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Abstract. Closure spaces are a generalisation of topological spaces ob-
tained by removing the idempotence requirement on the closure op-
erator. We adapt the standard notion of bisimilarity for topological
models, namely Topo-bisimilarity, to closure models—we call the result-
ing equivalence CM-bisimilarity—and refine it for quasi-discrete closure
models. We also define two additional notions of bisimilarity that are
based on paths on space, namely Path-bisimilarity and Compatible Path-
bisimilarity, CoPa-bisimilarity for short. The former expresses (uncon-
ditional) reachability, the latter refines it in a way that is reminishent
of Stuttering Equivalence on transition systems. For each bisimilarity we
provide a logical characterisation, using variants of SLCS. We also address
the issue of (space) minimisation via the three equivalences.

Keywords: Closure Spaces; Topological Spaces; Spatial Logics; Spatial Bisim-
ilarities.

1 Introduction

In the well known topological interpretation of model logic a point in space sat-
isfies formula �Φ whenever it belongs to the topological closure of the set [[Φ]]
of all the points satisfying formula Φ (see e.g. [5]). Topological spaces form the
fundamental basis for reasoning about space, but the idempotence property of
topological closure turns out to be too restrictive. For instance, discrete struc-
tures useful for certain representations of space, like general graphs, cannot be
captured. To that purpose, a more liberal notion of space, namely that of closure
spaces, has been proposed in the literature that does not require idempotence of
the closure operator (see [16] for an in-depth treatment of the subject).

In [11,12] the Spatial Logic for Closure Spaces (SLCS) has been proposed
that enriches modal logic with a surrounded operator S such that a point x
satisfies Φ1 S Φ2 if it lays in a set A ⊆ [[Φ1]] and the external border of which
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is composed by points in [[Φ2]], i.e. x satisfies Φ1 and is surrounded by points
satisfying Φ2. A model checking algorithm has been proposed in [11,12] that
has been implemented in the tool topochecker [9,10] and, more recently, in
VoxLogicA [4], a tool specialised for spatial model-checking digital images, that
can be modelled as adjacency spaces, a special case of closure spaces.

The logic and its model checkers have been applied to several case stud-
ies [12,10,9] including a declarative approach to medical image analysis [4,3,8,2].
An encoding of the discrete Region Connection Calculus RCC8D of [22] into the
collective variant of SLCS has been proposed in [13]. The logic has also inspired
other approaches to spatial reasoning in the context of signal temporal logic and
system monitoring [1,21] and in the verification of cyber-physical systems [23].
In [19] it has been shown that SLCS cannot express topological separation and
connectedness; the authors propose a notion of path preserving bisimulation.

A key question, when reasoning about modal logics and their models, is
the relationship between logical equivalences and notions of bisimilarity defined
on their underlying models. This is also important because the existence of such
bisimilarities, and their logical characterisation, makes it possible to exploit min-
imisation procedures for bisimilarity for the purpose of efficient model-checking.

In this paper we study three different notions of bisimilarity for closure mod-
els, i.e. models based on closure spaces. The first one is CM-bisimilarity, that
is an adaptation for closure models of classical Topo-bisimilarity for topological
models [5]. Actually, CM-bisimilarity is an instantiation to closure models of
Monotonic bisimulation on neighbourhood models [6,18]. In fact, it is defined
using the interior operator of closure models, that is monotonic, thus making
closure models an intantiation of monotonic neighbourhood models. We show
that CM-bisimilarity is weaker than homeomorphism and provide a logical char-
acterisation of the former, namely the Infinitary Modal Logic.

We then present a refinement of CM-bisimilarity, specialised for quasi-discrete
closure models, i.e. closure models where every point has a minimal neighbour-
hood. In this case, the closure of a set of points—and so also its interior—can
be expressed using an underlying binary relation; this gives raise to both a di-
rect closure and interior of a set, and a converse closure and interior, the latter
being obtained using the inverse of the binary relation. This, in turn, induces
a refined notion of bisimilarity, CM-bisimilarity with converse, which, on quasi-
discrete closure models, is shown to be strictly stronger than CM-bisimilarity.
We also introduce a notion of Trace Equivalence for closure models and show
that CM-bisimilarity with converse implies Trace Equivalence, but not the other
way around.

We extend the Infinitary Modal Logic with the converse of its unary modal
operator and show that the resulting logic characterises CM-bisimilarity with
converse. CM-bisimulation with converse, as CM-bisimulation, is defined using
the interior operator, I. We show that C-bisimulation, proposed in [14], and
resembling Strong Back-and-Forth bisimilarity for processes proposed in [15],
coincides with CM-bisimulation with converse. The definition of C-bisimulation
uses the closure operator C, i.e. the dual of I. The advantage of using directly
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the closure operator, which is the foundational operator of closure spaces, is
given by its intuitive interpretation in quasi-discrete closure models that makes
several proofs simpler. We recall here that in [14] a minimisation algorithm for
C-bisimulation, and related tool, MiniLogicA, have been proposed as well. We
show that the infinitary extension ISLCS of (a variant of) SLCS, fully characterises
C-bisimulation. The variant of SLCS of interest here is the one with two modal
operators expressing (conditional) reachability. More specifically, one operator
expresses the possibility that a point in space may reach an area satisfying a
given formula3 Φ1 via a path the points of which satisfy a formula Φ2; the other
expresses the possibility that a point in space may be reached from an area
satisfying a given formula Φ1 via a path the points of which satisfy a formula
Φ2. The classical Infinitary Modal Logic modal operator, and its converse, can
be derived from the reachability operators of SLCS, when the underlying model
is quasi-discrete4. This last result brings to the coincidence of CM-bisimilarity
with converse and C-bisimilarity for quasi-discrete closure models.

CM-bisimilarity, and CM-bisimilarity with converse, play an important role
as they are the counterpart of classical Topo-bisimilarity. On the other hand,
they turn out to be rather too strong when one has in mind intuitive relations
on space like, e.g. scaling, that may be useful when dealing with models repre-
senting images (see [8,2,4,3] for details). For this purpose, we introduce our sec-
ond, weaker notion of bisimilarity, namely Path-bisimulation that is essentially
based on reachability of bisimilar points by means of paths over the underly-
ing space. We show that, for quasi-discrete closure models, Path-bisimilarity is
strictly weaker than CM-bisimilarity with converse; we also show that a simi-
lar result does not hold for general CM-bisimilarity and general closure models.
We provide a remedy to such problem, for the case in which the space is path-
connected, using an adaptation for CMs of INL-bisimilarity [6]. We furthermore
show that Path-bisimilarity and Trace Equivalence for general CMs are uncom-
parable. We finally consider the Infinitary Modal Logic where the modal operator
is replaced by two unary modalities—one for (unconditional) reachability of an
area satisfying a given formula, and the other for (unconditional) reachability
from an area satisfying a given formula—and prove that such a logic characterises
Path-bisimilarity.

Path-bisimilarity is in some sense too weak, abstracting too much; nothing
whatsoever is required of the relevant paths, except their starting points being
fixed and related by the bisimulation, and their end-points be in the bisimula-
tion as well. A little bit deeper insight into the structure of such paths would be
desirable as well as some, relatively high level, requirements on them. To that
purpose we resort to a notion of “compatibility” between relevant paths that
essentially requires each of them to be composed by a sequence of non-empty
“zones”, with the total number of zones in each of the two paths being the same,
while the length of each zone being arbitrary (but at least 1); each element of

3 By “area satisfying” here we mean “all the points of which satisfy”.
4 We also show that, for general CM, the surrounded operator of SLCS can be derived

from the reachability ones.
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one path in a given zone is required to be related by the bisimulation to all the
elements in the corresponding zone in the other path. This idea of compatibility
gives rise to the third notion of bisimulation, namely Compatible Path bisimu-
lation, CoPa-bisimulation, which is strictly stronger than Path-bisimilarity and,
for quasi-discrete closure models, strictly weaker than CM-bisimilarity with con-
verse. We also show that Compatible Path bisimulation and Trace Equivalence
are uncomparable and we provide a logical characterisation of Compatible Path
bisimulation using a restricted version of ISLCS. The notion of CoPa-bisimulation
is reminiscent of that of the Equivalence with respect to Stuttering for transition
systems proposed in [7], although in a different context and with different defi-
nitions as well as underlying notions.

The paper is organised as follows: after having settled the context and offered
some preliminary notions and definitions in Section 2, in Section 3 we present
CM-bisimilarity. Section 4 deals with CM-bisimulation with converse. Section 5
addresses Path-bisimilarity, while in Section 6 CoPa-bisimilarity is dealt with.
We conclude the paper with Section 7. All detailed proofs are provided in the
Appendix.

2 Preliminaries

In this paper, given set X, P(X) denotes the powerset of X; for Y ⊆ X we let Y
denote X \Y , i.e. the complement of Y . For function f : X → Y and A ⊆ X, we
let f(A) be defined as {f(a) | a ∈ A}. For binary relation R ⊆ X×X we let R−1

denote the relation {(x1, x2) | (x2, x1) ∈ R}, whereas Rr (Rs, respectively) will
denote the transitive closure (symmetric closure, respectively) of R, and Rrst

will denote the reflexive, symmetric and transitive closure of R. In this section,
we recall several definitions and results on closure spaces, most of which are
taken from [16].

Definition 1 (Closure Space - CS). A closure space, CS for short, is a pair
(X, C) where X is a non-empty set (of points) and C : P(X) → P(X) is a
function satisfying the following axioms:

1. C(∅) = ∅;
2. A ⊆ C(A) for all A ⊆ X;
3. C(A1 ∪A2) = C(A1) ∪ C(A2) for all A1, A2 ⊆ X. •

It is worth pointing out that topological spaces coincide with the sub-class
of CSs for which also the idempotence axiom C(C(A) = C(A) holds. The interior

operator is the dual of closure: I(A) = C(A). A neighbourhood of a point x ∈ X
is any set A ⊆ X such that x ∈ I(A). A minimal neighbourhood of a point x is
a neighbourhood A of x such that A ⊆ A′ for any other neighbourhood A′ of x.

We recall here the fact that the closure and, consequently, the interior oper-
ators are monotonic: if A1 ⊆ A2 then C(A1) ⊆ C(A2) and I(A1) ⊆ I(A2).

Definition 2 (Quasi-discrete CS - QdCS). A quasi-discrete closure space
is a CS (X, C) such that any of the following equivalent conditions holds:
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1. each x ∈ X has a minimal neighbourhood;
2. for each A ⊆ X it holds that C(A) =

⋃
x∈A C({x}). •

Given a relation R ⊆ X ×X, let function CR : P(X)→ P(X) be defined as
follows: for all A ⊆ X, CR(A) = A ∪ {x ∈ X | there exists a ∈ A s.t. (a, x) ∈ R}.
It is easy to see that, for any R, CR satisfies all the axioms of Definition 1 and
so (X, CR) is a CS. The following theorem is a standard result in the theory of
CSs [16]:

Theorem 1. A CS (X, C) is quasi-discrete if and only if there is a relation
R ⊆ X ×X such that C = CR. ut

In the sequel, whenever (X, C) is quasi-discrete, we will let
→
C denote CR,

and, consequently, we will let (X,
→
C ) denote the space, abstracting from the

specification of relation R, when the latter is not necessary. Moreover, we will

let
←
C denote CR−1 .

→
I and

←
I are defined in the obvious way:

→
I A =

→
C (A) and

←
I A =

←
C (A).

An example of the difference between
→
C and

←
C is shown in Figure 1.

(a) (b) (c)

Fig. 1: Given the points satisfying Φ, shown in red in Fig. 1a, those satisfying
→
C (Φ) are shown in blue in Fig. 1b and those satisfying

←
C (Φ) are shown in blue

in Fig. 1c

In the context of the present paper, paths over closure spaces play an impor-
tant role; therefore, we give a formal definition of paths as continuous functions
below.

Definition 3 (Continuous function). Function f : X1 → X2 is a continuous
function from (X1, C1) to (X2, C2) if and only if for all sets A ⊆ X1 we have:
f(C1(A)) ⊆ C2(f(A)). •

Definition 4 (Connected space). Given CS (X, C), A ⊆ X is connected if it
is not the union of two non-empty separated sets. A1, A2 ⊆ X are separated if
A1 ∩ C(A2) = C(A1) ∩A2 = ∅. (X, C) is connected if X is connected. •

Definition 5 (Index space). An index space is a connected CS (I, C) equipped
with a total order ≤⊆ I× I with a bottom element 0. We write ι1 < ι2 whenever
ι1 ≤ ι2 and ι1 6= ι2. •
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Definition 6 (Path). A path in CS (X, C) is a continuous function from an
index space J = (I, CJ ) to (X, C). Path π is bounded if there exists ` ∈ I s.t.
π(ι) = π(`) for all ι such that ` ≤ ι; we call ` the length of π, written len(π).

For bounded path π we define the domain of π, dom(π), as the set {ι | ι ≤
len(π)} and range(π) = {π(ι) | ι ≤ (lenπ)} (the range of π). •

Of particular importance in the present paper are quasi-discrete paths and
Euclidean paths. Quasi-discrete paths are paths having (N, Csucc) as index space,
where N is the set of natural numbers and succ is the successor relation succ =
{(m,n) |n = m + 1}. The index space of Euclidean paths is instead the set of
non-negative real numbers equipped with the classical closure operator.

Proposition 1. For all QdCS (X,
→
C ), A,A1, A2 ⊆ X,x1, x2 ∈ X, and function

π : N→ X the following holds:

1.
←
C (A) = A ∪ {x ∈ X | there exists a ∈ A such that (x, a) ∈ R};

2. x1 ∈
←
C ({x2}) if and only if x2 ∈

→
C ({x1});

3.
←
C (A) = {x |x ∈ X and exists a ∈ A such that a ∈

→
C ({x})};

4. if A1 ⊆ A2, then
←
C (A1) ⊆

←
C (A2) and

←
I (A1) ⊆

←
I (A2).

5. π is a path over X if and only if for all i ∈ dom(π)\{0}, the following holds:

π(i) ∈
→
C (π(i− 1)) and π(i− 1) ∈

←
C (π(i)).

Remark 1. Note that the definition of the closure operator for QdCSs given

in [16] coincides with
←
C A, as given in the first item of Proposition 1.

In the sequel we fix a set AP of atomic proposition letters.

Definition 7 (Closure model - CM). A closure model, CM for short, is
a tuple M = (X, C,V), with (X, C) a CS, and V : AP → P(X) the (atomic
predicate) valuation function assigning to each p ∈ AP the set of points where p
holds. •

The following definition adapts the notion of homeomorphism for topological
spaces, as given in [20], to the case of closure spaces.

Definition 8 (Homeomorphism). A homeomorphism between CMs M1 =
(X1, C1,V1) and M2 = (X2, C2,V2) is a bijection h : X1 → X2 s.t. for all
x1 ∈ X1, x2 ∈ X2, A1 ⊆ X1 and A2 ⊆ X2, the following holds:

1. V−11 (x1) = V−12 (h(x1));
2. V−12 (x2) = V−11 (h−1(x2));
3. h(I1(A1)) = I2(h(A1));
4. h−1(I2(A2)) = I1(h−1(A2)).

We say that x1, x2 ∈ X are homeomorphic, written x1 
HO x2 if and only if
there is an homeomorphism h such that x2 = h(x1). •
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An alternative, equivalent, definition can be obtained by requiring that h(C1(A1))
= C2(h(A1)) and h−1(C2(A2)) = C1(h−1(A2)) instead of h(I1(A1)) = I2(h(A1))
and h−1(I2(A2)) = I1(h−1(A2)).

All the definitions given above for CSs apply to CMs as well; thus, a quasi-

discrete closure model (QdCM for short) is a CM M = (X,
→
C ,V) where (X,

→
C )

is a QdCS. For model M = (X, C,V) we will often write x ∈ M when x ∈ X;
similarly we will speak of paths inM meaning paths in (X, C); we let PathsJ ,M
denote the set of all paths in M with index space J . BPathsJ ,M denotes the
set of all bounded paths in M, whereas for x ∈ X, BPathsFJ ,M(x) denotes the
set {π ∈ BPathsJ ,M |π(0) = x} and, similarly, BPathsTJ ,M(x) denotes the set
{π ∈ BPathsJ ,M |π(len(π)) = x}. We will refrain from writing the subscripts

J ,M whenever not necessary.

We often write x
π

=⇒ x′ if π ∈ BPathsFJ ,M(x)∩BPathsTJ ,M(x′) and x =⇒ x′

if there exists π s.t. x
π

=⇒ x′. We say thatM is path-connected if for all x, x′ ∈M
we have x =⇒ x′.

Finally, for π ∈ PathsJ ,M with J = (I, CJ ), we let Tr(π) denote the trace
of π, namely Tr : PathsJ ,M → (I → P(AP)) with Tr(π)(ι) = V−1(π(ι)). We say
that x1, x2 ∈ M are trace equivalent, written x1 
Tr x2 if Tr(BPathsF(x1)) =
Tr(BPathsF(x2)) and Tr(BPathsT(x1)) = Tr(BPathsT(x2)).

In the sequel, for logic L, formula Φ ∈ L, and model M = (X, C,V) we let
[[Φ]]ML denote the set {x ∈ X |M, x |=L Φ} of all the points inM that satisfy Φ,
where |=L is the satisfaction relation for L. For the sake of readability, we will
refrain from writing the subscript L when this will not cause confusion.

3 CM-bisimilarity

3.1 CM-bisimilarity

The first notion of bisimilarity that we consider is CM-bisimilarity. This notion
stems from a natural adaptation for CMs of Topo-bisimilation for topological
models, as defined e.g. in [5]. We recall such definition below, where (X, τ,V) is
the topological model with set of points X, open sets τ , and atomic predicate
evaluation function V:

Definition 9 (Topo-bisimulation). A topological bisimulation or simply a
topo-bisimulation between two topo-modelsM1 = (X1, τ1,V1) andM2 = (X2, τ2,
V2) is a non-empty relation T ⊆ X1 ×X2 such that if (x1, x2) ∈ T then:

1. x1 ∈ V1(p) if and only if x2 ∈ V2(p) for each p ∈ AP;

2. (forth): x1 ∈ U1 ∈ τ1 implies there exists U2 ∈ τ2 such that x2 ∈ U2 and for
all x′2 ∈ U2 there exists x′1 ∈ U1 such that (x′1, x

′
2) ∈ T ;

3. (back): x2 ∈ U2 ∈ τ2 implies there exists U1 ∈ τ1 such that x1 ∈ U1 and for
all x′1 ∈ U1 there exists x′2 ∈ U2 such that (x′1, x

′
2) ∈ T . •
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In the context of CMs, we replace the notion of open set containing a given
point x with that of neighbourhood of x, so that we get the following5

Definition 10 (CM-bisimilarity). Given CM M = (X, C,V), a non empty
relation B ⊆ X ×X is a CM-bisimulation over X if, whenever (x1, x2) ∈ B, the
following holds:

1. V−1(x1) = V−1(x2);

2. for all neighbourhoods S1 of x1 there is a neighbourhood S2 of x2 such that
for all s2 ∈ S2, there is s1 ∈ S1 with (s1, s2) ∈ B;

3. for all neighbourhoods S2 of x2 there is a neighbourhood S1 of x1 such that
for all s1 ∈ S1, there is s2 ∈ S2 with (s1, s2) ∈ B.

x1 and x2 are CM-bisimilar, written x1 
MCM x2, if and only if there is a CM-
bisimulation B over X such that (x1, x2) ∈ B. •

The above definition is very similar to that of bisimilarity between monotonic
neighbourhood spaces [6,18], and, in fact, monotonicity of the I operator makes
it legitimate to interpret CMs as an instantiation of the notion of monotonic
neighbourhood models (see [6,18] for details).

CM-bisimilarity is coarser than homeomorphism:

Proposition 2. For all CMsM = (X, C,V) and x1, x2 ∈ X the following holds:
x1 
HO x2 implies x1 
CM x2.

The converse of Proposition 2 does not hold as shown in Figure 2 where
V−1(x11) = V−1(x21) = {r} 6= {b} = V−1(x12) = V−1(x22) = V−1(x23) and
x11 
CM x21 but x11 6
HO x21 (see Remark 3 in Appendix B).

x11 x12 x21

x22

x23

Fig. 2: x11 
CM x21 but x11 6
HO x21.

5 In this paper, we provide all major definitions and result with respect to a single
model M = (X, C,V) whereas some authors do this with respect to two models
M1 = (X1, C1,V1) and M2 = (X2, C2,V2). The two approaches are interchangeable
and we find the former a little bit simpler from the notational point of view.
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3.2 Logical Characterisation of CM-bisimilarity

In this section, we show that CM-bisimilarity is characterised by the Infinitary
Modal Logic, IML for short. We first recall the definition of IML.

Definition 11 (Infinitary Modal Logic - IML). For index set I and p ∈ AP

the abstract language of IML is defined as follows:

Φ ::= p | ¬Φ |
∧
i∈I

Φi | NΦ.

The satisfaction relation for all CMs M, points x ∈ M, and IML formulas Φ is
defined recursively on the structure of Φ as follows:

M, x |=IML p ⇔ x ∈ V(p);
M, x |=IML ¬Φ ⇔M, x |=IML Φ does not hold;
M, x |=IML

∧
i∈I Φi ⇔M, x |=IML Φi for all i ∈ I;

M, x |=IML NΦ ⇔ x ∈ C([[Φ]]M).

•

Definition 12 (IML-Equivalence). Given CM M = (X, C,V), the equivalence
relation 'MIML⊆ X×X is defined as: x1 'MIML x2 if and only if for all IML formulas
Φ the following holds: M, x1 |=IML Φ if and only if M, x2 |=IML Φ. •

In the sequel we will often abbreviate 'MIML with 'IML, leaving the specification
of the model implicit.

Theorem 2. For all CMs M = (X, C,V), any CM-Bisimulation B over X is
included in the equivalence 'MIML.

The converse of Theorem 2 is given below.

Theorem 3. For all CMs M = (X, C,V), 'MIML is a CM-Bisimulation.

Corollary 1. For all CMs M = (X, C,V) we have that 'MIML coincides with

MCM . ut

4 CMC-bisimilarity for Quasi-discrete CMs

In this section we refine CM-bisimilarity into CM-bisimilarity with converse,
CMC-bisimilarity for short, a specialisation of CM-bisimilarity for QdCMs. Re-
call that, for CM M = (X, C,V), S ⊆ X is a neighbourhood of x ∈ X if
x ∈ I(S). Moreover, whenever M is quasi-discrete, there are actually two in-

terior functions, namely
→
I (S) and

←
I (S). It is then natural to exploit both

functions for a definition of CM-bisimilarity specifically designed for QdCMs,
namely CMC-bisimilarity.
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4.1 CMC-bisimilarity for QdCMs

Definition 13 (CMC-bisimilarity for QdCMs). Given QdCMM = (X,
→
C ,

V), a non empty relation B ⊆ X×X is a CMC-bisimulation over X if, whenever
(x1, x2) ∈ B, the following holds:

1. V−1(x1) = V−1(x2);

2. for all S1 ⊆ X such that x1 ∈
→
I (S1) there is S2 ⊆ X such that x2 ∈

→
I (S2)

and for all s2 ∈ S2, there is s1 ∈ S1 with (s1, s2) ∈ B;

3. for all S2 ⊆ X such that x2 ∈
→
I (S2) there is S1 ⊆ X such that x1 ∈

→
I (S1)

and for all s1 ∈ S1, there is s2 ∈ S2 with (s1, s2) ∈ B;

4. for all S1 ⊆ X such that x1 ∈
←
I (S1) there is S2 ⊆ X such that x2 ∈

←
I (S2)

and for all s2 ∈ S2, there is s1 ∈ S1 with (s1, s2) ∈ B;

5. for all S2 ⊆ X such that x2 ∈
←
I (S2) there is S1 ⊆ X such that x1 ∈

←
I (S1)

and for all s1 ∈ S1, there is s2 ∈ S2 with (s1, s2) ∈ B.

x1 and x2 are CMC-bisimilar, written x1 
MCMC x2, if and only if there is a
CMC-bisimulation B over X such that (x1, x2) ∈ B. •

The following proposition trivially follows from the relevant definitions, keep-

ing in mind that, for QdCMs I coincides with
→
I .

Proposition 3. For all QdCMs M = (X,
→
C ,V) and x1, x2 ∈ X the following

holds: x1 
CMC x2 implies x1 
CM x2. ut

The converse of Proposition 3 does not hold as shown in Figure 3 where

u11 u12 u13

u21 u22

Fig. 3: u11 
CM u21 but u11 6
CMC u21.

V−1(u11) = V−1(u21) = {r},V−1(u12) = V−1(u22) = {g} and V−1(u13) = {b, g}
(see Remark 4 in Appendix C).

Proposition 4. For all QdCMs M = (X,
→
C ,V) and x1, x2 ∈ X the following

holds: x1 
CMC x2 implies x1 
Tr x2.

The converse of Proposition 4 does not hold as shown in Figure 4 where
V−1(y11) = V−1(y12) = V−1(y21) = V−1(y22) = V−1(y24) = {r} 6= {b} =
V−1(y13) = V−1(y23) and y11 
Tr y21 but y11 6
CMC y21 (see Remark 5 in
Appendix C).

10



y11 y12

y21 y22 y23

y13

y24

Fig. 4: y11 
Tr y21 but y11 6
CMC y21.

4.2 Logical Characterisation of CMC-bisimilarity for QdCMs

In order to provide a logical characterisation of CMC-bisimilarity, we extend
IML with a “converse” of the modal operator of classical IML, thus exploiting the
inverse of the binary relation underlying the QdCM. The result is a logic with

the two modalities
→
N and

←
N , with the expected meaning.

Definition 14 (Infinitary Modal Logic with Converse - IMLC). For index
set I and p ∈ AP the abstract language of IMLC is defined as follows:

Φ ::= p | ¬Φ |
∧
i∈I

Φi |
→
N Φ |

←
N Φ.

The satisfaction relation for all QdCMs M, points x ∈ M, and IMLC formulas
Φ is defined recursively on the structure of Φ as follows:

M, x |=IMLC p ⇔ x ∈ V(p);
M, x |=IMLC ¬Φ ⇔M, x |=IMLC Φ does not hold;
M, x |=IMLC

∧
i∈I Φi ⇔M, x |=IMLC Φi for all i ∈ I;

M, x |=IMLC

→
N Φ ⇔ x ∈

→
C ([[Φ]]M);

M, x |=IMLC

←
N Φ ⇔ x ∈

←
C ([[Φ]]M).

•

Definition 15 (IMLC-Equivalence). Given QdCMM = (X,
→
C ,V), the equiva-

lence relation 'MIMLC⊆ X×X is defined as: x1 'MIMLC x2 if and only if for all IMLC
formulas Φ the following holds: M, x1 |=IMLC Φ if and only if M, x2 |=IMLC Φ. •

In the sequel we will often abbreviate 'MIMLC with 'IMLC.

Theorem 4. For all QdCMs M = (X,
→
C ,V), any CMC-Bisimulation B over

X is included in the equivalence 'MIMLC.

The converse of Theorem 4 is given below.

Theorem 5. For all QdCMs M = (X,
→
C ,V), 'MIMLC is a CMC-Bisimulation.

Corollary 2. For all QdCMs M = (X,
→
C ,V) we have that 'MIMLC coincides with


MCMC. ut
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4.3 C-bisimilarity for QdCMs

In this section, we recall a notion of bisimilarity for QdCMs that has been pro-
posed in [14] and that is based on closure functions, instead of interior functions.
We then prove that such a notion, which here we call C-bisimilarity, coincides
with CMC-bisimilarity. The introduction of C-bisimilarity is motivated by the
fact that we find it more intuitive, and its use makes several proofs simpler.

Definition 16 (C-bisimilarity for QdCMs). Given QdCM M = (X,
→
C ,V),

a non empty relation B ⊆ X × X is a C-bisimulation over X if, whenever
(x1, x2) ∈ B, the following holds:

1. V−1x1 = V−1x2;

2. for all x′1 ∈
→
C ({x1}) there exists x′2 ∈

→
C ({x2}) such that (x′1, x

′
2) ∈ B;

3. for all x′2 ∈
→
C ({x2}) there exists x′1 ∈

→
C ({x1}) such that (x′1, x

′
2) ∈ B;

4. for all x′1 ∈
←
C ({x1}) there exists x′2 ∈

←
C ({x2}) such that (x′1, x

′
2) ∈ B;

5. for all x′2 ∈
←
C ({x2}) there exists x′1 ∈

←
C ({x1}) such that (x′1, x

′
2) ∈ B;

We say that x1 and x2 are C-bisimilar, written x1 
MC x2, if and only if there
exists a C-bisimulation B such that (x1, x2) ∈ B. •

As mentioned in Section 1, C-bisimulation resembles (strong) Back and Forth
bisimulation of [15], in particular for the presence of Conditions 4 and 5. Should
we delete the above mentioned conditions, thus making our definition of C-
bisimulation more similar to classical strong bisimulation for transition sys-
tems, we would have to consider points v12 and v22 of Figure 5 bisimilar where
V−1(v11) = {r} 6= {g} = V−1(v21) and V−1(v12) = {b} = V−1(v22). We instead

v11 v12

v21 v22

Fig. 5: v12 and v22 are not C-bisimilar.

want to consider them as not being bisimilar because they are in the closure
of (i.e. they are “near” to) points that are not bisimilar, namely v11 and v21.
For instance, v21 might represent a poisoned physical location (whereas v11 is
not poisoned) and so v22 should not be considered equivalent to v12 because the
former can be reached from the poisoned location while the latter cannot.

12



4.4 C-bisimilarity minimisation

In [14] we have shown a minimisation algorithm for 
MC . The algorithm is
defined in a coalgebraic setting: it takes an F-coalgebra, for appropriate functor
F in the category Set, and returns the bisimilarity quotient of its carrier set.
The instantiation of the algorithm for (a coalgebraic interpretation of) QdCSs is
implemented in the tool MiniLogicA, available for the major operating systems
at https://github.com/vincenzoml/MiniLogicA.

4.5 Logical Characterisation of C-bisimilarity

In this section we present ISLCS, an infinitary version of a variant of the Spatial
Logic for Closure Spaces (SLCS). SLCS has been proposed in [12] and its basic
modal operators are near (N ), surrounded (S) and propagation (P), whereas
reachability operators are derived from the above. The variant of SLCS that we

use in this section, instead, has only two basic reachability operators
→
ρ and

←
ρ , as in [14]. We will show that, when the underlying interptretation model is
quasi-discrete, N can be derived from the reachability operators: more precisely,
→
N can be derived from

←
ρ and

←
N from

→
ρ (Lemma 1 below)6. Furthermore, we

show that ISLCS characterises C-bisimilarity. We also prove that an appropirate
sub-logic of ISLCS is sufficient for characterising C-bisimilarity and that such
sub-logic coincides with IMLC. As a side-result, we get the coincidence of CMC-
bisimilarity and C-bisimilarity.

Definition 17 (Infinitary SLCS - ISLCS). For index set I and p ∈ AP the
abstract language of ISLCS is defined as follows:

Φ ::= p | ¬Φ |
∧
i∈I

Φi |
→
ρ Φ1[Φ2] |

←
ρ Φ1[Φ2].

6 For completeness, in Proposition 15 in Appendix C.8, we also show that, for general

CMs, S can be derived from
→
ρ and P from

←
ρ , when the latter are interpreted over

general CMs.
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The satisfaction relation for QdCMs M, x ∈ M, and ISLCS formulas Φ is
defined recursively on the structure of Φ as follows:

M, x |=ISLCS p ⇔ x ∈ V(p)
M, x |=ISLCS ¬Φ ⇔M, x |=ISLCS Φ does not hold
M, x |=ISLCS

∧
i∈I Φi ⇔M, x |=ISLCS Φi for all i ∈ I

M, x |=ISLCS

→
ρ Φ1[Φ2]⇔ there exist path π and index ` such that

π(0) = x and
π(`) |=ISLCS Φ1 and
for all j such that 0 < j < ` the following holds:
π(j) |=ISLCS Φ2;

M, x |=ISLCS

←
ρ Φ1[Φ2]⇔ there exist path π and index ` such that

π(`) = x and
π(0) |=ISLCS Φ1 and
for all j such that 0 < j < ` the following holds:
π(j) |=ISLCS Φ2.

•

Definition 18 (ISLCS-Equivalence). Given QdCMM = (X,
→
C ,V), the equiv-

alence relation 'MISLCS⊆ X × X is defined as: x1 'MISLCS x2 if and only if
for all ISLCS formulas Φ the following holds: M, x1 |=ISLCS Φ if and only if
M, x2 |=ISLCS Φ. •

Theorem 6. For all QdCMs M = (X,
→
C ,V), any C-Bisimulation B over X is

included in the equivalence 'MISLCS.

The converse of Theorem 6 is given below.

Theorem 7. For all QdCMs M = (X,
→
C ,V), 'MISLCS is a C-Bisimulation.

Corollary 3. For all QdCMsM = (X,
→
C ,V) we have that 'MISLCS coincides with


MC . ut

Let
→
N and

←
N be defined as in Definition 14.

Lemma 1. For all QdCMs M = (X,
→
C ,V), the following holds:

→
N Φ ≡

←
ρ Φ[false] and

←
N Φ ≡

→
ρ Φ[false].

Theorem 8. For all QdCMs M = (X,
→
C ,V), 'MIMLC coincides with 
MC .

From Corollary 2 and Theorem 8 we get the following

Corollary 4. For all QdCMs M = (X,
→
C ,V) we have that 
MCMC coincides with


MC . ut
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5 Path-bisimilarity

CM-bisimilarity, and its refinements CMC-bisimilarity and C-bisimilarity, are a
fundamental starting point for the study of bisimulations in space due to their
strong links to Topo-bisimulation. On the other hand, they are somehow too
much fine grain relations for reasoning about general properties of space and
related notions of model minimisation. For instance, with reference to the model
of Figure 6, where all red points satisfy only atomic proposition r while the
blue ones satisfy only b, the point at the center of the left part of the model is
not CMC-bisimilar to any other red point in the model. This is because CMC-
bisimilarity is based on the fact that points reachable “in one step” are taken into
consideration, as it is clear from the equivalent C-bisimilarity definition. This,
in turn, gives bisimilarity a sort of “counting” power, that goes against the idea
that, for instance, the left part of the model could be represented by the right
part—and that, actually, both parts could be represented by a minimal model
consisting of just one red point and one blue point, connected by a symmetric
arrow, which would convey an idea of space scaling. Such scaling would be quite
useful when dealing, for instance, with models representing images—as briefly
mentioned in Section 1. Such models are QdCMs where the “points” are pixels
or voxels and the underlying relation is the so called Adjacency relation, i.e. a
reflexive and symmetric relation such that each pixel/voxel is related to all the
pixel/voxel that share an edge or a vertex with it. In this and in the next sections,
we present weaker notions of bisimilarity, namely Path-bisimilarity and CoPa-
bisimilarity, with the aim of capturing the intuitive notions briefly discussed
above. We start with the definition of Path-bisimilarity.

Fig. 6: A model consisting of two parts

5.1 Path-bisimilarity

Definition 19 (Path-bisimilarity). Given CMM = (X, C,V) and index space
J = (I, CJ ), a non empty relation B ⊆ X ×X is a Path-bisimulation over X
if, whenever (x1, x2) ∈ B, the following holds:

1. V−1(x1) = V−1(x2);
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2. for all π1 ∈ BPathsFJ ,M(x1), there exists π2 ∈ BPathsFJ ,M(x2) such that
(π1(len(π1)), π2(len(π2))) ∈ B;

3. for all π2 ∈ BPathsFJ ,M(x2), there exists π1 ∈ BPathsFJ ,M(x1) such that
(π1(len(π1)), π2(len(π2))) ∈ B;

4. for all π1 ∈ BPathsTJ ,M(x1), there exists π2 ∈ BPathsTJ ,M(x2) such that.
(π1(0), π2(0)) ∈ B;

5. for all π2 ∈ BPathsTJ ,M(x2), there exists π1 ∈ BPathsTJ ,M(x1) such that
(π1(0), π2(0)) ∈ B.

x1 and x2 are Path-bisimilar, written x1 
MPth x2, if and only if there is a
Path-bisimulation B over X such that (x1, x2) ∈ B. •

In the sequel, we will say that two points are AP-equivalent, written 
AP, if
they satisfy exactly the same atomic propositions. In other words: 
AP is the set
{(x1, x2) | V−1(x1) = V−1(x2)}. The following proposition trivially follows from
the relevant definitions:

Proposition 5. For all CMsM = (X, C,V) and x1, x2 ∈ X the following holds:
x1 
Pth x2 implies x1 
AP x2. ut

The converse of Proposition 5 does not hold, as shown again in Figure 4
where we leave to the reader the easy task of checking that y11 6
Pth y21 despite
y11 
AP y21 since V−1(y11) = V−1(y21) = {r}.

In Figure 7 (left) an image representing a maze is shown; green pixels are
the exit ones wheras the blue ones represent possible starting points; walls are
represented by black pixels. In Figure 7 (right) the minimal model via Path-
bisimilarity is shown; it actually coincides with the one we would have obtained
using 
AP instead. In practical terms, some important features of the image of
the maze are lost in its Path-bisimilarity minimisation, such as the fact that some
starting points cannot reach the exit, unless passing through walls, which should
not happen! This is due to the fact that Path-bisimilarity abstracts from the
structure of the underlying paths. In Section 6 we will address this issue explicitly
and refine Path-bisimilarity into a stronger one, namely CoPa-bisimilarity.

Fig. 7: A maze and its reduced model modulo Path-bisimilarity.
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x11 x12

x21 x22 x23

Fig. 8: x11 
Pth x21 but x11 6
CMC x21.

Proposition 6. For all QdCMs M = (X, C,V) and x1, x2 ∈ X the following
holds: x1 
CMC x2 implies x1 
Pth x2.

The converse of Proposition 6 does not hold, as shown in Figure 8 where
V−1(x11) = V−1(x21) = V−1(x22) = {r} 6= {b} = V−1(x12) = V−1(x23) and
x11 
Pth x21 but x11 6
CMC x21 (see Remark 6 of Appendix D).

Remark 2. It is worth pointing out that the analogous of Proposition 6 for gen-
eral CMs does not hold. In fact there are models with points that are CM-
bisimilar but not Path-bisimilar, as shown in Figure 9 where an Euclidean
model M = (X, C,V) is shown such that X = (−∞, 0) ∪ (0,∞), C is the stan-
dard closure operator for the real line R, A,B and C are non-empty intervals
with B ⊂ A ⊂ (−∞, 0), and C ⊂ (0,+∞), V(g) = A ∪ C and V(r) = {k},
with k ∈ A \ B. In such a model, x1 
CM x2 for all (x1, x2) ∈ B × C. In fact
B×C is a CM-bisimulation, as shown in the sequel. Take any (x1, x2) ∈ B×C;
clearly V−1(x1) = V−1(x2) by construction; let S1 ⊆ (−∞, 0) be any set such
that x1 ∈ I(S1); then, for what concerns Condition 2 of Definition 10, take
S2 = C = I(C); for each s2 ∈ S2 there is s1 ∈ S1∩B such that (s1, s2) ∈ B×C,
by definition of B×C; let finally S2 ⊆ (0,+∞) be any set such that x2 ∈ I(S2)
then, for what concerns Condition 3 of Definition 10, take S1 = B = I(B): for
each s1 ∈ S1 there is s2 ∈ S2 ∩ C such that (s1, s2) ∈ B × C, by definition
of B × C. On the other hand, x1 6
Pth x2, since there cannot be any Path-
bisimulation for x1 and x2 as above. This is because x1 ∈ A, since B ⊂ A, and
x1 =⇒ k with r ∈ V−1(k) whereas r 6∈ V−1(x) for all x ∈ (0,+∞).

0
()

8

8- +
(         (            )         ) (                     )         

A

B C

k

Fig. 9: For all x1 and x2 such that (x1, x2) ∈ B × C we have x1 
CM x2 but
x1 6
Pth x2.

Downstream of Remark 2 we can strengthen Definition 10 so that we get an
adaptation for CMs of the notion of INL-bisimilarity proposed in [6] for general
neighbourhood models:
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Definition 20 (INL-bisimilarity for CMs). Given CM M = (X, C,V), a
non empty relation B ⊆ X × X is a INL-bisimulation over X if, whenever
(x1, x2) ∈ B, the following holds:

1. V−1(x1) = V−1(x2);

2. for all neighbourhoods S1 of x1 there is a neighbourhood S2 of x2 such that:

(a) for all s2 ∈ S2, there is s1 ∈ S1 with (s1, s2) ∈ B;

(b) for all s1 ∈ S1, there is s2 ∈ S2 with (s1, s2) ∈ B;

3. for all neighbourhoods S2 of x2 there is a neighbourhood S1 of x1 such that:

(a) for all s1 ∈ S1, there is s2 ∈ S2 with (s1, s2) ∈ B;

(b) for all s2 ∈ S2, there is s1 ∈ S1 with (s1, s2) ∈ B.

x1 and x2 are INL-bisimilar, written x1 
MINL x2, if and only if there is a INL-
bisimulation B over X such that (x1, x2) ∈ B. •

We can now prove the following

Proposition 7. For all path-connected CMs M = (X, C,V) and x1, x2 ∈ X
the following holds: x1 
INL x2 implies x1 
Pth x2.

The following proposition shows that 
Pth and 
Tr uncomparable:

Proposition 8. There exist CMs M and points x1, x2 ∈ M such that x1 
Pth

x2 and x1 6
Tr x2; similarly, there are CMs M and points x1, x2 ∈M such that
x1 6
Pth x2 and x1 
Tr x2.

As an example of the first case, let us consider again the model of Figure 8:
we have already seen that x11 
Pth x21; but x11 6
Tr x21 since {r}·{b}ω ∈
Tr(BPathsF(x11)) \ Tr(BPathsF(x21)). As for the second case, let us consider
again the model of Figure 4: we have already seen that y11 
Tr y21 and that
y11 6
Pth y21.

5.2 Logical Characterisation of Path-bisimilarity

In this section we show that a sub-logic of ISLCS fully characterises Path-
bisimilarity. We first define the Infinitary Reachability Logic, IRL for short and
show that IRL is a sub-logic of ISLCS obtained by forcing the second argument

of
→
ρ and

←
ρ to true. Then we provide the characterisation result.

Definition 21 (Infinitary Reachability Logic - IRL). For index set I and
p ∈ AP the abstract language of IRL is defined as follows:

Φ ::= p | ¬Φ |
∧
i∈I

Φi |
→
σ Φ | ←σ Φ.
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The satisfaction relation for all CMs M, x ∈ M, and IRL formulas Φ is
defined recursively on the structure of Φ as follows:

M, x |=IRL p ⇔ x ∈ V(p);
M, x |=IRL ¬Φ ⇔M, x |=IRL Φ does not hold;
M, x |=IRL

∧
i∈I Φi ⇔M, x |=IRL Φi for all i ∈ I;

M, x |=IRL

→
σ Φ ⇔ there exist path π and index ` such that

π(0) = x and π(`) |=IRL Φ;

M, x |=IRL

←
σ Φ ⇔ there exist path π and index ` such that

π(`) = x and π(0) |=IRL Φ.

•

The following proposition trivially follows from the relevant definitions:

Proposition 9. For all CMsM = (X, C,V) and x1, x2 ∈ X the following holds:
→
σ Φ ≡

→
ρ Φ[true] and

←
σ Φ ≡

←
ρ Φ[true]. ut

Definition 22 (IRL-Equivalence). Given CM M = (X, C,V), the equivalence
relation 'MIRL⊆ X×X is defined as: x1 'MIRL x2 if and only if for all IRL formulas
Φ the following holds: M, x1 |=IRL Φ if and only if M, x2 |=IRL Φ. •

Theorem 9. For all CMs M = (X, C,V), any Path-Bisimulation B over X is
included in the equivalence 'MIRL.

The converse of Theorem 9 is given below.

Theorem 10. For all CMs M = (X, C,V), 'MIRL is a Path-bisimulation.

Corollary 5. For all CMs M = (X, C,V) we have that 'MIRL coincides with

MPth. ut

6 CoPa-bisimilarity

Path-bisimilarity is in some sense too weak, too abstract; nothing whatsoever
is required of the relevant paths, except their starting points being fixed and
related by the bisimulation, and their end-points be in the bisimulation as well.
A deeper insight into the structure of such paths would be desirable as well as
some, relatively high level, requirements over them. To that purpose we resort
to a notion of “compatibility” between relevant paths that essentially requires
each of them to be composed of a non-empty sequence of non-empty, adjacent
“zones”. More precisely, both paths under consideration in a transfer condition
should share the same structure, as follows (see Figure 10):

– both paths are composed by a sequence of (non-empty) “zones”;
– the number of zones should be the same in both paths, but
– the length of “corresponding” zones can be different, as well as the length

of the two paths;
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– each point in one zone of a path should be related by the bisimulation to
every point in the corresponding zone of the other path.

This notion of compatibility gives rise to Compatible Path bisimulation, CoPa-
bisimulation, defined below. We note that the notion of CoPa-bisimulation turns
out to be reminiscent of that of Equivalence with respect to Stuttering for tran-
sition systems proposed in [7], although in a totally different context and with a
quite different definition: the latter is defined via a convergent sequence of rela-
tions and makes use of a different notion of path than the one of CS used in this
paper. Finally, [7] is focussed on CTL/CTL∗, which implies a flow of time with
single past (i.e. trees), which is not the case for structures representing space.

Zone 1 Zone 2 Zone 3 Zone 4

Fig. 10: Zones in relevant paths.

6.1 CoPa-bisimilarity

Definition 23 (CoPa-bisimilarity). Given CM M = (X, C,V) and index
space J = (I, CJ ), a non empty relation B ⊆ X × X is a CoPa-bisimulation
over X if, whenever (x1, x2) ∈ B, the following holds:

1. V−1(x1) = V−1(x2);
2. for all π1 ∈ BPathsFJ ,M(x1) such that

(π1(i1), x2) ∈ B for all i1 ∈ {ι | 0 ≤ ι < len(π1)},
there is π2 ∈ BPathsFJ ,M(x2) such that the following holds:
(x1, π2(i2)) ∈ B for all i2 ∈ {ι | 0 ≤ ι < len(π2)}, and
(π1(len(π1)), π2(len(π2))) ∈ B;

3. for all π2 ∈ BPathsFJ ,M(x2) such that
(x1, π2(i2)) ∈ B for all i2 ∈ {ι | 0 ≤ ι < len(π2)},
there is π1 ∈ BPathsFJ ,M(x1) such that the following holds:
(π1(i1), x2) ∈ B for all i1 ∈ {ι | 0 ≤ ι < len(π1)}, and
(π1(len(π1)), π2(len(π2))) ∈ B;

4. for all π1 ∈ BPathsTJ ,M(x1) such that
(π1(i1), x2) ∈ B for all i1 ∈ {ι | 0 < ι ≤ len(π1)},
there is π2 ∈ BPathsTJ ,M(x2) such that the following holds:
(x1, π2(i2)) ∈ B for all i2 ∈ {ι | 0 < ι ≤ len(π2)}, and
(π1(0), π2(0)) ∈ B;
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5. for all π2 ∈ BPathsTJ ,M(x2) such that
(x1, π2(i2)) ∈ B for all i2 ∈ {ι | 0 < ι ≤ len(π2)},
there is π1 ∈ BPathsTJ ,M(x1) such that the following holds:
(π1(i1), x2) ∈ B for all i1 ∈ {ι | 0 < ι ≤ len(π1)}, and
(π1(0), π2(0)) ∈ B;

x1 and x2 are CoPa-bisimilar, written x1 
MCoPa x2, if there is a CoPa-bisimulation
B over X such that (x1, x2) ∈ B. •

Figure 11 shows the minimal model modulo CoPa-bisimilarity of the maze
image shown in Figure 7. It is easy to see that this reduced model retains more
information than that of Figure 7 (right). In particular, in this model three
different representatives of white points are present:

– one that is directly connected both with a representative of a blue starting
point and with a representative of a green exit point; this represents the
situation in which from a blue starting point the exit can be reached walking
through the maze (i.e. white points);

– one that is directly connected with a representative of a green point, but it is
not directly connected with a representative of a blue point; this represents
parts of the maze from which an exit could be reached, but that are separated
(by walls) from areas where there are starting points (see below), and

– one that is directly connected to a representative of a blue starting point
but that is not directly connected to a green exit point—that can be reached
only by passing through the black point; this represents the fact that the
relevant blue starting point cannot reach the exit because it will always be
blocked by a wall.

Fig. 11: Reduced model of the maze of Fig. 8 (left), modulo CoPa-bisimilarity.

The following proposition can be easily proved from the relevant definitions:

Proposition 10. For all CMs M = (X, C,V) and x1, x2 ∈ X the following
holds: x1 
CoPa x2 implies x1 
Pth x2. ut

The converse of Proposition 10 does not hold, as shown in Figure 12. Relation
B = {(t11, t21), (t12, t22), (t13, t23), (t14, t24), (t15, t25)} is a Path-bisimulation, so
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t11 
Pth t21. On the other hand, Condition 2 of Definition 23 cannot be fulfilled
for any π1 ∈ BPathsF(t11) such that π1(j) = t13 for some j > 0 since for every
π2 ∈ BPathsF(t21) there is k such that g ∈ V−1(π2(k)), wheras g 6∈ V−1(π1(h))
for all h.

t11 t12 t13 t14 t15

t21 t22 t23 t24 t25

Fig. 12: t11 
Pth t21 but t11 6
CoPa t21.

Proposition 11. For all QdCMs M = (X,
→
C ,V) and x1, x2 ∈ X the following

holds: x1 
CMC x2 implies x1 
CoPa x2.

The converse of Proposition 11 does not hold; again with reference to Fig-
ure 8, it is easy to see that B = {(x11, x21), (x11, x22), (x12, x23)} is a CoPa-
bisimulation, and so x11 
CoPa x21. On the other hand, as we have already seen,
x11 6
CMC x21.

The following proposition shows that 
CoPa and 
Tr are uncomparable.

Proposition 12. There exist CMsM and points x1, x2 ∈M such that x1 
CoPa

x2 and x1 6
Tr x2; similarly, there are CMs M and points x1, x2 ∈M such that
x1 6
CoPa x2 and x1 
Tr x2.

As an example of the first case, let us consider again the model of Figure 8:
we have already seen that x11 
CoPa x21 and that x11 6
Tr x21. As for the
second case, let us consider again the model of Figure 4: we have already seen
that x11 6
Pth x21, and thus, by Proposition 10 we get x11 6
CoPa x21; but we
have already seen that x11 
Tr x21.

6.2 CoPa-bisimilarity minimisation

In this section we show how CoPa-bisimilarity minimisation can be achieved us-
ing results from [17] on minimisation of Divergence-blind Stuttering Equivalence.
We first recall the definition of Divergence-blind Stuttering Equivalence (Def.
2.2 of [17]):

Definition 24. Divergence-blind Stuttering Equivalence (dbs-Eq).
Let K = (S, AP, R, L) be a Kripke structure. A symmetric relation E ⊆ S × S is
a divergence-blind stuttering equivalence if and only if for all s, t ∈ S such that
sE t:

1. L(s) = L(t), and
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2. for all s′ ∈ S, if sR s′ then there are t0, . . . , tk ∈ S for some k ∈ N such that
t = t0, sE ti, tiR ti+1 for all i < k, and s′E tk.

We say that two states s, t ∈ S are divergence-blind stuttering equivalent, no-
tation s 
dbs t, if and only if there is a divergence-blind stuttering equivalence
relation E such that sE t. •

First of all we recall that every Kripke structure K = (S, AP, R, L) gives rise to
a QdCM, namely the model M(K) = (S, CR,VL) where VL(p) = {s ∈ S | p ∈
L(s)}. Similarly, every QdCM M = (S, CR,V) characterises a Kripke structure
K(M) = (S, AP, R, LV) where LV(s) = V−1(s). We also recall that a path in
K is a sequence s0, . . . , sk ∈ S such that siRsi+1 for all i < k. Note that this
definition of path is different from that of path in a QdCM. For instance, consider
Kripke structure ({s, t}, AP, {(s, t)}, L), for some s 6= t and L, and related QdCM
({s, t}, C{(s,t)},VL). In the Kripke structure there is no path corresponding to the
following path in the QdCM: π(0) = π(1) = s, and π(n + 2) = t for all n ∈ N,
and this is because (s, s) 6∈ {(s, t)}. In other words, paths in Kripke structures
are strictly bound to the accessibility relation of the structure, while those in
QdCM are more flexible in this respect, due to their possibility of having more
adjacent indexes being mapped to the same point (i.e. “stuttering”). Of course,
for each Kripke structure K = (S, AP, R, L) there is a Kripke structure Kr having
exactly the same paths as those of M(K), namely Kr = (S, AP, Rr, L), where,
we recall, Rr is the reflexive closure of R. Note, by the way, M(Kr) =M(K),
i.e. K and Kr share the same QdCM. This is due to the fact that CR = CRr and
is a consequence of the very definition of C.

We now provide a “back-and-forth” version of dbs-Eq:

Definition 25 (Divergence-blind Stuttering Equivalence with Converse
(dbsc-Eq)). Let K = (S, AP, R, L) be a Kripke structure. A symmetric relation
E ⊆ S × S is a divergence-blind stuttering equivalence with converse if and only
if for all s, t ∈ S such that sE t:

1. L(s) = L(t), and
2. for all s′ ∈ S, if sR s′, then there are t0, . . . , tk ∈ S for some k ∈ N such

that t0 = t, sE ti, tiR ti+1 for all i ∈ {ι | 0 ≤ ι < k}, and s′E tk;
3. for all s′ ∈ S, if s′Rs, then there are t0, . . . , tk ∈ S for some k ∈ N such

that tk = t, sE ti, ti−1R ti for all i ∈ {ι | 0 < ι ≤ k}, and s′E t0.

We say that two states s, t ∈ S are divergence-blind stuttering with converse
equivalent, notation s
dbsc t, if and only if there is a divergence-blind stuttering
equivalence with converse relation E such that sE t. •

Proposition 13. For every QdCM M = ((X, CR),V), x1, x2 ∈ X x1 
CoPa x2
with respect to M if and only if x1 
dbsc x2 with respect to K(M)r.

Proposition 13 gives an effective way for computing the minimisation ofM w.r.t.

CoPa, by using the algorithm(s) proposed in [17].
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6.3 Logical Characterisation of CoPa-bisimilarity

In this section we show that a sub-logic of ISLCS fully characterises CoPa-
bisimilarity. We first define the Infinitary Compatible Reachability Logic, ICRL

for short and show that ICRL is a sub-logic of ISLCS obtained by forcing
→
ρ and

←
ρ to be used only in conjunction of their second argument. Then we provide the
characterisation result.

Definition 26 (Infinitary Compatible Reachability Logic - ICRL). For
index set I and p ∈ AP the abstract language of ICRL is defined as follows:

Φ ::= p | ¬Φ |
∧
i∈I

Φi |
→
ζ Φ1[Φ2] |

←
ζ Φ1[Φ2].

The satisfaction relation for all CMs M, x ∈ M, and ICRL formulas Φ is
defined recursively on the structure of Φ as follows:

M, x |=ICRL p ⇔ x ∈ V(p);
M, x |=ICRL ¬Φ ⇔M, x |=ICRL Φ does not hold;
M, x |=ICRL

∧
i∈I Φi ⇔M, x |=IRL Φi for all i ∈ I;

M, x |=ICRL

→
ζ Φ1[Φ2]⇔ there exist path π and index ` such that

π(0) = x and
π(`) |=ICRL Φ1 and
for all j such that 0 ≤ j < ` the following holds:
π(j) |=ICRL Φ2;

M, x |=ICRL

←
ζ Φ1[Φ2]⇔ there exist path π and index ` such that

π(`) = x and
π(0) |=ICRL Φ1 and
for all j such that 0 < j ≤ ` the following holds:
π(j) |=ICRL Φ2.

•

The following proposition trivially follows from the relevant definitions:

Proposition 14. For all CMs M = (X, C,V) and x1, x2 ∈ X the following

holds:
→
ζ Φ1[Φ2] ≡ Φ2∧

→
ρ Φ1[Φ2] and

←
ζ Φ1[Φ2] ≡ Φ2∧

←
ρ Φ1[Φ2]. ut

Definition 27 (ICRL-Equivalence). Given CM M = (X, C,V), the equiva-
lence relation 'MICRL⊆ X × X is defined as: x1 'MICRL x2 if and only if for all
ICRL formulas Φ, it holds: M, x1 |=ICRL Φ if and only if M, x2 |=ICRL Φ. •

Theorem 11. For all QdCMs M = (X,
→
C ,V), any CoPa-bisimulation B over

X is included in the equivalence 'MICRL.

The converse of Theorem 11 is given below.

Theorem 12. For all QdCMs M = (X,
→
C ,V), 'MICRL is a CoPa-bisimulation.

Corollary 6. For all QdCMs M = (X,
→
C ,V) we have that 'MICRL coincides with


MCoPa. ut
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7 Conclusions

In this paper we have studied three main bisimilarities for closure spaces, namely
CM-bisimilarity, and its specialisation for QdCMs CM-bisimilarity with con-
verse, Path-bisimilarity, and CoPa-bisimilarity.

CM-bisimilarity is a generalisation for CMs of classical Topo-bisimilarity for
topological spaces. CM-bisimilarity with converse takes into consideration the
fact that, in QdCMs, there is a notion of “direction” given by the binary rela-
tion underlying the closure operator. This can be exploited in order to get an
equivalence—namely CM-bisimilarity with converse—that, for QdCMs, refines
CM-bisimilarity. We have shown that CM-bisimilarity with converse coincides
with C-bisimilarity defined [14]. Both CM-bisimilarity and CM-bisimilarity with
converse turn out to be too strong for expressing interesting properties of spaces.
To that purpose we introduce Path-bisimilarity that characterises unconditional
reachability in the space, and a stronger equivalence, CoPa-bisimilarity, that
expresses a notion of path “compatibility” resembling the concept of stuttering
equivalence for transition systems [7].

For each notion of bisimilarity we also provide a modal logic that characterises
it. We finally address the issue of space minimisation via bisimulation and provide
a recipe for CoPa-bisimilarity minimisation; minimisation via CM-bisimilarity
with converse has already been dealt with in [14] whereas minimisation via Path-

bisimilarity is a special case of that via CoPa-bisimilarity (also note that
→
σ Φ ≡

→
ζ

Φ[true] and, similarly,
←
σ Φ ≡

←
ζ Φ[true]).

Many results we have shown in this paper concern QdCMs; we think the
investigation of their extension to continuous or general closure spaces is an
interesting line of future research. In [14] we investigated a coalgebraic view
of QdCMs that was useful for the definition of the minimisation algorithm for
C-bisimilarity. It would be interesting to study a similar approach for Path-
bisimilarity and CoPa-bisimilarity.
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A Proofs of Results of Section 2

A.1 Proof of Proposition 1

We prove only Point 5 of the proposition, the proof of the other points being
trivial. We show that π is a path over X if and only if, for all i ∈ (domπ) \ {0},
we have π(i) ∈

→
C (π(i−1)). Suppose π is a path over X; the following derivation,

valid for all i ∈ N, proves the assert:

π(i)

∈ [ Set Theory ]

{π(i− 1), π(i)}

= [ Definition of π(N) for N ⊆ N ]

π({i− 1, i})

= [ Definition of Csucc ]

π(Csucc({i− 1}))

⊆ [ Continuity of π ]

→
C (π(i− 1))

For proving the converse we have to show that for all sets N ⊆ (domπ) we

have π(Csucc(N)) ⊆
→
C (π(N)). By definition of Csucc we have that Csucc(N) =
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N ∪{i | i−1 ∈ N} and so π(Csucc(N)) = π(N)∪π({i | i−1 ∈ N}). By the second

axiom of closure, we have π(N) ⊆
→
C (π(N)). We show that π({i | i−1 ∈ N}) ⊆

→
C

(π(N)) as well. Take any i such that i−1 ∈ N ; we have {π(i−1)} ⊆ π(N) since

i− 1 ∈ N , and, by monotonicity of
→
C it follows that

→
C ({π(i− 1)}) ⊆

→
C (π(N))

and since π(i) ∈
→
C (π(i − 1)) by hypothesis, we also get π(i) ∈

→
C (π(N)). Since

this holds for all elements of the set {i | i − 1 ∈ N} we also have π({i | i − 1 ∈
N}) ⊆

→
C (π(N)).

The proof for π(i− 1) ∈
←
C (π(i)) is similar.

B Proofs of Results of Section 3

B.1 Proof of Proposition 2

We show that 
HO is a CM-bisimulation. Suppose, without loss of generality, that
x2 = h(x1) for some homeomorphism h : X → X. Condition 1 of Definition 10
is trivially satisfied due to Condition 1 of Definition 8. For what concerns Con-
dition 2 of Definition 10, let S1 a neighbourhood of x1. Define S2 as S2 = h(S1).
We have x2 = h(x1) ∈ h(I(S1)) = I(h(S1)) = I(S2), where in the one but
last step we exploited Condition 3 of Definition 8. Now we can easily see that
Condition 2 of Definition 10 is satisfied since, by definition of S2, for all s2 ∈ S2

there exists s1 = h−1(s2) ∈ S1 such that s2 = h(s1), i.e. s1 
HO s2. The proof
for Condition 3 of Definition 10 is similar.

Remark 3. The converse of Proposition 2 does not hold, as shown in Figure 2
where V−1(x11) = V−1(x21) = {r} 6= {b} = V−1(x12) = V−1(x22) = V−1(x23)
and x11 
CM x21 but x11 6
HO x21. In fact, any non-trivial homeomorphism h
should map x11 to x21 (or viceversa), and any of x12, x22 and x23 to any of x12,
x22 and x23, otherwise Condition 1 of Definition 8 would be violated. In addition,
in order not to violate injectivity, h hould be a permutation over {x12, x22, x23}.
Let us suppose, without loss of generality, h(x11) = x21 and h(x12) = x22.
Then we would get h(C({x11})) = h({x11, x12}) = {x21, x22} 6= {x21, x22, x23} =
C({x21}) = C(h({x11})), violating (the equivalent of) Condition 3 of Definition 8.

B.2 Proof of Theorem 2

We proceed by induction on the structure of Φ and consider only the case Φ =
NΦ′, the others being trivial. Suppose B is a CM-Bisimulation, (x1, x2) ∈ B and,
without loss of generality,M, x1 6|= NΦ′ andM, x2 |= NΦ′, that is x2 ∈ C([[Φ′]])
and x1 ∈ C([[Φ′]]) = I([[Φ′]]) = I([[Φ′]]).

Let S1 = [[Φ′]] and, by x1 ∈ I([[Φ′]]), let S2 be chosen according to Def-
inition 10, with x2 ∈ I(S2). By Lemma 2 below, we have [[Φ′]] ∩ S2 6= ∅,
since x2 ∈ C([[Φ′]]) ∩ I(S2). Let thus s2 belong to [[Φ′]] ∩ S2 and since B is a
CM-Bisimulation, there exists s1 ∈ S1 such that (s1, s2) ∈ B (Condition 2 of

28



Definition 10), with s2 ∈ [[Φ′]]—by definition of s2. By the induction hypothe-
sis, since M, s2 |= Φ′ and (s1, s2) ∈ B we get M, s1 |= Φ′ which contradicts
s1 ∈ [[Φ′]] = S1.

Lemma 2. For all CMs M = (X, C,V), for all Y,Z ⊆ X the following holds: if
C(Y ) ∩ I(Z) 6= ∅ then Y ∩ Z 6= ∅.

Proof. We prove that Y ∩ Z = ∅ implies I(Z) ∩ C(Y ) = ∅. Suppose Y ∩ Z = ∅.
Then Y ⊆ Z, and so C(Y ) ⊆ C(Z), that is C(Z) ⊆ C(Y ). So I(Z) ⊆ C(Y ), that
is I(Z) ∩ C(Y ) = ∅. This proves the assert.

B.3 Proof of Theorem 3

The following proof has been inspired by the proof of an analogous theorem
in [6]. We first need a preliminary definition:

Definition 28. Given CMM = (X, C,V), for all x1, x2 ∈ X, let formula δx1,x2

be defined as follows: if x1 'IML x2, then set δx1,x2 to true; otherwise, choose
a formula, say Φx1,x2

, such that M, x1 |= Φx1,x2
and M, x2 |= ¬Φx1,x2

and set
δx1,x2

to Φx1,x2
. For all x1 ∈ X1, define χx1

as follows: χx1
=
∧
x2∈X δx1,x2

. •

We now prove the following auxiliary lemmas:

Lemma 3. For all CMs M = (X, C,V), x, x1 and x2 ∈ X, the following holds:

1. M, x |= χx;
2. M, x2 |= χx1

if and only if x1 'IML x2.

Proof. The assert follows directly from the relevant definitions.

Lemma 4. For all CMs M = (X, C,V) and S ⊆ X, the following holds: S ⊆
[[
∨
s ∈ Sχs]].

Proof.
y ∈ S

⇒ [S ⊆ X and Lemma 3(1) ]

M, y |= χy

⇔ [ Definition of [[·]] ]

y ∈ [[χy]]

⇒ [ y ∈ S ]

y ∈
⋃
s∈S [[χs]]

⇔ [
⋃
s∈S [[χs]] = [[

∨
s∈S χs]] ]

y ∈ [[
∨
s∈S χs]]
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We now proceed with the proof of the theorem. Assume x1 'IML x2. Con-
dition 1 of Definition 10 is trivially satisfied. Let us consider Condition 2. Let
S1 ⊆ X be any set such that x1 ∈ I(S1). Since x1 ∈ I(S1) and, by Lemma 4
below, S1 ⊆ [[

∨
s1∈S1

χs1 ]], by monotonicity of I we get x1 ∈ I([[
∨
s1∈S1

χs1 ]]) =

C([[
∨
s1∈S1

χs1 ]]). This means that x1 6∈ C([[
∨
s1∈S1

χs1 ]]), and so we get M, x1 6|=
N (¬

∨
s1∈S1

χs1). Thus we have M, x1 |= ¬N (¬
∨
s1∈S1

χs1). Since x1 'IML x2,
we have that also M, x2 |= ¬N (¬

∨
s1∈S1

χs1) holds, which means that x2 ∈
I([[
∨
s1∈S1

χs1 ]]). Take now S2 = [[
∨
s1∈S1

χs1 ]]. Let s2 be any element of S2. By
definition of S2 there exists s1 ∈ S1 such that M, s2 |= χs1 , that means, by
Lemma 3(2), s1 'IML s2. The proof for Condition 3 is similar, using symmetry.

C Proofs of Results of Section 4

Remark 4. The converse of Proposition 3 does not hold as shown in Figure 3
where V−1(u11) = V−1(u21) = {r},V−1(u12) = V−1(u22) = {g} and V−1(u13) =
{b, g}. It is easy to see that {(u11, u21), (u12, u22)} is a CM-bisimulation whereas
there is no CMC-bisimulation B containing (u11, u21); in fact, any such rela-
tion should satisfy Condition (4) of Definition 13 for S1 = {u11, u12}, for which

there is only one S2 with u21 ∈
←
I (S2), namely {u21, u22}, and this would re-

quire (u11, u22) ∈ B or (u12, u22) ∈ B. But (u11, u22) ∈ B cannot hold because
V−1(u11) = {r} 6= {g} = V−1(u22), which would violate Condition 1 of Defini-
tion 13. Also (u12, u22) ∈ B cannot hold because Condition 5 would be violated:

take S2 = {u22} and consider all sets S such that u12 ∈
←
I (S). Any such S

would necessarily contain also u13 and there is no s2 ∈ {u22} = S2 such that
(u13, s2) ∈ B and this is because V(b) = {u13}.

C.1 Proof of Proposition 4

In the sequel, we also exploit the fact that x1 
CMC x2 if and only if with x1 
C
x2 (see Definition 16 and Corollary 4). By x1 
C x2 we know there exists C-
bisimulation B such that (x1, x2) ∈ B, which implies that V−1(x1) = V−1(x2)
by Condition 1 of Definition 16. Let θ be any element of Tr(BPathsF(x1)) and
π1 ∈ BPathsF(x1) such that θ1 = Tr(π1), with len(π1) = n. By the Propo-

sition 1(5) we know that π1(i) ∈
→
C (π1(i − 1)) for i = 1, . . . , n. We build

path π2 ∈ BPathsF(x2) as follows: we let π2(0) = x2; since (x1, x2) ∈ B and

π1(1) ∈
→
C (π1(0)), we know that there is an element, say η1 ∈

→
C (π2(0)) such that

(π1(1), η1) ∈ B: we let π2(1) = η1, observing that V−1(π1(1)) = V−1(π2(1)) since
(π1(1), π2(1)) ∈ B. With similar reasoning, exploiting Proposition 1(5), we define
π2(i) for i = 2, . . . , n and we let domπ2 = {0, . . . n} = domπ1. Proposition 1(5)
ensures that π2 is continuous and so it is a path from x2 and (π1(i), π2(i)) ∈ B
for i = 0, . . . , n, so that Tr(π2) = θ. The proof for the other cases is similar,
using Proposition 1(5).
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Remark 5. The converse of Proposition 4 does not hold as shown in Figure 4
where V−1(y11) = V−1(y12) = V−1(y21) = V−1(y22) = V−1(y24) = {r} 6= {b} =
V−1(y13) = V−1(y23) and y11 
Tr y21 but y11 6
CMC y21. In fact, recalling again
that 
CMC coincides with 
C (see Definition 16 and Corollary 4), we note that
there cannot be any C-bisimulation containing (y11, y21) and this is because

y24 ∈
→
C (y21), with

→
C (y24) = ∅ and

→
C (y11) = {y11, y12} and both

→
C (y11) 6= ∅

and
→
C (y12) 6= ∅.

C.2 Proof of Theorem 4

The proof can be carried out by induction on the structure of Φ. The only

interesting cases are those for
→
N and

←
N . The proof for

→
N is exactly the same

as the proof of Theorem 2 where B is now a CMC-bisimulation and
→
N ,
→
C ,
→
I

and Condition 2 of Definition 13 are used instead of N , C, I and Condition 2

of Definition 10. The proof for
←
N is again the same as the proof of Theorem 2

where B is a CMC-bisimulation and
←
N ,
←
C ,
←
I and Condition 4 of Definition 13

are used instead of N , C, I and Condition 2 of Definition 10.

C.3 Proof of Theorem 5

The proof is exactly the same as the proof of Theorem 3 where'IMLC is considered
instead of 'IML and, when proving that the requirements concerning Condition

2 of Definition 13 are fulfilled,
→
N ,
→
C ,
→
I and Condition 2 of Definition 13 are

used instead of N , C, I and Condition 2 of Definition 10, while for proving that

the requirements concerning Condition 4 of Definition 13 are fulfilled,
←
N ,
←
C ,
←
I

and Condition 4 of Definition 13 are used instead of N , C, I and Condition 2 of
Definition 10. The proof for Condition 3 (Condition 5, respectively) is similar to
that of Condition 2 (Condition 4, respectively), using symmetry.

C.4 Proof of Theorem 6

We proceed by induction on the structure of Φ and consider only the case
→
ρ

Φ1[Φ2], the case for
←
ρ Φ1[Φ2] being similar, and the others being trivial. Suppose

B is a C-bisimulation, (x1, x2) ∈ B and M, x1 |=
→
ρ Φ1[Φ2]. This means that

there exist path π and index ` such that π(0) = x1, M, π(`) |= Φ1 and for all
j ∈ {n ∈ N | 0 < n < `} we have π(j) |= Φ2. We define π1 as π1(j) = π(j) for
j ∈ {n ∈ N | 0 ≤ n < `} and π1(j) = π(`) for ` ≤ j.

We build π2, such that lenπ2 = lenπ1, as follows. We let π2(0) = x2. By

Proposition 1(5), we know that π1(1) ∈
→
C (π1(0)), and since (π1(0), π2(0)) =

(x1, x2) ∈ B and B is a C-bisimulation, we also know that there exists η ∈
→
C

(π2(0)) such that (π1(1), η) ∈ B. We let π2(1) = η and we proceed in a simi-

lar way for defining π2(j) ∈
→
C (π2(j − 1)) for all j ≤ (lenπ2) = `, exploiting
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Proposition 1(5). Again by Proposition 1(5), function π2 is continuous and so
it is a path. In addition, since, for all j ∈ {n ∈ N | 0 < n < `}, by hypothesis
and construction we have π1(j) |= Φ2 and (π1(j), π2(j)) ∈ B, by the Induction
Hypothesis, we also get π2(j) |= Φ2. Similarly, we get that π2(`) |= Φ1 since

π1(`) |= Φ1 and (π1(`), π2(`)) ∈ B. Thus we have that M, x2 |=
→
ρ Φ1[Φ2] since

there is a path π2 and index ` such that π2(0) = x2, M, π2(`) |= Φ1 and for all
j ∈ {n ∈ N | 0 < n < `} we have π2(j) |= Φ2.

C.5 Proof of Theorem 7

We have to show that Conditions 1-5 of Definition 16 are satisfied. We consider
only Condition 2, since the proofs for Conditions 3-5 is similar and Condition 1 is

trivially satisfied if (x1, x2) ∈'ISLCS. Suppose there exists x′1 ∈
→
C ({x1}) such that

(x′1, x
′
2) 6∈'ISLCS for all x′2 ∈

→
C ({x2}). Note that x′1 6= x1 because x2 ∈

→
C ({x2})

and (x1, x2) ∈'ISLCS. Since (x′1, x
′
2) 6∈'ISLCS for all x′2 ∈

→
C ({x2}), we know that,

for each such x′2, there is a formula Φx′2 such that, without loss of generality,
M, x′1 |= Φx′2 and M, x′2 6|= Φx′2 , by definition of 'ISLCS. Clearly, we also have
M, x′1 |=

∧
x′2∈

→
C ({x2})

Φx′2 and M, x′2 6|=
∧
x′2∈

→
C ({x2})

Φx′2 . But this brings to

M, x1 |=
→
ρ (
∧
x′2∈

→
C ({x2})

Φx′2)[false] and M, x2 6|=
→
ρ (
∧
x′2∈

→
C ({x2})

Φx′2)[false],

which contradicts x1 'ISLCS x2.

C.6 Proof of Lemma 1

We prove that
→
N Φ ≡

←
ρ Φ[false], the proof for

←
N Φ ≡

→
ρ Φ[false] being similar.

We recall that M, x |=
→
N Φ⇔ x ∈

→
C [[Φ]]M. If [[Φ]]M = ∅, i.e. if Φ ≡ false then

the proposition holds trivially. So, assume [[Φ]]M 6= ∅. Suppose M, x |=
→
N Φ. We

have two cases:
Case 1: M, x |= Φ
In this case, take π such that π(i) = x for all i ∈ N. So, there is a path, π as
above, such that π(`) = x, for ` = 0, M, π(0) |= Φ, and there is no j ∈ N ssuch

that 0 < j < 0; therefore M, x |=
←
ρ Φ[false].

Case 2: M, x 6|= Φ

In this case, we know x ∈
→
C ([[Φ]]M) \ [[Φ]]M) 6= ∅ by definition of

→
N Φ and by

hypothesis. Since, by hypothesis, [[Φ]]M 6= ∅, x ∈
→
C ([[Φ]]M) \ [[Φ]]M 6= ∅, and

→
C ([[Φ]]M) = ∪x′∈[[Φ]]M

→
C ({x′}), then there exists x′ 6= x with x′ ∈ [[Φ]]M and

x ∈
→
C ({x′}). Let π be defined as follows π(0) = x′ and π(j) = x for all j ∈ N

s.t. j ≥ 1; by Proposition 1(5) π is a path and so we get M, x |=
←
ρ Φ[false] by

definition of
←
ρ .

For the the proof of the converse, let us assume M, x |=
←
ρ Φ[false]. This

means there exists π and ` such that π(`) = x, M, π(0) |= Φ and for all j ∈ N
s.t. 0 < j < ` it holds M, π(j) |= false; obviously there cannot be any such a
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j, which implies that there are only two cases:
Case 1: ` = 0
In this case we haveM, x |= Φ, which implies x ∈ [[Φ]]M, and thus x ∈

→
C ([[Φ]]M),

so that M, x |=
→
N Φ

Case 2: ` = 1
From continuity of π, we get that x ∈

→
C ({π(0)}), as follows:

x

= [ By hypothesis ]

π(1)

∈ [ Set theory ]

{π(0), π(1)}

= [ Algebra ]

π({0, 1})

= [ Definition of
→
C succ ]

π(
→
C succ ({0}))

⊆ [ Continuity of π ]

→
C (π({0}))

= [ Algebra ]

→
C ({π(0)})

So, by monotonicity of
→
C , since π(0) ∈ [[Φ]]M, we have x ∈

→
C ([[Φ]]M), that is

M, x |=
→
N Φ.

C.7 Proof of Theorem8

The proof that x1 
C x2 implies x1 'IMLC x2 follows directly from Theorem 6
and Lemma 1. The proof that x1 'IMLC x2 implies x1 
C x2 is exactly the

same as that of Theorem 7 where,
←
N (

∧
x′2∈

→
C ({x2})

Φx′2) is used instead of
→
ρ

(
∧
x′2∈

→
C ({x2})

Φx′2)[false] and similarly for
→
N and

←
ρ .

C.8 S and P as derived operators

The surrounded and the propagation operators of [12] can be derived from the

reachability ones
→
ρ and

←
ρ , noting that the proposition below is not restricted
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for QdCM but it holds for general CM. We first recall the definition of the
surrounded and of the propagation operators as given in [12]:

Definition 29. The satisfaction relation for (general) CMs M, x ∈ M, and
SLCS formulas Φ1 S Φ2 and Φ1 P Φ2 is defined recursively on the structure of Φ
as follows:

M, x |=SLCS Φ1 S Φ2 ⇔M, x |=SLCS Φ1 and
for all paths π and indexes ` the following holds:
π(0) = x and π(`) |=SLCS ¬Φ1

implies
there exists index j such that:

0 < j ≤ ` and π(j) |=SLCS Φ2;
M, x |=SLCS Φ1 P Φ2 ⇔M, x |=SLCS Φ2 and

there exist path π and index ` such that
π(`) = x and
π(0) |=SLCS Φ1 and
for all j such that 0 < j < ` the following holds:
π(j) |=SLCS Φ2.

•

Proposition 15. For all CMs M = (X, C,V) the following holds:

1. Φ1 S Φ2 ≡ Φ1 ∧ ¬(
→
ρ (¬(Φ1 ∨ Φ2)[¬Φ2]);

2. Φ1 P Φ2 ≡ Φ2 ∧
←
ρ Φ1[Φ2].

Proof. For what concerns Proposition 15(1) We prove that

M, x 6|= Φ1 S Φ2 if and only if M, x 6|= Φ1 ∧ ¬(
→
ρ (¬(Φ1 ∨ Φ2))[¬Φ2])

by the following derivation:

M, x 6|= Φ1 ∧ ¬(
→
ρ (¬(Φ1 ∨ Φ2))[¬Φ2])

⇔ [ Defs. of 6|=, ∧; Logic ]

M, x 6|= Φ1 or

M, x 6|= ¬(
→
ρ (¬(Φ1 ∨ Φ2))[¬Φ2])

⇔ [ Defs. of 6|=, ¬ ]

M, x 6|= Φ1 or

M, x |=
→
ρ (¬(Φ1 ∨ Φ2))[¬Φ2]

⇔ [ Definition of
→
ρ Φ[Ψ ] ]

M, x 6|= Φ1 or
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exist path π and index ` s.t. :
π(0) = x and
M, π(`) |= ¬(Φ1 ∨ Φ2) and
for all j : 0 < j < ` implies M, π(j) |= ¬Φ2

⇔ [ Defs. of ¬, ∨, 6|=; Logic ]

M, x 6|= Φ1 or

exist path π and index ` s.t. :
π(0) = x and
M, π(`) |= ¬Φ1 and
M, π(`) |= ¬Φ2 and
for all j : 0 < j < ` implies M, π(j) |= ¬Φ2

⇔ [ Logic ]

M, x 6|= Φ1 or

exist path π and index ` s.t. :
π(0) = x and
M, π(`) |= ¬Φ1 and
for all j : 0 < j ≤ ` implies M, π(j) |= ¬Φ2

⇔ [ Defs. of 6|=, S ]

M, x 6|= Φ1 S Φ2

The proof of Proposition 15(2) trivially follows from the relevant definitions.

D Proofs of Results of Section 5

D.1 Proof of Proposition 6

We prove that every relation B ⊆ X ×X that is a CMC-bisimulation is also a
Path-bisimulation.

Suppose (x1, x2) ∈ B; we have to prove that Conditions 1-5 of Definition 19
are satisfied. This is trivially the case for Condition 1, since (x1, x2) ∈ B and B
is a CMC-bisimulation. Let π1 be a path in BPathsF(x1) and suppose lenπ1 =
n > 0, the case n = 0 being trivial. By the Proposition 1(5) we know that

π1(i) ∈
→
C (π1(i−1)) for i = 1, . . . , n. We build path π2 as follows: we let π2(0) =

x2; since (x1, x2) ∈ B and π1(1) ∈
→
C (π1(0)), we know that there is an element,

say η1 ∈
→
C (π2(0)) such that (π1(1), η1) ∈ B: we let π2(1) = η1. With similar

reasoning, exploiting Proposition 1(5), we define π2(i) for i = 2, . . . , n and we
let domπ2 = {0, . . . , n} = domπ1. Again, Proposition 1(5) ensures that π2 is
continuous and so it is a path from x2 and (π1(n), π2(n)) ∈ B. The proof for the
other conditions is similar, using Proposition 1(5).

Remark 6. The converse of Proposition 6 does not hold, as shown in Figure 8
where V−1(x11) = V−1(x21) = V−1(x22) = {r} 6= {b} = V−1(x12) = V−1(x23)
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and x11 
Pth x21 but x11 6
CMC x21. In fact B = {(x11, x21), (x11, x22), (x12, x23)}
is a Path-Bisimulation. We show that x11 6
C x21, i.e. there exists no C-bisimulation
containing x11 and x21; x12 ∈ C({x11}) and V−1x12 = {b}. All x2j ∈ C({x21})
are such that V−1x2j = {r}; thus, there cannot be any C-bisimulation B such
that (x12, x2j) ∈ B, for j = 1, 2, since Condition 1 of Definition 16 would be vi-
olated. Thence there cannot exist any C-bisimulation containing (x11, x21) since
Condition 2 of Definition 16 would be violated. This brings to x11 6
C x21, i.e.
x11 6
CMC x21.

D.2 Proof of Proposition 7

Suppose B is an INL-bisimulation and (x1, x2) ∈ B. We have to prove that
Conditions 1-5 of Definition 19 hold. We prove only Condition 2, the proof for
Conditions 3-5 being similar and that for Condition 1 trivial. Suppose x1

π1=⇒ x′1.
Take neighbourhood S1 of x1 such that range(π1) ⊆ S1—such an S1 exists be-
cause range(π1) ⊆ X and X = I(X). Since B is a INL-bisimulation, there exists
neighbourhood S2 of x2 and x′2 ∈ S2 such that (x′1, x

′
2) ∈ B, by Condition 2a

of Definition 20. In addition, since X is path-connected, there is π2 such that
x2

π2=⇒ x′2.

D.3 Proof of Theorem 9

We proceed by induction on the structure of formulas and consider only the

case
→
σ Φ, the case for

←
σ Φ being similar, and the others being trivial. So,

let us assume that for all x1, x2, if x1 
Pth x2, then M, x1 |= Φ if and only

if M, x2 |= Φ and prove the assert for
→
σ Φ. Assume (x1, x2) is an element

of Path-bisimulation B and suppose that M, x1 |=
→
σ Φ. This means there ex-

ist π, ` s.t. π(0) = x1 and M, π(`) |= Φ. So, there is π1 ∈ BPathsF(x1) such
that M, π1(len(π1)) |= Φ. Moreover, since (x1, x2) ∈ B, by Condition 2 of
the definition of Path-bisimulation, there is also π2 ∈ BPathsF(x2) such that
(π1(len(π1)), π2(len(π2))) ∈ B. This, by definition of 
Pth, means that we have
π1(lenπ1) 
Pth π2(lenπ2). By the I.H. we then get M, π2(len(π2)) |= Φ, from

which M, x2 |=
→
σ Φ follows.

D.4 Proof of Theorem 10

We have to prove that Conditions 1-5 of Definition 19 are fullfilled by 'IRL.
We consider only Condition 2, since the proof of Conditions 3-5 is similar and
that of Condition 1 is trivial. Suppose (x1, x2) ∈'IRL and that Condition 2 is
not satisfied; this means that there exists π̄ ∈ BPathsF(x1) such that for all
π ∈ BPathsF(x2) the following holds: (π̄(len(π̄)), π(len(π))) 6∈'IRL.

For each π ∈ BPathsF(x2), let Ωπ be a formula such that M, π̄(len(π̄)) |=
Ωπ and M, π(len(π)) 6|= Ωπ—such a formula exists because π̄(len(π̄)) 6'IRL

π(len(π)). Clearly, M, π̄(len(π̄)) |=
∧
π∈BPathsF(x2)

Ωπ and, consequently, we
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have M, x1 |=
→
σ (

∧
π∈BPathsF(x2)

Ωπ) whereas M, x2 6|=
→
σ (

∧
π∈BPathsF(x2)

Ωπ),

which would contradict (x1, x2) ∈'IRL.

E Proofs of Results of Section 6

E.1 Proof of Proposition 11

Suppose x1 
CMC x2, i.e. x1 
C x2 (see Corollary 4). Then there exists C-
bisimulation B ⊆ X×X such that (x1, x2) ∈ B. By Lemma 5 below we know that
Brst ⊆ X×X is a CoPa-bisimulation and sinceB ⊆ Brst we have (x1, x2) ∈ Brst,
i.e. x1 
CoPa x2.

Lemma 5. For all QdCMs (X,
→
C ,V) and relations B ⊆ X × X the following

holds: if B is a C-bisimulation, then Brst is a CoPa-bisimulation.

Proof. We have to prove that Brst satisfies Conditions 1-5 of Definition 23,
under the assumption that B is a C-bisimulation. We consider only Condition 1
and Condition 2, since the proof for all the other conditions is similar. Suppose
(x1, x2) ∈ Brst. For what concerns Condition 1 there are four cases to consider:

1. x1 = x2: trivial;
2. (x1, x2) ∈ B: in this case V−1x1 = V−1x2 since B is a C-bisimulation;
3. (x1, x2) ∈ Bs \ B: in this case (x2, x1) ∈ B—by definition of Bs, and so
V−1x2 = V−1x1;

4. there are y1, . . . , yn ∈ X such that y1 = x1, yn = x2 and for all i ∈
{1, . . . , n− 1} we have (yi, yi+1) ∈ Bs: in this case V−1yi = V−1yi+1 for all
i ∈ {1, . . . , n−1}—see cases (2) and (3) above—and so also V−1x1 = V−1x2.

For what concerns Condition 2, let π1 any path in BPathsF(x1) such that
(π1(i1), x2) ∈ Brst for all i1 < len(π1), and assume len(π1) > 0—the case
len(π1) = 0 being trivial by choosing π2 such that π(i2) = x2 for all i2. By

Proposition 1(5) we know that π1(i1) ∈
→
C (π1(i1−1)) for all i1 = 1, . . . , len(π1).

We build π2, such that len(π2) = len(π1), as follows. We let π2(0) = x2; since

(π1(0), π2(0)) = (x1, x2) ∈ Brst and π1(1) ∈
→
C (π1(0)), there is, by Lemma 6,

η ∈
→
C (π2(0)) s.t. (π1(0), η) ∈ Brst. We let π2(1) = η and we proceed in a similar

way for defining π2(i2) ∈
→
C (π2(i2− 1)) for all i2 < len(π2), ensuring that for all

such i2, (π1(0), π2(i2)) ∈ Brst.
Now, by hypothesis and since π2(0) = x2 by definition, we know that

(π1(len(π1) − 1), π2(0)) ∈ Brst and (π1(0), π2(0)) ∈ Brst, and, by symme-
try of Brst, also (π2(0), π1(0)) ∈ Brst. By construction of π2, we have also
(π1(0), π2(len(π2) − 1)) ∈ Brst. Thence, by transitivity of Brst, we finally get
(π1(len(π1)−1), π2(len(π2)−1)) ∈ Brst. But then, by Proposition 1(5) we know

that π1(len(π1)) ∈
→
C (π1(len(π1)−1)) and so, again by Lemma 6, we know that

there exists ξ ∈
→
C (π2(len(π2)−1)) such that (π1(len(π1)), ξ) ∈ Brst. We define

π2(len(π2)) = ξ; so (π1(len(π1)), π2(len(π2))) ∈ Brst and, noting that, again
by Proposition 1(5), the resulting function π2 is continuous, i.e. it is a path, we
get the assert.
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Lemma 6. For all QdCMs M = (X,
→
C ,V), C-bisimulation B and (x1, x2) ∈

Brst the following holds: for all x′1 ∈
→
C (x1) there exists x′2 ∈

→
C (x2) such that

(x′1, x
′
2) ∈ Brst

Proof. There are four cases to consider:

1. x1 = x2: trivial;
2. (x1, x2) ∈ B: in this case the assert follows directly from the fact that B is

a C-bisimulation and B ⊆ Brst;
3. (x1, x2) ∈ Bs \B: in this case (x2, x1) ∈ B, by Definition of Bs, and since B

is a C-bisimulation, by Condition 3 of Definition 16, for all x′1 ∈
→
C (x1) there

exists x′2 ∈
→
C (x2) such that (x′2, x

′
1) ∈ B; this means that is (x′1, x

′
2) ∈ Bs ⊆

Brst;
4. there are y1, . . . , yn ∈ X such that y1 = x1, yn = x2 and for all i ∈ {1, . . . , n−

1} we have (yi, yi+1) ∈ Bs: in this case—by applying the same reasoning

as for cases (2) and (3) above—we have that for all y′i ∈
→
C (yi) there is

y′i+1 ∈
→
C (yi+1) with (y′i, y

′
i+1) ∈ Bs ⊆ Brst, for all i ∈ {1, . . . , n − 1}; the

assert then follows by transitivity of Brst.

E.2 Proof of Proposition 13

In the sequel, for the sake of readability, we will let → denote the transition
relation of K(M)r, i.e. →= Rr.

We prove that x1 
CoPa x2 implies x1 
dbsc x2 by showing that 
CoPa is a
dbsc-Eq w.r.t. K(M)r. We know that Condition (1) of Definition 25 is trivially
satisfied since x1 
CoPa x2. For what concerns Condition (2) of Definition 25,
suppose x1 → x′1 in K(M)r; this means that there π1 ∈ BPathsFN,M(x1) with
len(π1) = 1 and π1(1) = x′1 and π1(0) 
CoPa x2. But then, since 
CoPa is a
CoPa-bisimulation, there is π2 ∈ BPathsFN,M(x2) such that x1 
CoPa π2(i) for
all i < len(π2) and π1(len(π1)) 
CoPa π2(len(π2)). This in turn means that
there exist k ∈ N, k = len(π2), and t0 = π2(0), . . . , tk = π2(k) ∈ X such that
x2 = t0, x1 
CoPa ti, ti → ti+1 for all i < k, and x′1 = π1(len(π1)) 
CoPa

π2(len(π2)) = tk, due to the definition of K(M)r and to its relationship to M.
The proof for Condition (3) of Definition 25 is similar.

Now we prove that x1 
dbsc x2 implies x1 
CoPa x2 and we do it by showing
that 
dbsc is a CoPa-bisimulation (see example in Figure 13).

Condition (1) of Definition 23 is trivially satisfied because x1 
dbs x2. We
prove that also Condition (2) is satisfied, the proof of the remaining condi-
tions being similar. Let π1 ∈ BPathsFN,M(x1) be any path in M such that
π1(i1) 
dbsc x2 for all i1 ∈ {ι | 0 ≤ ι < len(π1)}. We first observe that, due
to the definition of K(M)r and to its relationship to M, π1(j) → π1(j + 1),
for j = 0, . . . , len(π1) − 1. So, for all such j we have that there exist kj ∈ N
and tj0, . . . , tjkj such that t00 = x2, π1(j) 
dbsc tjm and tjm → tj(m+1) for all
m < kj and π1(j + 1) 
dbsc tjkj = t(j+1)0; Clearly, letting ` = len(π1) − 1, we
have that t00 → . . . → t0k0 = t10 → . . . → . . . → t`0 . . . → t`k` is a path over
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x1

x2
p2

t00

p1

t01 t02 t10
t03

t11 t20
t12

t21 t22 t23

K0=3 K1=2 K2=3

Fig. 13: Example of schema for the proof of Proposition 13 with len(π1) =
3, k0 = 3, k1 = 2 and k2 = 3; only “terminal” self-loops are shown; 
dbs is
shown as blue segments (transitivity of 
dbs is implicit and not shown in the
figure).

K(M)r. Such a path corresponds to the following path π2 of M, where we let

h(n, j) = n−
∑j−1
i=0 ki and we assume

∑w
i=0 ki = 0 if w < 0:

π2(n) =


tj(h(n,j)), if there is j s.t. 0 ≤ j ≤ ` and

∑j−1
i=0 ki ≤ n <

∑j
i=0 ki,

t`k` , if n ≥
∑`
i=0 ki.

Note that len(π2) =
∑`
i=0 ki and that, by construction, π1(len(π1)) 
dbsc

π2(len(π2)). Note furthermore that x1 
dbs π2(i2) for all i2 ∈ {ι | 0 ≤ ι <
len(π2)}. In fact, again by construction, for each i2 ∈ {ι | 0 ≤ ι < len(π2)}
there is i1 ∈ {ι | 0 ≤ ι < len(π1)} such that π1(i1) 
dbsc π2(i2); moreover,
π1(i1) 
dbsc x2 
dbs x1 holds for all such π1(i1) by hypothesis and so, by
transitivity, we also get x1 
dbsc π2(i2).

E.3 Proof of Theorem 11

We proceed by induction on the structure of formulas and consider only the case
→
ζ Φ1[Φ2], the case for

←
ζ Φ1[Φ2] being similar, and the others being trivial. So,

let us assume that for all x1, x2, if x1 
CoPa x2, then M, x1 |= Φ if and only if

M, x2 |= Φ and prove the assert for
→
ζ Φ1[Φ2].

Suppose that M, x1 |=
→
ζ Φ1[Φ2]. This means there exist π, ` s.t. π(0) =

x1,M, π(`) |= Φ1 and, for j ∈ {ι | 0 ≤ ι < `} we have M, π(j) |= Φ2. If ` = 0,

then, by definition of
→
ζ , we know thatM, x1 |= Φ1 andM, x1 |= Φ2 and, by the

I.H. we get that alsoM, x2 |= Φ1 andM, x2 |= Φ2 and, again by definition of
→
ζ
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we get M, x2 |=
→
ζ Φ1[Φ2]. Suppose now that ` > 0, and let path π1 be defined

as follows:

π1(i1) =

{
π(i1), if i1 ≤ `,
π(`), if i1 > `.

Clearly, π1 ∈ BPathsF(x1), len(π1) = `, M, π(len(π1)) |= Φ1 and, for j ∈
{ι | 0 ≤ ι < len(π1)} we have M, π1(j) |= Φ2. Let B be a CoPa-bisimulation
such that (x1, x2) ∈ B; such a B exists since x1 
CoPa x2. In the sequel, we
will construct a path π2 ∈ BPathsF(x2) such that π2(0) = x2 and we also have
M, π2(len(π2)) |= Φ1 and for all i2 ∈ {ι | 0 ≤ ι < len(π2)} we haveM, π2(i2) |=
Φ2 thus showing that M, x2 |=

→
ζ Φ1[Φ2] (see Figure 14).

M0 M1 M2 M3

j=1 j=2 j=3

x1

x2=x21 x22 x23

p21 p22 p23

J=3

Fig. 14: Example of schema for the Proof of Theorem 11, for J = 3. Relation B
is shown as blue segments.

Let M0 = 0, x21 = x2. Now let M1 be the greatest m1 such that m1 ≤
len(π1) and (π1(i1), x21) ∈ B for all i1 ∈ {ι |M0 ≤ ι < m1}, recalling that
(π1(M0), x21) ∈ B by hypothesis. Moreover, since (π1(M0), x21) ∈ B and B
is a CoPa-bisimulation, by Condition 2 of Definition 23, there exists π21 ∈
BPathsF(x21) such that (π1(M0), π21(i2)) ∈ B for all i2 ∈ {ι | 0 ≤ ι < len(π21)}
and (π1(M1), π21(x22)) ∈ B, where x22 = π21(len(π21)). Furthermore, since
M, π1(M0) |= Φ2, by the I.H. we get that also M, π21(i2) |= Φ2 for all i2 ∈
{ι | 0 ≤ ι < len(π21)}.

For j > 1, let Mj be the greatest mj such that mj ≤ len(π1) and (π1(i1), x2j)
∈ B for all i1 ∈ {ι |Zj−1 ≤ ι < zj} recalling that (π1(Mj−1), x2j) ∈ B by
definition of π2j−1. Moreover, since (π1(Mj−1), x2j) ∈ B and B is a CoPa-
bisimulation, by Condition 2 of Definition 23, there exists π2j ∈ BPathsF(x2j)
such that (π1(Mj−1), π2j(i2)) ∈ B for all i2 ∈ {ι | 0 ≤ ι < len(π2j)} and
(π1(Mj), π2j(x2(j+1))) ∈ B, where x2(j+1) = π2j(len(π2j)). Furthermore, since
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M, π1(Mj−1) |= Φ2, by the I.H. we get that also M, π2j(i2) |= Φ2 for all
i2 ∈ {ι | 0 ≤ ι < len(π2j)}.

Finally, letting J be the greatest j as above, since M, π1(MJ) |= Φ1, by the
I.H. we get that also M, π2J(len(π2J)) |= Φ1.

We note that π2j(0) = π2(j−1)(len(π2(j−1))) for j = 1 . . . J . Thus we can
build the following path π2:

π2(n) =



π21(n), if n ∈ [0, len(π21)),
...

π2j(n−
∑j−1
i=1 len(π2i)), if n ∈

[∑j−1
i=1 len(π2i),

∑j
i=1 len(π2i)

)
,

...

π2J(n−
∑J−1
i=1 len(π2i)), if n ≥

∑j
i=1 len(π2i).

Clearly, π2 ∈ BPathsF(x2) since π2(0) = π2,1(0) = x2 because π21 ∈ BPathsF(x2)
and π2J is bounded. Moreover, by construction, M, π2(i2) |= Φ2 for all i2 ∈
{ι | 0 ≤ ι < len(π2)} and M, π2(len(π2)) |= Φ1. Thus M, x2 |=

→
ζ Φ1[Φ2].

E.4 Proof of Theorem 12

We have to prove that Conditions 1-5 of the Definition 23 are fullfilled. We
consider only Condition 2, since the proof for Conditions 3-5 is similar and
that of Condition 1 is trivial. We proceed by contradition. Suppose Condi-
tion 2 is not satisfied; this means that there exists π̄ ∈ BPathsF(x1) such that
(π̄(i), x2) ∈'ICRL for all i ∈ {ι | 0 ≤ ι < len(π̄)} and, for all π ∈ BPathsF(x2),
having considered that π(0) = x2 'ICRL x1, the following holds:
(π̄(len(π̄)), π(len(π))) 6∈'ICRL or there exists hπ such that 0 < hπ < len(π) and
(x1, π(hπ)) 6∈'ICRL. Let set I be defined as

I = {π ∈ BPathsF(x2) | there exists hπ such that 0 < hπ < len(π)
and (x1, π(hπ)) 6∈'ICRL}

and, for each π ∈ I, let ΩIπ be a formula such that M, x1 |= ΩIπ and
M, π(hπ) 6|= ΩIπ—such a formula exists because (x1, π(hπ)) 6∈'ICRL.

Let furthermore set L be defined as

L = {π ∈ BPathsF(x2) | (π̄(len(π̄)), π(len(π))) 6∈'ICRL}

and, for each π ∈ L, let ΩLπ be a formula such that M, π̄(len(π̄)) |= ΩLπ and
M, π(len(π)) 6|= ΩLπ—such a formula exists because (π̄(len(π̄)), π(len(π))) 6∈'ICRL.
Note that I ∪ L = BPathsF(x2) by hypothesis. Clearly, M, x1 |=

∧
π∈I Ω

I
π

and, since (π̄(i), x2) ∈'ICRL for all i ∈ {ι | 0 ≤ ι < len(π̄)}, we also get
M, π̄(i) |=

∧
π∈I Ω

I
π for all i ∈ {ι | 0 ≤ ι < len(π̄)}—recall that π̄(0) = x1.

Also, M, π̄(len(π̄)) |=
∧
π∈LΩ

L
π
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Thus, we get M, x1 |= Ψ , where Ψ is the formula
→
ζ (
∧
π∈LΩ

L
π )[
∧
π∈I Ω

I
π].

On the other hand, M, x2 6|= Ψ , since, for every path π ∈ BPathsF(x2), π(hπ)
does not satisfy

∧
π∈I Ω

I
π for some hπ with 0 < hπ < len(π)—by construc-

tion of
∧
π∈I Ω

I
π—or π(len(π)) does not satisfy

∧
π∈LΩ

L
π—by construction of∧

π∈LΩ
L
π . In conclusion, we have found a formula, Ψ , such that M, x1 |= Ψ

whereas M, x2 6|= Ψ and this contradicts x1 'ICRL x2.
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