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Modern search services often provide multiple options to rank the search results, e.g., sort “by relevance”,
“by price” or “by discount” in e-commerce. While the traditional rank by relevance effectively places the
relevant results in the top positions of the results list, the rank by attribute could place many marginally
relevant results in the head of the results list leading to poor user experience. In the past, this issue has been
addressed by investigating the relevance-aware filtering problem, which asks to select the subset of results
maximizing the relevance of the attribute-sorted list. Recently, an exact algorithm has been proposed to solve
this problem optimally. However, the high computational cost of the algorithm makes it impractical for the
Web search scenario, which is characterized by huge lists of results and strict time constraints. For this reason,
the problem is often solved using efficient yet inaccurate heuristic algorithms. In this paper, we first prove
the performance bounds of the existing heuristics. We then propose two efficient and effective algorithms to
solve the relevance-aware filtering problem. First, we propose OPT-Filtering, a novel exact algorithm that
is faster than the existing state-of-the-art optimal algorithm. Second, we propose an approximate and even
more efficient algorithm, e-Filtering, which, given an allowed approximation error €, finds a (1-¢)-optimal
filtering, i.e., the relevance of its solution is at least (1-€) times the optimum. We conduct a comprehensive
evaluation of the two proposed algorithms against state-of-the-art competitors on two real-world public
datasets. Experimental results show that OPT-Filtering achieves a significant speedup of up to two orders
of magnitude with respect to the existing optimal solution, while e-Filtering further improves this result by
trading effectiveness for efficiency. In particular, experiments show that e-Filtering can achieve quasi-optimal
solutions while being faster than all state-of-the-art competitors in most of the tested configurations.
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1 INTRODUCTION

Search engine results are traditionally ranked by relevance to maximize the user experience. A
classic example is Web search: a user formulates her information needs through a textual query
and the Web search engine answers with the list of search results that maximizes the relevance
with respect to the user query [2]. To provide more flexibility to the users, many modern search
engines also provide additional options to rank the search results. For instance, social networks
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provide a “sort by time” of the stories posted by friends [13], while e-commerce platforms allow to
“sort by price” the items matching a specific user query [8]. However, this flexibility comes at a cost.
The top positions of the list sorted by attribute may contain results that are marginally relevant
with respect to the information need of the user [21, 22], leading thus to a poor user experience. A
simple example based on a real e-commerce motivates this observation. Amazon.com returns more
than 100 000 results for the query “iPhone”. When results are sorted by relevance (default), the first
page of results consists of several relevant iPhone models and related accessories. However, when
the results are sorted by increasing price, the first page of results is a list of low-price phone covers
and gadgets. The latter results list leads to a poor user experience as the user now needs to examine
tens of results before she finds something relevant.

The problem above can be addressed as a filtering task aiming to keep at most k results of
the list to maximize the relevance of the list while preserving the sort by attribute. In particular,
given an attribute-sorted list of n search results having relevance scores R = (ry, ..., r,), a positive
integer k and a search quality metric Q, the FILTERING@k problem asks to find the sub-list of
results of size at most k that maximizes Q, i.e., a list of strictly increasing indices I such that
I'=argmax Q({rr,...,ry,)) and |I| < k.

Solving the FILTERING@k problem is hard when employing complex quality metrics such as
the Discounted Cumulative Gain (DCG) [9]. Indeed, to find an optimal solution, it is not sufficient
neither to select the k most relevant results of R nor to consider only the subsequences of exactly
k results. To support the two considerations above, we provide the following example. Given
an attribute-sorted list of four results, whose relevance labels are (2, 2,4, 1), the best DCG@3 is
obtained by filtering out the first two results of the list, although each of them is more relevant
than the last one. Moreover, the example shows that all sub-sequences of three results achieve a
lower DCG@3 than the optimal solution consisting of only two results, i.e., (4, 1).

The FILTERING@k problem was recently introduced by Spirin et al. [21], who proposed an optimal
algorithm, based on Dynamic Programming [6], that runs in © (nk) time. The algorithm, called
OPTpyn, has however two important drawbacks. First, its time complexity makes it impractical
for search engines that need to handle several thousands of results per query within small time
budgets, e.g., 100ms for 99th-percentile per-query response time in Web search [1, 10, 12]. Second,
it cannot be applied in a distributed setting [3] as it takes global decisions based on the complete
list of results. For these reasons, the filtering problem is often addressed with two heuristics based
on thresholding: Cutoff and Topk. Cutoff selects the results whose relevance is greater than a given
threshold, while Topk selects the k most relevant results of the list. Spirin et al. further combine
Topk and Cutoff with OPTpyy to trade effectiveness for efficiency and obtain two new heuristics,
i.e., Topk-OPT and Cutoff-OPT. The FILTERING@k problem is thus solved by using either exact but
slow algorithms or fast but inaccurate heuristics.

In this paper, we provide an analysis of the weaknesses of the above approaches, and we
propose two novel efficient yet effective solutions to the FILTERING@k problem exploiting different
combinatorial properties of discounted cumulative gain based metrics, e.g., DCG [9] and RBP [16].
In particular, we extend a previous result by Nardini et al. [17] with the following contributions:

o we theoretically analyze the Cutoff-OPT and Topk-OPT heuristics in the filtering scenario [21].
We show that Cutoff-OPT does not provide any performance guarantee while Topk-OPT
finds a 0.5-optimal filtering in ®(nlog k + k?) time.

e we present OPT-Filtering, a novel efficient exact algorithm that finds an optimal filtering in
© (nlog k + min(n, 2¥) k) time. The new algorithm has lower theoretically time complexity
than the state-of-the art exact algorithm, i.e., OPTpyy, and is much faster in practice.
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e we introduce e-Filtering, a novel efficient approximate algorithm that trades-off between
efficiency and effectiveness through a parameter e that controls the approximation error.
e-Filtering finds a (1-€)-optimal filtering in ©(n + k* log,__(e/k)) time.

e we provide a comprehensive experimental evaluation of OPT-Filtering and e-Filtering against
state-of-the-art competitors on two real-world public datasets. Results show that our two
algorithms achieve a speedup of up to two orders of magnitude w.r.t. the state-of-the-art
competitor introduced by Spirin et al., i.e., OPTpyn. The experimental results also show that e-
Filtering is faster than the two heuristics, i.e., Topk-OPT and Cutoff-OPT, while guaranteeing
very small approximation errors.

The rest of the paper is organized as follows. Section 2 examines the related work, while Section 3
presents a theoretical analysis of the Cutoff-OPT and Topk-OPT heuristics. Sections 4 and 5 present
our OPT-Filtering and e-Filtering algorithms. Section 6 provides a comprehensive assessment of all
filtering algorithms on two real-world datasets. Lastly, Section 7 concludes the work.

2 RELATED WORK

The relevance-aware filtering problem can be solved with optimal but slow algorithms based on
dynamic programming paradigm or fast but inaccurate heuristics. The goal of this section is to
present known solutions for this problem.

Optimal filtering. Spirin et al. [21] design an optimal algorithm, OPTpyy, to solve the relevance-
aware filtering problem. This algorithm computes an optimal solution in ©(nk) time employing a
dynamic programming paradigm [6]. Given a results list R and a target number k, OPTpyy iterates
over the prefixes of R and incrementally fills a memoization matrix M,,xj to obtain optimal solutions
of any length j < k. Each entry M[i, j] of the table stores the best relevance score achievable on
the prefix of R of length i by selecting exactly j elements. Clearly, the score of the empty prefix of
Ris 0, hence M[0, -] = 0, and the score of selecting no items is 0, hence M[-, 0] = 0. At each step,
OPTpyn could either i) appends the i-th element of R, r;, to the optimal subsequence of length j — 1
of the prefix i — 1, or ii) takes the optimal subsequence of length j of the prefix i — 1. The algorithm
chooses the alternative giving the largest score. Specifically, it fills the table using the following
recursive definition

Ml[i—1,j]

Mli, j] = max{ M[i—1,j— 1] +score_item(r;, j)

where score_item(r;, j) is the gain of relevance score of the element r; when placed in position
Jj. e.g., (2" = 1)/log,(j + 1) for the DCG metric [9]. Clearly, the highest score in the last row of
M corresponds to the optimal solution. This solution can be reconstructed by tracing backs the
choices made to get that score. The algorithm runs in © (nk) time, assuming that the score of an
item can be computed in constant time.

Heuristic filtering. Cutoff and Topk are two heuristics that can be employed to solve the relevance-
aware filtering problem. Given a relevance threshold, the Cutoff heuristic selects the items whose
relevance is at most the threshold. Instead, Topk selects the k most relevant items of the list. Spirin
et al. experimentally showed that these two heuristics are more effective when they are used
as a pre-filter for OPTpyy, i.e., their results are further filtered by OPTpyn [21]. We call Cutoff-
OPT and Topk-OPT the resulting approaches. They also present a comprehensive evaluation on
Learning-to-Rank datasets [14, 20] that shows a better performance of the optimal solution with
respect to Cutoff-OPT and Topk-OPT. However, they do not provide any theoretical analysis of
these two heuristics, which are, instead, analysed in this paper. We first show that Cutoff-OPT
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does not provide any performance guarantee. We then prove that the effectiveness achieved by
Topk-OPT may be up to two times worse than the optimum. Therefore, their application may lead
to significant degradation of the relevance of the filtered list.

Related problems. Carmel et al. explore a similar problem in mail search, where the standard
sort by time of the search results may negatively affect the user experience [4, 5]. To this end, the
authors investigate a mixed approach promoting the most relevant results on top of time-ranked
results. Experimental results on Yahoo! Mail show that supplementing time-sorted results with
relevant results leads to better performance than the traditional time-sorted view. This proposal
by Carmel et al. is only partially related to ours. While they investigate how to couple relevance
ranking with time-based ranking to enable a two-dimensional view in mail search, we propose to
directly address the relevance-aware filtering of result lists by removing irrelevant results from an
attribute-ordered list of results. Trotman et al. present a new information retrieval task called high
accuracy recall task and suggest the metrics to measure the quality of the results in this setting [22].
The task is to identify as many relevant documents, and as few non-relevant documents as possible,
such that the precision remains high regardless of the order. The high accuracy recall task is only
partially related to FILTERING@k. Indeed, it is agnostic with respect to the ordering of the results,
while our work aims to maximize a target list-wise metric that takes into account the order of
presentation of the results. Recently, Vorobev et al. investigate the FILTERING@k problem from
a machine learning point of view [23]. In particular, the authors propose new machine learning
algorithms to learn to select a set of items maximizing the quality of the attribute-ordered list,
which are based on the direct optimization of the resulting list quality. The work by Vorobev et al.
is orthogonal to our one. While they investigate new machine learning algorithms that estimate
the scores used to select the top-k results, taking into account the attribute order, we propose two
algorithmic solutions that filter the list of results starting from the estimated relevance scores.

3 HEURISTIC FILTERING

The goal of this section is to analyze the two aforementioned heuristics Cutoff-OPT and Topk-OPT.
We show that Cutoff-OPT may be arbitrarily worse than any optimal algorithm OPT, while Topk-
OPT is 0.5-optimal, i.e., it may find a solution whose relevance score is 0.5 times the score of the
optimal solution. We present the results by using DCG [9] as search quality metric Q.

3.1 Cutoff-OPT

Cutoff-OPT applies OPTpyn to the elements of the list whose relevance is greater than a given
threshold. Cutoff-OPT does not provide any performance guarantees. Indeed, its performance
strictly depends on the fixed threshold: the higher the threshold, the more efficient and less accurate
the filtering as an increasing number of elements is pruned from the list. It is thus trivial to find
worst-case lists for Cutoff-OPT, where either i) the algorithm is not able to filter any element, or
ii) it filters all of them. In the former case, Cutoff-OPT does not improve the time complexity of
OPTpyn;, i.e., it runs in ©(nk) time, while its solution is arbitrarily worse than the optimal one in
the latter case.

3.2 Topk-OPT

Topk-OPT provides stronger guarantees than Cutoff-OPT. First, Topk-OPT runs in ©(nlog k + k%)
time in the worst case. Indeed, it selects the top-k elements in @)(n log k) time and filters them in
©(k?) time by using OPTpyn. Then, as far as the quality of its solution is concerned, we prove that
i) there exist an infinite family of lists for which the solution provided by Topk-OPT is roughly two
times worse than the optimum, ii) this is the worst case, i.e., the approximation factor is at most 0.5.
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The first point is proven by using the following family of lists. We have a list Ri for each possible
value of the parameter k of the FILTERING@k problem. The list Ry = (m’,...,m’,1,m,...,m) of
length 2k —1 is made of two subsequences of equal elements of length k —1 separated by 1. The value
of m"is (1- d(k))/Zf;ll d(i), where d(i) is the discount factor of the DCG metric, i.e., 1/log, (i +1).
Instead, m is smaller than m’ but infinitely close to it. For any value of the parameter k, Topk-
OPT selects the first k elements of Ry, while any optimal algorithm OPT takes its last k elements.
The scores achieved by the two strategies are 1 and (2 — d(k) + (1 — 2d(k) + d(k)z)/zlitl1 d(i)),
respectively. For increasing values of k, the score of OPT tends to be 2 times better than the score of
Topk-OPT, i.e., Topk-OPT is 0.5-optimal. For example, for k = 20, OPT is roughly 1.7 times better
than Topk-OPT.

As far as the second point above is concerned, we need to prove that the worst approximation
factor of Topk-OPT is at most 0.5 as stated by the following theorem.

THEOREM 3.1. Topk-OPT is 0.5—optimal.

Proor. Let M be the largest relevance in R. We start by showing that every optimal solution
must contain an element of relevance M. Let O be an optimal solution that does not contain M. Let
0, be the element of O closest to the element having relevance M in R. The solution O’ obtained
from O by substituting o, with M is still a sub-list of R and has score

DCG(0’) = DCG(0) + (zM - 2°P) d(p),

which is greater than the relevance of O because M > o0,, thus contradicting the hypothesis that O
is optimal.

Let O and O’ be the solutions of OPT and Topk-OPT, respectively. As a consequence of the
previous fact, both O and O’ contain an element having relevance M. Moreover, their relevance
score cannot be smaller than the score of the list containing only M. As we are interested in the
worst-case scenario, we focus on the case where O and O’ have the largest difference in the score.
O and O’ differ the most when they share the least number of results. In particular, it holds when
all elements of O but M are not in O’, i.e., O contains no one of the Topk elements but M.

Let m be the second largest value of O and m’ be the smallest value of O’. Since the discount
d(-) is a monotonically decreasing function, the solution O having the maximum score is the one
with all the elements in decreasing order. In particular, O achieves the maximum score when all
elements but M are equal to m, i.e., O = (M, m, ..., m). For the same reason, the solution O’ having
the minimum score is the one with all elements but M equal to m’ and placed on the left of M, i.e.,
O’ = {(m’,..,m’, M). For instance, this is the case of the list R = (m/, ..., m’, M, m, ..., m) whose two
sublists of identical elements contain k-1 elements each.

Note that O obtains the maximum score when m is the maximum value not selected by Topk,
thus when m is smaller than but infinitely close to m’. Without loss of generality, we can assume
m = m’ to simplify the discussion. Therefore, the scores of O and O’, expressed as a function of m
and k, are respectively

k
Q(0) = g(M)d(1) + Y g(m) d(p) , and
p=2

g(M) d(1)
L g(m) d(p) +g(M) d(k)
where ¢(r) is the gain factor of the DCG metric, i.e., 2" — 1.
By studying the derivative of the approximation function with respect to m, i.e., % (0(0")/0(0)),
we can find that the worst approximation error is reached when the two terms of the max function

Q(0) = max{
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are equal, so when Q(O’) = g(M) d(1). Hence, in the worst case, m is such that
_ 9(M) (d(1) —d(k))
g(m) = = :
SETd(p)
Finally, by substituting the value above into the score of O and by replacing d(1) with its real value,
ie., 1, we have

Q(O) = g(M) 2 — d(k) + M

Spoid(p)
Therefore, the score of O tends to 2g(M) for k tending to infinity and, since the score of O’ is
exactly g(M), in the worst-case scenario Topk-OPT is 0.5-optimal. O

Finally, it is worth highlighting that we could not improve the above weak guarantees by
increasing the number of elements selected by the Topk pre-filtering in Topk-OPT. Indeed, we can
easily change each list Ry to match the same worst-case scenario and, thus, proving the following
corollary of Theorem 3.1.

CoROLLARY 3.2. The solution obtained by applying OPT to the top k' elements of R, with any k” > k,
is 0.5—optimal.

Proor. Let R be the adversarial list used in the proof of Theorem 3.1 extended on the left with
many identical elements, i.e., R = (m/,...,m’, M, m, ..., m). The first run of identical elements of R
contains k” — 1 values, while the second run contains k — 1 elements. The Topk’ pre-filtering selects
the first k” elements of R, then the OPT filtering selects the singleton element M, whose score is
g(M) and is optimal if we consider only these elements. Instead, the optimal filtering of the entire
list R is composed of the last k elements, whose score tends to 2 - g(M) for k that tends to infinity,
as shown in the proof of Theorem 3.1. O

In summary, Topk-OPT reduces the time complexity of the filtering from ©(nk) to ©(nlog k+k?)
at the cost of a 0.5 approximation error in the worst case.

4 EXACT FILTERING

The efficiency issues of the exact filtering OPTpyn motivate us to study a more efficient exact
solution to the FILTERING@k problem. In this section, we propose OPT-Filtering: a new exact
filtering algorithm running in © (nlog k + min(n, 2€)k) time. It is very competitive with respect
to OPTpyn when k is smaller than the logarithm of n, e.g., when k < 20. In all other cases, it is
never slower than OPTpyn, namely, the two bounds coincide. Indeed, the asymptotic complexity of
OPTpyy is © (nk) and both (nlog k) and (min(n, 2k )k) are lower or equal than nk for all values of n
and k. OPT-Filtering is composed of two lossless pruning steps, i.e., left-pruning and right-pruning,
followed by the exact yet slow OPTpyy filtering. The two pruning steps are designed to discard
much of the elements and do not affect the optimality of the solution, thus guaranteeing the
exactness of the solution. We start by examining the two pruning strategies separately, and then
we analyze the OPT-Filtering algorithm.

4.1 Left-pruning

This lossless pruning prunes out any result whose preceding subsequence contains a decreasing
skyline of at least k elements with greater or equal relevance. A decreasing skyline of a list is a
subsequence of the elements such that each result of the skyline is more or equally relevant than
each other appearing after it in the list. As a consequence, each element of the skyline “dominates”
all others appearing after it in the list. The idea behind this pruning is quite intuitive. Let a be an
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element discarded by the left-pruning. Then, a is preceded by a decreasing subsequence of at least
k elements more or equally relevant than itself. Thus, we can select one of them in place of a while
preserving the effectiveness of the solution. The example below shows this intuition.

EXAMPLE 4.1. Let R be the list (1,...,1,0.9) of 21 elements and k = 20. The element a = 0.9 is the
only element discarded by the left pruning. Every solution that includes the element a can be improved
by replacing it with a non selected element on its left. Indeed, the solution of k elements (1,...,1,0.9)
has DCG of about 6.99, while the solution (1,...,1) has DCG of about 7.

Let left-height of an element a be the number of elements having a greater or equal relevance
than a and constituting a decreasing skyline of the sequence preceding a. Given a solution O, we
say that an element having left-height h is a lefi-defect of O if it occurs in the first h positions of O.
The following lemma proves the intuition above.

LEMMA 4.2. There exists an optimal filtering that does not contain left-defects.

Proor. By contradiction, let us assume that all existing optimal solutions contain at least one
left-defect. Let O be any optimal solution having the lowest number of defects and whose leftmost
defect is the closest to the first position of the solution. The contradiction arises by showing that
starting from O we can build a new solution which is either more relevant, with fewer defects, or
with the left defect closer to the first position of the solution.

Let [ be the leftmost defect of O, h its left-height and p be its position in O. By definition, lis
“dominated” on the left - within R - by a decreasing skyline of at least h elements having relevance
greater than or equal to [ and having a smaller left-height. At least one of them is not in O because
there are less than h elements before [ in O. Let I be the leftmost of them, and p be the position
within O where [ should be placed if selected. We differentiate between the following two cases.

i) All elements of O between p and p are greater than or equal to . Let O be the solution obtained
from O by removing [ and by inserting [. By definition, [ is greater than or equal to all elements
between p and p. Thus, the solution O has a score greater than or equal to the one of O. Moreover,
the elements shifted by one position on the right do not introduce new defects because they are
moving away from the first position of the solution. If [ introduces a defect, O has the same number
of defects of O and has the leftmost defect closer to the first position than O. Otherwise, if [ does not
introduce a defect, O has a lower number of defects than 0. Therefore, the solution O contradicts
the hypothesis.

ii) At least one element of O between p and p is strictly smaller than I. Let I’ be the leftmost
element with this property. Let O be the solution obtained from O by removing I’ and by inserting
I. The solution O has a score strictly greater than O, thus contradicting the optimality of O. O

Let left-k-maximal be any element whose left-height is smaller than k. The following lemma
proves the correctness of the left-pruning, and it directly follows from Lemma 4.2 by showing that
any non-left-k-maximal element causes a left-defect into the solution. Indeed, a non-left-k-maximal
element has a left-height greater or equal than k, and any viable solution contains at most k results.

LEMMA 4.3. There exists an optimal filtering composed of only left-k-maximal elements of R.

The left-pruning can be performed in ®(n) time by scanning the list left-to-right and by employing
a stack to keep the decreasing subsequence of elements preceding the current element. At each step
of the scanning, i) all elements smaller than the current element are popped out from the stack, and
ii) the current element is pushed on top of the stack if the size of the stack is smaller than k. The
current element is not left-k-maximal when it is not pushed into the stack, and its left-height is the
position where it is placed into the stack. The stack contains the elements in decreasing order; thus
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whenever we compare the current element with the top of the stack we either pop an element (first
operation), or push a new one (second operation). Since the number of elements is n, the number
of push and pop operations is ©(n).

The left-pruning, however, does not guarantee an effective reduction of the elements surviving
the pruning, which in turn must be processed by OPTpyn. There are lists where it does not discard
any element. For example, when the elements of R are all distinct and sorted in increasing order, all
of them are left-k-maximal.

4.2 Right-pruning

This lossless pruning prunes any element followed by at least k elements having a greater or
equal relevance. The intuition behind this pruning is the following. Let a be an element pruned
out by the right-pruning; there are at least k elements on its right that could be selected by any
optimal algorithm OPT in place of a, without worsening the solution. The example below shows
this intuition.

ExXAMPLE 4.4. Let R be the list (0.9,1,...,1) of 21 elements and k = 20. The element a = 0.9 is
the only element discarded by the right-pruning. Every solution that includes the element a can be
improved by replacing it with a non selected element on its right. Indeed, the solution of k elements
(0.9,1,...,1) has DCG of about 6.9, while the solution (1, ...,1) has DCG of about 7.

Let right-height of an element a be the number of elements after a having a greater or equal
relevance. Given a solution O, we say that an element having right-height h is a right-defect of O if
it occurs in the last A positions of O. The following lemma proves the intuition above.

LEMMA 4.5. There exists an optimal filtering that does not contain right-defects.

Proor. By contradiction, let us assume that all existing optimal solutions contain at least one
right-defect. Let O be any optimal solution having the lowest number of defects and whose rightmost
defect is the closest to the last position of the solution. The contradiction arises by showing that
starting from O we can build a new solution which is either more relevant, with fewer defects, or
with the rightmost defect closer to the last position of the solution.

Let 7 be the rightmost defect of O, h its right-height and p be its position in O. By definition,
there are at least h elements having relevance greater than or equal to 7 on its right — within R -
and having a smaller right-height. At least one of them is not in O because there are less than h
elements after 7 in O. Let r be the leftmost of them, and p be the position within O where r should
be placed if selected. We differentiate between the following two cases.

i) All elements of O between p and p are greater than or equal to 7. Let O be the solution obtained
from O by removing # and by inserting r. The solution O has a score greater than or equal to the
one of O. Moreover, the elements shifted of one position on the left do not introduce new defects
because they are moving away from the last position of the solution. If r introduces a defect, O has
the same number of defects of O and has the rightmost defect closer to the last position than O.
Otherwise, if r does not introduce a defect, O has a lower number of defects than 0. Therefore, the
solution O contradicts the hypothesis.

ii) At least one element of O between p and p is strictly smaller than 7. Let 7 be the rightmost
element with this property. Let O be the solution obtained from O by removing # and by inserting
r. The solution O has a score strictly greater than O, thus contradicting the optimality of 0. O

Let right-k-maximal be any element whose right-height is smaller than k. The following lemma
proves the correctness of the right-pruning, and it directly follows from Lemma 4.5 by showing
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that any non-right-k-maximal element causes a right-defect into the solution. Indeed, a non-right-
k-maximal element has a right-height greater or equal than k, and any viable solution contains at
most k results.

LEMMA 4.6. There exists an optimal filtering composed of only right-k-maximal elements of R.

The right-pruning can be computed in ©(n log k) time by employing a priority queue to compute
all right-k-maximal elements scanning the list right-to-left. At each step of the scan, the priority
queue contains the top-k elements seen so far. When the current element enters into the queue, it
is right-k-maximal. If we are interested in computing also the right-heights of the right-k-maximal
elements, we can use an AVL tree [6] of size k to maintain the top-k elements and compute the
number of elements greater or equal of the current right-k-maximal element. Since AVL trees
implement this lookup operation in ©(log k), the time complexity is still @(nlog k).

The right-pruning alone, however, does not guarantee an effective pruning of the original list.
Indeed, there are lists where it does not reduce the number of elements to process with OPTpyn.
For example, when the elements of R are all distinct and sorted in decreasing order, all of them
are right-k-maximal. We thus discuss how to address the lack of guarantees of the left and right
prunings by combining them to form an exact pruning strategy with strong guarantees.

4.3 Exact-Pruning

Left-pruning and right-pruning do not provide guarantees on the number of results surviving the
pruning. For this reason, we show that we can effectively combine the two ideas into an efficient
lossless pruning, called Exact-Pruning, guaranteeing that the number of non-pruned results is
limited. Let k-maximal be any element whose left-height plus right-height is smaller than k. Exact-
Pruning prunes out any non-k-maximal result from the list, as described in Algorithm 1. The
following lemma proves the correctness of the proposed lossless pruning, and it directly follows
from Lemma 4.2 and 4.5 by showing that any non-k-maximal element causes a left-defect or a
right-defect into the solution. Indeed, a non-k-maximal element has left-height plus right-height
greater or equal than k, and any viable solution contains at most k results; thus it can occur neither
in the head nor in the tail of any solution.

LEMMA 4.7. There exists an optimal filtering composed of only k-maximal elements of R.

We have now to prove that the number of results not pruned by this pruning is limited, as stated
by the following property.

PROPERTY 4.8. R contains at most (2F — 1) k-maximal elements.

Proor. We prove by induction that for any k > 0, a list of at least 2 elements contains at least
one non-k-maximal result.

Base case, k = 1. Any combination of 2 elements contains an element violating either the left or
the right maximality. Let r; and r; be the relevances of the first and second element. If r; > r;, than
the j-th result is not left-k-maximal. Contrarily, if r; < r;, than the i-th result is not right-k-maximal.
If there are more than two elements, it is trivial to show the claim.

Inductive case, k > 1. Let p be the position of the most relevant result ry,y into the list R. In case
of ties, let us select the rightmost result with this property. Since 7.y is the most relevant result of
the list, it contributes to increase the right-height of all elements on its left by one. For the same
reason, it also contributes to increase the left-height of all elements on its right by one. Since an
element is k-maximal if its left-height plus its right-height is smaller than k, we can consider only
the elements on the left or on the right of p to find a non-(k-1)-maximal result.
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Algorithm 1 Exact Pruning

Input: A list R of n relevances and a size threshold k
Output: The list of the k-maximal elements of R

1: left_maximals = List()

2: stack = Stack()

3: for(i=1;i < n;i+=1)do > Left-Pruning
4: while (stack.size() > 0 and R[i] > stack.top()) do

5: stack.pop()

6: end while

7: if (stack.size() < k) then

8: left_height = stack.size()

9: stack.push(R[i])
10: left_maximals.append((i, left_height))
11: end if
12: end for

13: result = List()

14: tree = AVLTree()

15: for (j = left_maximals.size(); j > 0; j -= 1) do > Right-Pruning
16: (i,left_height) = left_maximals|j]

17: right_height = treenum_greater_equal(R[i])

18: if (left_height + right_height < k) then

19: if (tree.size() < k) then

20: tree.insert(R[i])

21: else if (R[i] > tree.min()) then
22: tree.replace_min(R[i])

23: end if

24: result.append(i)

25: end if

26: end for

27: return result.reverse()

Let R; and R, be the lists composed only by the elements on the left and right of p, respectively.
One of the two lists contains at least 2¢7! results as R contains at least 2% elements. Thus, we can
inductively show that it contains at least one non (k-1)-maximal result. O

The property above states that the number of k-maximal results is bounded by a quantity that is
independent of the length of R and its elements. To identify the k-maximal results, the algorithm
prunes all non-left-k-maximal results, from left to right, and stores the left-height of each non-
pruned result. Then, it computes all right-heights from right to left and prunes all non-k-maximal
elements. The order of the two pruning operations matters as the pruning of a non-left-k-maximal
result could affect the right-height of a less relevant result on its left, while the pruning of a
non-right-k-maximal result does not affect the left-height of any element on the right. As already
described for the left and right pruning, the left-heights and right-heights can be computed in ©(n)
and O(nlog k) time, respectively. Therefore, the time complexity of this pruning is ©(nlogk).

4.4 OPT-Filtering: an exact filtering algorithm

The efficient exact filtering algorithm we are proposing, OPT-Filtering, is then the combination
of Exact-Pruning and OPTpyy. The following theorem shows that OPT-Filtering finds an optimal
solution with a time complexity that is never higher than the one of OPTpyy, which is ©(nk).
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THEOREM 4.9. OPT-Filtering finds an optimal filtering in © (nlog k + min(n, 2F)k) time.

Proor. OPT-Filtering prunes the list in two steps then applies OPTpyy to the non-pruned results.
It first computes all left-heights scanning the list left-to-right in O(n) time. Then, OPT-Filtering
computes all right-heights scanning the list right-to-left in O(nlog k) by using an AVL tree, and
prunes all non-k-maximal results. As shown in Property 4.8, at most 2€ — 1 of the n results are
k-maximal, thus, it applies OPTpyy to these results in ©(min(n, 25)k) time. The optimality of the
solution follows from Lemma 4.7. O

OPT-Filtering solves the FILTERING@k problem by first applying Exact-Pruning and then OPTpyn.
It always finds the optimal solution, and it is also faster than the state-of-the-art optimal filtering
when k is smaller or equal than the logarithm of n, e.g., for one million results, when k < 20. In
addition, to further enhance the efficiency of OPT-Filtering, we exploit the fact that there exists
an optimal solution not containing left and right defects to improve the dynamic programming
solution proposed by OPTpyyn. Within the memoization matrix used by the dynamic programming
algorithm, each element i participate to the k possible positions that i can occupy in the final
solution. Interested readers can refer Section 2 for the details of the algorithm. Since in our setting
we know the left and right heights of all k-maximal results, we can avoid the computation of
the portions of the memoization matrix referring to the first left-height and the last right-height
positions of each element. Indeed, if the element were placed in these positions by OPTpyn, then
it would cause either a left-defect or right-defect into the solution. This practical optimization
does not improve the theoretical time complexity of OPT-Filtering, but it contributes to make our
algorithm even more efficient.

5 APPROXIMATE FILTERING

The weak approximation guarantees provided by the existing heuristics motivate us to investigate
a more efficient approximate solution to the FILTERING@k problem. In this section, we propose
e-Filtering: an approximate filtering algorithm that trades efficiency for effectiveness. The investi-
gation of an approximate algorithm is also motivated by the fact that the relevances of the results
are approximated using machine learning models in practice. Therefore, a small approximation on
the quality of the filtering is negligible in the presence of inputs affected by an intrinsic error.

In detail, e-Filtering finds a (1-€)-approximation in ©(n+k*log, . (¢/k)) time, for any 0 < € < 1.
e-Filtering is composed of three steps, followed by OPTpyn: right-pruning, discretization, and
thresholding. We already discussed the first step in the previous section. We now examine the
remaining two steps.

5.1 Discretization

This step aims at decreasing the number of elements selected by the right pruning in the worst
case. This is done by creating a new list R, from R such that i) R, has a smaller number of distinct
elements than R, and ii) the relevance of the optimal filtering of R, is guaranteed to be at least
(1 — €) times the relevance of the optimal filtering of R. This way, the use of the previous right
pruning is more effective in terms of removed elements still almost preserving the optimality of
the solution.

The idea is to discretize the relevance of the elements of R to decrease the number of distinct
elements. This discretization step trades-off between the approximation error of the solution and
the obtained number of distinct elements. Let € be the desired approximation error of e-Filtering,
with 0 < € < 1. Let rpj, and rpax be the minimum and maximum relevance of the elements in
R, respectively. The idea of the discretization step is to partition the range [rmin, 7max] into m
intervals of elements. The elements belonging to the same interval are approximated in R, with the
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same relevance score, which equals the smallest relevance of the interval. The tricky part of this
strategy is to decide how to partition the range [rmin, 'max] to guarantee a € approximation error
and the minimum number of intervals m. Let g(r) be the gain function used by the DCG metric, i.e.,
g(r) = 2" — 1. We partition the range into maximal intervals such that the ratio between the gain
g() of the minimum and maximum relevance of each interval is at least (1-¢). We call e-intervals
the intervals in this partition. The following example shows how the discretization step works on
the worst-case list shown for the right pruning.

ExAMPLE 5.1. Let R be the list (3,2.99,2.98,...,0.01) of 300 elements and € = 0.5 the desired
approximation error. Let g(r) be the gain function used by the DCG metric, i.e., g(r) = 2" — 1. The e—
intervals of R are the following ten intervals: [0.01,0.019), [0.019,0.039), ..., [1.45,2.17), [2.17,3.0].
Within each interval, the ratio between the gain of the maximum and the gain of the minimum
is (1-€). For example, for the last interval, we have g(2.17)/g(3) ~ 0.5. The list R¢ is as follows
(2.17,...,2.17,1.45,...,1.45,...,0.01).

The following lemma extends Lemma 4.6 to R and shows that the right-k-maximal elements of
Re can be exploited to find a (1-¢)-optimal filtering of R.

LEMMA 5.2. There exists a (1-€)-optimal filtering of R made of only right-k-maximal elements of R.

Proor. To prove the claim, we need to show that the optimal filtering of R, is (1-€)-optimal
for R. Let O be an optimal filtering of R. Let O, be the filtering built by selecting from R, the
same elements composing O. The gain of each element of O, is at least (1-¢) times the gain of its
counterpart in O. Therefore, the relevance score of O, is at least (1-¢) times the relevance score of
O. In particular, every optimal solution O, of R has a score greater than or equal to the relevance
score of O, therefore Q(O,) > (1-€) Q(O). The proof follows by applying Lemma 4.6 to R. and
by showing that there exists a solution having score Q(O,) composed of only right-k-maximal
elements of R,. ]

The discretization of R into R, reduces the number of distinct elements from n to m. The following
property provides an upper bound for m.

PROPERTY 5.3. The number of e—intervals of R is:m < [log“_e) (g(rm,-n) 19(Fmax) )1

Proor. Each e-interval is such that the gain of the minimum element of the interval is (1-€)-times
the gain of its maximum. Therefore, by starting from the most relevant element of R, ryay, the
number of intervals m is the minimum value satisfying the following inequality

g(rmax) (1'6)m < g(rmin) .

]

The discretization step introduces an approximation error € to reduce the number of distinct
elements in the list R to m. In this way, the combination with the right-pruning guarantees that at
most mk elements are selected. However, the upper bound on m depends on both the minimum
and the maximum relevance in R, namely, rpy;, and ryax. If the distance between these two values
is large, then m is large as well. In particular, it is possible to design an adversarial list R where the
discretization is ineffective, and the right pruning is forced to select all the elements. This is done
by fixing a value of rmin and by choosing rmax to be large enough so that m equals n. Then, R is
a decreasing list having an element for each e-interval. In this way, R, coincides with R and the
right-pruning selects all its m = n distinct elements.
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5.2 Thresholding

This step works by removing those elements whose relevance is below a given threshold. In this
way, we increase the value of ry,;, in the resulting list, referred to as R™, and, thus, we reduce m,
i.e., the number of possible e-intervals. The threshold should be chosen so that i) the relevance of
the optimal filtering of R™ is at least (1 — €) times the relevance of the optimal filtering of R, and ii)
the value of m is guaranteed to be always much smaller than n. In this way, we can remove several
elements with a small degradation of the solution, as shown in the following example.

ExAMPLE 5.4. Let R be the list (5,0.1,...,0.1) of 10 elements and k = 10. The optimal filtering
selects the full list R, whose DCG is about 31.25. If we remove all elements having relevance 0.1 then
the list R is (5). The optimal filtering of R~ has a DCG score of 31, namely, it is a 0.99-approximation.

The following Lemma 5.5 states which threshold ¢ meets the desired approximation error €.

LEMMA 5.5. Let R_ be the list obtained by removing the elements of R below the threshold t =
g ' (€ g(rmax) /k) and then by discretizing the remaining elements using the e—intervals. The optimal
filtering of R_ is a (1-€ )-approximation.

PrOOF. Let O and O be the optimal filterings of R and R_, respectively. Since the ratio €¢/k is
a value strictly smaller than 1, the threshold ¢ is strictly smaller than ry,y. Let us consider the
worst-case list whose results, a part of the maximum, are infinitely close to the threshold ¢, but
smaller than it, and are all placed on the right of rmay. The solution O is thus formed by the singleton
(rmax) while the solution O is the list (rmax, ..., f}. Let g(r) be the gain function used by the
DCG metric, i.e., g(r) = 2" — 1, and d(r) be its discount function, i.e., d(p) = log,(p + 1). The
approximation factor achieved by using O is

Q(O) _ g(rmax) d(l)
Q0)  g(rmax) d(1) +g(7) 25, d(i)’

(1—-¢) =

which can be rewritten as
o _ €90 (1)
(1-€) Ti, d(i)
The gain function g() is a strictly increasing function, hence it admits an inverse function. Moreover,
since the discount function d() is always smaller or equal than 1, and the factor (1-€) is strictly
smaller than 1, thus the denominator is strictly smaller than k. Therefore, the proof follows by
using these rough approximations.
[m}

5.3 Approximate-Pruning

The right-pruning, the discretization and the thresholding steps can be combined together to
effectively reduce the number of distinct values of the list R. Indeed, the threshold ¢ limits the
number of e-intervals and, thus, the number of distinct values involved in the computation of the
right-k-maximal elements. The resulting algorithm, called e-Pruning, is described in Algorithm 2.
In detail, we can easily derive the following property by replacing ryin in Property 5.3 with the
threshold ¢ of Lemma 5.5.

PROPERTY 5.6. The number of e—intervals of R_ is: m < [log(lf) (E/k)“ .

The property above states that the maximum number of e-intervals of R_ can be upper bounded
by a quantity that is independent of the length of R and its elements. As each right-k-maximal
element r is followed by at most k elements having a relevance greater than or equal to r, the
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Algorithm 2 Approximate Pruning

Input: A list R of n relevances, a size threshold k and a target approximation error €
Output: The list of the right-k-maximal elements of R
: result = List()
heap = MinHeap()
. cutoff = get_epsilon_cutoff(k, €, max(R))
i=n
: for (; heap.size() < k and i > 0;i-=1) do
if (R[i] > cutoff) then
heap.push(R[i])
result.append(i)
end if
: end for
: intervals = get_eps_intervals(e, max(R), heap.min())
: for (cur =1;i > 0;i-=1) do

h R A S R L

_= = e
N = O

13: if (R[i] > intervals[cur]) then

14: heap.replace_min(R[i])

15: result.append(i)

16: while (intervals[cur] < heap.min()) cur +=1
17: end if

18: end for

19: return result.reverse()

number of right-k-maximal elements of R, can be upper bounded by a quantity depending on €
and k only. Indeed, there are at most km < k{ log ;. (€/ k)] right-k-maximal elements in R_.
€-Pruning runs in © (n + kmlog k) time as the maximum number of right-k-maximal elements
of R_ is km. The first factor is due to the cost of a linear scan of the list R, while the second factor is
due to the cost of ©(km) updates of a priority queue of size k. Therefore, e-Pruning is an efficient
and effective way for reducing the number of elements to be processed by OPTpyy. Notice that
e-Filtering could employ the exact-pruning in place of the right-pruning step, but it would lead to
the same theoretical efficiency and effectiveness guarantees. However, the exact-pruning relies on
an AVL tree to compute the right-heights of the elements, which is substantially slower than the
heap data structure used by the right-pruning. Therefore, e-Filtering benefits of fast and simple
data structures and avoids the direct computation of left and right heights to fasten the filtering.

5.4 e-Filtering: an approximate filtering algorithm

The proposed algorithm, e-Filtering, applies e-Pruning and OPTpyy in sequence. Theorem 5.7
shows that it finds a (1-€)-optimal solution and trades-off effectiveness and efficiency through the
approximation error €.

THEOREM 5.7. e-Filtering finds a (1-€)-optimal filtering in © (n + k*log, . (€/k)) time.

Proor. e-Filtering is composed of two phases: e-Pruning and OPTpyy. e-Pruning finds the right-
k-maximal elements of RZ, which, according to Lemma 4.6, contain the optimal solution of the new
approximate list. OPTpyy finds the optimal solution of the right-k-maximal elements of R_, which,
according to Lemma 5.5, is (1-¢)-optimal.

As far as the time complexity is concerned, we need to prove that e-Filtering runs in ©(n +
k2 log ;¢ (e/k)) time. e-Pruning runs in © (n + kmlog k) time, while OPTpyy runs in © (k?m) time
when applied to the ©(km) elements selected by e-Pruning. Therefore, the claim follows from
Property 5.6. O
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Table 1. Main statistics of GoogleLocalRec and AmazonRel.

. average average max

Dataset num queries
num results relevance relevance
GoogleLocalRec 10,000 16,000 0.76 2.97
AmazonRel 250 99,430 1.79 3.98

e-Filtering solves the relevance-aware filtering problem by combining three steps, i.e., right-
pruning, discretization, and thresholding, with OPTpyn. It provides strong guarantees on the
effectiveness of the filtered list, and its performance is driven by the approximation error €, which
trades efficiency for effectiveness.

5.5 Distributed setting

Many search services exploit distributed query processing architectures [3, 19] to deliver content
to the users. Typically, a distributed environment consists of a set of indexes each one queried by a
search engine. On top of them, a meta-search engine distributes the query to all search engines.
Each search engine queries its index in parallel and produces a ranked list of top-k results that is
sent back to the meta-search engine. Finally, the meta-search engine aggregates the results and
send them to the user.

OPTpyn cannot be applied in a distributed query processing architecture since it computes the
optimal solution by taking into account all the results available. One possibility to overcome this
issue is to deploy OPTpyy in the meta-search engine. However, sending all the results matching
a query from a search engine to the meta-search engine is unfeasible. This would lead to high
network communication overhead between machines. Moreover, by applying OPTpyy on partial
lists of results, i.e., on a search engine level, the final solution is not guaranteed to be optimal.

e-Filtering can be applied in a distributed query processing architecture as it preserves the
approximation guarantees. The application of e-Filtering to a distributed scenario requires that i)
each search engine applies e-Pruning to the local results and sends the right-k-maximal elements to
the meta-search engine, then ii) the meta-search engine merges the received lists by preserving the
per-attribute sorting and applies e-Filtering to the merged list. By exploiting Property 5.6, we can
prove that the number of elements transferred by each search engine is at most k[log, . (¢/k)],
thus confirming the feasibility of the approach.

6 EXPERIMENTS

In this section, we present a comprehensive experimental assessment of OPT-Filtering, e-Filtering
and state-of-the-art competitors. First, we describe the datasets along with the experimental settings
used to assess the different strategies. Then, we compare the proposed OPT-Filtering and e-Filtering
to state-of-the-art competitors. Lastly, we study the impact of the parameter € on the performance
achieved by e-Filtering. We perform the analysis by varying the approximation threshold €, the
number n of the results to filter, the number k of results to return, and the quality metric Q.

6.1 Experimental settings

Datasets. We evaluate the performance of all filtering algorithms on two public datasets, namely
GoogleLocalRec and AmazonRel, that we built and released to facilitate the assessment of filtering
algorithms. The two datasets represent two different real-world use cases, i.e., a recommendation
scenario and a search scenario, and exploit two ad-hoc state-of-the-art solutions to estimate the
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relevance. Moreover, both datasets contain many results per query which allow us to perform a
comprehensive assessment of the various filtering methods. We report in Table 1 the main statistics
of the two datasets.

The GoogleLocalRec dataset employs Google Local data and a state-of-the-art recommender
system, TRANSFMconrent, that recently achieved the best performance in the task of sequential
recommendation [18], i.e., the task of predicting the next action of a user starting from her historical
interactions. The dataset consists of an extensive collection of geographically localized businesses
and temporally labeled reviews by users [18]. In particular, we focused on the city of New York,
which is the city with the highest number of businesses and active users that wrote reviews, and
we employ the TRANSFM recommendation model to produce, given an active user, a list of relevant
businesses to recommend to her. Therefore, we followed the methodology described by Pasricha
and McAuley [18] to prepare the dataset and train the recommendation model using the reviews
of the businesses within a radius of 50Km from the New York centre. We then randomly selected
10,000 active users and for each of them: i) we sorted the businesses by distance from the last known
location of the user, and ii) we estimated their relevance for the user employing the TRANSFM
recommendation model. The GoogleLocalRec dataset that we built is thus composed of 10,000 users,
also referred to as queries, each one supplemented with a list of 16,000 recommendations.

The AmazonRel dataset employs Amazon data and a winning solution! of the Crowdflower
Search Results Relevance? Kaggle competition to estimate the relevance of the Amazon products
with respect to the user queries. The Crowdflower Search Results Relevance competition aims to
transform the most effective machine learning solutions into open-source products to help small
e-commerce sites to measure the relevance of the search results they provide. Since the test set
distributed as part of the Kaggle competition contains only a few results associated to each textual
query, we extended the list of results of each query with the Amazon products having at least one
of the query terms in the title or in the description. To this end, we employed the extensive list of
Amazon products of the public dataset introduced by McAuley et al. [15], whose data come from
the Amazon e-commerce website and span from May 1996 to July 2014. In particular, for each test
query: i) we sorted the results by price, and ii) we estimated their relevance with respect to the
query employing the aforementioned relevance model, which relies on ensembles [7] of several
machine learning models to estimate the relevance of each search result. The AmazonRel dataset
that we built is thus composed of 250 queries, characterized by at least 500 results each, with about
100,000 results per query, on average.

Metrics. We employ two search quality metrics Q to assess the performance of all filtering
algorithms under different evaluation criteria:

e DCG ({ry, ..., tn)) = Zzzl Iongz—;l) combines an exponential gain function for relevance,
g(r) = 2" — 1, with a smooth discount factor for position, d(p) = 1/log, (p + 1). It strongly
promotes relevant results.

e DCG-LZ ({r1, ..., n)) = Z=1 2 combines a linear gain function for relevance, g(r) = r, with
a Zipfian discount factor for position [11], d(p) = 1/p. It highly penalizes the results that are

not in the top positions of the ranked list.

The two aforementioned metrics are widely used within the IR community [9, 11, 24]. Due to their
differences in g(-) and d(-), they provide a very different evaluation: DCG takes into account the
relevance more than the rank, while DCG-LZ takes into account the rank more than the relevance.

https://github.com/geffy/kaggle-crowdflower
Zhttps://www.kaggle.com/c/crowdflower-search-relevance
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Table 2. Average filtering time in milliseconds, speedup (above) and worst approximation error (below)
achieved by all filtering algorithms on the GoogleLocalRec dataset by setting n to 16,000 and by varying k.

k= 20 50 100 200
OPTpyn 0.117 0.163 0.279 0.488
Cutoff-OPT 0.033 (4x)  0.039 (4x)  0.055 (5x)  0.081 (6x)
(no-proven-approx) 0.20 0.29 0.34 0.38
Topk-OPT 0.017 (7x)  0.022 (7x) 0.034 (8x) 0.056 (9x)
(0.5-approx) 0.15 0.14 0.13 0.11

OPT-Filtering 0.026 (4x)  0.076 (2x)  0.156 (2x)  0.330 (2x)

e-Filtering 0.018 (7x)  0.029 (6x)  0.053 (5x)  0.105 (5x)
(€-0.001) 0 0 0 0
e-Filtering 0.013 (9x) 0.023 (7x) 0.046 (6x)  0.095 (5x)
(€=0.01) 0 0 0 0
e-Filtering 0.010 (11x) 0.018 (9x) 0.034 (8x) 0.075 (6x)
(e=0.1) 0.08 0.07 0.06 0.04

Filtering algorithms. We perform a comparison of the performance of OPT-Filtering and e-
Filtering against three state-of-the-art filtering algorithms: OPTpyn, Topk-OPT and Cutoft-OPT.
The three competitors, introduced by Spirin et al. [21], have been thoroughly discussed in Sections
2 and 3. In our experiments, we employ a query-based relevance threshold for Cutoff-OPT, which
is defined as (rmax + "min) /2, where rpax (Fmin) is the maximum (minimum) relevance of the list.

Testing details. We implemented all algorithms in C++17 using GCC 9.2.1 with the highest
optimization settings for the compilation. We performed all experiments on a machine with
eight Intel Core 19-9900K cores clocked at 3.60GHz and 64GB of RAM. All timings refer to the
average execution time (in milliseconds) of ten independent runs. To ease the reproducibility of the
experiments, we release® the two datasets and our implementation of OPT-Filtering, e-Filtering,
OPTpyN, Topk-OPT, and Cutoff-OPT.

6.2 Experimental results

We now provide a comprehensive assessment of the performance of all filtering algorithms perform-
ing two sets of experiments using the DCG-LZ metric: one by varying the cut k, and one by varying
the length n of the lists of results. The two sets of experiments provide a twofold view of the impact
of the problem parameters k and n on the filtering performance of the various algorithms. For this
evaluation, we employ e-Filtering varying the approximation threshold € € {0.1,0.01,0.001}.

Assessment by varying k

We assess the filtering performance of all algorithms on the two datasets by varying the cut
k € {20, 50,100, 200} and setting n = 16, 000, i.e., the maximum length of the results lists available
in the GoogleLocalRec dataset. To do so, we employ the first 16, 000 results sorted by attribute of
each query and discard those queries with less than 16, 000 results. We summarize in Tables 2 and
3 the results of the experiments on the two datasets, i.e., GoogleLocalRec and AmazonRel. In detail,

3https://github.com/hpclab/fast-approximate-filtering
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Table 3. Average filtering time in milliseconds, speedup (above) and worst approximation error (below)
achieved by all filtering algorithms on the AmazonRel dataset by setting n to 16,000 and by varying k.

k= 20 50 100 200
OPTpyn 0.112 0.164 0.290 0.537
Cutoff-OPT 0.041 (3x)  0.049 (3x)  0.069 (4x)  0.107 (5%x)
(no-proven-approx) 0.23 0.33 0.39 0.43
Topk-OPT 0.015 (7x)  0.019 (9x)  0.026 (11x) 0.045 (12x)
(0.5-approx) 0.14 0.14 0.13 0.13

OPT-Filtering 0.021 (5x)  0.054 (3x) 0.116 (3x)  0.254 (2x)

e-Filtering 0.012 (9x)  0.019 (9x) 0.035 (8x) 0.074 (7x)
(€-0.001) 0 0 0 0
e-Filtering 0.010 (11x) ~ 0.017 (10x)  0.031 (9x)  0.067 (8x)
(€=0.01) 0 0 0 0
e-Filtering 0.007 (17x) 0.011 (14x) 0.021 (14x) 0.045 (12x)
(e=0.1) 0.06 0.05 0.05 0.04

we report for each algorithm and cut k: i) the average filtering time, ii) the speedup achieved over
OPTpyn, and iii) the worst approximation error achieved on all queries.

On both datasets, the filtering time of OPTpyn ranges from about 0.1ms (k = 20) to about 0.5ms
(k = 200). Cutoff-OPT and Topk-OPT are faster than OPTpyy, as expected. Indeed, Cutoff-OPT
speeds-up from 3X to 6x over OPTpyn, while Topk-OPT achieves even better speedups, from 7x
to 12X over OPTpyn, and it is the faster filtering when k = 200. It is worth reminding that we
proved in Section 3 that Cutoff-OPT does not offer approximation guarantees while Topk-OPT is
0.5-optimal, i.e., it may find a solution whose relevance score is 0.5 times the score of the optimal
solution. For this reason, we assess the worst approximation error achieved by the two heuristics
in practice on the two datasets. We notice that Cutoff-OPT achieves an approximation error from
about 0.20 (k = 20) to about 0.40 (k = 200), while Topk-OPT achieves lower errors, from about 0.15
(k = 20) to about 0.12 (k = 200). Even if Topk-OPT shows better performance than Cutoff-OPT, the
experimental results show that, also in practice, the two heuristics are far from being optimal.

The proposed OPT-Filtering algorithm optimally solves the filtering problem. The average time
spent by OPT-Filtering to filter the lists of results ranges from about 0.02ms (k = 20) to about
0.3ms (k = 200). It shows a valuable speedup from 2X to 5x with respect to the exact competitor
OPTpyn on both datasets. In particular, it achieves the best speedups on the two datasets when
employing small values of k. Therefore, the proposed exact algorithm provides a new optimal
filtering algorithm which is more efficient than the state-of-the-art optimal algorithm OPTpyx.

The proposed e-Filtering algorithm, driven by the parameter €, finds a (1-€) approximate filtering
solution. The approximation threshold € also drives the complexity of the algorithm, which takes
more time to compute a more accurate solution when requiring a lower approximation error. As
expected, e-Filtering achieves the best speedups with respect to OPTpyn when employing € = 0.1,
i.e., when admitting up to 10% of error. In this setting, the speedups achieved by e-Filtering with
respect to OPTpyn range from 6X to 17X, while the worst approximation error ranges from 0.08 to
0.04. e-Filtering achieves noteworthy speedups, from 5X to 9%, even when employing € = 0.001, i.e.,
when we admit up to 1%. of error. In particular, when € € {0.01,0.001}, the proposed e-Filtering
algorithm always found the optimal solution (zero error) on all queries of the two datasets, for all
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Table 4. Average filtering time in milliseconds, speedup (above) and worst approximation error (below)
achieved by all filtering algorithms on the AmazonRel dataset by setting k to 100 and by varying n.

n= 50,000 100,000 200,000 500,000
OPTpyn 1.263 8.562 17.480 43.924
Cutoff-OPT 0.204 (6x)  0.441 (19%) 1.490 (12x) 1.098 (40x)
(no-proven-approx) 0.20 0.04 0.02 0.00
Topk-OPT 0.057 (22x) 0.100 (86x) 0.183 (96x) 0.429 (102x)
(0.5-approx) 0.11 0.10 0.11 0.05

OPT-Filtering 0.165 (8x)  0.219 (39%) 0.310 (56x%) 0.570 (77x)

e-Filtering 0.056 (22x)  0.082 (105x) 0.126 (139x) 0.255 (172x)
(€=0.001) 0 0 0 0
e-Filtering 0.051 (25x)  0.076 (113x) 0.119 (146x%) 0.249 (177%)
(€=0.01) 0 0 0 0
e-Filtering 0.035 (36x) 0.050 (171x) 0.084 (207x) 0.180 (244x)
(e-0.1) 0.05 0.05 0.05 0.03

values k, while achieving speedups ranging from 5x to 11X over OPTpyn. The result highlights that
e-Filtering achieves better speedups and lower approximation errors than Topk-OPT and Cutoft-
OPT. Moreover, e-Filtering is also able to compute solutions that are very close to, or optimal, with
a significant reduction of the filtering time with respect to the state-of-the-art optimal algorithm.

Assessment by varying n

We assess the filtering performance of all algorithms on the AmazonRel dataset, which contains up
to 600,000 results per query, by varying the length of the list n € {50,000, 100,000, 200,000, 500,000}
and setting k = 100. To this end, for each value of n, we employ the first n results sorted by attribute
of each query and discard those queries with less than n results. We summarize in Table 4 the
results of this experiment on the AmazonRel dataset. As done for the previous analysis, we report
for each algorithm and length n: i) the average filtering time, ii) the speedup achieved over OPTpyn;,
and iii) the worst approximation error achieved on all queries.

The time required by OPTpyy to filter the lists significantly degrades when dealing with longer
lists: from about 1ms for lists of 50,000 items to about 44ms for lists of 500,000 items. The huge
variation of the filtering time required by OPTpyyn confirms that it is not always a feasible choice.
Cutoff-OPT and Topk-OPT are faster than OPTpyy, and the gap increases with longer lists. In-
deed, Cutoff-OPT speeds-up from 6x to 40x over OPTpyn, while Topk-OPT achieves even better
speedups, from 22X to 102X over OPTpyn. We also observe that the worst approximation errors
achieved by Cutoff-OPT and Topk-OPT decrease when dealing with long lists. Cutoff-OPT achieves
approximation errors from about 0.20 (n = 50,000) to exactly 0 (n = 500,000), while Topk-OPT
achieves lower errors, from about 0.11 (n = 50,000) to about 0.05 (n = 500,000).

The proposed OPT-Filtering exact algorithm achieves relevant speedups ranging from 8% (n =
50,000) to 77X (n = 500,000) over OPTpyy. It is thus much faster than the exact competitor OPTpyyn
and the gap increases when increasing the number of items to filter. Moreover, it is even faster than
the Cutoff-OPT heuristic filtering that does not offer approximation guarantees.
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Fig. 2. Worst approximation error of e-Filtering by varying € and k.

The proposed e-Filtering algorithm outperforms all competitors in terms of filtering time and
approximation error. When employing € = 0.1, i.e., when admitting up to 10% of error, e-Filtering
speeds-up the filtering from 36X to 244X with respect to OPTpyn, committing an approximation
error of about 0.05%. It also achieves important speedups from 22X to 172X over OPTpyny when
admitting up to 1%. of error, i.e., € = 0.001, outperforming all heuristic algorithms with much better
approximation guarantees. In particular, when employing € € {0.01,0.001}, e-Filtering always
found the optimal solution on all queries, for all values n. We also observe that the time spent by
Topk-OPT grows faster than the one of e-Filtering when increasing n. This result confirms the
theoretical analysis we provide in Section 5, where we show that the time complexity of Topk-OPT,
ie,® (nlogk + k?), has a factor log k more than the one of e-Filtering, which is © (n+k*log, ) )-

e-Filtering is the best performing method for all values of n and €. When employing € = 0.1,
e-Filtering is remarkably faster than the two heuristics achieving a speedup of up to 244X on lists
of 500,000 items. Moreover, its performance does not degrade significantly when requiring better
solutions. Indeed, when decreasing € to lower values, i.e., 0.01 and 0.001, e-Filtering always found
the optimal solution on all tested queries achieving a speedup of up to 177x over OPTpyn.

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0. Publication date: 2020.



Fast Filtering of Search Results Sorted by Attribute 0:21

DCG DCG-LZ

0.10

0.08
— €=0.1
w
£ 006 €=0.01
g €=0.001
& 0.04
= OPTpyn

0.02

0.00 : . ’ .

1000 6000 11000 16000 1000 6000 11000 16000
n n

Fig. 3. Average filtering time of e-Filtering and OPTpyyn by varying n and €.

6.3 Assessment of the efficiency-effectiveness trade-offs achieved by e-Filtering

We now analyze the performance of e-Filtering varying the trade-off parameter €, which drives the
efficiency of the algorithm through the granularity of the approximation. We present this analysis
employing the search quality metrics DCG and DCG-LZ, and assessing the behaviour of e-Filtering
when varying the problem parameters k and n. We report the results achieved on the 10,000 test
queries of the GoogleLocalRec dataset as we observed similar findings on the AmazonRel dataset.

Assessment by varying k

We show in Figure 1 the average filtering time in milliseconds (y-axis) required by e-Filtering when
varying € (x-axis) from 0.001 to 0.5. We perform this assessment for different values of the cut
k,ie., k € {20,50, 100,200}, that are interesting for real-world applications. The time required
by e-Filtering decreases when increasing the approximation threshold ¢, i.e., when requiring less
accurate solutions. The reported results are always below 0.15 milliseconds for all the tested
combinations of € and k, which is a negligible amount of time for a query processing pipeline. In
detail, e-Filtering takes from 0.05ms (e = 0.5) to 0.15ms (e = 0.001) when filtering the list to k = 200
results. We observe that the time required by the algorithm smoothly increases when requiring
approximation thresholds € between 0.005 and 0.1, for all values of k tested. e-Filtering is thus a
valuable filtering algorithm for online applications characterized by tight time constraints, even
requiring very small approximation errors. We also observe that the parameter k affects efficiency
more than the approximation threshold e. As we showed in Theorem 5.7, the time complexity of
e-Filtering is quadratic with respect to the parameter k. Figure 1 clearly shows this result: when k
moves from 100 to 200, the difference in time is greater than the difference in time achieved by
varying € of one order of magnitude.

To measure the approximation error achieved in practice by e-Filtering, we assess the worst
(maximum) approximation error achieved on all test queries. In Figure 2, we report the worst
approximation error (y-axis) achieved when varying € (x-axis) from 0.001 to 0.5. The dashed
diagonal line represents the theoretical approximation error, i.e., those points whose approximation
error is equal to the approximation threshold e. We notice that the approximation error achieved
in practice rapidly decreases when decreasing the approximation threshold €. In particular, it is
always far from the theoretical approximation error and, when requiring less than one per cent of
error, i.e., € = 0.01, the algorithm finds an optimal solution for all tested queries and for all values
of k. Therefore, in practice, e-Filtering achieves very good approximations of the optimal solution.
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Fig. 5. Average speedup of e-Filtering by varying € and k.

Assessment by varying n

We show in Figure 3 the impact of the number n of results to filter (x-axis) on the processing time
required by e-Filtering and OPTpyy (y-axis). We perform this assessment setting the cut k to 100
and varying n between 1,000 and 16,000: for each value of n, we consider only the first n results
sorted by attribute of each test query. Moreover, we test different values of the approximation
threshold e for e-Filtering, i.e., € € {0.1,0.01,0.001}. Figure 3 shows the average filtering time
required by e-Filtering and OPTpyn to process the 10,000 test queries. The figure clearly shows
that the time required by OPTpyn grows very rapidly when increasing n, while the time required
by e-Filtering increases very slowly in the same range. In detail, the time required by OPTpyyn
increases by 16X when passing from 1,000 to 16,000 results, while the time required by e-Filtering
only doubles in the same range. Experimental results highlight a valuable property of the proposed
algorithm: given an approximation threshold e, the filtering time required by e-Filtering is almost
constant when increasing n. e-Filtering is thus a valuable filtering algorithm whose performance
does not degrade significantly when filtering the long list of results.
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Speedup

In section 5.4 we show that the approximation threshold € guarantees the desired approximation
error by controlling the granularity of the pruning of e-Filtering, which in turn affect the number of
elements filtered by OPTpyn. In Figure 4, we show the average fraction of results of the list that are
pruned by e-Filtering (y-axis) by varying the approximation threshold e (x-axis). The figure shows
that the number of elements pruned by e-Filtering grows when decreasing the approximation
threshold € above 0.01. Specifically, the proposed algorithm filters out more than 95% of the elements,
on average, when requiring a cut k of up to 100. This massive reduction of the original list to less
than 5% of the elements boosts the filtering efficiency as it fastly reduces the amount of work done
by the slow OPTpyy algorithm.

Figure 5 reports the average speedup achieved by e-Filtering with respect to OPTpyy (y-axis)
by varying the approximation threshold e (x-axis). Results show a speedup of about one order
of magnitude for all tested combinations of parameters. In particular, e-Filtering with € = 0.01 is
from 9 to 18 times faster than OPTpyn when using the DCG metric, and from 6 to 9 times when
using the DCG-LZ metric. This difference is mainly due to the fact that the DCG-LZ metric is
computationally cheaper than the DCG metric. With k = 20 and € = 0.05, i.e., up to five per cent
of error, e-Filtering is 14 and 9 times faster than OPTpyn using the DCG and DCG-LZ metrics,
respectively, and the speedup further improves of about 30% when increasing € to 0.1, i.e., up to ten
per cent of error. Therefore, e-Filtering provides a wide range of efficiency-effectiveness trade-offs,
showing speedups of at least 5x over OPTpyy even in the most adverse conditions.

7 CONCLUSIONS

In this article, we presented two novel algorithms for solving the relevance-aware filtering problem,
i.e., OPT-Filtering and e-Filtering. OPT-Filtering is an exact filtering algorithm that efficiently finds
an optimal solution by using combinatorics and dynamic programming, while e-Filtering is an
approximate filtering algorithm that further improves the time complexity of OPT-Filtering by
using approximation to trade efficiency for effectiveness. Given an approximation threshold e,
e-Filtering finds a (1-¢)-optimal filtering, i.e., the relevance of its solution is at least (1-¢) times the
optimum. We proposed a comprehensive evaluation of OPT-Filtering and e-Filtering against three
state-of-the-art competitors, i.e., OPTpyN, Topk-OPT, and Cutoff-OPT, on two real-world public
datasets. Experiments show that OPT-Filtering speeds up the filtering from 2x to 77X over the
exact filtering OPTpyy, while e-Filtering speeds up the filtering up to 244X also outperforming the
heuristics. Furthermore, when decreasing the approximation threshold e to values smaller than
0.01, e-Filtering finds the optimal solution on all tested queries while achieving from 5X to 177X
speedup over OPTpyN.
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