristic formula” of
a point x.

Consider two points x and y, with x ≡ y. Let us look at the conditions of
Definition 20. First observe that, since φ can be an atomic proposition symbol,
Condition 1 holds. We only prove Condition 2, as the proof of Condition 3 follows
the same pattern.

Equivalently, we shall prove, by induction on k, the following statement: for
each k ≥ 1, for each pair x, y with x ≡ y, for each path πx with πx(0) = x,
points s0, . . . , sk, and cells σ̃1, . . . , σ̃k making πx a simplicial path according to
Definition 17, there is a simplicial path πy with πy(0) = y and πx≡̂πy.

To ease readability, below, given the data above, we let φ1, . . . , φk be the char-
acteristic formulas of the sets πx((s0, s1)), . . . , πx((sk−1, sk)) respectively. More-
over, let φ′0, . . . , φ

′
k be the characteristic formulas of the points πx(s0), . . . , πx(sk)

respectively.
Next, the proof proceeds by induction on k.
For k = 1, observe that, by Definition 8, we have X , x � γ(φ1, φ

′
1). By x ≡ y,

we have X , y � γ(φ1, φ
′
1). By Lemma 16, there is a piecewise linear path πy

with πy(0) = y, πy((0, 1)) ⊆ Jφ1K
X

, and πy(1) ∈ Jφ′1K
X

. By Lemma 18, πy
is simplicial. Note that, since all the φi and φ′i are characteristic formulas of
equivalence classes, all the points in πx((0, 1))∪πy((0, 1)) are logically equivalent,
and πx(1) ≡ πy(1). Therefore, πx≡̂πy.
For k > 1, consider the sub-paths πax = πx

[0,s1] and πbx = πx
[s1,1]. By Lemma A.4,

both sub-paths are simplicial. By the previous case, there is a simplicial path
πay with πax≡̂πay . In particular, we have πax(1) ≡ πay(1). Noting that πax(1) =

πx(s1) = πbx(0), we now apply the inductive hypothesis to the points πbx(0), πay(1)

and the simplicial path πbx, obtaining the simplicial path πby with πby(0) = πay(1)

and πbx≡̂πby. Let πy = πay ;πby. By Lemma A.4, πy is simplicial, and we have

πx = πax;πbx≡̂πay ;πby = πy, proving the thesis.

Proof (Theorem 22). Given a simplicial bisimulation ∼, we need to show that for
every formula φ and all points x and y, if x ∼ y then X , x |= φ ⇐⇒ X , y |= φ.
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We use induction on the structure of φ. The cases for atomic propositions and
Boolean operations are trivial, thus omitted. The case for the 2 operator is also
omitted, as 2 is derived from γ by Theorem 13.
Suppose x ∼ y and X , x � φ = γ(φ1, φ2). By Lemma 16, there is a piecewise

linear path πx with πx(0) = x, πx((0, 1)) ⊆ Jφ1K
X

, and πx(1) ∈ Jφ2K
X

. By
Lemma 18, πx is simplicial. By Condition 2 of Definition 20, and the fact that
x ∼ y, there is a simplicial path πy with πy(0) = y, such that πx∼̂πy. For each
r ∈ (0, 1), we have πx(r) ∼ πy(r) and X , πx(r) |= φ1. By induction hypoth-

esis, X , πy(r) � φ1, therefore πy((0, 1)) ⊆ Jφ1K
X

. We also have X , πx(1) � φ2
and πx(1) ∼ πy(1). Thus, by induction hypothesis, πy(1) ∈ Jφ2K

X
. Summing

up, we have X , y � γ(φ1, φ2), concluding one direction of our proof. Next, we
should prove that conversely, if X , y � γ(φ1, φ2) then X , x � γ(φ1, φ2). The ar-
gument is similar to the other case, using Condition 3 of Definition 20 instead
of Condition 2.

Proof (Theorem 29). Notice that by Lemma 11 the left side of the bi-implication

is equivalent to σ̃ ⊆ JφKX . We proceed by induction on the structure of the
formula; the only non trivial cases are when the formula is of the form 2ψ and
when the formula is of the form γ(φ, ψ).

Case 2ψ: We have that X , x � 2ψ iff x /∈ C(J¬ψKX ). By Lemma 11, J¬ψKX

is a finite union of cells, so, by Lemma A.3, the condition is equivalent to x /∈⋃
{τ | τ̃ ⊆ J¬ψKX }; and again, by Lemma A.3, it is equivalent to ∀τ s.t. τ̃ ⊆

J¬ψKX . σ 6� τ . Again by Lemma 11, for every τ ∈ K we have that if σ � τ then

τ̃ ⊆ JψKX , which by the inductive hypothesis amounts to M(X ), σ � 2ψ. Note
that we have equivalences in both directions of the proof, so the bi-implication
is obtained “for free” for this part.

Case γ(φ, ψ): Firstly, suppose that M(X ), σ � γ(φ, ψ). Then there exists a ±-

path π : {0, . . . , k} ±→ S such that π(0) = σ, π({1, . . . , k − 1}) ⊆ JφKM and

π(k) ∈ JψKM. By inductive hypothesis, π̃(j) ⊆ JφKX for j ∈ {1, . . . , k − 1} and

π̃(k) ⊆ JψKX .
For any two simplexes σ � τ , we have bσ ∈ σ̃ ⊆ τ (recall that bσ indicates

the barycentre of σ). So by Proposition A.2 (where bσ and bτ play the role of y
and x respectively in the statement of the proposition) there exists a linear path
connecting bσ ∈ τ to bτ ∈ τ̃ and mapping the interval (0, 1) to τ̃ . Using this fact,
for every i = 1, . . . k we can find a linear path π′i connecting bπ(i−1) to bπ(i) with
π′i((0, 1)) ⊆ π̃(i− 1) or π′i((0, 1)) ⊆ π̃(i)—depending whether π(i− 1) � π(i) or
π(i) � π(i − 1). Concatenating these paths, we obtain a path π′ := π′1; . . . ;π′k
from bπ(0) to bπ(k) ∈ JψKX such that π′((0, 1)) ⊆ π̃(1) ∪ · · · ∪ π̃(k − 1) ⊆ JφKX .
This shows that X , bπ(0) � γ(φ, ψ), and so by Lemma 11 since x, bπ(0) ∈ σ̃ we
have X , x � γ(φ, ψ).

Conversely, assume that X , x � γ(φ, ψ), which by Lemma 16 amounts to

the existence of a PL-path π : [0, 1]
PL→ P such that π(0) = x, π(1) ∈ JψKX

and π((0, 1)) ∈ JφKX . π is a simplicial path by Lemma 18, so there exist points
s0 = 0 < s1 < · · · < sl = 1 such that each π((si, si+1)) is fully contained
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in a single cell. In particular, we can find cells τ̃1, . . . , τ̃l, τ̃
′
0, . . . , τ̃

′
l such that

π((sj−1, sj)) ⊆ τ̃j for j = 1, . . . , l, and such that π(sj) ∈ τ̃ ′j for j = 0, . . . , l.

Notice that τ̃ ′0 = σ̃, τ̃ ′l ⊆ JψKX (since π(1) ∈ τ̃ ′l ) and τ̃i, τ̃
′
j ⊆ JφKX for i = 1, . . . , l

and j = 1, . . . , l − 1 (since they contain points in JφKX ).
Observe that π(sj) ∈ τ̃ ′j ∩ C(τ̃j+1) for j = 0, . . . , l− 1, and so by Lemma A.3

we have τ ′j � τj+1. With a similar argument, we also have τ ′j � τj for j = 1, . . . , l.
Rewriting the previous conditions we have τ ′0 � τ1 � τ ′1 � τ2 � . . . � τ ′l , which
by definition means that the sequence 〈τ ′0, τ1, τ ′1, τ2, τ ′2, . . . , τl, τ ′l 〉 is a ±-path
of M(X ). By previous considerations together with the inductive hypothesis

applied to φ and ψ, we also have that τ ′0 = σ, that τ ′l ∈ JψKM and that τi, τ
′
j ∈

JφKM for i = 1, . . . , l and j = 1, . . . , l − 1. Thus we have M(X ), σ � γ(φ, ψ), as
desired.

B Algorithms, pseudo-code, correctness, complexity

Currently PolyLogicA represents a polyhedral model X through an explicit en-
coding of the Kripke model from Definition 26. The latter is stored as a graph
having the simplexes as nodes and with � as the edge relation. The current
implementation stores the out-neighborhood out(σ) = {τ |σ � τ} and the in-
neighborhood in(σ) = {τ |σ � τ} of each node σ in two separate arrays, allowing
access in constant time to these sets.

In what follows, we indicate with n the number of simplexes and with d the
dimension of K, that is, the maximum dimension of a simplex in K. Indeed,
the number of nodes of the encoding is n. Moreover, since each simplex σ has
at most d vertices and the faces of σ are generated by subsets of vertices, the
cardinality of each out-neighborhood is at most 2d, and so the total number of
edges is at most n · 2d. We let N be the total size N of the Kripke structure
(sum of the number of nodes and edges), which is therefore in O(n · 2d+1).

The semantics of the reachability operator, as of Definition 28, is computed
via a variant of the flooding procedure already employed in [21,19,31], retaining
its asymptotic complexity (linear in N). The pseudo-code is reported in Figure 7.
Therein, for brevity, we call “good” a ±-path witnessing the formula γ(φ, ψ).
We provide a short proof of the correctness of the algorithm.

Proof (Correctness, sketch). To be consistent with the comments in the pseudo-
code, we keep calling a ±-path π : {0, . . . , k} → K witnessing the satisfaction
of γ(φ, ψ) a “good” path. First, notice that we can divide a good path in three
parts: the initial point π(0), the central segment π({1, . . . , k − 1}) satisfying φ

and the final point π(k) satisfying ψ. To compute the set Jγ(φ, ψ)KM we work

“backwards”. First, we compute the set C := JφKM ∩ out(JψKM) (the simplexes
of the form π(k − 1) for some good path π). Then we use a standard flooding
procedure to collect the nodes of the graph that are connected to C via a non-
directed path passing only through JφKM (these are the simplexes of the form

π(1) for some good path π). Finally we compute the set Jγ(φ, ψ)KM = in(D)
(the simplices of the form π(0) for some good path π).
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1 Input : JφKM , JψKM s e t s o f nodes o f a r e f l e x i v e , t r a n s i t i v e graph

2 Output : Jγ(φ, ψ)KM

3
4 // f r o n t i e r : the po in t s queued f o r the next i t e r a t i o n .

↪→ I n i t i a l i z e d with the next to l a s t po in t s o f a good path .

5 l e t f r o n t i e r = JφKM ∩ out(JψKM)
6
7 // f l ooded : a l l the po in t s that are in the middle o f a good path .
8 l e t f l ooded = f r o n t i e r
9

10 whi le f r o n t i e r 6= ∅ :
11 l e t σ = f r o n t i e r . pop ( )
12 f o r every τ ∈ in(σ) ∪ out(σ) :

13 i f τ /∈ f l ooded and τ ∈ JφKM :
14 f r o n t i e r . add (τ )
15 f l ooded . add (τ )
16
17 // r e s u l t : the s t a r t i n g po in t s o f a good path .
18 l e t r e s u l t = in( f l ooded)
19
20 return r e s u l t

Fig. 7. Pseudo-code for model checking the reachability operator.

The code is divided in three parts, following the three steps described above:
initialization (lines 4-8), flooding (lines 10-15) and finalization (lines 17-20).
In the initialization we define the sets of simplexes frontier and flooded,
which will be later used by the flooding procedure. Both sets are initialized
using C = JφKM ∩ out(JψKM). The flooding part is quite standard; it is used to
compute D starting from C. At the end of this step, the value of D is stored in the
variable flooded. Finally, in the finalization we return the set in(flooded) =

Jγ(φ, ψ)KM, which is the desired output of the algorithm.

The complexity of the implementation of the pseudo-code above in PolyLogicA
is O(N)—notice that all the set-theoretic operations and the flooding procedure
are linear in the number of nodes and edges. The computation of the Boolean
operators are also linear in N . Therefore, the asymptotic complexity of the cur-
rently implemented model checking algorithm is in O(N · h), where h is the
number of subformulas of the formula to be checked. Once d is fixed (as in the
case of 3D meshes, where the “exponential” contribution of d is negligible), this
becomes O(n · h).

Next, we spend some words on the complexity of the encoding, which is also
part of our tool. In the current prototype, the input is described by a list of n
simplexes with maximum dimension d, each one being represented by a list of
vertices. To compute the Kripke frame of Definition 26 from this description, the
tool performs an explicit enumeration of the subsets of each simplex, building
the arrays of out- and in-neighborhood incrementally. This results in a time
complexity in O(N), which becomes O(n) once the dimension is fixed. Therefore,
for d fixed, the total complexity (encoding plus model checking) is in O(n · h).
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