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a b s t r a c t

We propose to address the issue of sample efficiency, in Deep Convolutional Neural Networks (DCNN),
with a semi-supervised training strategy that combines Hebbian learning with gradient descent:
all internal layers (both convolutional and fully connected) are pre-trained using an unsupervised
approach based on Hebbian learning, and the last fully connected layer (the classification layer) is
trained using Stochastic Gradient Descent (SGD). In fact, as Hebbian learning is an unsupervised
learning method, its potential lies in the possibility of training the internal layers of a DCNN without
labels. Only the final fully connected layer has to be trained with labeled examples.

We performed experiments on various object recognition datasets, in different regimes of sample
efficiency, comparing our semi-supervised (Hebbian for internal layers + SGD for the final fully
connected layer) approach with end-to-end supervised backprop training, and with semi-supervised
learning based on Variational Auto-Encoder (VAE). The results show that, in regimes where the number
of available labeled samples is low, our semi-supervised approach outperforms the other approaches
in almost all the cases.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, Deep Neural Networks (DNNs) have achieved
mpressive results in learning tasks such as computer vision
He, Zhang, Ren, & Sun, 2016), reinforcement learning (Silver
t al., 2016), and natural language processing (Devlin, Chang, Lee,
Toutanova, 2018).
Today’s neural networks are generally trained using Stochastic

radient Descent (SGD) with the error backpropagation algorithm
backprop), which reaches high accuracy when a large number
f labeled samples are available for training. However, gathering
abeled samples is expensive, requires a significant amount of hu-
an work, and, in many applications, a large amount of training
ata is simply not available.
Therefore, researchers started to investigate strategies for

ample efficient learning (Bengio, Lamblin, Popovici, & Larochelle,
007; Chen, Kornblith, Norouzi, & Hinton, 2020; Kingma, Mo-
amed, Jimenez Rezende, & Welling, 2014; Larochelle, Bengio,
ouradour, & Lamblin, 2009; Rasmus, Berglund, Honkala, Valpola,
Raiko, 2015; Weston, Ratle, Mobahi, & Collobert, 2012; Zhang,

ee, & Lee, 2016). In this setting, only a small number of la-
eled samples is assumed to be available. On the other hand,
athering unlabeled samples is relatively simple; therefore, these
pproaches exploit unlabeled samples to perform unsupervised
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E-mail address: gabriele.lagani@phd.unipi.it (G. Lagani).
ttps://doi.org/10.1016/j.neunet.2021.08.003
893-6080/© 2021 Elsevier Ltd. All rights reserved.
training in addition to the supervised training process, leading to
the so called semi-supervised learning technique. It is well known
that unsupervised pre-training helps initializing the network
weights in the neighborhood of a good local optimum (Bengio
et al., 2007; Larochelle et al., 2009), thus easing convergence in a
successive supervised fine-tuning phase. Current semi-supervised
approaches leverage autoencoder architectures for the unsu-
pervised part of the task (Kingma et al., 2014; Rasmus et al.,
2015; Zhang et al., 2016), although they are still based on back-
prop. Another approach, SimCLR (Chen et al., 2020), exploits data
augmentation and an unsupervised contrastive criterion.

In this work, we address the sample efficiency issue by propos-
ing a semi-supervised learning approach, where an initial unsu-
pervised learning step, using all available data – unlabeled and
labeled (but without using label information) – is followed by a
supervised learning step using a small amount of labeled data.
To perform the unsupervised learning step we explore the use
of the Hebbian learning paradigm, which mimics more closely
the synaptic adaptation mechanisms found in biological brains,
according to neuroscientists. Hebbian learning is a local learning
rule (Gerstner & Kistler, 2002; Haykin, 2009), i.e. it does not
require error backpropagation, and it does not require supervi-
sion. Moreover, the capabilities of biological brains to learn and
generalize only from a limited number of labeled samples make
this approach appealing for the sample efficient learning setting.
Note also that backprop-based approaches are considered to be
biologically implausible (O’Reilly & Munakata, 2000).

https://doi.org/10.1016/j.neunet.2021.08.003
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.08.003&domain=pdf
mailto:gabriele.lagani@phd.unipi.it
https://doi.org/10.1016/j.neunet.2021.08.003
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The main contributions of this paper are the following:

• We propose a semi-supervised learning approach that com-
bines Hebbian learning with SGD on object recognition tasks
with Deep Convolutional Neural Networks (DCNNs).

- All available training samples, unlabeled and labeled,
are used for an unsupervised Hebbian pre-training phase
(without using label information), where a nonlinear Heb-
bian Principal Component Analysis (HPCA) learning rule is
used to train internal layers (both convolutional and fully
connected);

- Then, labeled training samples and SGD are used to
train a classifier, obtained as a final fully connected layer, on
the features extracted from previous layers;

• The results are compared from a sample efficiency per-
spective with those obtained by a baseline network trained
end-to-end with backprop, on the labeled samples, and with
semi-supervised learning based on Variational Auto-Encoder
(VAE) (Kingma & Welling, 2013) unsupervised pre-training,
the latter using all the available samples (VAE-based semi-
supervised learning was also the approach considered in
Kingma et al. (2014));

• Different datasets and different regimes of sample effi-
ciency are explored, and it is shown that the proposed
semi-supervised approach (Hebbian + SGD) outperforms
the other approaches in almost all the cases where a limited
number of labeled samples is available.

The remainder of this paper is structured as follows: Section 2
ives an overview on related work concerning semi-supervised
raining and Hebbian learning; Section 3 illustrates the sample
fficiency problem. Section 4 defines our approach to sample
fficiency based on semi-supervised Hebbian + SGD learning;

Section 5 provides a background on the Hebbian learning rule
that we used in this work; Section 6 delves into the details of our
experimental setup; In Section 7, the results of our simulations
are illustrated; Finally, Section 8 presents our conclusions and
outlines possible future developments.

2. Related work

In this section, we present an overview of related work con-
cerning both semi-supervised training and Hebbian learning.

2.1. Semi-supervised training and sample efficiency

Early work on deep learning had to face problems related to
convergence to poor local minima during the training process,
which led researchers to exploit a pre-training phase that allowed
them to initialize network weights in a region near a good local
optimum (Bengio et al., 2007; Larochelle et al., 2009). In these
studies, greedy layerwise pre-training was performed by applying
unsupervised autoencoder models layer by layer, thus training
each layer to provide a compressed representation of the input
for a successive decoding stage. It was shown that such pre-
training was indeed helpful to obtain a good initialization for
a successive supervised training stage. In successive works, the
idea of enhancing neural network training with an unsuper-
vised learning objective was considered (Kingma et al., 2014;
Rasmus et al., 2015; Weston et al., 2012; Zhang et al., 2016).
In Kingma et al. (2014), Variational Auto-Encoders (VAE) are
considered to perform an unsupervised pre-training phase using
a limited amount of labeled samples. Also Rasmus et al. (2015)
and Zhang et al. (2016) relied on autoencoding architectures to
augment supervised training with unsupervised reconstruction
objectives, showing that joint optimization of supervised and
unsupervised losses helped to regularize the learning process.
720
In Weston, Chopra, and Bordes (2014), joint supervised and un-
supervised training was again considered, but the unsupervised
learning part was based on manifold learning techniques. Another
approach, SimCLR (Chen et al., 2020), used a Contrastive Loss to
perform the unsupervised learning part. The approach relies on
data augmentation, in order to produce transformed variants of
a given input, and the unsupervised loss basically imposes hid-
den representations to match for transformed variants generated
from the same input.

2.2. Hebbian learning

Several variants of Hebbian learning rules were developed
over the years, such as Hebbian learning with Winner-Takes-All
(WTA) competition (Grossberg, 1976), Self-Organizing Maps (Ko-
honen, 1982), Hebbian learning for Principal Component Anal-
ysis (PCA) (Becker & Plumbley, 1996; Haykin, 2009; Karhunen
& Joutsensalo, 1995; Sanger, 1989), Hebbian/anti-Hebbian learn-
ing (Pehlevan & Chklovskii, 2015; Pehlevan, Hu, & Chklovskii,
2015). A brief overview is given in Section 5. However, it was only
recently that Hebbian learning started gaining attention in the
context of DNN training (Amato, Carrara, Falchi, Gennaro, & La-
gani, 2019; Bahroun & Soltoggio, 2017; Krotov & Hopfield, 2019;
Lagani, 2019; Wadhwa & Madhow, 2016a, 2016b). In Krotov and
Hopfield (2019), a Hebbian learning rule based on inhibitory
competition was used to train a neural network composed of
fully connected layers on object recognition tasks. Instead, the
Hebbian/anti-Hebbian learning rule developed in Pehlevan et al.
(2015) was applied in Bahroun and Soltoggio (2017) to extract
convolutional features that were shown to be effective for clas-
sification. Convolutional layers were also considered in Wadhwa
and Madhow (2016a, 2016b), where a Hebbian approach based on
WTA competition was used to train the feature extractors. How-
ever, the previous approaches were based on relatively shallow
network architectures (2–3 Layers). A further step was taken in
Amato et al. (2019) and Lagani (2019), where a Hebbian WTA
learning rule was investigated for training a 6-layer Convolutional
Neural Network (CNN). Also, a supervised variant of Hebbian
learning was proposed to train the final classification layer. Hy-
brid network models were also considered, in which some layers
where trained using backprop and others using Hebbian learn-
ing. The results suggested that Hebbian learning is suitable for
training early feature detectors, as well as higher network layers,
but not very effective for training intermediate network layers.
Furthermore, Hebbian learning was successfully used to retrain
the higher layers of a pre-trained network, achieving results
comparable to backprop, but requiring fewer training epochs,
thus suggesting potential applications in the context of transfer
learning (see also Canto, 2020; Magotra & kim, 2019; Magotra &
Kim, 2020).

3. Sample efficiency scenario

Training neural networks with supervision requires gather-
ing a large amount of labeled training samples. This can be
quite expensive, since it requires a considerable amount of hu-
man intervention for manually labeling collected samples. On the
other hand, gathering unlabeled samples is generally consider-
ably cheaper. In real world scenarios, one might need to solve
AI problems for which only a small amount of labeled samples
is available. In some cases, it is possible to start from a neural
network pre-trained on a similar task, for which a good number of
labeled samples was available, and just fine-tune it on the target
task using the available labeled samples (thus performing transfer
learning (Yosinski, Clune, Bengio, & Lipson, 2014). However, in
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any cases, the target task might be considerably different from
he original task.

In such cases, it would be desirable to have a training algo-
ithm that is capable of exploiting the latent information con-
ained in large collections of unlabeled samples, while using only
small set of labeled samples for a successive stage of supervised
raining.

In fact, in applications where gathering large amounts of man-
ally labeled data would be too expensive, it is often possible to
ollect a considerable amount of unlabeled samples at a relatively
heap cost. Therefore, it is desirable for an algorithm to be able to
cquire knowledge about the data without using labels and learn-
ng to extract possibly useful features by, for example, learning to
istinguish frequent shapes and patterns, or detecting rarely oc-
urring anomalies. However, a fully supervised, backprop-based,
pproach, typically requires many labeled samples to achieve a
ood performance.
Formally, the sample efficiency learning scenario can be stated

s follows: let T be our training set, let s ∈ T be an element (called
raining sample) of the training set. Elements of T are drawn from
statistical distribution with probability density function (pdf) p(s):

∼ p(s) (1)

et N = |T | be the number of training samples in T (where |·|

enotes the cardinality of the set). Let L be another set, whose
lements l ∈ L are called labels. Let

: T → L (2)

e a function that maps training samples to a corresponding label.
his function is unknown, except for a subset of T for which
abels are given. Specifically, we define the labeled set as a subset
L ⊂ T of elements for which the image of the function φ is
nown:

L = {s ∈ T | φ(s) is known} (3)

et us define the unlabeled set TU as the complement of TL w.r.t. T .
herefore, for the unlabeled set, label information is not available;
onetheless, samples from TU are drawn from the same statistical
istribution as the samples from TL and T , i.e. from p(s). In a
ample efficiency scenario, the number of samples in TL is typically
uch smaller than the total number of samples N in T , i.e.

TL| ≪ |T | (4)

In particular, an r %-sample efficiency scenario is characterized by

|TL| =
r

100
|T | (5)

i.e. the size of the labeled set is r % that of the whole training
set (labeled plus unlabeled). A neural network is required to
approximate, by a training process, the function φ. For a given
T and a given r %-sample efficiency regime, we define a neural
network to perform better than another if it reaches higher accu-
racy in mapping samples to correct labels (according to function
φ), given that both networks are trained using TL and TU splits
hat are compliant with the considered r %-sample efficiency
cenario, i.e. both networks have been trained with a number
f labeled samples equal to r % of the total number of samples
n T . The training process can be supervised, in which case only
amples from TL, and the associated labels, are used, or it can be
nsupervised, in which case all samples from both TU and TL are
sed, but without using the labels for the latter.

. Hebbian-SGD semi-supervised learning approach

Traditional supervised approaches based on backpropagation
ork well provided that the size of the labeled set is suffi-
iently large, but they do not exploit the unlabeled set. In the
721
semi-supervised approach that we propose, we aim to learn an
approximation of function φ by means of a two stage process:
first, we run an unsupervised training stage in which we use
samples from both TU and TL (but without using the labels for
the latter), in order to learn latent representations for samples
drawn from p(s); subsequently, we use the small number of
available labeled samples from TL (with the corresponding labels)
in a supervised training phase. During the first phase, latent
representations are obtained from hidden layer of a DCNN, which
are trained using an unsupervised, biologically plausible, Hebbian
learning algorithm. During the second phase, supervised training
is applied on a final linear classifier, by running a SGD optimiza-
tion procedure using only the few labeled samples at our disposal
(with the corresponding labels).

Specifically, we propose the following semi-supervised learn-
ing approach, which combines Hebbian learning with SGD, ap-
plied to a deep convolutional neural network architecture as the
one in Fig. 1:

1. the internal layers of the neural network are trained with-
out supervision using the Hebbian learning rule, given in
Eq. (12) discussed in Section 5, and all the available samples
from both TU and TL (but without using the labels for the
latter), independently from the final fully connected layer,
used as classifier;

2. the final fully connected layer, used as classifier, is trained
with SGD, freezing the weights of previous layers, and
using only the few labeled examples in TL (with the cor-
responding labels);

3. We also considered the case in which, during the super-
vised phase, the weights of the previous layers are not
frozen, but they are adapted together with the final clas-
sifier, thus performing end-to-end fine tuning on the Heb-
bian pre-trained network; we compare the results of the
Hebbian approach with and without fine tuning, in order to
be able to tell apart the contributions of Hebbian learning
and end-to-end fine tuning on the final result.

As we will show in the following, we found that our semi-
supervised approach achieves interesting results in low sample
efficiency regimes. In fact, when only a small number of labeled
samples is used (roughly from 1% to 5% of the total number of
training samples contained in the considered datasets), our ap-
proach generally offers better results than full backprop training,
and VAE-based semi-supervised learning. Thus it represents a
promising solution to real life applications, where the number of
available labeled samples is small.

In the experiments discussed below, we compared the perfor-
mance of our approach with full backprop, and with VAE-based
semi-supervised learning, considering various levels of sample
efficiency. Moreover, we run different experiments in which the
final classifier was placed on top of a different inner layer of the
network, in order to evaluate the quality of the feature represen-
tations extracted at different network depths in the classification
task. As we will show later, our approach performs better than
the other methods in almost all the cases when we consider
low sample efficiency scenarios, where the percentage of labeled
samples is between 1% and 5% (i.e. r %-sample efficiency scenarios
with 1 ≤ r ≤ 5). Further improvements come when end-to-end
fine tuning is used, in addition to Hebbian pre-training.

5. Background on Hebbian learning

For a given neuron, the weight updates according to the Heb-
bian learning rule, in its most basic form, can be expressed
as (Haykin, 2009):

w = w + ∆w (6)
new old
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Fig. 1. The neural network used for the experiments.

here wnew is the updated weight vector, wold is the old weight
vector, and ∆w is the weight update. The latter term is computed
as follows:

∆w = η y x (7)

Here, x is the input vector of the neuron, w is its weight vector,
= wTx is its output, and η is the learning rate. According to this

rule, the weight on a given synapse is increased when the input
on that synapse and the output of the neuron are simultaneously
high, so that correlation between simultaneously active neurons
is reinforced.

The learning rule above is unstable, in that neuron weights
are allowed to grow unbounded. To prevent this circumstance, a
weight decay term is typically added: ∆w = η y x−λw. In partic-
ular, the term λ can be chosen in the form λ = η y, as suggested,
for example, in works on competitive learning (Grossberg, 1976;
Kohonen, 1982), leading to the following expression for ∆w:

∆w = η y x − η yw = η y (x − w) (8)

The rule above can be easily interpreted intuitively: when an
input vector is presented to the neuron, its vector of weights
722
takes a small step toward the input, so that the neuron will
exhibit a stronger response if a similar input is presented again
in the future. When a series of inputs drawn from a cluster are
presented to the neuron, the weight vector converges toward the
cluster center (Fig. 2).

In a complex neural network, several neurons are involved
in representing the input. Ideally, we would like each neuron to
learn to represent a different property of the inputs. Therefore,
we need a strategy to prevent neurons from learning redun-
dant information. The Winner-Takes-All (WTA) (Grossberg, 1976)
strategy was proposed for this purpose. It was motivated by
the observation that biological neural networks exhibit inhibitory
competition, i.e. when a neuron fires, it provokes the inhibition
of neighboring neurons. In the WTA strategy, when an input is
presented to a neural network layer, a winner neuron is deter-
mined. This is the one whose weight vector is closest to the
current input, and it is the only neuron allowed to perform a
weight update according to Eq. (8). In this way, if a similar input is
presented again in the future, the same neuron will be more likely
to win again. At the same time, different neurons are induced to
represent different properties of the inputs, namely the centroids
of the clusters formed by the input data points (Fig. 3).

The WTA provides a quantized encoding scheme, in which
one particular neuron activates to encode a particular input.
However, it has been argued that a distributed type of encoding
would be more powerful (Földiak, 1990; Olshausen & Field, 1996),
in which different neurons simultaneously activate to encode
different properties of the input.

A more distributed coding scheme can be achieved if neuron
weight vectors are trained to encode the principal components
of the input data. This can be achieved by Hebbian Principal
Component Analysis (HPCA) learning rules, in an efficient, online
manner (Becker & Plumbley, 1996; Haykin, 2009; Karhunen &
Joutsensalo, 1995; Sanger, 1989). The Hebbian PCA learning rule
is obtained by minimizing the representation error loss function,
defined as:

L(wi) = E[(x −

i∑
j=1

yj wj)2] (9)

where, in this case, the subscript i is used to denote the ith neuron
n the layer and E[·] is the mean value operator. Let us give an
ntuitive explanation to the latter equation. Each weight vector
epresents a pattern that is stored by a neuron. The neuron’s
utput represents ‘‘how much’’ of that pattern was found in
he current input. The summation in the equation represents a
econstruction of the current input, obtained as a linear com-
ination of the weights of the neurons, with coefficients given
y the corresponding neuron outputs. Finally, we compute the
quared error between the actual input x and the reconstruction,
hich represents how much the current reconstruction is far

rom the actual input. Therefore, minimizing this loss corresponds
o finding network weights that produce the most accurate re-
onstruction. The objective in Eq. (9) reduces to classical PCA,
n the case of linear neurons and zero centered data, which
equires to maximize output variance, while the weight vectors
re subject to orthonormality constraints, as shown in Becker
nd Plumbley (1996), Haykin (2009), Karhunen and Joutsensalo
1995) and Sanger (1989). In the following, we assume that the
nput data are centered around zero. If this is not true, we just
eed to subtract the average E[x] from the inputs beforehand.
Minimizing the objective in Eq. (9) leads to the following

ebbian PCA learning rule (Becker & Plumbley, 1996; Haykin,
009; Karhunen & Joutsensalo, 1995; Sanger, 1989):

wi = ηyi(x −

i∑
yjwj) (10)
j=1
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Fig. 3. Hebbian updates with Winner-Takes All competition.
n particular, we consider the case in which neurons have non-
inear activation functions f (), so that the representation error
becomes:

L(wi) = E[(x −

i∑
j=1

f (yj)wj)2] (11)

Minimization of this objective (Karhunen & Joutsensalo, 1995;
Becker & Plumbley, 1996) leads to the nonlinear Hebbian PCA
learning rule that we used in our experiments:

∆wi = ηf (yi)(x −

i∑
j=1

f (yj)wj) (12)

6. Experimental setup

In the following, we describe the details of our experiments
and comparisons, discussing the network architecture and the
training procedure.1

1 The code to reproduce the experiments described in this paper is available
t:
https://github.com/GabrieleLagani/HebbianPCA/tree/hebbpca.
723
6.1. Datasets used for the experiments

The experiments were performed on the following datasets:
CIFAR10, CIFAR100 (Krizhevsky & Hinton, 2009) and Tiny Ima-
geNet (Wu, Zhang, & Xu, 2017).

The CIFAR10 dataset contains 50,000 training images and
10,000 test images, belonging to 10 classes. Moreover, the train-
ing images were randomly split into a training set of 40,000
images and a validation set of 10,000 images.

The CIFAR100 dataset also contains 50,000 training images and
10,000 test images, belonging to 100 classes. Also in this case, the
training images were randomly split into a training set of 40,000
images and a validation set of 10,000 images.

The Tiny ImageNet dataset contains 100,000 training images
and 10,000 test images, belonging to 200 classes. Moreover, the
training images were randomly split into a training set of 90,000
images and a validation set of 10,000 images.

We considered a range of sample efficiency regimes, i.e. we
assumed that only a limited number of labeled samples was avail-
able for training. We considered the following sample-efficiency
regimes: the amount of labeled samples were respectively 1%,
2%, 3%, 4%, 5%, 10%, 25% and 100% of the whole training set.
This corresponds to 400, 800, 1200, 1600, 2000, 4000, 10,000,
40,000 labeled samples for the CIFAR10 and CIFAR100 datasets,
and to 900, 1800, 2700, 3600, 4500, 9000, 22,500, 90,000 labeled
samples for Tiny ImageNet.

https://github.com/GabrieleLagani/HebbianPCA/tree/hebbpca
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.2. Network architecture and training

We considered a six layer neural network as shown in Fig. 1:
ive deep layers plus a final linear classifier, obtained as a fully
onnected layer on top of previous layers. The various layers
ere interleaved with other processing stages (such as ReLU
onlinearities, max-pooling, etc.). The architecture was inspired
y AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), but with
light modifications in order to reduce the overall computational
ost of training.
For each sample efficiency regime, we trained a deep net-

ork with our semi-supervised approach, using the Hebbian PCA
HPCA) rule in Eq. (12) (in which the nonlinearity was set to
he ReLU function) in the internal layers, followed by the SGD
raining step in the classification layer only (plain HPCA), or also
ine tuning previous network weights (HPCA plus Fine Tuning —
PCA+FT).
For each sample efficiency configuration we also created a

aseline for comparison, training an identical network using SGD
ith error backpropagation in all layers, in a supervised, end-to-
nd fashion. We considered both a network trained from scratch,
nd a network pre-trained with unsupervised VAE method
Kingma & Welling, 2013) and then fine-tuned by supervised
ackprop. VAE-based semi-supervised learning was also the
ethod considered in Kingma et al. (2014).
As already stated, while supervised training only uses the

abeled samples, the unsupervised training step (for the internal
ayers) uses the entire dataset, consisting of both labeled and
nlabeled samples (although the label information is not used).

.3. Testing sample efficiency at different layer depths

In our experiments, in addition to evaluate the entire net-
ork trained as discussed above, we also evaluated the sample
fficiency capability on the various internal layers of the trained
odels. To this end, we cut the networks in correspondence to

he output of the various layers and we trained a new linear
lassifier on top of each already pre-trained layer (for instance,
ig. 4 shows a classifier placed on top of the features extracted
rom the first layer), and the resulting accuracy was evaluated.
hese new classifiers were trained with supervision using SGD,
ence using only the limited number of labeled training samples
iven by the sample efficiency regime considered. This process
as done for the HPCA trained network with previous layers

rozen, for the HPCA trained network with fine tuning of previous
ayers (HPCA+FT), for the SGD network trained from scratch with
supervised backprop, and for the SGD network pre-trained by
VAE and then fine tuned with supervised backprop, in order to
make comparisons. More details are given below.

6.4. Details of training

We implemented our experiments using PyTorch. Training
as performed in 20 epochs using mini-batches of size 64. Net-
orks were fed input images of size 32 × 32 pixels. Experiments
ere performed using five different seeds for the Random Num-
er Generator (RNG), averaging the results and computing 95%
onfidence intervals.
For SGD training of the baseline network, the initial learning

ate was set to 10−3 and kept constant for the first ten epochs,
hile it was halved every two epochs for the remaining ten
pochs. We also used momentum coefficient 0.9, Nesterov cor-
ection, dropout rate 0.5 and L2 weight decay penalty coefficient
et to 5·10−2 for CIFAR10, 10−2 for CIFAR100 and 5·10−3 for Tiny
ImageNet. Cross-entropy loss was used as optimization metric.
When VAE pre-training was used, the network in Fig. 1, up to
724
Fig. 4. A neural network is cut in correspondence to Layer 1, and a linear
classifier is placed on top of the features extracted from that layer, in order
to evaluate their quality in classification tasks.

layer 5, acted as encoder, with an extra layer mapping Layer 5
output to 256 Gaussian latent variables, while a specular network
branch acted as decoder (Fig. 5). VAE training was performed
without supervision, in an end-to-end encoding–decoding task,
optimizing the β-VAE Variational Lower Bound (Higgins et al.,
2016), with coefficient β = 0.5.

In the HPCA training, the learning rate was set to 10−3. No L2
regularization or dropout was used in this case, since the learning
method did not present overfitting issues.

The linear classifiers placed on top of the various network
layers were trained with supervision using SGD in the same way
as we described above for training the whole network, but the L2
penalty term was reduced to 5 · 10−4.

To obtain the best possible generalization, early stopping was
used in each training session, i.e. we chose as final trained model
the state of the network at the epoch when the highest validation
accuracy was recorded.

All the above mentioned hyperparameters resulted from a
parameter search aimed at maximizing the validation accuracy
on the respective datasets.

6.5. Further details on HPCA training

When HPCA training was used, we noticed that BatchNorm
(BN) on higher layers was disruptive. The reason is that HPCA
uses the variance along input dimensions in order to understand
which dimensions in the input space are more relevant. BN,
however, normalizes the input distribution, so that each input
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imension is rescaled to have unit variance, thus causing a loss of
nformation that would have been useful to HPCA. For this reason,
e defined a modified BN version as follows: instead of dividing
ach input dimension by the respective variance estimated from
amples, we divided each input dimension by the average of all
he variances estimated for all the input dimensions. This allowed
s to rescale input dimensions in order to have a fixed variance,
n average, while at the same time maintaining the relative order
f each of the input dimensions in terms of their variances. The
odified BN was applied to Layers 4 and 5 of the network during
PCA training. On the other hand, standard BN was found to be
referable for earlier layers, where feature detectors had not yet
eveloped a task specificity.
In convolutional layers, the HPCA rule was applied to convo-

utional filters at each offset. In order to preserve weight sharing,
he resulting weight updates were averaged along the height,
idth and batch dimensions (Fig. 6), and the result was the actual
eight update that was applied to the convolutional filter.

. Results and discussion

In this section, the experimental results obtained with each
ataset are presented and analyzed. Results are reported in
ables 1 2, and 3 for CIFAR10, CIFAR100, and Tiny ImageNet,
espectively. After training the entire network, independently,
ith supervised backprop (BP), VAE-based semi-supervised ap-
roach (VAE), Hebbian PCA (HPCA), and HPCA plus Fine Tuning
HPCA+FT), we placed and trained a linear classifier on top
f the various layers. The linear classifier was trained, on top
f the pre-trained networks, using supervised learning with a
 1

725
Fig. 6. Update averaging over horizontal and vertical dimensions.

umber of labeled samples corresponding to the various sample
fficiency regimes considered. Tables report the classification
ccuracy, along with the 95% confidence intervals, for the various
ample efficiency regimes, when the classification layer is placed
n top of the various internal layers (L1, . . . , L5). We report top-
accuracy for CIFAR10, given that this dataset contains only

0 classes, and top-5 accuracy for CIFAR100 and Tiny ImageNet,
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able 1
IFAR10 accuracy (top-1) and 95% confidence intervals, obtained with a linear classifier on top of various layers, for the various sample efficiency regimes. Results
btained with supervised backprop (BP), VAE-based semi-supervised approach (VAE), Hebbian PCA (HPCA), and HPCA plus Fine Tuning (HPCA + FT) are compared.
t is possible to observe that, in regimes where the number of available samples is low (roughly between 1% and 5% of the total available samples), HPCA performs
etter than BP and VAE approaches in almost all the cases, leading to an improvement up to almost 5% (on Layer 3, in the 1% regime) w.r.t. non-Hebbian approaches.
PCA + FT helps to further boost accuracy.
Regimes Method L1 L2 L3 L4 L5

1%

BP 33.27 ±0.44 34.56 ±0.34 36.80 ±0.52 35.47 ±0.58 35.18 ±0.57
VAE 33.54 ±0.27 34.41 ±0.84 29.92 ±1.25 24.91 ±0.66 22.54 ±0.60
HPCA 36.78 ±0.46 37.26 ±0.14 41.31 ±0.57 39.33 ±0.72 38.46 ±0.44
HPCA + FT 37.01 ±0.42 37.65 ±0.19 41.88 ±0.53 40.06 ±0.65 39.75 ±0.50

2%

BP 37.33 ±0.25 39.01 ±0.19 42.34 ±0.51 41.50 ±0.32 41.10 ±0.39
VAE 37.65 ±0.35 39.13 ±0.40 36.52 ±0.47 29.39 ±0.32 26.78 ±0.72
HPCA 41.13 ±0.30 41.63 ±0.18 45.76 ±0.41 44.70 ±0.45 43.15 ±0.45
HPCA + FT 41.60 ±0.28 42.12 ±0.24 46.56 ±0.38 45.61 ±0.19 45.51 ±0.43

3%

BP 40.49 ±0.26 41.90 ±0.40 45.13 ±0.53 45.26 ±0.22 44.52 ±0.24
VAE 41.22 ±0.27 43.16 ±0.44 42.60 ±0.87 31.91 ±0.44 29.00 ±0.33
HPCA 44.16 ±0.42 44.84 ±0.08 48.92 ±0.17 47.70 ±0.57 45.60 ±0.27
HPCA + FT 44.74 ±0.08 45.61 ±0.28 49.75 ±0.41 48.94 ±0.45 48.80 ±0.27

4%

BP 43.38 ±0.22 45.43 ±0.18 49.51 ±0.49 48.96 ±0.48 48.80 ±0.24
VAE 44.39 ±0.30 45.88 ±0.39 46.01 ±0.40 34.26 ±0.21 31.15 ±0.35
HPCA 46.37 ±0.16 47.16 ±0.28 50.70 ±0.26 49.45 ±0.15 47.75 ±0.54
HPCA + FT 47.10 ±0.25 48.26 ±0.09 52.00 ±0.16 51.05 ±0.29 51.28 ±0.28

5%

BP 45.11 ±0.21 47.57 ±0.29 50.61 ±0.32 50.54 ±0.23 50.42 ±0.14
VAE 46.31 ±0.39 48.21 ±0.21 48.98 ±0.34 36.32 ±0.35 32.75 ±0.32
HPCA 47.51 ±0.65 48.69 ±0.37 51.69 ±0.56 50.44 ±0.43 48.51 ±0.32
HPCA + FT 48.49 ±0.44 50.14 ±0.46 53.33 ±0.52 52.49 ±0.16 52.20 ±0.37

10%

BP 51.60 ±0.40 54.60 ±0.31 57.97 ±0.28 57.63 ±0.23 57.30 ±0.22
VAE 53.83 ±0.26 56.33 ±0.22 57.85 ±0.22 52.26 ±1.08 45.67 ±1.15
HPCA 52.57 ±0.29 53.29 ±0.25 56.09 ±0.38 54.24 ±0.28 52.68 ±0.36
HPCA + FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 57.35 ±0.18

25%

BP 60.43 ±0.26 64.96 ±0.18 66.63 ±0.17 68.04 ±0.05 68.04 ±0.20
VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 68.70 ±0.15
HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 56.46 ±0.18
HPCA + FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 64.77 ±0.22

100%

BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04 84.71 ±0.02
VAE 67.53 ±0.22 75.83 ±0.31 80.78 ±0.28 84.27 ±0.35 85.23 ±0.26
HPCA 64.69 ±0.29 65.92 ±0.14 64.43 ±0.21 61.24 ±0.22 61.16 ±0.33
HPCA + FT 66.76 ±0.13 75.16 ±0.20 79.90 ±0.18 83.55 ±0.33 84.38 ±0.22
given that these datasets contain a much larger number of classes,
i.e. 100 and 200, respectively.

7.1. CIFAR10

Table 1 reports the top-1 accuracy results obtained on the CI-
AR10 dataset. We only report top-1 accuracy, given that CIFAR10
ontains only 10 classes.
At a first glance, we see that in regimes where a limited

umber of labeled samples is available (between 1% and 5%),
he HPCA achieves better results than the BP and VAE coun-
erparts, in almost all the cases. On the other hand, when the
umber of available labeled samples becomes larger, BP and
AE approaches (which exploit end-to-end fine tuning in the
upervised phase) are able to take advantage of supervision and
mprove over HPCA. When HPCA+FT is considered, we can ob-
erve that end-to-end fine tuning helps to boost accuracy. Still,
AE pre-training performs better in regimes where more labeled
amples are available (beyond 10%), while HPCA and HPCA+FT
re preferable in regimes with fewer labeled samples.
Comparing HPCA with the BP approach, we see that, for ef-

iciency regimes up to 3%, HPCA is better than BP when tested
n all layers of the network. We can observe that HPCA generally
utperforms backprop by roughly 1–3 percent points, reaching
peak of almost 5 percent points on Layer 3, in the 1% sample
fficiency regime. At 4% efficiency regime, we note that HPCA is
till performing better than BP for the first 4 layers, while BP
erforms better than HPCA when the linear classifier is put on
op of the fifth layer. This effect continues for higher efficiency

egimes, where we see that increasing the amount of labeled
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samples, reduces the highest layer where HPCA has better per-
formance than BP. So, we observe that for 5% efficiency regimes
HPCA is better than BP up to Layer 3. Still, in low sample efficiency
regimes (between 1% and 5%), HPCA outperforms backprop in
almost all the cases. At 10% efficiency regimes HPCA is better
only when the linear classifier is trained on top of Layer 1. BP
always outperforms HPCA when 100% labeled examples are used.
To explain this behavior we can observe that, on one hand, when
the amount of labeled samples increases, BP is able to effectively
take advantage of the supervised information and extract more
useful knowledge from training data. This starts to be seen from
the highest layers of the network, where the supervision signal
is stronger. Increasing the amount of labeled training data brings
this effect down up to the first network layer. On the other hand,
unsupervised Hebbian learning signal, which is driven by the
inputs, is stronger in the first layers, where coherence between
input and output of neurons is more meaningful, and layers tend
to adapt faster to the unsupervised stimuli.

Comparing HPCA with VAE approach, we see that, when low
sample efficiency regimes are considered (between 1% and 5%)
Hebbian approaches always achieve significantly higher results
than VAE. Only when the number of available labeled samples
increases (beyond 10%), VAE pre-training starts to become re-
ally competitive, obtaining results comparable to or higher than
HPCA. In these scenarios, VAE pre-training also helps improving
performance w.r.t. plain BP training from scratch. We can also
observe that, in low sample efficiency regimes (10% or less), the
VAE approach suffers from a decrease in performance when going
deeper with the number of layers. This issue is common with
unsupervised methods, because the lack of a supervision signal
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IFAR100 accuracy (top-5) and 95% confidence intervals obtained with a linear classifier on top of various layers, for the various sample efficiency regimes. Results
btained with supervised backprop (BP), VAE-based semi-supervised approach (VAE), Hebbian PCA (HPCA), and HPCA plus Fine Tuning (HPCA + FT) are compared.
t is possible to observe that, in regimes where the number of available samples is low (roughly between 1% and 5% of the total available samples), HPCA performs
etter than BP and VAE approaches in almost all the cases. Even though, in various cases, the improvement is small, it becomes significant in some scenarios, where
eaks of improvement up to 2% are observed (on Layers 3 and 4) w.r.t. non-Hebbian approaches. HPCA + FT helps to further boost accuracy.
Regimes Method L1 L2 L3 L4 L5

1%

BP 22.56 ±0.53 22.73 ±0.28 23.41 ±0.44 20.85 ±0.58 21.88 ±0.30
VAE 21.69 ±0.10 21.70 ±0.30 17.61 ±0.54 13.45 ±0.54 12.28 ±0.50
HPCA 21.90 ±0.33 22.23 ±0.50 22.98 ±0.18 20.88 ±0.43 21.90 ±0.55
HPCA + FT 22.30 ±0.38 22.28 ±0.63 23.58 ±0.21 21.70 ±0.61 22.63 ±0.55

2%

BP 28.99 ±0.49 29.07 ±0.68 30.75 ±0.34 27.67 ±0.37 28.18 ±0.35
VAE 28.24 ±0.13 28.42 ±0.31 23.56 ±0.73 17.01 ±0.37 15.25 ±0.63
HPCA 29.08 ±0.31 29.40 ±0.23 32.22 ±0.28 29.20 ±0.46 28.95 ±0.35
HPCA + FT 29.65 ±0.52 26.57 ±0.26 33.20 ±0.20 30.21 ±0.54 30.83 ±0.35

3%

BP 31.77 ±0.42 32.56 ±0.51 34.06 ±0.41 31.81 ±0.33 32.45 ±0.23
VAE 31.28 ±0.54 31.71 ±0.27 27.46 ±1.23 18.26 ±0.24 16.44 ±0.12
HPCA 32.07 ±0.46 33.04 ±0.30 36.41 ±0.15 33.67 ±0.39 32.61 ±0.51
HPCA + FT 32.81 ±0.18 33.08 ±0.55 37.75 ±0.38 35.02 ±0.36 35.04 ±0.17

4%

BP 34.74 ±0.29 35.88 ±0.30 37.63 ±0.19 35.92 ±0.35 36.52 ±0.37
VAE 34.60 ±0.10 35.44 ±0.31 32.34 ±0.79 19.68 ±0.32 17.89 ±0.27
HPCA 35.34 ±0.40 35.97 ±0.27 39.85 ±0.35 37.23 ±0.19 36.05 ±0.37
HPCA + FT 36.13 ±0.39 36.23 ±0.20 41.21 ±0.39 39.16 ±0.32 38.89 ±0.15

5%

BP 36.84 ±0.23 37.70 ±0.32 39.70 ±0.21 38.42 ±0.32 39.21 ±0.65
VAE 36.68 ±0.17 37.26 ±0.26 35.33 ±0.81 20.55 ±0.44 18.48 ±0.26
HPCA 37.28 ±0.40 37.75 ±0.24 42.12 ±0.49 39.37 ±0.18 37.84 ±0.22
HPCA + FT 38.03 ±0.20 38.02 ±0.25 43.76 ±0.33 41.66 ±0.20 41.42 ±0.23

10%

BP 42.04 ±0.24 44.98 ±0.23 48.39 ±0.22 48.98 ±0.35 49.84 ±0.34
VAE 42.64 ±0.34 44.84 ±0.48 46.04 ±0.44 27.81 ±0.13 23.80 ±0.60
HPCA 43.05 ±0.36 43.93 ±0.23 48.68 ±0.27 46.05 ±0.24 43.87 ±0.28
HPCA + FT 43.51 ±0.34 44.84 ±0.26 50.84 ±0.22 49.53 ±0.19 48.93 ±0.38

25%

BP 53.36 ±0.10 59.11 ±0.21 60.94 ±0.15 64.57 ±0.26 67.17 ±0.16
VAE 53.53 ±0.12 57.63 ±0.52 62.16 ±0.57 55.29 ±0.68 52.59 ±1.02
HPCA 49.62 ±0.36 51.30 ±0.25 56.14 ±0.29 53.46 ±0.28 51.29 ±0.15
HPCA + FT 51.51 ±0.31 54.22 ±0.23 59.60 ±0.44 58.29 ±0.29 58.70 ±0.18

100%

BP 51.67 ±0.10 60.84 ±0.19 67.01 ±0.13 78.85 ±0.10 80.74 ±0.05
VAE 67.51 ±0.11 73.83 ±0.30 78.70 ±0.23 79.58 ±0.18 79.97 ±0.14
HPCA 60.94 ±0.09 62.24 ±0.15 64.17 ±0.22 61.27 ±0.24 59.51 ±0.20
HPCA + FT 65.61 ±0.12 70.38 ±0.23 74.10 ±0.12 73.38 ±0.18 74.42 ±0.14
(or still its scarcity, in case of semi-supervised scenarios) makes it
more difficult to develop task-specific feature detectors on higher
layers, which are essential to reach higher performances, as also
previous studies on deep CNNs reveal (Agrawal, Girshick, & Malik,
2014). With HPCA, this problem seems to alleviate, and the accu-
racy remains pretty much constant with the number of layers,
meaning that the features produced by this approach are more
meaningful for the classification task. Only when the amount of
supervision, i.e. the number of labeled samples, becomes large
enough (above 10%), the end-to-end supervised training phase,
that follows VAE pre-training in the semi-supervised approach,
manages to transform VAE feature detectors to task-specific fea-
tures that perform even better than those obtained by BP training
from scratch. Overall, these results suggest that VAE-based semi-
supervised learning is better suited in sample efficiency regimes
where the labeled portion of the dataset is still relatively large
(10% or more), while our method is preferable to address sam-
ple efficiency regimes in which the number of available labeled
samples is very small (5% or less).

The HPCA+FT strategy is still preferable in low sample effi-
iency regimes (between 1% and 5%), where it helps to further in-
rease accuracy w.r.t. plain HPCA. In particular, in these regimes,
e can observe a further increase in accuracy up to 2% points on
etwork Layers 3 and 4, and up to 4% points on Layer 5 (in the
% and 5% regimes). Fine tuning also helps increasing accuracy in
uccessive sample efficiency regimes, especially on higher layers.
Please note that in some configurations, the accuracy of pure

PCA (even without fine-tuning on deep layers) is higher than the
ccuracy obtained with BP. Consider, for instance, the accuracy
btained at L5 for configurations up to 3% sample efficiency
727
regimes. This might appear strange since, in principle, label in-
formation used by BP should help to achieve higher accuracy.
The explanation is that BP training tends to generalize poorly
with low sample efficiency regimes, when just a limited number
of labeled samples is available. On the other hand, unsupervised
HPCA training exploits a large number of unlabeled samples,
and this allows us to achieve generally higher accuracy in the
aforementioned cases.

7.2. CIFAR100

Since CIFAR10 contained just 10 different classes, to validate
our observations with a similar, yet more difficult scenario, we
also performed tests with CIFAR100, containing 100 classes. In
Table 2 the top-5 accuracy results obtained on the CIFAR100
dataset are shown. In this case, we report top-5 accuracy instead
of top-1, given that CIFAR100 contains a much larger number of
classes than the previous dataset.

These experiments confirm our previous observations. The
results show that, in regimes where a limited number of labeled
samples is available (between 1% and 5%), our semi-supervised
approach, based on Hebbian learning, achieves better results than
BP and VAE counterparts in almost all the cases. On the other
hand, when the number of available labeled samples becomes
larger, BP and VAE approaches (which exploit end-to-end fine
tuning in the supervised phase) are able to take advantage of
supervision and improve over HPCA. Also in this case, we can
observe that the end-to-end fine tuning in HPCA+FT helps to
further boost accuracy.
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able 3
iny ImageNet accuracy (top-5) and 95% confidence intervals obtained with a linear classifier on top of various layers, for the various sample efficiency regimes.
esults obtained with supervised backprop (BP), VAE-based semi-supervised approach (VAE), Hebbian PCA (HPCA), and HPCA plus Fine Tuning (HPCA + FT) are
ompared. It is possible to observe that, in regimes where the number of available samples is low (roughly between 1% and 5% of the total available samples), HPCA
erforms better than BP and VAE approaches in almost all the cases, leading to an improvement up to almost 3% (on Layer 3, in the 4% regime) w.r.t. non-Hebbian
pproaches. HPCA + FT helps to further boost accuracy.
Regimes Method L1 L2 L3 L4 L5

1%

BP 9.89 ±0.15 10.10 ±0.26 9.99 ±0.17 9.15 ±0.23 9.53 ±0.21
VAE 9.63 ±0.26 9.49 ±0.39 7.58 ±0.28 5.99 ±0.19 5.55 ±0.23
HPCA 10.83 ±0.28 10.87 ±0.26 11.85 ±0.19 10.84 ±0.26 10.86 ±0.23
HPCA+FT 10.81 ±0.27 10.99 ±0.36 12.15 ±0.46 11.05 ±0.27 11.38 ±0.41

2%

BP 12.76 ±0.27 12.84 ±0.14 13.95 ±0.34 13.04 ±0.15 13.48 ±0.39
VAE 12.94 ±0.37 13.06 ±0.23 10.86 ±0.28 7.40 ±0.27 6.74 ±0.20
HPCA 13.84 ±0.17 14.35 ±0.15 16.18 ±0.15 14.52 ±0.32 14.03 ±0.15
HPCA + FT 14.12 ±0.23 14.32 ±0.31 16.89 ±0.61 15.28 ±0.28 15.71 ±0.47

3%

BP 14.12 ±0.20 14.65 ±0.57 16.50 ±0.32 15.76 ±0.27 15.99 ±0.38
VAE 14.31 ±0.18 15.17 ±0.20 13.67 ±0.36 8.35 ±0.29 7.74 ±0.19
HPCA 16.13 ±0.14 16.32 ±0.33 18.87 ±0.29 17.04 ±0.26 16.38 ±0.25
HPCA + FT 16.25 ±0.21 16.54 ±0.28 19.78 ±0.47 18.31 ±0.24 18.23 ±0.33

4%

BP 15.44 ±0.42 16.72 ±0.31 18.36 ±0.22 17.85 ±0.16 17.84 ±0.19
VAE 16.09 ±0.20 17.05 ±0.20 16.83 ±0.51 8.86 ±0.11 8.45 ±0.21
HPCA 17.64 ±0.49 18.27 ±0.34 21.07 ±0.17 19.16 ±0.33 18.13 ±0.39
HPCA + FT 17.70 ±0.44 18.33 ±0.24 21.95 ±0.57 20.86 ±0.32 20.55 ±0.28

5%

BP 16.75 ±0.25 17.94 ±0.25 20.26 ±0.21 20.15 ±0.35 19.84 ±0.36
VAE 17.44 ±0.26 18.62 ±0.32 19.16 ±0.52 9.92 ±0.24 9.29 ±0.17
HPCA 18.93 ±0.14 19.67 ±0.36 22.65 ±0.35 21.01 ±0.38 19.57 ±0.15
HPCA + FT 19.26 ±0.41 19.93 ±0.41 23.97 ±0.52 22.95 ±0.26 22.46 ±0.17

10%

BP 20.26 ±0.18 23.12 ±0.14 27.05 ±0.20 27.30 ±0.20 27.21 ±0.29
VAE 21.62 ±0.25 23.83 ±0.19 27.42 ±0.18 16.69 ±0.18 13.51 ±0.34
HPCA 22.15 ±0.43 23.69 ±0.24 27.02 ±0.24 25.73 ±0.34 23.08 ±0.17
HPCA + FT 22.82 ±0.33 24.34 ±0.29 28.69 ±0.36 28.79 ±0.26 28.13 ±0.38

25%

BP 28.97 ±0.26 32.63 ±0.36 37.38 ±0.13 38.81 ±0.20 38.80 ±0.39
VAE 29.40 ±0.31 32.42 ±0.29 39.93 ±0.31 37.97 ±0.62 37.89 ±0.54
HPCA 27.05 ±0.47 28.39 ±0.34 32.08 ±0.19 31.30 ±0.26 29.51 ±0.23
HPCA + FT 28.01 ±0.75 30.63 ±0.16 35.87 ±0.53 36.98 ±0.26 37.10 ±0.23

100%

BP 42.89 ±0.13 49.94 ±0.13 54.54 ±0.27 57.00 ±0.16 57.50 ±0.16
VAE 42.32 ±0.16 48.54 ±0.53 58.31 ±0.12 59.60 ±0.23 60.23 ±0.65
HPCA 35.74 ±0.15 38.29 ±0.19 38.78 ±0.07 38.61 ±0.21 36.99 ±0.36
HPCA + FT 40.34 ±0.31 45.00 ±0.40 53.12 ±0.26 52.95 ±0.28 53.96 ±0.43
Except for 1% sample efficiency regime, where the difference
n the results is not really significant, for regimes up to 3% HPCA
s always better than BP. In particular, the improvement becomes
ignificant in correspondence to network Layers 3 and 4 in the
ample efficiency regimes between 2% and 5%. Note also that
ayer 3 generally offers absolute highest accuracy for all efficiency
egimes, when HPCA is used. In these cases, we observe peaks
f improvement over 2 percent points. As before, for efficiency
egimes higher than 4% BP starts to provide better accuracy in the
igher layers of the network. However, HPCA is still better than
P, with 100% efficiency regime, when tested on Layers 1 and 2.
his can be explained by the fact that CIFAR100 offers a more
ifficult scenario than CIFAR10, and BP has more problems than
efore in backpropagating the error signal to the initial layers of
he network. Differently, unsupervised Hebbian learning has most
f its effects in the very first layers of the network.
Also in this case, we observe that HPCA always performs

etter than VAE method when low sample efficiency regimes are
onsidered (between 1% and 5%), especially for higher network
ayers. Again, VAE pre-training seems to be more effective in
egimes where more labeled samples are available (beyond 10%).

The HPCA+FT strategy is still preferable in low sample effi-
ciency regimes (between 1% and 5%), where it helps to further in-
crease accuracy w.r.t. plain HPCA. In particular, in these regimes,
we can observe a further increase in accuracy up to 4% points
on Layer 5 (in the 5% regime). Fine tuning also helps increasing
accuracy in successive sample efficiency regimes, especially on
higher layers.
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7.3. Tiny ImageNet

Further experiments on Tiny ImageNet allowed us to validate
the scalability of our previous observations to larger datasets.
Tiny ImageNet has 200 classes and the training set consists of
100,000 samples (90,000 of which are used for training and
10,000 for validation). Results are reported in Table 3, where the
top-5 accuracy measures are shown, along with their 95% confi-
dence interval. Also in this case, we report top-5 accuracy instead
of top-1, given that Tiny ImageNet contains a large number of
classes, as opposed to other datasets such as CIFAR10.

Again, results confirm our observations. In regimes where a
limited number of labeled samples is available (between 1% and
5%), the Hebbian approach outperforms BP and VAE counterparts,
in almost all the cases. On the other hand, when the number of
available labeled samples becomes larger, BP and VAE approaches
(which exploit end-to-end fine tuning in the supervised phase)
are able to take advantage of supervision and improve over HPCA.
Also in this case, we can observe that the end-to-end fine tuning
in HPCA+FT helps to further boost accuracy.

Specifically, HPCA outperforms BP in all layers up to 4% sample
efficiency regime. In fact, with CIFAR10 and CIFAR100, BP started
to outperform HPCA on Layer 5 at 4% regimes. Here, with 4%
sample efficiency regime, HPCA is still better than BP in all lay-
ers. This is probably due to the fact that the number of classes
in Tiny ImageNet is higher and using just a few samples does
not allow back propagation to correctly adapt the behavior of
network layers. In addition, we can observe that HPCA generally
outperforms backprop by roughly 1–2 percent points, reaching

a peak of almost 3 percent points on Layer 3, in the 4% sample
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Fig. 7. Comparison of network architectures with and without pooling on the CIFAR10 dataset. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 8. Comparison of network architectures with and without pooling on the CIFAR100 dataset. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 9. Comparison of network architectures with and without pooling on the Tiny ImageNet dataset. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
fficiency regime. With higher efficiency regimes, BP begins to
utperform HPCA, starting from the higher layers. At 100% sample
fficiency regime, BP outperforms HPCA on all layers. This is
robably due to the fact that 90,000 labeled training samples are
ufficient for BP to correctly train all network layers, exploiting
he supervised information.

Also in this case, we observe that HPCA always performs
etter than VAE method when low sample efficiency regimes are
onsidered (between 1% and 5%), especially for higher network
ayers. Again, VAE pre-training seems to be more effective in
egimes where more labeled samples are available (beyond 10%).

The HPCA+FT strategy is still preferable in low sample effi-
ciency regimes (between 1% and 5%), where it helps to further in-
crease accuracy w.r.t. plain HPCA. In particular, in these regimes,
we can observe a further increase in accuracy up to 3% points
on Layer 5 (in the 5% regime). Fine tuning also helps increasing
accuracy in successive sample efficiency regimes, especially on
higher layers.
729
7.4. Effect of pooling layers

From the results presented so far, it is possible to observe
that higher results for low sample efficiency regimes (1%–5%) are
generally achieved in correspondence to Layer 3. We note also
that in Layers 1 and 3 of our network, as show in Fig. 1, we have
max-pooling operations. We performed further experiments in
order to evaluate the impact of pooling layers on the final results.
In this subsection, we discuss the results of previous experiments
executed in a network where all max-pooling operations were
eliminated. In Figs. 7, 8, 9, we show the accuracy obtained for the
1% and 5% sample efficiency regimes, on the CIFAR10, CIFAR100
and Tiny ImageNet datasets. Yellow and red bars correspond to
experiments executed with the original network, trained with
BP and HPCA, respectively. Green and blue bars correspond to
experiments executed with the network where max-pooling was

eliminated, also trained with BP and HPCA respectively. We show
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he results for BP and HPCA, because these are the scenarios in
hich the aforementioned effect is more prominent.
It can be clearly seen the peak of accuracy, occurring at Layer 3,

or all experiments executed with the original network. Similarly,
e can see that the peak disappeared with the experiments
xecuted without max-pooling. In fact, it seems that the peak
oved at Layer 2. However, it is within the reported confidence

nterval of the adjacent layers, so the difference is not statis-
ically significant. In addition, when max-pooling is not used,
e report a general decrease of performance. This confirms that
ax-pooling is a relevant element and its use significantly helps
ur semi-supervised approach. Note that also in case of BP ex-
eriments, without max-pooling, significantly lower results were
btained w.r.t. the highest accuracy, which was achieved with
PCA training in conjunction with pooling layers.
Max-pooling clearly helps the network to produce better fea-

ure maps to be used by the linear classifier. In fact, adding
onsecutive convolutional layers produces neurons with increas-
ngly larger receptive field size. However neurons activations
orresponding to adjacent areas, in a given feature map, will be
ighly correlated. The effect of pooling is to reduce this corre-
ation. This turns out to be very helpful for the final classifiers,
hich can better handle feature maps of lower dimension and
ith less redundant information, making it easier to discover
elationships between features and target classes.

It can also be observed that, when the pooling layer is re-
oved, the accuracy drop of HPCA is larger than that of BP.
gain this can be justified by considering that, without pooling,
euron activations corresponding to adjacent areas will be highly
orrelated. Nonetheless, when backprop training is used, the su-
ervision signal can drive network weights in order to produce
eature representations that reduce such correlation. With un-
upervised Hebbian training, this is not possible, and therefore
he resulting model suffers a higher performance drop when
orrelations are incentivized due to the removal of the pooling
ayers. So our conclusion is that pooling operations play a relevant
ole in Hebbian training.

. Conclusions and future work

In summary, our results suggest that our semi-supervised
pproach leveraging Hebbian learning is preferable w.r.t. back-
rop training (from scratch or with VAE pre-training) to perform
raining in low sample efficiency regimes where only a limited
umber of labeled samples is available. Specifically, our results on
IFAR10, CIFAR100, and Tiny ImageNet show that HPCA performs
etter than backprop training (from scratch or with VAE pre-
raining) in sample efficiency regimes in which only a small
ortion of the training set (between 1% and 5%) is assumed to
e labeled. In addition, the HPCA+FT approach helps to further
mprove performance. Therefore, our method is preferable in
cenarios in which manually labeling a large number of train-
ng samples would be too expensive, while gathering unlabeled
amples is relatively cheap.
In future work, further improvements might come from ex-

loring more complex feature extraction strategy, which can
lso be formulated as Hebbian learning variants, such as Kernel-
CA (Schölkopf, Smola, & Müller, 1998) and Independent Com-
onent Analysis (ICA) (Hyvarinen, Karhunen, & Oja, 2002). In
ddition, it would be interesting to replicate this work also to the
ontext of Spiking Neural Networks (SNNs), where the Hebbian
rinciple is implemented by the Spike Timing Dependent Plas-
icity (STDP) learning rule (Gerstner & Kistler, 2002). SNNs are
ore realistic models of biological neural computation, which use
ulses (called spikes) to encode signals, rather than continuous
alues. This communication paradigm is the key toward energy-
fficient computation in the brain (Javed et al., 2010), and is
730
being currently implemented in neuromorphic hardware (Furber,
Galluppi, Temple, & Plana, 2014; Wu, Saxena, Zhu, & Balagopal,
2015). In this scenario, it is necessary to map the variants of the
Hebbian rule to corresponding STDP variants and test their effec-
tiveness for SNN training. Finally, an exploration on the behav-
ior of such algorithms w.r.t. adversarial examples also deserves
attention.
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