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Abstract—Recently developed spatial and spatio-temporal1

model checking techniques have a wide range of application2

domains, among which large scale distributed systems as well as3

signal and image analysis. In the latter domain, automatic and4

semi-automatic contouring in Medical Imaging has shown to be5

a very promising and versatile application that may facilitate6

the work of professionals in this domain, while supporting7

explainability, easy replicability and exchange of medical image8

analysis methods. In recent work, spatial model-checking has9

been applied to the 3D contouring of brain tumours and related10

oedema in magnetic resonance images of the brain. In the present11

paper we address the contouring of 2D images of nevi. One of12

the challenges of contouring nevi is that they show considerable13

inhomogeneity in shape, colour, texture and size. In addition14

these images often include also extraneous elements such as hairs,15

patches and rulers. To deal with this challenge we explore the16

use of a texture similarity operator in combination with spatial17

logic operators. We investigate the feasibility of our technique18

on images of a large public database. We compare the results19

with associated ground truth segmentation provided by domain20

experts; the results are very promising, both from the quality21

and from the performance point of view.22

Index Terms—Spatial Logics; Model Checking; Medical Imag-23

ing; Nevi;24

I. INTRODUCTION AND RELATED WORK25

A nevus is a visible, usually small and benign, circum-26

scribed lesion of the skin. Unfortunately, in some cases these27

are hard to distinguish from their malignant counterpart known28

as Melanocytic nevus. Melanoma is a very serious form of29

skin cancer. It may be lethal if the disease is not recognised30

in a very early stage. In Europe alone melanoma causes over31

20,000 deaths each year [21]. One of the difficulties is that32

reliable early detection requires highly trained specialists but33

in many countries there is only a limited number of such34

specialists available. It is therefore no surprise that there is35

much interest in automated systems that can help recognising36

the disease reliably and at an early stage so that more lives37

could be saved and the number of unnecessary biopsies can38

be reduced [17].39

Part of this work has been developed in the context of the Italian MIUR-
PRIN 2017 project IT MaTTerS: Methods and Tools for Trustworthy Smart
Systems” and was partially supported by POR FESR 2014-2020 project
STINGRAY (SmarT station INtelliGent RAilwaY). The names of the authors
of the present paper are listed in the front-page in alphabetical order. All co-
authors have contributed equally to the work described in the present paper
and to the development of the paper.

The most popular and well-performing automated tech- 1

niques for the diagnosis of melanoma at the moment rely 2

on deep learning [17]. In this paper we take a different 3

approach based on recently developed spatial model checking 4

techniques, in particular for the contouring or segmentation of 5

nevi, which is one of the sub-tasks involved in the diagnosis 6

of melanoma. In our previous work on (semi-) automatic 7

contouring using spatial model checking techniques for the 8

contouring of various kinds of brain tissues and brain tu- 9

mours [2], [4]–[6] we have shown that such techniques can 10

reach a segmentation quality that is competitive with state- 11

of-the-art techniques, while supporting explainability, easy 12

replicability and exchange of medical image analysis methods. 13

The segmentation of nevi poses additional challenges because 14

dermoscopic images of nevi tend to be very inhomogeneous 15

in size, colour, contrast, location and kind of nevus/lesion and 16

the presence of additional objects such as coloured patches, 17

hairs, shadows and other optical effects. In the domain of 18

image analysis, model checking exhibits good scalability, with 19

respect to its classical applications in System Verification (for 20

instance, operating in a few seconds on images containing 21

about 9 millions of voxels). Images are explicitly described 22

by their voxels, therefore the so-called “exponential blowup” 23

of model checking is not an issue in this context (in contrast, 24

systems are usually described via process languages, and the 25

semantics of parallel processes may give rise to models that 26

grow exponentially with their descriptions). 27

Spatial (and spatio-temporal) model checkers use high- 28

level specifications written in a logical language to describe 29

spatial properties in order to automatically and efficiently 30

identify spatial patterns and structures of interest. The ori- 31

gins of spatial logic can be traced back to the forties of 32

the previous century when McKinsey and Tarski recognised 33

the possibility of reasoning on space using topology as a 34

mathematical framework for the interpretation of modal logic 35

(see [1] for a thorough introduction). In [13], [14] the Spatial 36

Logic for Closure Spaces (SLCS), and related efficient model 37

checking algorithms, have been proposed that use closure 38

spaces [22]–[24], [34], a generalisation of topological spaces, 39

as the underlying model. In [12] a spatio-temporal logic, 40

combining Computation Tree Logic with the spatial operators 41

of SLCS was introduced. Spatial and spatio-temporal model 42

checking have recently been applied in a variety of domains, 43



ranging from Collective Adaptive Systems [11], [15], [16] to1

signals [33] and medical images [2]–[6].2

Several proposals of use of computational methods for the3

analysis of medical images are available in the literature.4

Computer-Aided Diagnosis (CAD) aims at the classification5

of areas in images, based on the presence of signs of specific6

diseases [19]. Image Segmentation [25] is focused on the iden-7

tification of areas that have specific features or perform specific8

functions. Automatic contouring of Organs at Risk or target9

volumes [7] is specifically devoted to supporting radiotherapy10

applications. Finally, specific indicators can be computed11

from the acquired images that can enable early diagnosis—12

or the understanding of microscopic characteristics of specific13

diseases—or can help in the identification of prognostic factors14

to predict a treatment output [10], [41]. In [26] spiral electric15

waves—a precursor to atrial and ventricular fibrillation—16

are detected and specified using a spatial logic and model-17

checking tools. The formulas of the logic are learned from18

the spatial patterns under investigation and the onset of spiral19

waves is detected using bounded model checking. In [28]20

a logic called Spatial-Temporal Logic (SpaTeL) is defined21

that is a unification of signal temporal logic (STL) and tree22

spatial superposition logic (TSSL). The logic can be used for23

describing high-level spatial patterns that change over time.24

In our previous work on the use of spatial model-checking25

for the analysis of medical images mentioned earlier, we26

focused on image segmentation, in particular for the identifica-27

tion of glioblastomas—which are the most common malignant28

intracranial tumours—but also of regions of interest in healthy29

organs [5].30

In this paper we investigate the feasibility of the application31

of a technique based on SLCS for the analysis of images32

of nevi from a public database. One of the challenges of33

contouring nevi is that they show considerable inhomogeneity34

in shape, colour, texture and size. In addition these images35

often include also extraneous elements such as hairs, patches36

and rulers.37

We show that, despite the challenges mentioned above,38

such images can be analysed in a semi-automatic way, by39

taking profit of the intrinsic rigour of a logic-based approach,40

using an efficient implementation of spatial model-checking41

algorithms. We compare the results with associated ground42

truth segmentation provided by domain experts; the results43

are very promising, both from the quality and from the44

performance point of view.45

The public dataset we used was released by the International46

Skin Imaging Collaboration (ISIC) for the 20161 International47

Symposium on Biomedical Imaging (ISBI 2016) challenge ti-48

tled “Skin Lesion Analysis toward Melanoma Detection” [17].49

This dataset contains 900 annotated dermoscopic images,50

obtained by specialised high-resolution imaging of the skin51

that reduces skin surface reflectance. Among this set are 17352

1We currently focus on the 2016 challenge data, which is a well-established
dataset with good ground truth, and a published leaderboard. In future work
we will test our approach against others datasets and the upcoming published
results of subsequent challenges.

images of melanomas. Each image in the dataset has been 1

segmented manually by experts and their segmentation result 2

is available as ground truth images, which makes comparison 3

with results of other state-of-the-art segmentation techniques 4

applied to the same dataset possible. The original challenge 5

consisted of three parts: Lesion Segmentation, lesion Dermo- 6

scopic Feature Extraction, and Lesion Classification. In the 7

present work we focus on lesion segmentation. 8

The outline of the paper is as follows. Section II provides 9

some background on spatial model checking, the spatial model 10

checker VoxLogicA and in particular its texture similarity 11

operator. Section III presents the spatial logic specification for 12

the segmentation of nevi and Section IV presents the model 13

checking results on the ISIC 2016 training and test datasets. 14

Finally, Section V presents the conclusions of this work. 15

II. BACKGROUND ON SPATIAL MODEL CHECKING 16

ImgQL (Image Query Language), first proposed in [2], 17

[6], is a spatial-logic language developed for the analysis 18

of medical images. It is based on SLCS (Spatial Logic for 19

Closure Spaces) [13], [14]. ImgQL is also the input language 20

for the spatial model checker VoxLogicA presented in [6]. 21

In this section we first recall the definition of the logic kernel 22

of ImgQL and the underlying basic notions and then we show 23

its extension supported by the tool. We refer to our earlier 24

work for further details on theoretical aspects and the spatial 25

model checking algorithms [2], [6], [13], [14]. 26

A. The logical kernel of ImgQL 27

SLCS is interpreted over closure spaces. A closure space— 28

CS for short—is a pair (X, C) where X is a set (of points) 29

and C : 2X → 2X is a function satisfying the following three 30

axioms: (i) C(∅) = ∅; (ii) Y ⊆ C(Y ) for all Y ⊆ X; (iii) 31

C(Y1 ∪ Y2) = C(Y1) ∪ C(Y2) for all Y1, Y2 ⊆ X . The interior 32

of a set Y ⊆ X is obtained by duality, i.e. I(Y ) = C(Y ) 33

where Y = X \Y is the complement of Y . Given any relation 34

R ⊆ X×X , (X, CR), with CR(Y ) = Y ∪{x | ∃y ∈ Y.y Rx}, 35

is a CS. In particular, a digital image can be modeled as a 36

finite CS where X is the set of voxels and R their (reflexive 37

and symmetric) adjacency relation2. 38

(N, Csucc) is the CS of the natural numbers N with the 39

binary successor relation succ = {(m,n) ∈ N2 | n = m+ 1}. 40

A (discrete) path over (X, C) is a continuous function3 from 41

(N, Csucc) to (X, C). 42

It is often convenient to equip the elements of X with 43

attributes in a given set A over a given set of values V ; an 44

attributed CS is a structure ((X, C),A) where (X, C) is a CS 45

and A : A×X → V , is the attribute evaluation function, such 46

that A(a, x) maps attribute (named) a of point x to its value in 47

V . For instance, if x is a voxel, then A(red, x) may represent 48

the intensity of red of x, and similarly for A(green, x) and 49

2All the theory and related model checkers work both for 2D and 3D even
though we use only 2D in the current work. Similarly, in the current work
we use the word ‘voxel’ both for 3D ‘pixels’ and for 2D pixels.

3A continuous function from CS (X1, C1) to CS (X2, C2) is a function
f : X1 → X2 such that f(C1(Y )) ⊆ C2(f(Y )) for all Y ⊆ X1.



A(blue, x). Attribute values can be used in expressions α1

over V ; consequently function A is assumed lifted to such2

expressions in the standard way.3

In this paper we will use distance CS, i.e. structures4

((X, C), d) where d : X × X → R≥0 ∪ {∞} is a distance5

function4, i.e. it satisfies d(x, y) = 0 if and only if x = y;6

d is lifted to sets in the usual way: d(x, ∅) = ∞ and for7

∅ ⊂ Y ⊆ X d(x, Y ) = inf{d(x, y) | y ∈ Y }.8

ImgQL is interpreted over attributed distance closure mod-9

els, i.e. structures ((X, C), d,A,V) where (X, C) is a CS, d10

and A are the distance and the attribute evaluation functions,11

respectively, and V : P → 2X is a valuation which maps the12

atomic predicates of a given set P to the points satisfying13

them. In the sequel we recall the formal definition of the14

logical kernel of ImgQL:15

Def. 1: For given set P of atomic predicates p, and interval
I of R, the syntax of ImgQL is the following:

Φ ::= p | ¬Φ | Φ1 ∧ Φ2 |
→
ρ Φ1[Φ2] |

←
ρ Φ1[Φ2] | DIΦ.

Defined predicates are elements p of P for which a defining16

equation p := α is given, where α is an expression.17

Satisfaction M, x |= Φ of a formula Φ at point x ∈ X
in model M = (((X, C), d),A,V) is defined recursively on
the structure of formulas, where [[Φ]]M is the set {x ∈ X |
M, x |= Φ} of points satisfying Φ inM, π is a path in (X, C)
and `, j are indexes in (N, Csucc):

M, x |= p ∈ P ⇔ x ∈ V(p)
M, x |= ¬Φ ⇔ M, x |= Φ does not hold
M, x |= Φ1 ∧ Φ2 ⇔ M, x |= Φ1 and M, x |= Φ2

M, x |=
→
ρ Φ1[Φ2] ⇔ there are π, ` s.t. π(0) = x,

M, π(`) |= Φ1, and π(j) |= Φ2

and for all j s.t. 0 < j < `

M, x |=
←
ρ Φ1[Φ2] ⇔ there are π, ` s.t. π(`) = x,

M, π(0) |= Φ1, and π(j) |= Φ2

and for all j s.t. 0 < j < `
M, x |= DI Φ ⇔ d(x, [[Φ]]M) ∈ I

Whenever p is a defined predicate with defining equation p :=18

α, we extend the satisfaction relation by letting x ∈ V(p) if19

and only if A(x, α) is true. •20

Classical derived operators are defined as usual: ⊥ ≡ p∧¬p,
> ≡ ¬⊥, Φ1 ∨Φ2 ≡ ¬(¬Φ1 ∧¬Φ2) etc. In addition, we have
the following more specific derived operators:

NΦ ≡
←
ρ Φ[⊥]

Φ1 S Φ2 ≡ Φ1 ∧ ¬
→
ρ ¬(Φ1 ∨ Φ2)[¬Φ2]

touch(Φ1,Φ2) ≡ Φ1∧
→
ρ Φ2[Φ1]

grow(Φ1,Φ2) ≡ Φ1 ∨ touch(Φ2,Φ1)
smoothen(r,Φ1) ≡ D<r(D≥r¬Φ1).

Intuitively, a point x satisfies NΦ if it is near Φ, i.e. if it21

can be reached in one step from a point laying in [[Φ]]; it is22

4Several distance functions are defined in the literature; the specific distance
to be used depends on the application. The interested reader is referred to [2].
In this work we use the Manhattan distance where 1 voxel is the unit distance.

easy to see that M, x |= NΦ if and only if x ∈ C([[Φ]]M). A 1

point x satisfies Φ1 S Φ2 if it lays in an area, where all points 2

satisfy Φ1, that is surrounded by points satisfying Φ2, i.e. it is 3

impossible to find a path starting from x that can reach a point 4

satisfying neither Φ1 nor Φ2, without first passing through a 5

point satisfying Φ2
5. The meaning of touch(Φ1,Φ2) should 6

be clear. A point satisfies grow(Φ1,Φ2) if it satisfies Φ1 or 7

it lays in a path of points all satisfying Φ2 and leading to a 8

point satisfying Φ1. A formula smoothen(r,Φ1) is satisfied 9

by points that are at a distance of less than r from a point that 10

is at least at distance r from points that do not satisfy Φ1. This 11

operator works as a filter; only contiguous areas satisfying Φ1 12

that have a minimal diameter of at least 2r are preserved; 13

these are also smoothened if they have an irregular shape 14

(e.g. protrusions with a width that is less than the indicated 15

distance). 16

We close this section with the description of an additional 17

logical operator of ImgQL, namely the Texture Analysis opera- 18

tor 44 introduced in [6]. Texture Analysis (TA) is an approach 19

used for finding patterns in (medical) images. The approach 20

has proved promising in a large number of applications in 21

the field of medical imaging [8], [18], [31], [32]; in par- 22

ticular it has been used in Computer Aided Diagnosis [29], 23

[30], [42] and for classification or segmentation of tissues 24

or organs [9], [35], [37]. The ImgQL TA operator 44 uses 25

first order statistical methods6 and differs from those in the 26

classical setting, e.g. [39], [40], where the various moments 27

(mean, variance etc.) of distributions of the two pictures to 28

be compared are analysed. In ImgQL, instead, the statistical 29

distributions—actually the histograms, as we will see below— 30

of the two pictures are compared directly, using, as similarity 31

measure, their cross-correlation (also called Pearson’s corre- 32

lation coefficient). 33

The intuitive semantics of 44 is presented schematically 34

in Figure 1. Let M represent the image of the figure and 35

suppose we want to study the similarity of a relevant area, 36

laying around a point x ofM, and a sample area of interest— 37

also in M—specified by a ImgQL formula Φ. In addition, 38

suppose the feature that makes the points around x relevant 39

is represented by the (numeric) values of a certain attribute, 40

say a, and, similarly, the interesting feature of the points in 41

[[Φ]]M is coded in attribute b, that can—but not necessarily 42

need to—be the same as a. Let us focus on the sample area 43

of interest; a common representation of the distribution of the 44

values in [[Φ]]M is the histogram HΦ of [[Φ]]M, with respect 45

to the attribute of interest b. In such a histogram, the range of 46

values of the attribute is split into adjacent intervals of equal 47

width—called bins—and for each bin, say j, HΦ(j) is the 48

total number of points that have a value of b falling in j. A 49

point x is considered similar to the sample area of interest 50

5Note that in [2], [6], [13], [14] N and S (denoted by U in [13]) have been
presented as basic operators while reachability operators have been defined
as derived from the formers.

6First order statistical methods are statistics based on the probability
distribution function of the intensity values of the pixels (of parts) of an
image.
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Fig. 1: Illustration of the ImgQL TA operator 44

[[Φ]]M if the local histogram Hx of the relevant area around1

x, with respect to attribute a, correlates sufficiently with HΦ.2

Of course, the values of the attributes a and b must be of the3

same type and the two histograms must have the same number4

of bins.5

In the sequel we formalise the notion of histogram, with
reference to a model M = ((X, C),A,V), and we recall the
definition of the satisfaction relation for the44 operator. Given
set of points Y ⊆ X , attribute g, numeric values m,M ∈ R,
with m < M , and k ∈ N with k > 0, the histogram Hm,M,k

Y,g

of the distribution of the numeric values of attribute g in Y , in
the interval [m,M ], with k bins, and step size ∆ = M−m

k , is
the function that, for each j ∈ {1, . . . , k}, yields the number of
points in Y with the value of attribute g laying in the interval
associated with bin j, namely

Hm,M,k
Y,g (j) = |{y ∈ Y | (j − 1) ·∆ ≤ A(y, g)−m < j ·∆}|.

The definition of 44 is based on the notion of histogram
cross-correlation, which, in turn, uses the notion of mean. Let
h, h1, h2 : {1, . . . , k} → N be histograms; the mean h of
h is the value 1

k

∑k
j=1 h(j); the cross-correlation coefficient

r(h1, h2) of h1 and h2 is defined as follows:

r(h1, h2) =

∑k
j=1

(
h1(j)− h1

) (
h2(j)− h2

)√∑k
j=1

(
h1(j)− h1

)2√∑k
j=1

(
h2(j)− h2

)2 .
The coefficient is normalised so that −1 ≤ r(h1, h2) ≤ 1;6

r(h1, h2) = 1 indicates that h1 and h2 are perfectly correlated7

(that is, h1 = αh2 +β, with α > 0); r(h1, h2) = −1 indicates8

perfect anti-correlation (that is, h1 = αh2 + β, with α < 0).9

On the other hand, r(h1, h2) = 0 indicates no correlation7.10

In order to characterise the relevant area around a point x to11

be compared with the ‘area of interest’, the notion of sphere12

of radius r centred in x, S(x, r) is used, that is defined in the13

usual way S(x, r) = {y ∈ X | d(x, y) ≤ r}.14

We now have all the ingredients for completing the defi-
nition of the logical kernel of ImgQL. We extend the syntax
given in Def. 1 with 44./c

[
m M k
r a b

]
, where m,M, k are

as above, a and b are attribute names, c ∈ [−1, 1] and ./∈
{=, <,>,≤,≥}. The definition of the satisfaction relation is

7Note that normalisation makes the value of r undefined for constant
histograms, having therefore standard deviation of 0; in terms of statistics,
a variable with such standard deviation is only (perfectly) correlated to itself.
This special case is handled by letting r(h1, h2) = 1 when both histograms
are constant, and r(h1, h2) = 0 when only one of the h1 or h2 is constant.

extended correspondingly, with the following clause, where
ha(j) = Hm,M,k

S(x,r),a(j), hb(j) = Hm,M,k
[[Φ]]M,b

(j)(j):

M, x |= 44./c

[
m M k
r a b

]
Φ⇔ r(ha, hb) ./ c.

So 44./c

[
m M k
r a b

]
Φ compares the region of the space 1

constituted by the sphere of radius r centred in x against the 2

region characterised by Φ. The comparison is based on the 3

cross correlation of the histograms of the two regions with 4

respect to the chosen attributes, namely attribute a for the 5

points around x and attribute b for the points that satisfy Φ. 6

Both histograms share the same interval ([m,M ]) and the same 7

bins (1, . . . , k). 8

B. The VoxLogicA spatial model checker 9

VoxLogicA8 is a spatial model-checker for ImgQL 10

that is specialised for digital image analysis. It is a global 11

spatial model-checker in the sense that, given a model M 12

(i.e. a digital image) and a formula Φ, it computes the 13

set [[Φ]]M of all voxels in the image that satisfy Φ. Such 14

a set can be, and usually is, represented by a boolean 15

image—i.e. a closure model of the same dimension and size 16

of M, where each point is assigned the value true if the 17

corresponding voxel in M satisfies Φ, and false otherwise. 18

Actually, this feature is pushed forward in VoxLogicA so 19

that one can obtain a resulting “grayscale” image – namely, 20

an image where each point has a numerical value, that may 21

denote, for instance, the cross-correlation score computed for 22

the verification of a 44-formula on the corresponding voxel 23

ofM. This is precisely what is done in the following example: 24

25

let scores = crossCorrelation(5,inty,inty,sample,min(inty),max(inty),15) 26

27

where sample is a formula characterising the sample portion of 28

the image at hand and every point of scores will be associated 29

with the score of the correlation between the intensity (inty) 30

histogram of the sphere of radius 5 centred in the correspond- 31

ing voxel of the image and intensity histogram of the sample 32

area in the image, both histograms having 15 bins. 33

Functions and predicates can be defined in VoxLogicA 34

in the usual way. For instance 35

36

let strongCorr(r,a,b,F,m,M,k,c) = crossCorrelation(r,a,b,F,m,M,k) > c 37

38

is the VoxLogicA equivalent of 44>c

[
m M k
r a b

]
F so that 39

40

let interesting = strongCorr(5,inty,inty,sample,min(inty),max(inty),15,9.8) 41

42

returns in interesting a boolean image where the value true 43

is associated to each voxel corresponding to a point in the 44

current image which is the centre of a sphere of radius 5 the 45

intensity of which has a high—higher than 9.8—correlation 46

with the sample portion of the current image, and false to 47

any other point. 48

8VoxLogicA is available at https://github.com/vincenzoml/VoxLogicA.
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Fig. 2: Example images from the ISIC 2016 dataset illustrating
the inhomogeneity of nevi. They also differ greatly in resolu-
tion, e.g. the size of (a) is 486 KB and that of (f) 11,3 MB
(compared in .png format).

The following additional commands are available in1

VoxLogicA (more details can be found in [6]):2

• load x = “s” loads an image from file “s” and binds it to x3

for subsequent usage;4

• save “s” e stores the image resulting from evaluation of5

expression e to file “s”;6

• print “s” e prints to the log the string s followed by the7

numeric, or boolean, result of computing e;8

• import “s” imports a library of declarations from file “s”;9

Algorithmic complexity: The asymptotic algorithmic com-10

plexity of the implementation of ImgQL primitives in11

VoxLogicA is linear in the number of voxels, with the12

exception of crossCorrelation, which has complexity O(r · n),13

where n is the number of voxels, and r is the radius of14

the ‘area of interest’ around voxel x. For further details we15

refer to [6]. Note that in spatial model-checking there is no16

risk of exponential state space explosion, because there is no17

notion of behaviour in the models, therefore there are no18

concerns related to the interleaving execution semantics of19

parallel components.20

III. SEGMENTATION OF NEVI WITH VOXLOGICA21

As mentioned briefly in the introduction, a major issue of22

the segmentation of nevi is their great variability in appearance23

and the inhomogeneity of the dermoscopic images themselves.24

Nevi may show very different colour ranges, also within the25

same nevus, have different sizes, can be more or less regular,26

appear on more or less regular skin where hairs or sebaceous27

follicles may be present as well. Furthermore, the images28

themselves also show quite a variety and may be of different29

size, showing black corners, rings, or shadows due to the30

lenses used, showing more or less contrast and intensity or31

the presence of patches near the nevus. The images in Fig. 232

show a few examples of this inhomogeneity as encountered in33

the 2016 ISIC dataset9.34

9See: https://www.isic-archive.com/#!/topWithHeader/onlyHeaderTop/gallery

A. Datasets and Methodology 1

A large set of dermoscopic images is available from the 2

ISIC gallery9. We will refer to the ISIC gallery dataset as 3

ISIC Gallery set. This dataset includes two sets of images that 4

were made available for the ISIC 2016 Challenge10. One set 5

consisting of 900 images for training purposes and a test set 6

consisting of 379 images. From here onward we will refer to 7

these datasets as training set and test set, respectively. For the 8

latter set, results on the quality of the segmentation procedures 9

that participated to the 2016 Challenge are available in the lit- 10

erature [17], [27]. All sets provide both the original image and 11

an associated “ground truth” segmentation. The ground truth 12

segmentation has been performed by expert dermatologists. 13

Given the wide variability in dermoscopic images of nevi, as 14

described earlier, it is not easy to select a representative subset 15

of images to start from for the development of an ImgQL 16

specification for their segmentation. As we shall see, the core 17

focus of our approach is to distinguish skin tissue from nevus 18

tissue with the help of the texture analysis and other spatial 19

operators. Consequently, in a first phase we considered only 20

images with single compact nevi and a fair amount of healthy 21

skin around it, as well as a reasonably good contrast between 22

skin and nevus. In particular, we started the development of 23

the specification by considering suitable images from the first 24

10 (and then, in the second phase, the first 50) images of 25

the ISIC Gallery set11, assuming they would be sufficiently 26

representative for a considerable sub-class of images in the 27

training and test sets. In the sequel, we will refer to such a 28

dataset as the first10 set and first50 set, respectively. 29

The results we obtained were very promising and so, in 30

the third phase, we continued analysing further images from 31

the Gallery set, having additional features, e.g. the presence 32

of coloured patches and the presence of hair, improving the 33

specification. The obtained extended specification, unmodified, 34

generalised nicely to the much larger datasets used in the 35

final phase, where we applied the resulting specification to 36

both the training and test sets, in order to get further insight 37

in the quality and performance of the analysis using our 38

specification. The current specification does not yet cover all 39

possible features of the images. In particular, images showing 40

nevi consisting of several disconnected parts, nevi covering a 41

very large part of the image or images with very low contrast 42

are not giving optimal results. We leave those for future study. 43

B. Nevus Segmentation using Texture Analysis 44

Since there is very little one can take for granted in the 45

dermoscopic images in the ISIC datasets, we start from a very 46

coarse heuristics to initialise the segmentation procedure. In 47

the following we illustrate the core steps of this segmentation 48

procedure. In particular, we describe how the statistical texture 49

10These datasets can be found at https://challenge.isic-archive.com/data
11Specifically, images named ISIC 000000 to ISIC 0000050, excluding

images 4, 11, 24, 26, 31, 33 and 50. Images 4, 26 and 33 overlap with the
border, images 31 and 50 have multiple nevi; for image 11, due to a technical
issue, we had the wrong ground truth, namely that of image 00; image 24 has
very low contrast.



analysis operator plays a predominant role in approximating a1

nevus. The main aim is to distinguish voxels that are part of the2

background (skin) from those that are likely part of the nevus.3

First we assume that our task is to find all voxels that are likely4

to be part of the background, so the healthy skin surrounding5

the nevus. We assume furthermore that at least part of the6

nevus is somewhere in the middle of the image so that we7

can take an area relatively close to the border as a sample of8

the background. Let Φ be the ImgQL formula that specifies9

such an area, shown in Fig 3b as a semi-transparent overlay in10

cyan on the original image—later in the paper we will show11

Φ in detail. Note that, in this phase of the analysis, we work12

with the intensity of the voxels rather than their colour or other13

attributes.14

At this point, statistical texture analysis is used. As de-15

scribed in Section II, the histogram HΦ of the distribution16

of the intensity values of all the voxels that satisfy Φ is17

constructed. Assume that HΦ has k bins, and a minimum18

and maximum value that correspond to the minimum and19

maximum pixel intensity in the whole image.20

The local histogram Hx is computed for each pixel x in the21

image by taking the intensity of all the pixels that are present22

in a radius rad around pixel x. This second histogram has the23

same number of bins and minimal and maximal values as those24

of histogram HΦ. The Pearson’s correlation coefficient of the25

histograms HΦ and Hx provides normalised values between26

-1 and +1. A value equal to 1 indicates perfect correlation27

between the histograms, a value equal to -1 indicates perfect28

anti-correlation. A score of value 0 indicates that there is no29

correlation between the histograms. The result for Fig. 3a is30

shown in Fig. 3c as a semi-transparent yellow overlay where31

higher values of the score correspond to a brighter yellow32

hue. The associated histogram of the cross-correlation scores33

shown in Fig. 3c are shown in Fig. 3f. Finally, in Fig. 3d, those34

pixels with a cross-correlation score above 0.05 are shown as35

an overlay in pink.36

Thus, this particular use of the texture operator provides37

a rather good first approximation of the area covered by38

the nevus. Clearly, it is not perfect yet, as also some other39

areas remain that are not identified as part of the background,40

whereas they should be. But these areas can in principle41

be identified by other means, such as their relative position42

with respect to the border of the image and other aspects43

that distinguish them from the nevus itself. This is done in44

Specification 1, shown in Section III-C1. Specification 1 uses45

a predicate, patch and a derived operator relDist. The former46

is a predicate specifying voxels that are part of a patch. The47

latter is a derived operator that defines the relative distance48

in an image, depending on its size. The definition of both the49

operators are provided and explained after Specification 1.50

Moreover, in Section IV we will use common similarity in-51

dexes to assess the quality of the segmentation. These indexes52

are defined directly in ImgQL and shown in Specification 5.53

They provide numeric support in the form of values of several54

commonly used similarity indexes that allow for an objective55

comparison with expert ground truth.56

(a) (b) (c) (d)

(e) (f)

Fig. 3: The texture analysis operator of VoxLogicA. Fig. 3a
Original image of nevus (image ISIC-0000010 of the ISIC
Gallery set) and related histogram of voxel intensity in Fig. 3e.
Sample Φ of background voxels shown in cyan (Fig. 3b).
Cross-correlation score (in yellow) for surrounding of each
voxel w.r.t. histogram of background sample Φ. The higher the
score the higher the intensity of the yellow colour of voxels
(Fig. 3c). The distribution of these cross-correlation scores is
shown in Fig. 3f. Voxels with a cross-correlation score of more
than 0.05 are shown in pink in Fig. 3d.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Illustration of segmentation procedure in Specifica-
tion 1 of image ISIC 0008294 (also shown in Fig 2 (e)).
Figure (a) shows the nevus intensities (greyscale); Figures (b)
to (h) are each associated with a specific formula, as indicated
below, with the exception of (d) where the score is shown
as a varying intensity of yellow: (b) blackBorder (red); (c)
bgSample (blue); (d) bgSimScore (yellow); (e) bgSim (green);
(f) preSeg (magenta); (g) nevSegV0 (cyan); (h) nevSegV0 (cyan)
and ground truth (blue).

Note that the VoxLogicA procedure provided in the sequel 1

does not require any particular preprocessing of the images as 2

provided by the ISIC 2016 dataset, except for format conver- 3

sion for the test data (from jpg format to png format) and 4

colour conversion for the ground truth data (from grayscale to 5

RGB). So we do not use any pre-processing transformations 6

that, for example, remove hairs or black corners or borders of 7

the image or that increase contrast or normalise the size of the 8

images. 9



ImgQL Specification 1: Nevus segmentation specification
1 import "stdlib.imgql"

2 // Part a: Get images and intensities
3 load groundTruth = "$INPUTDIR/$NAME_seg_RGB.png"
4 load nevus = "$INPUTDIR/$NAME.png"
5 let nevusImgIntens = intensity(nevus)
6 let groundIntens = intensity(groundTruth)

7 // Part b: Define auxiliary operators
8 let similarTo(a,rad) =

crossCorrelation(rad,nevusImgIntens,
nevusImgIntens,a,min(nevusImgIntens),
max(nevusImgIntens),15)

9 let imgPerc = percentiles(nevusImgIntens, !blackBorder,
0.5)

10 let brightest(p) = imgPerc >. p

11 // Part c: Obtain sample of skin
12 let almostBlack = nevusImgIntens <. 40.0
13 let blackBorder = grow(distleq(relDist(5),border),

almostBlack)
14 let bgSampleWidth = relDist(200)
15 let bgSample = (distleq(bgSampleWidth, blackBorder) &

(!blackBorder) & (!patch)) | (brightest(0.7) &
(!patchBright))

16 let onlySkinOrNevus = (! patch) & (! patchBright) & (!
blackBorder)

17 let bgSimScore = similarTo(bgSample, relDist(5))
18 let bgSim = (bgSimScore >. 0.05) & onlySkinOrNevus

19 // Part d: Preliminary nevus segmentation
20 let preSeg1 = smoothen(((!border) S (bgSimScore <.

0.25)) & onlySkinOrNevus & (! brightest(0.7)),
relDist(10))

21 let preSeg2 = preSeg1 & !touch(preSeg1, border |
blackBorder)

22 let preSeg = ifB(volume(touch(preSeg1, border |
blackBorder) & !distleq(relDist(300), border))
.=.0,preSeg2, preSeg1)

23 let nevSeg = smoothen(maxvol(preSeg), relDist(3))
24 let nevSegSmooth = smoothen(maxvol(preSeg), relDist(10))
25 let nevSeg1 = maxvol(nevSeg & nevSegSmooth)

26 // Part e: Extend pre-seg with similar nevus points
27 let nevSimScore = similarTo(nevSeg1, relDist(15))
28 let nevSim = nevSimScore >. 0.2
29 let nevSegV0 = grow(nevSeg1,

distleq(relDist(10),nevSim)) & !patch & !patchBright

C. Explanation of the full procedure1

1) Segmentation procedure: The nevus segmentation pro-2

cedure consists of five parts as indicated in Specification 1. We3

describe the procedure in more detail below making reference4

to Specification 1.5

Part a: After importing the standard library (stdlib.imgql), con-6

taining derived VoxLogicA operator definitions, and loading7

the image with ground truth and the related nevus image (lines8

3-4), two abbreviations are introduced: nevusImgIntens for the9

nevus image and groundIntens for the ground truth image (lines10

5-6). These (grayscale) images associate to each voxel its11

intensity (luminosity).12

Part b: In line 8 a similarity operator is defined with13

parameters a and rad; a defines the sample area (denoted by14

Φ in Section II) and rad defines the radius around each voxel15

x for the construction of the local histogram of x. In line 916

a grayscale image is defined where the standard percentile of17

intensity is associated to each voxel. This makes it possible18

to reason about the brightest points in the image using the19

function defined in line 10.20

Part c: The (intermediate) results of the segmentation21

procedure defined in the remaining part of the specification are22

illustrated in Fig. 4. Lines 12-13 specify the characteristics of 1

voxels that are part of the black corners that can be observed 2

in many images (in a similar way as shown in Fig. 2a and 3

Fig 2b). Such voxels should not be considered in the sample 4

of the skin texture. In line 12 voxels are specified that are 5

almost black, i.e. having an intensity below 40. Then (line 13) 6

only those almost black voxels are considered from which the 7

border can be reached exclusively ‘passing by’ further almost 8

black voxels, exploiting the grow operator. 9

In lines 14-15 a sample (bgSample) of the skin around the 10

nevus is specified, namely a sample of voxels that are most 11

likely part of the healthy skin without (or with very few) 12

voxels that are part of the nevus. This sample consists of 13

voxels that are at most at relative distance 200 (bgSampleWidth) 14

from the black border (lines 12-13). In line 17 the similarity 15

score of each voxel in the image w.r.t. the sample is computed 16

using the similarTo operator and saved as a grayscale image. 17

Line 18 characterises all voxels that have a cross correlation 18

score larger than 0.05. This line has been inserted only for 19

illustration purposes here to highlight the voxels with skin 20

texture; in Figure 4e we show this set of points (bgSim). 21

Part d: A preliminary segmentation is specified in line 20, 22

where we look for voxels that are not part of the border and 23

that are surrounded by voxels with a cross correlation score of 24

less than 0.25, a relatively small correlation score. The idea 25

is that, at the border of the nevus and the healthy skin, the 26

histograms of the area around those voxels represent in part 27

the skin and in part the nevus, which have in general rather 28

different intensity distributions. The cross correlation of such 29

histograms with the sample area of the skin can therefore be 30

expected to be quite small. The exact value of the threshold has 31

been established in an empirical way; it is the value that gives 32

on average good results for the subsets of the training dataset 33

used in the third phase (see Section III-A). For optimal results 34

on individual images this threshold value may differ slightly. 35

Of course, this pre-segmentation should exclude areas close 36

to the black border and in patches. The latter are used in some 37

images to indicate the position of nevus with little contrast (see 38

for example Fig. 2e and Fig. 2f). 39

There may also be other small darker areas on the skin that 40

are not part of the nevus. Therefore, in line 23, the preliminary 41

segmentation is refined by taking only the largest volume 42

(maxvol) smoothening the specified area removing small noise 43

and irregularities at the edge. Occasionally, there may be 44

darker areas that are not nevi but rather darker shadows in 45

the area of the borders. This is due to the way the nevus are 46

illuminated. These areas are removed in line 21 and 22. 47

In line 24 the same procedure of line 23 is repeated 48

with a larger smoothening factor. This is used to exclude 49

possible thin protrusions attached to the segmented nevus that 50

are originating from thin hairs or shadows. In line 25 the 51

intersection of these intermediate results is taken to preserve 52

the more detailed edge of the nevus and at the same time 53

to exclude some larger protrusions (i.e. several hairs grouped 54

together). nevSeg1 provides a first nevus segmentation. 55

Part e: In the last part (lines 27 - 29) of the segmentation 56



procedure we extend the segmentation obtained so far with1

points that are sufficiently similar to the nevus by growing the2

area with these points, or nearby points, that are not part of a3

patch.4

ImgQL Specification 2: Generating model checking results and
similarity scores

1 let manualSeg = groundIntens >. 0
2 save "$OUTPUTDIR/$NAME_nevSegV0.png" nevSegV0
3 save "$OUTPUTDIR/nevSegV0.nii.gz" nevSegV0
4 print "DICE V0" dice(nevSegV0,manualSeg)

2) Comparing segmentation with ground truth: In Spec-5

ification 2 the manual segmentation performed by domain6

experts (the ‘ground truth’) is defined as a predicate that is7

satisfied by voxels in the image of the ground truth where the8

intensity of the voxel is positive (line 1). In fact, manualSeg9

is a black and white image of the same size as the image10

of the nevus where the area indicated by the expert is white11

(intensity 255) and the rest black. The resulting segmentation12

(but also other intermediate results as those shown in Fig 4)13

can be saved in .png format or in the NIfTI (.nii) format.14

The latter format is used by various viewers used in medical15

imaging. We used the free viewer MRIcron12. The operator16

dice compares (line 4) the segmentation defined by nevSegV017

with the groundTruth giving as result a similarity score as18

defined in Specification 5. Further details on these scores are19

provided in the next section.20

3) Scaling distance: Specification 1 uses the relDist operator21

defined in Specification 3. The ISIC 2016 datasets contain im-22

ages of very different sizes. The relDist operator is introduced23

to scale the distance appropriately, with respect to a reference24

image. The size of the reference image is defined as the length25

of its perimeter, i.e. the number of voxels on its border. The26

reference image has a width of 1022 voxels and a height of27

767 voxels. The perimeter of the image being analysed can28

be found as the volume (i.e. number of voxels) that form the29

border (i.e. one voxel wide edge) of the image. The property30

border is a built-in operator of ImgQL. The scaling of the31

distance is the fraction between the length of the perimeter32

of the image under analysis and that of the reference image.33

4) Dealing with patches: Specification 1 also uses the34

predicate patch that is satisfied by voxels that are part of a35

patch. Patches are defined in Specification 4. Lines 1-3 define36

three quantitive images (matrixes) projecting the intensity37

of the blue, red and green part of the rgb-vector for each38

voxel of the image. Lines 6-10 define blue, red and green39

patches, respectively. These also cover intermediate hues such40

as yellow and orange. However, it is not enough to define41

the colour ranges of patches because nevi or skin may have42

occasionally colours in those ranges too (see for example43

Fig. 2a and Fig. 2b). Using further knowledge about the44

relative spatial position of patches (they are at the border of45

the image), their relative size (covering not more than 4046

12https://www.nitrc.org/projects/mricron

ImgQL Specification 3: Relative distances
1 let refImgPerimeter = 2 .*. (1022 .+. 767)
2 let imgSizeFactor = (volume(border) ./. refImgPerimeter)
3 let relDist(x) = (imgSizeFactor .*. x)

ImgQL Specification 4: Patches
1 let bNev = blue(nevus)
2 let rNev = red(nevus)
3 let gNev = green(nevus)
4 //— blue, red and green patches —
5 let patchBlue = distleq(relDist(5),(bNev > (rNev +. 30))

&
6 (bNev > (gNev)) & (bNev >. 150))
7 let patchRed = distleq(relDist(5),(rNev > (bNev +. 100))

&
8 (rNev > (gNev +. 20))) & (rNev >. 130)
9 let patchGreen = distleq(relDist(5),(gNev > (rNev +.

20)) &
10 (gNev > bNev) & (gNev >. 100))
11 let patchPart(x,y) = ifB(volume(x) .<. (y .*.

volume(tt)),x,ff)
12 let patchSample = patchPart(patchBlue,0.4) |

patchPart(patchRed,0.4) | patchPart(patchGreen,0.4)
13 let patchAtBorder =

touch(smoothen(patchSample,relDist(10)),
distleq(relDist(20),border))

14 let patch = ifB(ppM(patchAtBorder) .>. 0.5,
patchAtBorder, ff)

15 //— bright patches —-
16 let patchYW = touch(smoothen(brightest(0.75),

relDist(20)), distleq(relDist(20),border))
17 let patchSampleYW = patchPart(patchYW,0.4)
18 let patchBright = ifB((ppM(patchYW) .>. 0.3),

patchSampleYW, ff)

percent of an image) and their compactness (their Polsby- 1

Popper measure of compactness of a shape13, ppM, is at least 2

0.5), the specification patch is given in line 14. ifB is the boolean 3

if-then-else construct of VoxLogicA. The definition of ppM 4

is shown in Specification 5 (lines 6-8) in the next section. 5

Occasionally also white or very bright patches are used. These 6

are defined in much the same way, but starting from their 7

brightness rather than the specific colour (lines 16-18). 8

IV. RESULTS 9

In this section we assess the quality of the segmentation 10

results for nevSegV0 of Specification 1. A standard way to 11

do this is by using common similarity scores for comparing 12

our segmentation with the manual segmentation (ground truth) 13

by domain experts for each image of the ISIC datasets we 14

used. We address two questions. The first question concerns 15

the feasibility of the segmentation procedure proposed in the 16

previous section. The second question is how our results are 17

positioned with respect to the ISIC Challenge 2016. Before 18

presenting the results, we recall the main similarity indexes in 19

this field. 20

A. Similarity indexes 21

In the literature on medical imaging several indexes are 22

used to compare similarity between two segmentations of the 23

same image, in particular similarity between the manual and 24

automatic segmentation. Commonly used similarity measures 25

13Also known as “Isoperimetric quotient”.



are the Dice index, the Jaccard index and the accuracy index.1

These coefficients give a result between 0 (no similarity)2

and 1 (perfect similarity). Further similarity measures are the3

sensitivity (fraction of true positives, i.e. fraction of pixels that4

the segmentation and the ground truth have in common) and5

specificity (fraction of true negatives, i.e. fraction of pixels that6

are not identified by the segmentation and are also not part of7

the ground truth). For example a Dice index of around 0.9 is8

considered as indicating very good similarity. The Dice index9

(D) and the Jaccard index (J) are related: J = D/(2 − D).10

In general, the Dice index is the most relevant and mostly11

used in the literature; in the sequel, we will use the Dice12

index as the main similarity index. In Specification 5 these13

common similarity indexes are defined in ImgQL so that they14

can be calculated for each image segmentation during the15

analysis. Their definitions should be self-explanatory recalling16

that the operator volume(x) gives the number of voxels that17

satisfy property x. It must be noted though, that no unique18

‘gold standard’ for comparison exists because also manual19

expert markings have a considerable level of variability. For20

instance, in [17] it was found that the average Jaccard index of21

agreement between 3 pairs of clinicians that each segmented22

a subset of 100 images was 0.786.23

B. Feasibility of the VoxLogicA approach24

The first question concerns the feasibility to obtain, using25

our approach, segmentations of nevi of sufficiently good26

quality, in other words, with a Dice similarity score of around27

0.9 with respect to ground truth. To that purpose, we have run28

the nevSegV0 specification on all the images of the ISIC 201629

test set; note that no image from that data-set has been used30

for the development of the specification. In Table I we show31

the similarity scores (Dice) we obtained for the images in the32

ISIC 2016 test set and for those in the training set. The table33

shows that for almost half of the images in the test set we34

obtain a Dice score of 0.9 or higher. For 70% of them we35

have a very good Dice score of more than 0.8.36

So this shows that with our method we can, in principle,37

reach the required accuracy at least for a considerable number38

of individual images. Note also that the number of images for39

which we completely miss the nevus is very low; only four40

cases which amounts to only 1% of the total number. The fact41

that we do not reach a very high score for all images should42

not be a surprise, because, as we anticipated in Section III,43

the current version of the specification was not designed to44

be able to deal with all types of images. In particular our45

approach currently focuses on the feasibility of contouring46

single compact nevi with a fair amount of healthy skin around47

it and with a reasonably good contrast between skin and nevus.48

As shown in Table I, similar results have been obtained for49

the training set.50

C. Further results on the training and test datasets51

In Table II the mean values for the various indexes are52

shown for the segmentation with the nevSegV0 specification53

for the ISIC 2016 training and test sets. The table also shows54

test set training set

nevSegV0 number fraction
(of 379) number fraction

(of 900)
Dice > 0.9 175 0.46 398 0.44
Dice > 0.8 265 0.70 632 0.70
Dice > 0.7 307 0.81 742 0.82
Dice < 0.5 36 0.09 68 0.08
Dice = 0 4 0.01 6 0.01

TABLE I: Dice score distribution of the nevus segmentation
method nevSegV0 for the ISIC 2016 test and training set.

ImgQL Specification 5: Similarity indexes and the Polsby-
Popper measure

1 let dice(x,y) = (2 .*. volume(x & y)) ./. (volume(x) .+.
volume(y))

2 let jaccard(x,y) = dice(x,y) ./. (2 .-. dice(x,y))
3 let sensitivity(x,y) = volume(x & y) ./. (volume(x & y)

.+. volume((!x) & (y)))
4 let specificity(x,y) = volume((!x) & (!y)) ./.

(volume((!x) & (!y)) .+. volume((x) & (!y)))
5 let accuracy(x,y) = (volume(x & y) .+. volume((!x) &

(!y))) ./. (volume(x & y) .+. volume((!x) & (!y)) .+.
volume(x & (!y)) .+. volume((!x) & (y)))

6 let square(x) = x .*. x
7 let iboundary(x) = near(interior(x)) & !(interior(x))
8 let ppM(x) = (volume(x) .*. 4 .*. 3.14) ./.

(square(volume(iboundary(x))))

the average scores, for the test set, of the best performing 1

segmentation approach that participated in the ISIC 2016 2

Challenge [27]. 3

As was expected, our results show lower average values 4

than the best one, but that should not be a surprise as we 5

know that the current version of our segmentation procedure 6

is not designed to deal with all types of images. Nevertheless, 7

it confirms that we reached promising results. In particular 8

when considering the Jaccard scores of the results of other 9

teams that participated to the 2016 Challenge, shown in 10

the Challenge leaderboard14. The Jaccard scores for the 28 11

participating teams range from 0.468 to 0.843 on the Challenge 12

2016 test set. Our Jaccard score of 0.717 would position our 13

results between rank 15 and 16 (out of 28). Some of the 14

best performing segmentation approaches that participated to 15

the 2016 Challenge on segmentation are based on machine 16

learning approaches (see also [27], [36], [38]). 17

The values for sensitivity (SE) and specificity (SP) we 18

obtained with our specification are also very interesting. As 19

can be observed in Table II, for nevSegV0 the specificity score 20

(fraction of true negatives) is very good, and in line with that 21

of the best performing team. The sensitivity score (fraction 22

of true positives) is lower than the best score. This seems 23

to indicate that when we find the nevus, we do not always 24

manage to identify the entire nevus in an image. This is 25

again not a big surprise since we focused on compact and 26

connected nevi that are not covering a very large part of the 27

image. Visual inspection of the images in the training set for 28

which we obtain relatively low similarity scores confirms that 29

these images indeed show these problematic features. Fig. 5 30

14https://challenge.isic-archive.com/leaderboards/2016



Accuracy Dice Jaccard SE SP
V0: Mean Training set 0.902 0.818 0.726 0.810 0.965
V0: Mean Test set 0.899 0.809 0.717 0.802 0.960
2016 Best Mean Test set 0.953 0.91 0.843 0.91 0.965

TABLE II: Average similarity scores of nevSegV0 for images
of the ISIC 2016 training set (all 900 images) and test set
(all 379 images). 2016 Best Mean Test set gives the average
scores of the best team that participated to the ISIC 2016
Challenge [27].

illustrates some examples of segmentation using nevSegV0.1

D. Computational performance2

As previously mentioned, the analysed images show very3

high variability in size (e.g. in test set the image size4

varies from a minimum of 389,156 pixel to a maximum5

of 12,212,224 pixel). Such variability has an effect on the6

duration of the analysis. As shown in Fig. 6 the correlation7

between the execution time and the image size is linear. This is8

also confirmed by the analysis on the average time nevSegV09

needs to analyse a single pixel (execution time over image10

size) which is 0.006 ms per pixel with a standard deviation11

almost equal to zero (0.001). More in general, for the analysis12

of the test set (379 images) nevSegV0 took in total less than13

30 minutes with an average duration of 4 seconds per image.14

For the analysis we have used VoxLogicA version15

0.6.0 osx-x64 on an AMD Ryzen 7 2700 Eight-Core Processor16

with 32GB of memory. For the purpose of reproduction, the17

results for the datasets first10, first50, training and test are18

available in a git-repository15. The other datasets are available19

from ISIC.20

E. Explainability, replicability and exchangeability21

The illustration of the intermediate results of the segmen-22

tation procedure in Fig. 4 shows that with the spatial model-23

checking approach we have been using in this paper, each step24

15https://github.com/brocciagi/Spatial-Model-Checking-for-Nevus-
Segmentation

(a) (b) (c)

(d) (e) (f)

Fig. 5: Images and their segmentation (cyan) and ground truth
(blue): ISIC 0000002 (5a) resp. (5d), ISIC 0000043 (5b) resp.
(5e) and ISIC 0004309 (5c) resp. (5f).

Fig. 6: Execution times (in milliseconds) as the image size
(in pixels) varies needed for nevSegV0 to produce the final
segmentation.

in the segmentation procedure is ‘explainable’, meaning that 1

one can understand why a particular result is produced, based 2

on an unambiguous formal spatial logic specification. This is 3

one of the advantages of our approach. This approach also 4

enables one to further improve the segmentation procedure, 5

to discuss or exchange a particular part of the procedure 6

with domain experts and to compare different segmentation 7

procedures specified in ImgQL or use them to document a 8

particular analysis of a patient’s dermoscopic image. 9

Moreover, the resulting segmentations are amenable to more 10

detailed analysis of the nevus area itself. For example one may 11

extract further features such as a measure of the regularity of 12

its shape or texture, size and so on that may be relevant to the 13

diagnosis of nevi. This will be part of our future work. Note 14

also that the segmentation method can be calibrated to specific 15

individual images to obtain more precise results by tuning 16

the thresholds. This would lead to a semi-automatic form of 17

segmentation. Furthermore, this could also be a place where 18

machine learning, semi-automatic procedures and our logic- 19

based approach are bridged, as ML could be used to calibrate 20

the numeric parameters, without affecting either explainability 21

of the approach, or the possibility of a human re-calibrating 22

them in order to fine-tune the results. 23

V. CONCLUSIONS AND FUTURE WORK 24

We have shown how spatial model checking techniques 25

and the related tool VoxLogicA can be used efficiently 26

for the segmentation of nevi. Nevus segmentation based on 27

dermoscopic images is an important part of many auto- 28

matic procedures to diagnose malign skin tumours such as 29

Melanoma. To the best of our knowledge, this is the first time 30

that spatial model checking is applied to this specific domain. 31

Spatial model-checkers use high-level, often domain oriented, 32

logic languages to specify spatial properties. In this paper 33

we have presented a segmentation method combining spatial 34

operators inspired by the notion of closure spaces with more 35

domain oriented operators such as a texture similarity operator. 36

This first, rather simple method shows that an accuracy can 37



be obtained that is in line with the state-of-the-art in nevus1

segmentation, i.e. a Dice score above 0.9. It has also been2

shown that it obtains this high accuracy in 46% of 3793

images of the ISIC 2016 Challenge test set of dermoscopic4

images that is publicly available. An advantage of this spatial5

model-checking method is that the segmentation procedure is6

explainable and high-level. This makes the method amenable7

to further improvements by inspection of the intermediate8

results, exchange and discussion of the method specifications9

between domain experts, conservation of the method for the10

purpose of documentation of the analysis and independent11

replication by other experts.12

The results we obtained so far are very promising and future13

work is envisioned to increase the class of images for which14

accurate segmentation can be obtained in a similar spirit as we15

have shown how one can deal with the presence of patches16

or the presence of other artifacts in the images that are due17

to the way the images have been produced. The enormous18

inhomogeneity in this type of images, both for what concerns19

the nevi and the images themselves, remains a great challenge.20
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