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Abstract

In high dimensional datasets, exact indexes are ineffective for proximity queries,
and a sequential scan over the entire dataset is unavoidable. Accepting this,
here we present a new approach employing two-dimensional embeddings. Each
database element is mapped to the XY plane using the four-point property.
The caveat is that the mapping is local: in other words, each object is mapped
using a different mapping.

The idea is that each element of the data is associated with a pair of reference
objects that is well-suited to filter that particular object, in cases where it is
not relevant to a query. This maximises the probability of excluding that object
from a search. At query time, a query is compared with a pool of reference
objects which allow its mapping to all the planes used by data objects. Then,
for each query/object pair, a lower bound of the actual distance is obtained.
The technique can be applied to any metric space that possesses the four-point
property, therefore including Euclidean, Cosine, Triangular, Jensen-Shannon,
and Quadratic Form distances.

Our experiments show that for all the datasets tested, of varying dimen-
sionality, our approach can filter more objects than a standard metric indexing
approach. For low dimensional data this does not make a good search mech-
anism in its own right, as it does not scale with the size of the data: that is,
its cost is linear with respect to the data size. However, we also show that it
can be added as a post-filter to other mechanisms, increasing efficiency with
little extra cost in space or time. For high-dimensional data, we show related
approximate techniques which, we believe, give the best known compromise for
speeding up the essential sequential scan. The potential uses of our filtering
technique include pure GPU searching, taking advantage of the tiny memory
footprint of the mapping.

Keywords: metric search, extreme pivoting, supermetric space, four-point
property, pivot based index
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1. Introduction

In general, metric indexes partition the data on the basis of the distances to
one or more reference objects (pivots) so that, at query time, some partitions can
be included or excluded from the search without the need to calculate the actual
distances between the query and the data objects within that partition. The
triangle inequality used together with the knowledge of the distances between
the pivots and the data/query objects allows computing upper and lower bounds
for these distances.

The concept of local pivoting is to partition a metric space so that each
element in the space is associated with precisely one of a fixed set of pivots.
The idea is that each object of the data set is associated with the pivot that
is best suited to filter that particular object if it is not relevant to a query,
maximising the probability of excluding it from a search. The notion does not
in itself lead to a scalable search mechanism, but instead gives a good chance of
exclusion based on a tiny memory footprint and a fast calculation. It is therefore
most useful in contexts where main memory is at a premium, or in conjunction
with another, scalable, mechanism.

In this paper we apply similar reasoning to metric spaces that possess the
four-point property [1], which notably include Euclidean, Cosine, Triangular,
Jensen-Shannon, and Quadratic Form spaces. This property allows computing
bounds for the the actual distance that are tighter that than that obtained using
the triangle inequality [2]. We show a novel way of exploiting this situation: each
element of the space can be associated with two reference objects, and a four-
point lower-bound property is used instead of the simple triangle inequality.
The probability of exclusion is strictly greater than with simple local pivoting;
the space required per object and the calculation are again tiny in relative
terms. Specifically, we store each object using a tuple of four values, as follows.
From a finite metric space S, a relatively small set of reference objects P is
selected. For all pj , pk ∈ P, the distance d(pj , pk) is calculated and stored. For
each element si in S, a single pair of reference objects 〈pi1 , pi2〉 is selected. The
distances d(si, pi1) and d(si, pi2) are calculated and used together with d(pi1 , pi2)
to isometrically project the objects pi1 ,pi2 , si in the 2D Euclidean vectors (0, 0),
(0, d(pi1 , pi2)), (xsi , ysi) respectively. The triangle inequality guarantees that
such isometric embedding exists; moreover, the coordinates of vector (xsi , ysi)
can be easily computed by exploiting the distances to the selected pivots (see
Section 3 for the details). Thus the space S is represented as a set of tuples
〈i1, i2, xsi , ysi〉, indexed by i, therefore requiring only a few bytes per object.

When a query is executed, the distances d(q, pj) for each pj ∈ P are first
calculated. At this point, considering any si ∈ S and the objects q, pi1 , pi2 , it
is possible to compute a lower-bound for the unknown distance d(q, si) with
a cheap geometric calculation, without any requirement to access the original
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value si ∈ S. By exploiting the knowledge of the distances to the pivots pi1 , pi2
it is possible to compute the 2D projection (xq,i, yq,i) of the point q with respect
to the pivots pi1 , pi2 . The four-point property guarantees that the Euclidean
distance between (xq,i, yq,i) and (xsi , ysi) is a lower-bound for the actual distance
d(q, si).

We show that the resulting mechanism can be very effective. However, for
a selection of m reference points, there exist

(
m
2

)
pairs from which the repre-

sentation of each data point can be selected. This number, of course, becomes
rapidly very large even with modest increases in m. If for each element of S we
can find a particularly effective pair pi1 , pi2 , within this large space, then this
tiny representation of S can be used as a powerful threshold query filter. This
exclusion mechanism leads to a sequential scan, which is virtually unavoidable
in light of a recent conditional hardness result in [3] for nearest neighbor search,
even in the approximate setup, for every δ > 0 there exist constants ε, c > 0
such that with preprocessing time O(N c) computing a (1 + ε)-approximation to
the nearest neighbor requires O(N1−δ) time, with N the size of the database.

The above hardness result has been suspected for a long time by the indexing
community, and it has been named the curse of dimensionality. It is known,
for example, that a metric inverted index [4] has high recall rates only if a
substantial part of the candidate results is revised. We aim our approach at
this final part of query filtering or re-ranking.

The contributions of this paper are as follows:

1. We show that the outline mechanism is viable. For SISAP benchmark
data sets [5] we show that exclusion rates of over 98% can be achieved
using our small memory footprint and cheap calculations.

2. We use an observation of the mechanism applied in much higher-dimensional
spaces which leads to two different approximate mechanisms which can
be applied to range and nearest-neighbour search respectively. For both
mechanisms, for a space which is completely intractable for metric index-
ing methods we can achieve a reduction of search cost of around 90%, in
order to return around 90% of the correct results.

3. We examine the problem of finding the best pair of reference points per
datum; this can be done well, but expensively, by an exhaustive search
of the pair space; however the cost of this is quadratic with respect to
the number of reference objects selected. We show that much cheaper
heuristics are also effective.

4. Finally, we show an example of how the mechanism can be used as a
post-filter adjunct to another mechanism. We describe its incorporation
with the List of Clusters index. Using a pragmatic selection of reference
objects it can be ensured that no new distances are measured at either
construction or query time, which can nonetheless lead to a halving of the
overall query cost.
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Table 1: Notation used throughout this paper. Some concepts, such as planar projection, are
introduced in later sections.

Symbol Definition

| · | size of a set

(U, d) metric space

S ⊆ U finite search space (database)

N = |S| size of the database

o, si ∈ S data objects

q ∈ U query object

P = {p1, . . . , pm} set of pivots (reference objects), pj ∈ U
m number of pivots

t, t1, t2 threshold distance, e.g. radius used in a range
query search

k number of results of a nearest neighbour search

`2 Euclidean distance

<pi1 , pi2> pair of pivots used as reference points for the
object si

(xsi , ysi) ∈ R2 planar projection of the point si with respect to
the pivots pi1 , pi2

σ(si) = <i1, i2, xsi , ysi> tuple used to represent the data point si

(xq,i, yq,i) ∈ R2 planar projection of the point q with respect to
the reference objects selected for the object si

A preliminary version of this work appeared in [6]. The present contribu-
tion gives a more detailed description of the proposed approach and a widely
extended experimental evaluation. Moreover, it investigates the use of our ap-
proach also for approximate pre-filtering and ranked order nearest-neighbour
queries.

The rest of the paper is structured as follows. Section 2 reviews related work
and gives background information on the four-point property and lower-bound.
Section 3 discuss properties of the planar projection used in this work to map
metric data to 2D Euclidean space. Section 4 presents our proposed search
strategies that rely on local embedding of the data into 2D coordinate space.
Section 5 present results of a thorough experimental analysis of the proposed
approaches. Section 6 draws conclusions. Table 1 summarises the notation used
in this paper.

2. Background and Related Work

Pivot based indexes have populated the metric indexing scene for a long time.
A standard approach is creating a pivot table, obtained by pre-computing and
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storing the distances between data objects and some pivots (reference objects).
Each object is then represented as the vector of its distances to the pivots.
Therefore, a pivot table is just the direct product of one dimensional projections
obtained from a single pivot at a time. The object-pivot distance constraint
[7], which is a direct consequence of the triangle inequality, ensures that each
coordinate gives a lower bound to the actual distance from database points to
the query. The lower bounds are used to exclude objects from the searching
process without explicitly computing their distance to the query. For example,
exclusion occurs when the distance between the object and the pivot, which
is pre-calculated, and the distance between the query and the pivot, which is
calculated at the start of a query evaluation, give a lower bound for the actual
distance between the query and the object that is greater than a given threshold.
A safe choice is to take the maximum over all the available lower bounds. In
other words, given a set of pivots {p1, . . . , pm}, an object o, and a query q, the
maxj |d(o, pj)− d(q, pj)| is a lower-bound for the distance d(o, q).

The most effective algorithm published for searching using a pivot table is
AESA [8], which proceeds as following. All the O(N2) distances between every
object in the database of N elements is pre-computed. With this, every object
in the database is a potential pivot. At query time a subset of the N pivots
is selected, one at a time, using a heuristic which consist in selecting the j + 1
pivot, the closest to the query, using as bound the j pivots known so far and the
first pivot at random. The output of this heuristic is both a set of good pivots
for the query, and the nearest object to it. Two things can be noticed from
this basic approach, first, the number of pivots actually used is much smaller
than N , and second, they are tailored for each query on the fly. However since
the space usage is quadratic, the approach is impractical. Also notice that a
sequential scan is implied to obtain the closest next pivot in the interaction.
Linear space approaches of the same idea were used in [9], that stores distances
from objects to only a fixed number m of pivots. The search procedure is nearly
the same of AESA, except that not all the objects are used as pivots. A better
heuristic for selecting the next pivot is proposed in [10]. The sequential scan
can be avoided using a tree [11, 12].

Selecting the best pivot for a given query is not possible offline. A weaker
alternative is to select the best pivot for each database object, increasing the
probability of exclusion at query time. Two options have been explored in the
literature, in [13] each pivot in the pool only keep distances to objects in the
extreme of the distribution, those objects near and far the pivot. This process
is sub-optimal and may end with a few objects guarded by many pivots, and
many objects guarded by a few or none pivots. A second alternative, ensuring
some fairness in the coverage, was proposed in [14], this time each object can
select the best pivot. This latter approach is called extreme pivoting. In those
heuristics the gain is in filtering power, when the amount of available memory
is fixed. Pivot tables are useful for post filtering in a hierarchical metric index,
as in [15], or they can be used as a stand alone index using directly the table as
in [16, 17].

For post-filtering, when a primary index is applied to filter the data and only

5



a small fraction of the database should be checked against the original metric,
a table is useful. A high rate of exclusion will prevent the use of the more
expensive distance computations, and moreover will require to fetch a smaller
number of objects from secondary memory. Hence a small table, with just a
couple of coordinates, is an excellent trade-off because it can be kept in main
memory. In the same spirit as the extreme pivots for unidimensional mapping,
in this paper we are aiming at building a table of small memory footprint using
the so-called four point property.

2.1. The Four-Point Property and Supermetric Spaces

Between the end of the 19th century and the beginning of the 20th century
various mathematicians, including Menger [18], Wilson [19] and Blumenthal
[20], founded the basis of the distance geometry that studies and characterises
semimetric spaces based only on given values of the distances among finite
subsets of points. A basic observation is that the triangular inequality can
be expressed as a geometric condition: a semimetric space has the triangle
inequality if and only if any three points of the space can be projected in a
2D Euclidean space while preserving all the three inter-point distances. In
other words, a triangle can be drawn in a 2D plane so that the lengths of its
edges are in one-to-one correspondence with the pairwise distances between the
points. This property is also called the three-point property and the spaces
that satisfy it are referred to as isometrically 3-embeddable in 2-dimensional
Euclidean space. It turns out that a large class of metric spaces also satisfy the
four-point property, i.e. they are isometrically 4-embeddable in 3-dimensional
Euclidean space [1, 21, 22]. In a nutshell, for any four points of the space
there exists an isometric embedding that maps those points to the vertices
of a tetrahedron so that all the six pairwise distances between the points are
preserved.

More recently we have applied these results in theoretical mathematics to the
practical domain of metric search [23, 24, 2] and we coined the term supermetric
to refer to spaces with the four-point property as, in terms of metric search,
they are significantly more tractable. For this context, the important result is
that the four-point property applies to many commonly-used distance metrics,
including Euclidean, Cosine1, Jensen-Shannon, Triangular and Quadratic Form
distances, all of which can be safely used in conjunction with the mechanisms
described here.

One crucial outcome of our work is that in the context of pivot-based tech-
niques the four-point property allow us to compute upper and lower bounds
of the actual distance that are tighter than those obtained using the triangle
inequality.

1for the correct formulation, see [23].
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Figure 1: Example four-point based projection. Two reference objects p1, p2 and two data
objects o, q are first isometrically embedded in 3D Euclidean space. The mapped points are
indicated with vp1 , vp2 , vo, vq in the graph. By rotating vq around the edge vp1vp2 we obtain
the points vαq where 0 ≤ α ≤ π is the angle formed with the triangle 4vp1vp2vo. A planar

projection is obtained by setting α = 0 or α = π. The euclidean distances `2(v0q , vo) and
`2(vπq , vo) are respectively a lower bound and an upper bound for the actual distance d(o, q).

2.1.1. The Four-Point Planar Lower Bound

For two points that have not been directly compared, q and o, it is shown
in [2] how a lower bound of their distance can be established by comparing the
distances between both points and two further reference points p1 and p2. In
particular, thanks to the four-point property, we know that there exists an iso-
metric embedding of the points q, o, p1, p2 into a 3-dimensional Euclidean space.
The projected points vq, vo, vp1 , vp2 ∈ R3 form the vertices of a tetrahedron
for which we know the edge lengths of two adjacent faces, i.e. the triangles
4vp1vp2vo and 4vp1vp2vq with the common base vp1vp2 . Because of the four-
point property, the unmeasured distance d(q, o) must form the sixth edge of the
tetrahedron.

Since translations, rotations, reflections are isometric transformations, with-
out loss of generality, we can assume that the triangle 4vp1vp2vo lies on the
plane {Z = 0}, the points vp1 , vp2 are plotted on the X-axis (say at positions
(0, 0, 0) and (d(p1, p2), 0, 0) respectively), the point vo is above the X-axis, and
the vertex vq is above the plane {Z = 0} (see for example Figure 1). By know-
ing the distances d(p1, o) and d(p2, o) we can easily compute the coordinate of
the vertex vo as the intersection of two circumferences in the plane {Z = 0}.
However, even if we know the distance d(p1, q) and d(p2, q) we cannot explic-
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Figure 2: Planar projection of a point o with respect to two pivots p1, p2.

itly compute the coordinates of the vertex vq because d(q, o) is unknown. In
facts, without measuring the actual distance d(q, o) we cannot determine which
is the exact angle formed between the triangle 4vp1vp2vq and the semi-plane
containing the other triangle 4vp1vp2vo. Nevertheless, the key observation here
is that by rotating these triangles around the common base until they lie in the
same plane (i.e. assuming that the unknown angle is equal to 0 or π) we can
determine upper and lower bounds for the actual distance d(q, o). In particular,
by indicating with v0q the projection of the point q in the same semiplane of vp
we have that `2(v0q , vo) is a lower bound of d(q, o). Other choices are possible:
given a fixed angle α we can compute the coordinate of the vertex vαq so that
the distances to the reference points are preserved and the angle formed by the
two triangles is α. In that case we can use the distance `2(vαq , vo) as an approx-
imation of d(q, o) since it is a measure between the upper and the lower bounds
of the actual distance. For example, in [25, 26] the projection based on α = π/2
is effectively used on different sets of data and search scenarios.

3. Planar Projection and Distribution of Values in the 2D plane

In this work, we use the planar projection based on α = 0, that is we
project all the points in the same 2D plane, since this choice guarantees that
the Euclidean distance between two projected objects is a lower-bound of the
actual distance, and thus can be safely used for filtering purposes. The value of
this is that, independently of the size of individual data values and the cost of
the distance metric, any value can be represented, for a fixed choice of reference
points, as a small 2D coordinate, and compared using 2D Euclidean distance.
The result of this comparison, being a lower bound of the true distance, may
mean that there is no requirement for the full comparison to be made. Of course,
the value of the method depends heavily upon the probability of its success.

To visualise this property we use scatter diagrams constructed as follows.
The two selected reference points p1, p2 are plotted on the X-axis according
to the distance between them, and a data set is represented as points in the
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Figure 3: 500 points from a generated Euclidean space plotted against randomly selected
reference points. Left and right plots show the exclusion potential based on simple metric
(left) and supermetric (right) properties for the datum s near the centre of the diagram.

2D space plotted above the X-axis, according to their respective distances from
these reference points (for example see Fig. 2). The triangle inequality property
is necessary to guarantee the ability to create such a plot. Specifically, the pivots
are mapped to the points vp1 = (0, 0) and vp2 = (0, d(p1, p2)). Any further data
point o is mapped to vo = (xo, yo) using simple geometry, i.e.

xo =
d(o, p1)2 − d(o, p2)2

2 · d(p1, p2)
+
d(p1, p2)

2
(1)

yo =
√
d(o, p1)2 − x2o (2)

Figure 3 shows two versions of such a scatter plot created from a 10 dimen-
sional Euclidean space, using the same data and reference points. Although
the triangle inequality property guarantees the ability to create such a plot, the
relationship among the plotted points is more subtle.

An example point s is selected from the centre of the diagram, coloured blue.
For every other point plotted in the plane, we then consider whether it might be
within a threshold distance t from this, based only on the distances calculated
within the projected 2D plane. Here we have chosen t = 0.24, representing
around one-millionth of the volume of the 10D space.

The diagrams are colour-coded so that those points which may be within
that distance, i.e. those that cannot be excluded from a search, are highlighted,
plotted in yellow. The four-point planar lower bound is illustrated on the right-
hand side, clearly represented by a simple exclusion radius in the 2D plane
(Hilbert exclusion [23]). On the left-hand side, only the triangle inequality
property is used, giving much wider bounds (hyperbolic exclusion). Note that
in this example, as the mapped metric space has the four-point property, the
right-hand exclusion boundary is a guarantee. It is quite possible that the same
diagram could be drawn using an underlying metric space which does not have
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the property, in which case the left-hand exclusion boundary must be used to
guarantee correctness.

To apply these observations towards our goal, we note that if the blue-
coloured point represents a datum, and each of the black points represents
an independent query q, then it would be possible to filter the datum from
nearly 70% of these queries based on this particular 2D projection. The only
information required to test for this is the 2D position of the datum within the
projection, and the two distances d(q, p1) and d(q, p2) where p1 and p2 are the
reference objects upon which the projection is based. The next observation is
that, if the blue data point was selected from nearer the periphery of the scatter,
the proportion of filtered queries would be higher, as the density of scattered
points is lower.

This observation leads to our outline strategy, as follows. For a set of m
reference objects drawn from a supermetric space (U, d), a set of

(
m
2

)
pivot pairs,

and therefore 2D projections, exist. It is therefore possible to characterise a very
large number of projections using a relatively small number of reference objects.
For each element of the finite space S a “good” projection is determined, i.e.
one that gives a relatively good filter ratio from a representative set of queries.
Each datum in S can then be represented only by the identity of these pivots,
and its XY coordinates under the projection defined by them. At query time,
the m pivot distances are calculated once per query; then, for each element si of
S, it may be possible to avoid the distance calculation d(q, si) with reference to
only these distances and the XY coordinates of si under the chosen projection.

3.1. Choice of reference objects

It appears that the distribution of objects in the 2D plane with respect to
a given pair of reference points is fairly predictable. However, where individual
data points land within the scatter varies widely.

Figures 4 and 5 show diagrams to illustrate this. In each figure, a single set
of data objects is plotted in the XY plane according to their distances from
two randomly-selected reference points; the left and right sides of each figure
represent the same data plotted against a different pair of reference points. The
data is taken respectively from a generated 10-dimensional Euclidean data set,
and the SISAP colors2 benchmark set.

In the two figures, a random selection of five data points has been made
and these are highlighted in colour; that is, the coloured spots in the left and
right sides of the figure represent the same data point mapped according to the
different pair of reference points. It can be seen there is no strong relationship
in the positions where the different coloured dots are plotted. This is to be
expected, as much of the spatial relationship present in the higher dimensions
is necessarily lost when projecting into only two dimensions.

An underlying hypothesis in our work is that the distribution of queries
within a metric space (U, d) will be similar to the distribution of a representative

2see Section 5
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Figure 4: The same 1,000 points plotted in the 2D plane based on two different projections.
The colour-coded points represent the same values under the different projections. The (X,Y )
scatter in both cases is close to an uncorrelated normal distribution on each axis, but it can be
seen that the mapping of an individual point is quite independent. The red circle represents
a typical query threshold around the blue point: this data point cannot be a solution to any
query projected outside this circle.

Figure 5: 1000 elements from the colors data set are projected onto a 2D plane using different
pairs of reference points. The different coloured spots in each diagram show how the same data
elements are projected differently with a different choice of reference objects. The red ring
depicts a near-neighbour threshold distance around the blue point: the right-hand projection
is much better for this element as 99.8% of the set is projected outside this boundary, and
can therefore allow filtering, as opposed to 85.2% in the left-hand projection.
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Figure 6: In these diagrams, two further projections are made over the same data as that of
Figure 4. Here the reference objects used to construct the projection are chosen to minimise
the local density of the projection around the red and green highlighted points respectively.

selection taken from the finite space (S, d) to be queried. Thus, looking at
the scatter diagrams in Figures 4 and 5, the plotted points could represent the
distribution of either data or queries with respect to those same reference points.
The probability of successful elimination, for a given q ∈ U and si ∈ S, therefore
depends upon the choice of reference points, and the relative position of both
si and q with respect to them. If the hypothesis is correct, then the notion of
a “good” pair of reference points for an individual si ∈ S corresponds to the
(inverse) density of the 2D region where si lands, within a representative set.
The density around a point can be measured precisely with the local intrinsic
dimension [27] or the reverse K-nearest neighbors [28]. Both heuristics are
costly and have additional parameters, a simpler method used here is to count
the number of datum inside a ball around the sample being tested. If query and
datum lie further than the query threshold within the 2D plot, then the datum
cannot be a solution to the query; this is most likely to occur when either query
or datum lie within a sparsely populated region of the plane. However of course
only the datum is available for pre-processing. If queries and data follow the
same distribution patterns, then the best pair of reference points per datum can
be selected with reference to a representative set of data points from within S.

In Figures 4 and 5, the reference point pair used for the right-hand side of
each figure has been selected to maximise the “goodness” of the scatter with
respect to one of the plotted objects, coloured in blue. If the other objects
plotted in each case are regarded as representative queries, then it can be seen
that the filtering power of the reference points used for the right-hand diagrams
in each case is far greater than that of those used for the left-hand diagram, and
these reference objects are therefore a good choice for this particular datum.
To show the concept is quite general, Figure 6 shows the same data as Figure
4, with further choices of reference object pairs chosen to give good scatters for
two of the other coloured objects.
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To construct these figures3, a random selection of 150 reference points was
made, and each of the 11,175 (i.e.

(
150
2

)
) possible pairs was tested; the selection

was made according to the density of 2D mapping around the area of the object
in question. This technique gives unquestionably good results, but is of course
very expensive as the selection must be made independently for each element of
the set S which will be queried. The question of how to make a good pragmatic
choice of reference objects per datum is discussed later in more detail.

One early observation however is that existing reference object selection
strategies (e.g. [29, 30]) are not effective in this context. Such strategies aim to
find a set of reference objects that give good overall separation for all queries
with respect to a large set of data, while in our mechanism we aim to find a good
pair of reference objects per datum. By considering the above figures, it can
already be seen that the criteria for these purposes are quite different. In Figure
4 for example, the pair of reference objects which give the best separation for
the datum are very close together, and give a much worse separation for most
of the other objects in the rest of the data set.

4. Local Embedding and Search Strategies

By exploiting the planar projection and the four-point planar lower bound,
we propose a mechanism with the following properties:

• at pre-processing time:

– for a metric space (U, d) and a finite search space S ⊂ U , we first
select a distinguished set of m reference points P ⊂ U . The value
of m is chosen according to properties of the space, as discussed in
Section 5.

– for each of the
(
m
2

)
pairs of points pj , pk ∈ P, the distance d(pj , pk)

is calculated and stored in a lookup table

– for each si ∈ S, we select a specific pair of points <pi1 , pi2>, where
pi1 , pi2 ∈ P, to act as reference points specifically for that value si
– various different strategies can be used for making this choice, as
discussed later

– a 2D Euclidean projection is performed, where the object pi1 is
mapped to the Cartesian point (0, 0), pi2 is mapped to (d(pi1 , pi2), 0)
and si is mapped to the unique point (xsi , ysi), ysi ≥ 0 which pre-
serves the distances d(si, pi1) and d(si, pi2) – note that the coordi-
nates xsi and ysi can be easily computed using Equations (1) and
(2) with o = si, p1 = pi1 , and p2 = pi2

– the representation of the value si, which we refer to as σ(si), is the
tuple <i1, i2, xsi , ysi>.

3MatLab code is at https://bitbucket.org/richardconnor/low_dim_embedings_is
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• at query time

– for a given query q, each distance d(q, pj), pj ∈ P is calculated

– for each given value si which is a potential solution:

∗ the tuple σ(si) is retrieved

∗ from the i1, i2 values of the tuple, the distances d(q, pi1) and
d(q, pi2) are retrieved

∗ in conjunction with the retrieved distance d(pi1 , pi2), the 2D pro-
jection (xq,i, yq,i) is calculated using Equations (1) and (2) with
pi1 , pi2 as pivots and o = q

∗ the Euclidean distance `2((xq,i, yq,i), (xsi , ysi)) is then a lower
bound for d(q, si), which may therefore allow si to be removed
from any further consideration during evaluation of the query.

Note that the main cost of the mechanism at query time is the calculation
of distances to the elements of P, which is not only relatively small but, im-
portant to note, amortised over the checking of any si ∈ S with respect to a
single query q. The size of σ(si) is four numeric values, and independent of the
size of the data. The cost of the lower-bound calculation is purely algebraic,
and inconsequential compared to the typical cost of a distance calculation in a
complex space.

To quantify this as far as possible, it can be noted that the cost of the
filtering operation, for a given datum s and query q, is essentially the cost of
assessing whether a tetrahedron can be formed from six given distances, all of
which are known before the filtering calculation occurs. d(p1, p2) is stored in a
table; d(p1, s) and d(p2, s) are stored within the representation of s; d(p1, q) and
d(p2, q) are evaluated once at the start of the query process, and t (the filter
threshold) is pre-determined. Using distance geometry, this could be determined
by evaluation of the Cayley-Menger determinant using these six distances, which
will give a real (i.e. non-complex) outcome if and only if it is possible to form
a tetrahedron. We have measured4 the cost of this as a little under 0.9µs. We
optimise this by storing the (X,Y ) coordinates projected for s and calculating
the 2D Euclidean distance to those projected for the query, using optimised
versions of Equations 1 and 2, which brings the cost down to around 0.3µs.
Note that this cost is independent of either the size of the original data, or
the cost of the original metric. To put this in context, the cost of evaluating
Euclidean distance over a 4,096-dimension fc6 layer is around 50µs, without
allowing for memory transfers, making the filtering worthwhile even if only 1%
of these calculations are saved.

The mechanism is purely filtering: for any query q, datum si, and distance t,
it may be possible to demonstrate that d(q, si) > t. However that is the extent
of its value; the lower-bound values produced do not comprise a proper metric
in their own right, and at the moment we do not foresee the construction of a

4Times are measured on 3.1GHz Intel i7 quadcore processor, but will vary with context.
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scalable search over these values. The value of the mechanism is that the space
requirement is tiny, independent of the size of the original data, and that the
cost of the filtering operation is small. In some contexts, especially with large
and/or high dimensional data, it may be that the best possible query strategy is
to first perform a filter over the whole data set, and then re-check any unfiltered
data against the metric space. However the mechanism is more flexible than
this, and may be used in any of the following ways:

exact pre-filter For a given query and threshold distance, the data representa-
tions of the full set can be scanned and any data discovered to be beyond
the threshold can be filtered out. The residual cost of an exact search
is then largely dictated by the cost of performing distance calculations
to those unfiltered objects in the original metric space. This strategy is
tested in Section 5.1.

approximate pre-filter A class of approximate searches may be defined by
tightening the restriction given by the calculated lower bound. If the
filtering operation is defined as `2((xsi , ysi), (xq,i, yq,i)) ≤ γ t, for some γ <
1, then clearly less unfiltered values will be returned which will improve
the cost of the search. However the geometric guarantee is no longer in
place, and so some correct results may be lost. For this mechanism to
be effective, we have to understand the probabilistic ratio between the
calculated lower bound and the actual small distances within the space.
This strategy is tested in Section 5.2.

ranked order nearest-neighbour queries Scanning the entire data, order-
ing by individual lower-bound values, will produce an ordering in the
database w.r.t. the distance to the query. This ordering does not neces-
sarily coincide with the ordering in the original metric space, especially
as the values are drawn from many different projected spaces. However if
the orders are close enough, then taking the first k′, computing the exact
distances and keeping just the k < k′ closest, will give us a good approx-
imation of the k-NN. For this mechanism to be effective, we require to
understand the type of order induced by the lower bounds. This strategy
is tested in Section 5.3.

exact post-filter Finally, the lower-bound filter can be incorporated within
another, scalable, mechanism as a post-filtering mechanism. Scalable in-
dexing mechanisms work by excluding whole subsets of the data from a
search, until at some point original distances require to be checked. In any
such mechanism, a significant number of distance calculations will have
been made before this phase of the search, for example to distinguished
reference objects at each node during the navigation of a tree structure.
These objects are known at pre-processing time, and therefore may be
re-used as a distinguished set of reference points for the filtering mecha-
nism. The small σ representations can be stored within an indexing data
structure with little extra cost. Then, whenever the calculation d(q, si) is
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required at query time, the filtering operation may be cheaply performed
first, in case the actual distance calculation may be avoided. This strategy
is tested in Section 5.5.

4.1. Selection of Best Reference Pair

It is possible to use a statistical technique to select a good reference point
pair per individual datum. A sample set of data is used, the witness set.

For a query over a finite metric space (S, d), first a set of m objects is taken
from S and used to form a set P comprising numbered reference points pi. For
a given set of m reference objects, each of the

(
m
2

)
pairs pi, pj is considered.

For each, a 2D Euclidean space is built, exactly corresponding to those depicted
in the earlier figures. Each space is built using the data from the witness set,
according to the distances of each element to the pair of reference objects. These
spaces may be efficiently searched using normal metric indexing techniques, and
as the space is a genuine 2D space very efficient mechanisms such as the KD-Tree
[31] can be used.

Each element of the data set is now considered as a query against each of
these

(
m
2

)
metric indexes, and the one with the least local density is selected

to represent that element. There are various mechanisms for assessing local
density, for example the smallest number of results for a threshold query, or
the largest distance in the result set of a kNN query. We tested various ways
over some different data sets and found relatively little difference in the cost or
outcome, and settled on the strategy of picking the pivot pair which gave the
largest distance to the third-nearest 2D point.

While this mechanism is effective, it is of course extremely expensive, with
a quadratic cost according to the number of reference points. In general, for
high-dimensional queries, a relatively large number of reference points will be
required. We discuss linear geometric approximations in Section 5.4.

4.2. Build Cost

The dominant cost is in searching the 2D pair space at build time; the
tables show results up to 150 reference points which of course also requires 150
distance calculations per datum. However these distance calculations are likely
to be amortised within another search mechanism as shown in Section 5.5.

The cost of searching the pair space however increases quadratically with the
number of reference points, making it infeasible for larger numbers. This cost
is almost independent of the cost of distance calculations or size of data in the
metric space: the cost of searching

(
m
2

)
2D spaces becoming quickly predominant

as m increases. The cost is perfectly quadratic, in our experiments we have
measured the cost C(m) = 0.007m2 milliseconds for m pivots; even with only
150 reference points this is approaching 0.2s per datum.

This leaves an interesting problem. The number of reference points does not
typically constitute a performance problem in terms of distance calculations; the
large cost is in the exhaustive search for the best pair of reference points. The
reason the cost is high is because there are a huge number of potential pairs,
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Table 2: Data set summary.

name dimensions metric

nasa 20 Euclidean

colors 112 Euclidean

euc10 10 Euclidean

euc20 20 Euclidean

sift 128 Euclidean

gist 480 Jensen-Shannon

which is the reason the mechanisms works so well. We have shown tremendous
potential when the best pair of points is calculated from the very large number
of pairs available. If we can find a way of finding these cheaply, ideally in
a manner that scales linearly rather than quadratically with the number of
reference points, the mechanism should become even more useful.

In the context of searching a very large, high-dimensional, data set, then
thousands of extra distance calculations are unlikely to be significant, but this
would result in a huge potential space of reference point pairs that is intractable
to search; thus we seek linear-scaling solutions using geometric analysis instead.
For once, it is not reasonable to assume an arbitrary amount of pre-processing
time is acceptable in order to achieve a small improvement in query time.

5. Experimental Evaluation

To evaluate the potential of the proposed mechanism, experimental evalua-
tion is performed on the following metric spaces:

nasa, colors The SISAP nasa and colors [5] are two benchmarks for metric
indexing and searching approaches. The nasa set contains 40,150 real
vectors of dimension 20, each obtained from images downloaded from the
NASA photo and video archive site. The colors set contains 112,682 fea-
ture vectors of dimension 112. Each vector is a color histogram of a medical
image. These data are compared with the Euclidean metric.

euc10, euc20 These are uniform spaces, generated with a Gaussian distribu-
tion across 10 and 20 dimensions respectively. They are compared with
the Euclidean metric. Their size is arbitrary, being generated according
to experimental need.

sift We use the ANN SIFT1M 5 data set that contains one million SIFT [32]
image descriptors. Each descriptor comprises 128 floating point values.

5http://corpus-texmex.irisa.fr
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These descriptors are `2-normalised vectors and are normally compared
using the Euclidean distance. For this space we have a pre-generated
ground truth for 1,000 queries, for each of which the 100 nearest neigh-
bours have been calculated.

gist This data is generated from a set of one million images (the MirFlickr
collection, [33]). 480-dimensional GIST descriptors have been previously
extracted and are publicly available6. Previous work [34] has shown that
the best metric for searching this data is the Jensen-Shannon distance,
whose cost over this data is around 25 times that of Euclidean distance.
For this space we also have the 100NN ground truth for 1,000 selected
queries.

Table 2 gives a summary of the data sets used in the experiments.
As the data sets are diverse, a uniform setup was applied to each to ensure

that results are comparable. For each set, randomly selected non-intersecting
subsets were extracted from which data, queries, and reference points are ex-
tracted for each experiment. As most of the experiments described do not re-
quire to show scalability, a data size of only 10,000 values was selected, against
which 1,000 queries are evaluated in each experiment. For the experiments in
Section 5.3 the SIFT and GIST spaces are also used with one million objects.

A nearest-neighbour ground truth is also calculated. For each query, the
closest values from the data are calculated and stored. When queries are per-
formed during experiments, the nearest-neighbour distance is used to conduct
a fixed threshold search over the data, therefore returning a single result per
query. This technique is preferable to using a search threshold which is fixed
for all queries, as there is considerable variation among the local densities of
the queries, and this approach would therefore give widely varying numbers of
results per query.

All experiments are executed using 64-bit Java v8, executed single-threaded
on an Apple MacBook Pro with a 3.1 GHz Intel Core i7 processor and 16GB
of memory, disconnected from the network when appropriate. The source code
is available at https://bitbucket.org/richardconnor/low_dim_embedings_
is or from the authors.

5.1. Exact Pre-Filtered Queries

Our first experiments show the effect of using different numbers of reference
points, from which the “best” pair (as described in Section 4.1) is chosen from
each of the

(
m
2

)
combinations that are available for a selection of m reference

points. Table 3 shows, for each data set, the proportion of the data which
requires to be accessed (this is, which is not pre-filtered) after executing the
filtering mechanism. Each row shows this value when the reference points are
selected from different sized sets. Notice that the value m is the number of

6http://press.liacs.nl/mirflickr
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Table 3: The proportion of non-filtered data for each of the experimental spaces, using
different-sized pools of reference objects. The pair used for each datum is selected from
all the available pairs, that is

(m
2

)
for m reference objects.

m
(
m
2

)
nasa colors euc10 euc20 sift gist

2 1 0.133 0.269 0.477 0.957 0.617 0.963

5 10 0.100 0.164 0.328 0.894 0.512 0.942

10 45 0.075 0.094 0.213 0.811 0.511 0.897

25 300 0.039 0.059 0.095 0.659 0.462 0.877

50 1225 0.027 0.043 0.05 0.531 0.416 0.834

75 2775 0.020 0.036 0.037 0.461 0.397 0.829

100 4950 0.017 0.032 0.03 0.419 0.376 0.818

VPT for comparison 0.098 0.127 0.314 0.982 0.498 0.964

available reference objects; the number of available pairs is of course generally
much greater.

The same queries were executed using a balanced Vantage Point Tree (VPT,
[35]), to give a comparison with a common indexing approach. While in all cases
the VPT accesses more data with even a small number of reference points, this
is not a fair comparison in terms of overall efficiency, as in cases where the VPT
accesses a relatively small proportion of the data, the scalability of the indexing
will dominate for larger data collections. However for the spaces on the right
hand side of the table, the proportion of access is too high for such mechanisms
to work, and a sequential scan becomes faster than indexing. In these cases,
our mechanism should give the advantage.

Figure 7 shows the same data in a line graph. The plot is made against
the number of pairs available, rather than the number of reference points. It
can be seen that, as the number of potential reference pairs becomes greater,
the mechanisms becomes more effective. However this seems to asymptotically
approach a limit depending on characteristics of the space itself.

Figure 7 also shows the build cost, which as previously mentioned is quadratic
with respect to the size of the data and does require to be taken into account;
even with these small data sets (10k elements) the cost of evaluating the best
pairs from 100 reference objects is around 15 minutes. These measurements
are taken from the colors data set, however the cost is almost completely in-
dependent of the data size and metric cost. In Section 5.4 we examine ways of
reducing this when a smaller cost is pragmatically required.

Considering the two sides of Figure 7, it is clear that the choice of m depends
on the context of use. In general, a high value for m leads to a much higher
pre-processing cost, while at some point does not detract much from the query
cost. The choice therefore will depend very much on the relative importance of
these two costs, as well as the characteristics of the space itself.
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Figure 7: The left-hand graph shows the proportion of non-filtered data varying the number
of available reference pairs. The right-hand graph shows the build cost varying the number
of reference points.

It is worth noting that cost of the pre-filter mechanism itself is effectively
constant: the difference between 2 and 100 initial distance measurements is
almost immaterial in any of these searches. As noted above, the core query-
time mechanism takes only around 0.3 microseconds per datum, and so the
majority of the cost of a sequential search is directly proportional to the number
of distance calculations required within the original space.

5.2. Approximation by Reduced Lower Bound

The lower bound described up to this point gives a mathematically safe way
of excluding data elements from a search. As has been seen, in some cases
it is extremely effective and allows a very large proportion of the data to be
filtered, but in other cases it is less effective; as always, in the spaces with
higher dimensionality.

While this is the tightest lower bound justified by the analysis presented
so far, there is experimental evidence that in pragmatic terms the bound is
sometimes larger than necessary. Figure 8 shows one such piece of evidence.

The figure shows the 2D projection of objects taken from the SIFT metric
space. An arbitrarily selected reference pair are plotted along the X axis, and
a query with a known ground truth is plotted in the plane at the centre of
the circles (blue square in the graph). The ground truth gives the 100 nearest
neighbours from within a set of one million objects. The 2D projections of
the 100 nearest neighbours are coloured in red in the graph. Another set of
100 randomly selected objects from the SIFT metric space are projected in the
same plane and are coloured in black. Around the query two circles are drawn.
The larger circle has a radius t1 corresponding to the actual distance from the
query to its one-hundredth nearest neighbour (i.e. the distance calculated in the
original SIFT metric space). The smaller circle has a radius t2 corresponding
to the maximum Euclidean distance between the planar projection of the query
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Figure 8: 2D projection of objects taken from the SIFT metric space with respect to two
randomly selected pivots. The pivots are plotted in the X axis. A query point (blue square
in the graph) is plotted in the plane. The 100 nearest neighbours to the query from within a
set of one million object are coloured in red. A further 100 randomly selected objects from
the set are coloured in black.

and the planar projections of its 100 nearest neighbours (i.e. the largest lower-
bound calculation from all 100 of the near-neighbour objects).

The different spread of the two sets of objects is very clear; the near-
neighbours are tightly clustered towards the centre, while the others are spread
much more widely. Using the exact pre-filtering mechanism, none of these ob-
jects could be safely filtered as they all lie within the outer circle, which rep-
resents the geometric guarantee given by the four-point lower bound. In other
words, the Euclidean distance between the 2D projected points is a lower-bound
of the actual distance and thus, in theory, it can be exploited to filter the search
results (points in the 2D plane with distance to the query greater than the t1
can be filtered out). However, in the example shown in Figure 8, none of the
considered points can be excluded from the search using this lower-bound be-
cause their planar projections are within distance t1 to the planar projection of
the query. However it is clear that, for this pair of reference objects and query
at least, a much smaller pragmatic bound could be used which would allow
useful filtering but without erroneously filtering any correct results (e.g, using
a threshold distance equal to t2 instead of t1 when searching in the 2D plane).

Having made this observation, the next experiment shows the effect of re-
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Table 4: Results for approximate pre-filtering. For each data set and factor γ we measured
the proportion of not-filtered data (access) and the proportion of correct objects which are
correctly returned (recall).

colors nasa euc10 euc20 sift gist

γ access recall access recall access recall access recall access recall access recall

1 0.032 1 0.017 1 0.03 1 0.419 1 0.376 1 0.818 1

0.9 0.023 1 0.012 0.99 0.02 1 0.307 1 0.319 1 0.741 1

0.8 0.016 0.98 0.008 0.95 0.014 0.96 0.206 1 0.26 1 0.638 1

0.7 0.011 0.91 0.005 0.89 0.009 0.87 0.127 0.99 0.2 1 0.51 1

0.6 0.007 0.79 0.003 0.74 0.005 0.74 0.07 0.93 0.141 1 0.366 1

0.5 0.004 0.63 0.002 0.61 0.003 0.57 0.035 0.8 0.087 0.99 0.225 0.99

0.4 0.002 0.45 0.001 0.43 0.002 0.39 0.015 0.58 0.045 0.95 0.113 0.89

0.3 0.001 0.26 0.001 0.28 0.001 0.25 0.006 0.33 0.018 0.77 0.043 0.63

0.2 0 0.11 0 0.13 0 0.11 0.002 0.14 0.005 0.47 0.011 0.29

0.1 0 0.03 0 0.03 0 0.03 0 0.03 0.001 0.13 0.002 0.06

ducing the effective lower-bound radius. Specifically, an object si is filtered out
if `2((xsi , ysi), (xq,i, yq,i)) > γ t1, for some factor γ < 1. For each data set,
decreasing values of the lower bound threshold are selected as the filter radius.
Specifically, we tested decreasing the factor γ, between 1.0 and 0.1 in intervals
of 0.1. Two outcomes are measured: the proportion of the whose data set which
is not filtered (i.e. accessed data), and the proportion of correct object, out of
the 100 known nearest neighbours, which are correctly returned (i.e. the recall).
Results are reported in Table 4.

The results show that the observed effect exists in the general case, and
furthermore is more pronounced in the higher dimensional spaces. In particular
GIST, which is the least tractable space, allows a value almost as low as half the
deduced lower bound to be used whilst still achieving full recall. The interesting
observation here is that, for the first time, we see some significant reduction in
cost, saving 75% of the distance calculations which would be required for an
exhaustive scan of the data. The results for SIFT also show the same reduction
is possible, in this case allowing all the correct results to be returned for a cost
saving of over 90%. Of course the drawback is that this mechanism does not
guarantee to give all correct results for any value of γ < 1.0 and thus the results
are essentially approximate, albeit with a seemingly very high probability of
success.

5.3. Ranked Order Nearest-Neighbour Queries

The observations of the previous section also give rise to a further hypothesis,
which is that a correlation may exist between the lower-bound filter distance
and the true distance from the original metric space. Once again there is no
geometric guarantee of this, but it may happen if objects that are closer in
the metric space fall closer to the centre of the circle in the 2D projection. In
fact there is less geometric justification that we know of for this situation: when
reducing the effective lower bound as in Section 5.2 all of the objects with which
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Figure 9: Ranked order results for SIFT and GIST collections of 1M data objects. For each of
1,000 queries, the four-point lower bound is used as a filter to find a fixed-size set of promising
candidates, which are then checked within the original space. The X-axis gives the percentage
of the 1M data which is accessed, the Y-axis shows a boxplot of the percentage recall, for a
100 nearest-neighbour ground truth, across all queries.

we are dealing have been projected from one metric space to another. We now
propose to compare the distances between objects that have been projected into
different spaces.

The strategy is to perform an approximate k-nearest neighbour search as
follows. For a query q, a scan is made over the full data and the four-point
lower-bound is calculated for each d(q, si). For some k′ > k, the k′ objects with
the smallest lower-bound values are returned. These k′ objects are then checked
against the query in the original metric space, and the k closest objects from
these are returned. As a scan of the very small data representations may be
made at relatively low cost, this will give a viable mechanism for an approximate
k-nearest neighbour query if there is a good correlation between the lower-bound
distances, independent of the projected space, and the true distances.

To test this hypothesis, the SIFT and GIST spaces were used. To perform
a useful experiment a larger data set is required, in order to accommodate a
significant number of useful nearest-neighbour objects for each query. For each
of these data collections one million objects is available, along with a ground
truth of 1,000 queries. For each query, the ground truth makes available the
100 nearest neighbours within the collection.

Figure 9 shows the outcome for these 1,000 queries over the SIFT and GIST
data sets. For each query, for values of k′ between 10,000 and 100,000, the
k′ smallest lower-bound values are returned from an initial scan of the data
representations. These object identifiers returned represent respectively between
1% and 10% of the data which requires to be accessed to determine the 100
smallest true distances. For each object identifier returned, a check is made to
determine if it was in the 100 nearest neighbours for that query as given by the
ground truth. The number that are in the 100NN is then treated as a percentage
of the correct recall. Individual results were kept for each of the 1,000 queries
to allow the distribution of outcomes to be determined. These are displayed in
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Figure 9 as a series of box plots, showing the recall when between 1% to 10%
of the lower-bound calculations are retained.

As can seem from the Figure, for SIFT it is the case that with only 10% of
the distance calculations being made, the mechanism gives a mean recall of 0.99,
with the lower quartile at 0.97. At the other end of the scale, if the situation
demands that only 2% of the distances can be afforded, then this still yields a
median of 0.72 and a lower quartile at 0.63 recall.

Results for GIST are not quite so good, but this is not surprising given
the previous results over this high-dimensional set. Once again it is possible
to obtain 90% of the correct results while performing only 10% of the distance
calculations required for an exhaustive search.

One final point in this section is that, while the results in terms of percentage
access vs. recall are similar in outline to those shown in the previous experiment
(Section 5.2), the mechanism described here has the significant advantage that
the search performed in a pure nearest-neighbour search, while for the previous
results a query threshold is required to be known before the start of the query.

5.4. A Geometric Approach to Reference Pair Selection

A number of intuitively-derived methods for the selection of first and second
reference points were tested. In all cases, sets of 10, 50, 150 and 500 objects
were chosen to act as reference points, and these were scanned linearly in two
passes according to the following strategies. The intent is to find a strategy that
gradually improves with respect to the number of reference points, but where
the construction cost remains linear.

The strategies used for each of two linear-cost scans were as follows:

1. random, to act as a benchmark

2. for each data point, associate the closest reference point

3. for each data point, associate the farthest reference point

4. for each of the m reference points, associate it with the 1
m closest subset

of the data (and do not consider these data points again)

5. for each of the m reference points, associate it with the 1
m farthest subset

of the data (and do not consider these data points again)

6. having selected a first reference point, choose the second to minimise the
altitude (Y-coordinate) of the plotted 2D apex point

7. having selected a first reference point, choose the second to minimise the
horizontal displacement (X-coordinate) of the plotted 2D apex point

The first five strategies were tried for each of first and second reference point
choice, whereas the last two were used only for the choice of the second point;
thus a total of 35 different strategies were tested.
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Table 5: Results shown only for the lowest standard threshold of the colors data set (i.e.
t = 0.052 which return 0.01% of the data), other results are consistent. We give the build cost
(msec per object) and exclusion rate for some of the strategies tested.

Pivot strategy Number of Pivots

First Second 10 50 150 500

random random build cost 0.0008 0.0008 0.0010 0.0016

exclusion 0.929 0.925 0.926 0.924

low dist low alt build cost 0.014 0.022 0.045 0.124

exclusion 0.930 0.958 0.967 0.966

low dist high dist build cost 0.023 0.030 0.045 0.089

exclusion 0.946 0.962 0.971 0.973

Methods (2) and (3) in any combination proved no better than random,
and actually became slightly worse with a larger number of reference points;
we believe this is because of non-uniformity within the sets and the presence
of outliers in the reference points. This problem was fixed by use of methods
(4) and (5), where the closest or farthest 1

m of the data is associated with each
reference point.

Table 5 shows a few of the results. The first row shows a purely random
choice for comparison. The second shows method (4) used for the first pivot,
and method (6) for the second. Finally the third row shows the use of method
(4) for the first pivot and method (5) for the second, which gives the best com-
promise for these data sets and thresholds. The final effect of achieving 97%
exclusion – as much as is achieved by a very sophisticated indexing structure
over the full data set – through a linear cost construction of a 10-byte data
representation is really a significant achievement. Note that in the cost compar-
isons, the “random” benchmark cost is effectively zero; at 500 pivots the cost of
either mechanisms is restricted to around 0.1ms per datum independent of the
size of the data set, when the thorough search described in Section 4.1 would
have cost 1.75s.

5.5. Incorporation within List of Clusters

Finally, we report results where our mechanism is incorporated with an-
other, scalable, indexing mechanism. We have chosen a well-known indexing
structure, and give a very simple technique which extends this using the four-
point exclusion mechanism as a post-filter. That is, the mechanism is embedded
within the original structure to act as an internal filter, avoiding the calcula-
tion of original-space distances where the lower-bound calculation makes this
unnecessary.

For this purpose we choose the List of Clusters [36], generally regarded as the
most scalable mechanism known. We have measured this, with and without our
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optimisation, over the SISAP benchmark data sets colors and nasa, to perform
theshold search using the three standard benchmark thresholds7; we show a
very significant improvement in performance.

As the list of clusters is built, at each node a pivot point is selected and a
fixed number of objects, those being closest to this pivot point, are stored in
an associated “bucket”. Especially towards the start of this process, the cover
radius of these objects from the pivot point is likely to be very small, therefore
maximising the probability of the bucket being excluded from a search. When
each cluster is constructed, the distances between every object in that cluster,
and every pivot point from the root to that point in the list, will have been to
be calculated as a part of the construction algorithm.

To this structure, we add only our small representations of the objects within
each bucket, and cause no extra distance calculations at either build or query
time. The local pivot point is used as the first reference point, and the furthest
pivot from the so-far constructed spine of the tree as the second. This gives
an approximation to the geometric technique (low dist, high dist) described in
Section 5.4, and the only extra construction-time cost is the calculation of the 2D
coordinate from these distances; in experiments, this was literally undetectable.
The extra space cost is 10 bytes per object, for the colors data set representing
an increase of around 1%.

At query time, the mechanism is used in the normal way based on the
measured distance between the query and each pivot point down the spine of
the list. In cases where the local “cluster” requires to be searched, then the
four-point representations are first checked. The four-point representation of the
query requires only the calculation of the 2D representative point, as all of the
distances required have already been measured as the query algorithm progresses
down the spine of the list. The lower-bound computation then comprises a 2-
dimensional `2 distance. If the lower-bound distance is greater than the query
threshold, there is no requirement to access the corresponding object and check
its true distance against the query object. This saves not only an expensive
distance calculation, but also the movement of the object within memory.

Table 6 shows the number of distance calculations made against the original
data sets, along with the percentage improvement shown; the same values are
plotted in Figure 10. It can be seen in almost all cases that the query cost is
better than halved, in return for only a small increase in memory size.

6. Conclusions

We presented a method to obtain good distance bounds between a query
and all the database elements using a minimally-sized representation comprising
only two reference object identifiers, and two floating point values, per database

7threshold values which return 0.01%, 0.1% and 1% of the data sets respectively. For the
SISAP colors, the thresholds are t0.01% = 0.052, t0.1% = 0.083, t1% = 0.131. For the SISAP
nasa, the thresholds are t0.01% = 0.12, t0.1% = 0.285, t1% = 0.53.
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Table 6: Improvement shown on List of Clusters using four-point post-filtering. Values given
are mean number of distance calculations per query.

standard optimised

threshold t0.01% t0.1% t1% t0.01% t0.1% t1%

SISAP colors 5645 11649 24401 2256 3987 10402

SISAP nasa 1381 3258 8790 1007 1402 3384

Figure 10: SISAP benchmark space results with and without optimisation

object. The two floating point values are the coordinates in a two-dimensional
Euclidean space where a lower-bound for the actual distance to a query can be
efficiently computed. The combination of the very large space of object pairs
available from a relatively small set of reference objects, and the observation that
each pair gives a significantly different projection of the space, combines to allow
a very high rate of successful exclusion for a typical range search, with exclusion
rates of 99.6% and 99.9% obtained respectively for the SISAP benchmark colors
and nasa data sets, with only 150 reference objects being used. For a data size
of around 10 bytes per object and a cheap arithmetic check these results are
impressive.

We also applied our mechanism in much higher dimensional spaces in con-
junction with either range or nearest-neighbour search. Our results are promis-
ing, for example on SIFT data our mechanism gives a mean recall of 0.99 with
only 10% of the distance calculations being made.

The mechanism we describe is well-suited to a CUDA implementation which
should give an effective small constant runtime on a GPU. The memory footprint
required for the data set is ten bytes per object: two short integers to identify
the reference objects8, and two single-precision floats for the XY coordinates.

8assuming no more than 256 reference objects are used
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This gives a runtime memory requirement of only 10 MBytes per million objects
in the data set.

This memory represents the data to be queried and is thus invariant per
query, therefore the cost of loading this memory from the CPU host to the GPU
device is not a part of the per-query cost. Modern CUDA standards have the
capability to influence persistence of data in the L2 cache, where this data could
be placed to give higher bandwidth and lower latency. To perform a query, data
passed from host to device is just the distances between the query and each of the
reference objects; in our example we used a maximum of 100 of these, implying
a per-query transfer of less than 0.5 KBytes before the parallel computation
starts. The result, in the simplest possible implementation, is an array of bits,
one per data object, where a bit would be set if the corresponding object is
a potential solution; this represents 125 KBytes per million objects. Typical
modern GPU processors give latency of around some ten of microseconds, with
bandwidth around 1GB per second. The actual cost of the SIMD computation
is a relatively small number of 2D Euclidean distance calculations per processor,
where this number is the size of the data divided by the number of available
processors.

In summary, since it is theoretically impossible to avoid a sequential scan
for nearest neighbour search, even in the approximate sense, a cheap exclu-
sion mechanism that is easily parallelisable is competitive. We remark that
this mechanism can be used in conjunction with probabilistic methods requir-
ing post-filtering or re-ranking, like metric inverted files. We have given one
successful example of this: for an almost immeasurably small increase in build
cost and memory, the performance of the List of Clusters indexing structure has
been shown to be radically improved. It is likely that many similar examples
exist.
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