
Re-Assessing the “Classify and Count”
Quantification Method

Alejandro Moreo[0000−0002−0377−1025] and Fabrizio
Sebastiani[0000−0003−4221−6427]

Istituto di Scienza e Tecnologie dell’Informazione
Consiglio Nazionale delle Ricerche

56124 Pisa, Italy
firstname.lastname@isti.cnr.it

Abstract. Learning to quantify (a.k.a. quantification) is a task con-
cerned with training unbiased estimators of class prevalence via super-
vised learning. This task originated with the observation that “Classify
and Count” (CC), the trivial method of obtaining class prevalence esti-
mates, is often a biased estimator, and thus delivers suboptimal quantifi-
cation accuracy. Following this observation, several methods for learning
to quantify have been proposed and have been shown to outperform CC.
In this work we contend that previous works have failed to use properly
optimised versions of CC. We thus reassess the real merits of CC and its
variants, and argue that, while still inferior to some cutting-edge meth-
ods, they deliver near-state-of-the-art accuracy once (a) hyperparameter
optimisation is performed, and (b) this optimisation is performed by us-
ing a truly quantification-oriented evaluation protocol. Experiments on
three publicly available binary sentiment classification datasets support
these conclusions.
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1 Introduction

Learning to quantify (a.k.a. quantification) consists of training a predictor that
returns estimates of the relative frequency (a.k.a. prevalence, or prior probability)
of the classes of interest in a set of unlabelled data items, where the predictor
has been trained on a set of labelled data items [13]. When applied to text,
quantification is important for several applications, e.g., gauging the collective
satisfaction for a certain product from textual comments [8], establishing the
popularity of a given political candidate from blog posts [17], predicting the
amount of consensus for a given governmental policy from tweets [4], or predict-
ing the amount of readers who will find a product review helpful [5].

The rationale of this task is that many real-life applications of classification
suffer from distribution shift [22], the phenomenon according to which the distri-
bution py(U) of the labels in the set of unlabelled test documents U is different
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from the distribution py(L) that the labels have in the set of labelled training
documents L. It has been shown that, in the presence of distribution shift, the
trivial strategy of using a standard classifier to classify all the unlabelled docu-
ments in U and counting the documents that have been assigned to each class
(the “Classify and Count” (CC) method), delivers poor class prevalence esti-
mates. The reason is that most supervised learning methods are based on the
IID assumption, which implies that the distribution of the labels is the same in L
and U . “Classify and Count” is considered a biased estimator of class prevalence,
since the goal of standard classifiers is to minimise (assuming for simplicity a
binary setting) classification error measures such as (FP+FN), while the goal of
a quantifier is to minimise quantification error measures such as |FP− FN|. (In
this paper we tackle binary quantification, so FP and FN denote the numbers
of false positives and false negatives, resp., from a binary contingency table.)
Following this observation, several quantification methods have been proposed,
and have been experimentally shown to outperform CC.

In this paper we contend that previous works, when testing advanced quan-
tification methods, have used as baselines versions of CC that had not been
properly optimised. This means that published results on the relative merits of
CC and other supposedly more advanced methods are still unreliable. We thus
reassess the real merits of CC by running extensive experiments (on three pub-
licly available sentiment classification datasets) in which we compare properly
optimised versions of CC and its three main variants (PCC, ACC, PACC) with a
number of more advanced quantification methods. In these experiments we prop-
erly optimise all quantification methods, i.e., (a) we optimise their hyperparam-
eters, and (b) we conduct this optimisation via a truly quantification-oriented
evaluation protocol, which also involves minimising a quantification loss rather
than a classification loss. Our results indicate that, while still inferior to some
cutting-edge quantification methods, CC and its variants deliver near-state-of-
the-art quantification accuracy once hyperparameter optimisation is performed
properly. We make available all the code and the datasets that we have used for
our experiments.1

2 “Classify and Count” and its variants

In this paper we use the following notation. We assume a binary setting, with
the two classes Y = {⊕,	} standing for Positive and Negative. By x we denote
a document drawn from a domain X of documents; by L ⊂ X we denote a set
of labelled documents, that we typically use as a training set, while by U we
denote a sample of unlabelled documents, that we typically use as the sample to
quantify on. By py(σ) we indicate the true prevalence of class y in sample σ, by
p̂y(σ) we indicate an estimate of this prevalence2, and by p̂My (σ) we indicate the

1 https://github.com/AlexMoreo/CC
2 Consistently with most mathematical literature, we use the caret symbol (ˆ) to

indicate estimation.

https://github.com/AlexMoreo/CC
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estimate of this prevalence as obtained via quantification method M . Of course,
for any method M it holds that p̂M	 (U) = (1− p̂M⊕ (U)).

An obvious way to solve quantification is by aggregating the scores assigned
by a classifier to the unlabelled documents. We first define two different aggrega-
tion methods, one that uses a “hard” classifier (i.e., a classifier h⊕ : X → {0, 1}
that returns binary decisions, 0 for 	 and 1 for ⊕) and one that uses a “soft”
classifier (i.e., a classifier s⊕ : X → [0, 1] that returns posterior probabilities
Pr(⊕|x), representing the probability that the classifier attributes to the fact
that x belongs to the ⊕ class). Of course, Pr(	|x) = (1−Pr(⊕|x)). The classify
and count (CC) and the probabilistic classify and count (PCC) [3] methods then
consist of computing

p̂CC
⊕ (U) =

∑
x∈U h⊕(x)

|U |
p̂PCC
⊕ (U) =

∑
x∈U s⊕(x)

|U |
(1)

Two popular, alternative quantification methods consist of applying an adjust-
ment to the p̂CC

⊕ (U) and p̂PCC
⊕ (U) estimates. It is easy to show that, in the

binary case, the true prevalence p⊕(U) is such that

p⊕(U) =
p̂CC
⊕ (U)− FPRh

TPRh − FPRh
p⊕(U) =

p̂PCC
⊕ (U)− FPRs

TPRs − FPRs
(2)

where TPRh and FPRh (resp., TPRs and FPRs) here stand for the true positive
rate and false positive rate that the classifier h⊕ (resp., s⊕) has on U . The
values of TPRh and FPRh (resp., TPRs and FPRs) are unknown, but can be
estimated via k-fold cross-validation on the training data. In the binary case
this amounts to using the results that h⊕(x) (resp., s⊕(x)) obtains in the k-fold
cross-validation (i.e., when x ranges on the training documents) in equations

ˆTPRh =

∑
x∈⊕ h⊕(x)

| ⊕ |
ˆFPRh =

∑
x∈	 h⊕(x)

| 	 |

ˆTPRs =

∑
x∈⊕ s⊕(x)

| ⊕ |
ˆFPRs =

∑
x∈	 s⊕(x)

| 	 |

(3)

We obtain p̂ACC
⊕ (U) and p̂PACC

⊕ (U) estimates, which define the adjusted classify
and count (ACC) [11] and probabilistic adjusted classify and count (PACC) [3]
quantification methods, resp., by replacing TPRh and FPRh (resp., TPRs and
FPRs) in Equation 2 with their estimates from Equation 3.

3 Quantification and parameter optimisation

3.1 Unsuitable parameter optimisation and weak baselines

The reason why we here reassess CC and its variants we have described above,
is that we believe that, in previous papers where these methods have been used
as baselines, their full potential has not been realised because of missing or
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unsuitable optimisation of the hyperparameters of the classifier on which the
method is based.

Specifically, both CC and its variants rely on the output of a previously
trained classifier, and this output usually depends on some hyperparameters.
Not only the quality of this output heavily depends on whether these hyper-
parameters have been optimised or not (on some held-out data or via k-fold
cross-validation), but it also depends on what evaluation measure this optimi-
sation has used as a criterion for model selection. In other words, given that
hyperparameter optimisation chooses the value of the parameter that minimises
error, it would make sense that, for a classifier to be used for quantification
purposes, “error” is measured via a function that evaluates quantification er-
ror, and not classification error. Unfortunately, in most previous quantification
papers, researchers either do not specify whether hyperparameter optimisation
was performed at all [9,11,14,15,17,19,26,27], or leave the hyperparameters at
their default values [1,3,10,16,21], or do not specify which evaluation measure
they use in hyperparameter optimisation [8,12], or use, for this optimisation, a
classification-based loss [2,25]. In retrospect, we too plead guilty, since some of
the papers quoted here are our own.

All this means that CC and their variants, when used as baselines, have
been turned into weak baselines, and this means that the merits of more modern
methods relative to them have possibly been exaggerated, and are thus yet to
be assessed reliably. In this paper we thus engage in a reproducibility study,
and present results from text quantification experiments in which, contrary to
the situations described in the paragraph above, we compare carefully optimised
versions of CC and its variants with a number of (carefully optimised versions
of) more modern quantification methods, in an attempt to assess the relative
value of each in a robust way.

3.2 Quantification-oriented parameter optimisation

In order to perform quantification-oriented parameter optimisation we need to
be aware that there may exist two types of parameters that require estimation
and/or optimisation, i.e., (a) the hyperparameters of the classifier on which the
quantification method is based, and (b) the parameters of the quantification
method itself.

The way we perform hyperparameter optimisation is the following. We as-
sume that the dataset comes with a predefined split between a training set L
and a test set U . (This assumption is indeed verified for the datasets we will
use in Section 4.) We first partition L into a part LTr that will be used for
training purposes and a part LVa that will be used as a held-out validation set
for optimising the hyperparameters of the quantifier. We then extract, from the
validation set LVa, several random validation samples, each characterised by a
predefined prevalence of the ⊕ class; here, our goal is allowing the validation to
be conducted on a variety of scenarios characterised by widely different values of
class prevalence, and, as a consequence, by widely different amounts of distribu-
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tion shift.3 In order to do this, we extract each validation sample σ by randomly
undersampling one or both classes in LVa, in order to obtain a sample with
prespecified class prevalence values. We draw samples with a desired prevalence
value and a fixed amount q of documents; in order to achieve this, in some cases
only one class needs to be undersampled while in some other cases this needs
to happen for both classes. We use random sampling without replacement if the
number of available examples of ⊕ (resp. 	) is greater or equal to the number
of required ones, and with replacement otherwise. We extract samples with a
prevalence of the ⊕ class in the set {π1, ..., πn}; for each of these n values we
generate m random samples consisting of q validation documents each. Let Θ be
the set of hyperparameters that we are going to optimise. Given the established
grid of value combinations θ1, ..., θn that we are going to test for Θ, for each
θi we do the following, depending on whether the quantification method has its
own parameters (Case 1 below) or not (Case 2 below):

1. If the quantification method M we are going to optimise requires some pa-
rameters λi to be estimated, we first split LTr into a part LTr

Tr and a part LVa
Tr ,

training the classifier on LTr
Tr using the chosen learner parameterised with θi,

and estimate parameters λi on LVa
Tr .4 Among the variants of CC, this applies

to methods ACC and PACC, which require the estimation of (the hard or
soft version of) TPR and FPR. Other methods used in the experiments of
Section 4 and that also require some parameter to be estimated are HDy
and QuaNet (see Section 4.3.2).

2. If the quantification method M we are going to optimise does not have any
parameter that requires estimation, then we train our classifier on LTr, using
the chosen learner parameterised with θi, and use quantification method M
on all the samples extracted from LVa.

In both cases, we measure the quantification error via an evaluation measure for
quantification that combines (e.g., averages) the results across all the validation
samples. As our final value combination for hyperparameter set Θ we choose the
θi for which quantification error is minimum.

Note that, in the above discussion, each time we split a labelled set into a
training set and a validation set for parameter estimation / optimisation pur-
poses, we could instead perform a k-fold cross-validation; the parameter esti-
mation/optimisation would be more robust, but the computational cost of the
entire process would be k times higher. While the latter method is also, from
a methodological standpoint, an option, in this paper we stick to the former

3 Note that this is similar to what we do, say, in classification, where the different
hyperparameter values are tested on many validation documents; here we test these
hyperparameter values on many validation samples, since the objects of study of
text quantification are document samples inasmuch as the objects of study of text
classification are individual documents.

4 Note that we do not retrain the classifier on the entire LTr. While this might seem
beneficial, since LTr contains more training data than LTr

Tr, we need to consider that
the estimates ˆTPRh and ˆFPRh have been computed on LTr and not on LTr

Tr.
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Table 1. The three datasets used in our experiments; the columns indicate the class
prevalence values of the ⊕ and 	 classes, and the numbers of documents contained in
the training set L and the test set U .

⊕ 	 L LTr LVa U
IMDB 0.500 0.500 25,000 15,000 10,000 25,000
Kindle 0.917 0.083 3,821 2,292 1,529 21,592

HP 0.982 0.018 9,533 5,720 3,813 18,401

method, since the entire parameter optimisation process is, from a computa-
tional point of view, already very expensive.

4 Experiments

In order to conduct our experiments we use the same datasets and experimental
protocol as used in [7]. Specifically, we run our experiments on three sentiment
classification datasets, i.e., (i) IMDB, the popular Large Movie Review Dataset
[20]; (ii) Kindle, a set of reviews of Kindle e-book readers [7], and (iii) HP, a
set of reviews of the books from the Harry Potter series [7].5 For all datasets we
adopt the same split between training set L and test set U as in [7]. The IMDB,
Kindle, and HP datasets are examples of balanced, imbalanced, and severely
imbalanced datasets, since the prevalence values of the ⊕ class in the training
set L are 0.500, 0.917, 0.982, resp. Some basic statistics from these datasets are
reported in Table 1. We refer the reader to [7] for more details on the genesis of
these datasets.

In our experiments, from each set of training data we randomly select 60% of
the documents for training purposes, leaving the remaining 40% for the hyperpa-
rameter optimisation phase; these random splits are stratified, meaning that the
two resulting parts display the same prevalence values as the set that originated
them. In this phase (see Section 3.2) we use n = 21, m = 10, and q = 500, i.e.,
we generate m = 10 random samples of q = 500 documents each, for each of the
n = 21 prevalence values of the ⊕ class in {0.00, 0.05, ..., 0.95, 1.00}.

In order to evaluate a quantifier over a wide spectrum of test prevalence
values, we use essentially the same process that we have discussed in Section 3.2
for hyperparameter optimisation; that is, along with [7,11], we repeatedly and
randomly undersample one or both classes in the test set U in order to obtain
testing samples with specified class prevalence values. Here we generate m = 100
random testing samples of q = 500 documents each, for each of the n = 21
prevalence values of the ⊕ class in {0.00, 0.05, ..., 0.95, 1.00}.

5 The three datasets are available at https://doi.org/10.5281/zenodo.4117827 in
pre-processed form. The raw versions of the HP and Kindle datasets can be accessed
from http://hlt.isti.cnr.it/quantification/, while the raw version of IMDB
can be found at https://ai.stanford.edu/~amaas/data/sentiment/.

https://doi.org/10.5281/zenodo.4117827
http://hlt.isti.cnr.it/quantification/
https://ai.stanford.edu/~amaas/data/sentiment/
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4.1 Evaluation measures

As the measures of quantification error we use Absolute Error (AE) and Relative
Absolute Error (RAE), defined as

AE(p, p̂) =
1

|Y|
∑
y∈Y
|p̂y − py| RAE(p, p̂) =

1

|Y|
∑
y∈Y

|p̂y − py|
py

(4)

where Y is the set of classes of interest (Y = {⊕,	} in our case) and the
sample σ is omitted for notational brevity. Note that RAE is undefined when
at least one of the classes y ∈ Y is such that its prevalence in U is 0. To solve
this problem, in computing RAE we smooth both all py’s and p̂y’s via additive

smoothing, i.e., we take p
y

=
ε+py∑

y∈Y(ε+py) , where p
y

denotes the smoothed version

of py and the denominator is just a normalising factor (same for the p̂(y)’s);

following [11], we use the quantity ε = 1
2|U | as the smoothing factor. We then

use the smoothed versions of py and p̂y in place of their original non-smoothed
versions in Equation 4; as a result, RAE is always defined.

The reason why we use AE and RAE is that from a theoretical standpoint
they are, as it has recently been argued [28], the most satisfactory evaluation
measures for quantification.

4.2 Data processing

We preprocess our documents by using the stop word remover and default to-
keniser available within the scikit-learn framework6. In all three datasets we
remove all terms occurring less than 5 times in the training set and all punctu-
ation marks, and lowercase the text. As the weighting criterion we use a version
of the well-known tfidf method, i.e.,

tfidf(f,x) = log(#(f,x) + 1)× log
|L|

|x′ ∈ L : #(f,x′) > 0|
(5)

where #(f,x) is the raw number of occurrences of feature f in document x;
weights are then normalised via cosine normalisation.

Among the learners we use for classification (see below), the only one that
does not rely on a tfidf-based representation is CNN. This learner simply con-
verts all documents into lists of unique numeric IDs, indexing the terms in the
vocabulary. We pad the documents to the first 300 words.

4.3 The quantifiers

We here describe all the quantification systems we have used in this work.

6 http://scikit-learn.org/

http://scikit-learn.org/
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4.3.1 CC and its variants. In our experiments we generate versions of CC,
ACC, PCC, and PACC, using five different learners, i.e., support vector machines
(SVM), logistic regression (LR), random forests (RF), multinomial naive Bayes
(MNB), and convolutional neural networks (CNN). For the first four learners we
rely on the implementations available from scikit-learn, while the CNN deep
neural network is something we have implemented ourselves using the pytorch

framework.7 The setups that we use for these learners are the following:

– SVM: We use soft-margin SVMs with linear kernel and L2 regularisation,
and we explicitly optimise the C parameter (in the range C ∈ {10i} with
i ∈ {−4,−3, . . . , 4, 5}) that determines the tradeoff between the margin and
the training error (default: C = 1). We also optimise the J⊕ and J	 “rebal-
ancing” parameters, which determine whether to impose that misclassifying
a ⊕ document has a different cost than misclassifying a 	 document (in

this case one sets J⊕ = p	(L)
p⊕(L) and J	 = 1), or not (in this case one sets

J⊕ = J	 = 1, which is the default configuration) [23].
– LR: As in SVM, we use L2 regularisation, and we explicitly optimise the

rebalancing parameters and the regularisation coefficient C (default values
are as in SVM).

– RF: we optimise the number of estimators in the range {10, 50, 100, 250, 500},
the max depth in {5, 15, 30,max},8, and the splitting function in {Gini,Entropy}
(default: (100, max, Gini)).

– MNB: We use Laplace smoothing, and we optimise the additive factor α in
the range {0.00, 0.05, . . . , 0.95, 1.00} (default: α = 1).

– CNN: we use a single convolutional layer with γ output channels for three
window lengths of 3, 5, and 7 words. Each convolution is followed by a ReLU
activation function and a max-pooling operation. All convolved outputs are
then concatenated and processed by an affine transformation and a sigmoid
activation that converts the outputs into posterior probabilities. We use the
Adam optimiser (with learning rate 1E−3 and all other parameters at their
default values) to minimise the balanced binary cross-entropy loss, set the
batch size to 100, and train the net for 500 epochs, but we apply an early stop
after 20 consecutive training epochs showing no improvement in terms of F1

for the minority class on the validation set. We explore the dimensionality
of the embedding space in the range {100, 300} (default: 100), the number
of output channels γ in {256, 512} (default: 512), whether to apply dropout
to the last layer (with a drop probability of 0.5) or not (default: “yes”), and
whether to apply weight decay (with a factor of 1E−4) or not (default: “no”).

Since we perform hyperparameter optimisation via grid search, the number of
validations (i.e., combinations of hyperparameters) that we perform amounts to
20 for SVMs, 20 for LR, 40 for RF, 21 for MNB, and 16 for CNN.

7 https://pytorch.org/
8 When the depth is set to “max” then nodes are expanded until all leaves belong to

the same class.
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In the following, by the notation Mm
l we will indicate quantification method

M using learner l whose parameters have been optimised using measure m
(where MØ

l indicates that no optimisation at all has been carried out). We
will test, on all three datasets, all combinations in which M ranges on {CC,
ACC, PCC, PACC}, l ranges on {SVM, LR, RF, MNB, CNN}, and m ranges
on {A,F1,AE}, where A denotes vanilla accuracy, F1 is the well-known har-
monic mean of precision and recall, and AE is absolute error. We stick to the
tradition of computing F1 with respect to the minority class, which always turns
out to be 	 in all three datasets (this means that, e.g., the true positives of the
contingency table are the documents that the classifier assigns to 	 and that
indeed belong to 	).

Note that PCC requires the classifier to return posterior probabilities. Since
SVMs does not produce posterior probabilities, for PCCSVM and PACCSVM we
calibrate the confidence scores that SVMs return by using Platt’s method [24].

4.3.2 Advanced quantification methods. As the advanced methods that
we test against CC and its variants, we use a number of more sophisticated
systems that have been top-performers in the recent quantification literature.

– We use the Saerens-Latinne-Decaestecker method [6,27] (SLD), which con-
sists of training a probabilistic classifier and then exploiting the EM algo-
rithm to iteratively shift the estimation of py(U) from the one that maximises
the likelihood on the training set to the one that maximises it on the test
data. As the underlying learner for SLD we use LR, since (as MNB) it returns
posterior probabilities (which SLD needs), since these probabilities tend to
be (differently from those returned by MNB) well-calibrated, and since LR
is well-known to perform much better than MNB.

– We use methods SVM(KLD), SVM(NKLD), SVM(Q), SVM(AE), SVM(RAE),
from the “structured output learning” camp. Each of them is the result of
instantiating the SVMperf structured output learner [18] to optimise a differ-
ent loss function. SVM(KLD) [10] minimises the Kullback-Leibler Divergence
(KLD); SVM(NKLD) [9] minimises a version of KLD normalised via the lo-
gistic function; SVM(Q) [1] minimises the harmonic mean of a classification-
oriented loss (recall) and a quantification-oriented loss (RAE). We also add
versions that minimise AE and RAE, since these latter are now, as indicated
in Section 4.1, the evaluation measures for quantification considered most
satisfactory, and the two used in this paper for evaluating the quantification
accuracy of our systems. We optimise the C parameter of SVMperf in the
range C ∈ {10i}, with i ∈ {−4,−3, . . . 4, 5}. In this case we do not optimise
the J⊕ and J	 “rebalancing” parameters since this option is not available
in SVMperf .

– We use the HDy method of [15]. The method searches for the prevalence val-
ues that minimise the divergence (as measured via the Hellinger Distance)
between two cumulative distributions of posterior probabilities returned by
the classifier, one for the unlabelled examples and the other for a validation
set. The latter is a mixture of the distributions of posterior probabilities
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returned for the ⊕ and 	 validation examples, respectively, where the pa-
rameters of the mixture are the sought class prevalence values. We use LR
as the classifier for the same reasons as discussed for SLD.

– We use the QuaNet system, a “meta-”quantification method based on deep
learning [7]. QuaNet takes as input a list of document embeddings, together
with and sorted by the classification scores returned by a classifier. A bidi-
rectional LSTM processes this list and produces a quantification embedding
that is then concatenated with a vector of predictions produced by an en-
semble of simpler quantification methods (we here employ CC, ACC, PCC,
PACC, and SLD). The resulting vector passes through a set of fully con-
nected layers (followed by ReLU activations and dropout) that return the
estimated class prevalence values. We use CNN as the learner since, among
the learners we use in this paper, it is the only one that returns both posterior
probabilities and document embeddings (we use the last layer of the CNN as
the document embedding). We set the hidden size of the bidirectional LSTM
to 128 + 128 = 256 and use two stacked layers. We also set the hidden sizes
of the fully connected layers to 1024 and 512, and the dropout probability to
0.5. We train the network for 500 epochs, but we apply early stopping with
a patience of 10 consecutive validations without improvements in terms of
mean square error (MSE). Each training epoch consists of 200 quantification
predictions, each of which for a batch of 500 randomly drawn documents at
a prevalence sampled from the uniform distribution. In our case, validation
epochs correspond to 21 quantification predictions for batches of 500 docu-
ments randomly sampled to have prevalence values 0.00, 0.05, . . . , 0.95, 1.00.
We use Adam as the optimiser, with default parameters, to minimise MSE.
In order to train QuaNet, we split (using a 40%/40%/20% stratified split) the

training set LTr in three sets LCTr
Tr , for training the classifier; LQTr

Tr , for train-

ing QuaNet; and LQVa
Tr , for validating QuaNet. When optimising QuaNet

we do not explore any additional hyperparameter apart from those for the
CNN.

– We also report results for Maximum Likelihood Probability Estimation (MLPE),
the trivial baseline for quantification which makes the IID assumption and
thus simply assumes that p⊕(U) is identical to the training prevalence p⊕(L)
irrespectively of the set U .

Note that ACC, PACC, HDy, and QuaNet need to estimate their own parameters
on a validation set, which means that their performance depends on exactly
which documents this set consists of. In order to mitigate the impact of this
random choice, for these methods we run each experiment 10 times, each time
with a different random choice. The results we report are the average scores
across these 10 runs.

4.4 Results

Tables 2, 3, 4, and 5 report the results obtained for CC, ACC, PCC, and PACC.
At a first glance, the results do not seem to give any clearcut indication on how
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Table 2. Results showing how the quantification error of CC changes according to
the measure used in hyperparameter optimization; a negative percentage indicates a
reduction in error with respect to using the method with default parameters. The
background cell color indicates improvement (green) or deterioration (red), while its
tone intensity is proportional to the absolute magnitude.

IMDB Kindle HP

AE RAE AE RAE AE RAE

CCØ
SVM 0.065 6.029 0.305 15.928 0.471 24.058

CCA
SVM 0.059 (-9.6%) 5.408 (-10.3%) 0.245 (-19.8%) 13.220 (-17.0%) 0.401 (-14.9%) 20.645 (-14.2%)

CCF1
SVM 0.059 (-9.5%) 5.523 (-8.4%) 0.108 (-64.5%) 7.192 (-54.8%) 0.236 (-50.0%) 13.590 (-43.5%)

CCAE
SVM 0.065 (+0.3%) 6.091 (+1.0%) 0.100 (-67.1%) 7.555 (-52.6%) 0.119 (-74.8%) 10.593 (-56.0%)

CCØ
LR 0.059 5.477 0.470 23.990 0.500 25.508

CCA
LR 0.062 (+6.0%) 5.839 (+6.6%) 0.202 (-57.0%) 11.215 (-53.3%) 0.451 (-9.8%) 23.035 (-9.7%)

CCF1
LR 0.062 (+5.3%) 5.725 (+4.5%) 0.163 (-65.3%) 9.278 (-61.3%) 0.229 (-54.3%) 13.505 (-47.1%)

CCAE
LR 0.062 (+6.1%) 5.745 (+4.9%) 0.094 (-80.0%) 7.087 (-70.5%) 0.110 (-78.0%) 10.304 (-59.6%)

CCØ
RF 0.155 13.388 0.448 22.988 0.493 25.196

CCA
RF 0.080 (-48.1%) 7.446 (-44.4%) 0.463 (+3.5%) 23.744 (+3.3%) 0.500 (+1.3%) 25.482 (+1.1%)

CCF1
RF 0.079 (-49.1%) 7.396 (-44.8%) 0.451 (+0.7%) 23.142 (+0.7%) 0.499 (+1.2%) 25.469 (+1.1%)

CCAE
RF 0.079 (-48.8%) 7.487 (-44.1%) 0.464 (+3.6%) 23.721 (+3.2%) 0.500 (+1.3%) 25.487 (+1.2%)

CCØ
MNB 0.096 8.147 0.500 25.513 0.500 25.510

CCA
MNB 0.098 (+1.6%) 8.529 (+4.7%) 0.443 (-11.4%) 22.641 (-11.3%) 0.499 (-0.2%) 25.459 (-0.2%)

CCF1
MNB 0.097 (+0.8%) 8.311 (+2.0%) 0.444 (-11.3%) 22.731 (-10.9%) 0.499 (-0.2%) 25.470 (-0.2%)

CCAE
MNB 0.097 (+0.9%) 8.431 (+3.5%) 0.443 (-11.4%) 22.701 (-11.0%) 0.499 (-0.2%) 25.464 (-0.2%)

CCØ
CNN 0.072 6.683 0.087 8.138 0.255 17.042

CCA
CNN 0.073 (+2.0%) 6.620 (-1.0%) 0.107 (+23.8%) 8.680 (+6.7%) 0.159 (-37.5%) 14.255 (-16.4%)

CCF1
CNN 0.078 (+8.7%) 7.142 (+6.9%) 0.085 (-2.2%) 7.951 (-2.3%) 0.149 (-41.5%) 14.030 (-17.7%)

CCAE
CNN 0.074 (+3.2%) 6.613 (-1.0%) 0.109 (+26.2%) 8.591 (+5.6%) 0.343 (+34.3%) 19.008 (+11.5%)

the CC variants should be optimised. However, a closer look reveals a number of
patterns. One of these is that SVM and LR (the two best-performing classifiers
overall) tend to benefit from optimised hyperparameters, and tend to do so
to a greater extent when the loss used in the optimisation is quantification-
oriented. Somehow surprisingly, not all methods improve after model selection
in every case. However, there tends to be such an improvement especially for
ACC and PACC. A likely reason for this is the possible existence of a complex
tradeoff between obtaining a more accurate classifier and obtaining more reliable
estimates for the TPR and FPR quantities.

Regarding the different datasets, it seems that there is no clear improvement
from performing model selection when the training set is balanced (see IMDB),
neither by using a classification-oriented measure nor by using a quantification-
oriented one. A possible reason is that any classifier (with or without hyperpa-
rameter optimisation) becomes a reasonable quantifier if it learns to pay equal
importance to positive and negative examples, i.e., if the errors it produces are
unbiased towards either ⊕ or 	. In this respect, RF and MNB prove strongly
biased towards the majority class, and only when corrected via an adjustment
(ACC or PACC) they deliver results comparable to those obtained for other
learners.

CNN works well on average almost in all cases, and seems to be the least
sensitive learner to model selection.
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Table 3. Same as Table 2, but with ACC instead of CC.

IMDB Kindle HP

AE RAE AE RAE AE RAE

ACCØ
SVM 0.023 1.084 0.068 2.958 0.341 17.350

ACCA
SVM 0.019 (-17.6%) 0.889 (-18.0%) 0.070 (+4.1%) 3.093 (+4.6%) 0.181 (-47.0%) 9.245 (-46.7%)

ACCF1
SVM 0.022 (-5.2%) 1.153 (+6.3%) 0.052 (-22.9%) 2.309 (-21.9%) 0.110 (-67.8%) 7.019 (-59.5%)

ACCAE
SVM 0.020 (-11.4%) 0.933 (-13.9%) 0.069 (+1.6%) 3.193 (+7.9%) 0.108 (-68.4%) 7.225 (-58.4%)

ACCØ
LR 0.017 0.569 0.279 9.997 0.500 25.508

ACCA
LR 0.020 (+21.2%) 0.933 (+63.9%) 0.060 (-78.6%) 2.628 (-73.7%) 0.185 (-62.9%) 9.629 (-62.3%)

ACCF1
LR 0.019 (+15.9%) 0.896 (+57.4%) 0.057 (-79.5%) 2.507 (-74.9%) 0.098 (-80.5%) 6.534 (-74.4%)

ACCAE
LR 0.018 (+10.8%) 0.850 (+49.3%) 0.065 (-76.9%) 2.891 (-71.1%) 0.092 (-81.7%) 5.849 (-77.1%)

ACCØ
RF 0.034 1.254 0.136 4.199 0.439 23.528

ACCA
RF 0.021 (-38.7%) 0.643 (-48.8%) 0.180 (+31.7%) 6.603 (+57.3%) 0.482 (+9.7%) 24.654 (+4.8%)

ACCF1
RF 0.019 (-42.7%) 0.526 (-58.1%) 0.155 (+13.4%) 4.282 (+2.0%) 0.460 (+4.7%) 24.205 (+2.9%)

ACCAE
RF 0.019 (-43.0%) 0.554 (-55.8%) 0.197 (+44.2%) 6.057 (+44.3%) 0.499 (+13.5%) 25.436 (+8.1%)

ACCØ
MNB 0.049 2.316 0.473 23.280 0.500 25.508

ACCA
MNB 0.051 (+4.4%) 2.479 (+7.0%) 0.189 (-59.9%) 9.065 (-61.1%) 0.435 (-13.1%) 22.170 (-13.1%)

ACCF1
MNB 0.049 (+0.5%) 2.404 (+3.8%) 0.197 (-58.3%) 9.285 (-60.1%) 0.428 (-14.5%) 22.025 (-13.7%)

ACCAE
MNB 0.051 (+3.9%) 2.591 (+11.9%) 0.213 (-54.9%) 10.376 (-55.4%) 0.451 (-9.7%) 23.146 (-9.3%)

ACCØ
CNN 0.021 1.082 0.074 1.596 0.173 10.642

ACCA
CNN 0.019 (-8.2%) 0.811 (-25.0%) 0.064 (-12.7%) 1.515 (-5.1%) 0.223 (+28.6%) 9.939 (-6.6%)

ACCF1
CNN 0.023 (+10.1%) 1.067 (-1.4%) 0.061 (-17.4%) 1.424 (-10.8%) 0.182 (+5.3%) 10.344 (-2.8%)

ACCAE
CNN 0.023 (+9.1%) 1.072 (-0.9%) 0.068 (-7.8%) 1.399 (-12.4%) 0.174 (+0.7%) 10.810 (+1.6%)

In order to better understand whether or not, on average and across dif-
ferent situations, CC and its variants benefit from performing model selection
using a quantification-oriented loss, we have submitted our results to a statisti-
cal significance test. Table 6 shows the outcome of a two-sided t-test on related
sets of scores, across datasets and learners, from which we can compare pairs of
model selection methods. The test reveals that optimising AE works better than
optimising A or than using default settings (Ø). The test does not clearly say
whether optimising AE or F1 is better, but it suggests that PACC (the strongest
CC variant) works better when optimised for AE than when optimised for F1.

Finally, Table 7 compares the CC variants against more recent state-of-the-
art quantification systems. Columns AE and RAE indicate the error of each
method for each dataset. Columns rAE and rRAE show the rank positions for
each pair (dataset, error) and, in parentheses, the rank position each method
would have obtained in case the CC variants had not been optimised.

Interestingly, although some advanced quantification methods (specifically:
SLD and HDy) stand as the top performers, many among the (supposedly more
sophisticated) quantification methods fail to improve over CC’s performance. At
a glance, most quantification methods tend to obtain lower ranks when compared
with properly optimised CC variants. Remarkable examples of rank variation
include CC and ACC with SVM and LR: when evaluated on Kindle and HP,
they climb several positions (up to 25), often entering the group of the 10 top-
performing methods. In the most extreme case, ACCAE

LR moves from position 28
(out of 29) to position 3 once properly optimised for quantification.
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Table 4. Same as Table 2, but with PCC instead of CC.

IMDB Kindle HP

AE RAE AE RAE AE RAE

PCCØ
SVM 0.101 9.460 0.255 14.514 0.375 20.158

PCCA
SVM 0.100 (-0.4%) 9.517 (+0.6%) 0.283 (+10.9%) 16.174 (+11.4%) 0.385 (+2.6%) 20.653 (+2.5%)

PCCF1
SVM 0.101 (+0.0%) 9.425 (-0.4%) 0.251 (-1.8%) 14.239 (-1.9%) 0.385 (+2.7%) 20.594 (+2.2%)

PCCAE
SVM 0.100 (-0.4%) 9.484 (+0.2%) 0.254 (-0.6%) 14.461 (-0.4%) 0.386 (+2.8%) 20.607 (+2.2%)

PCCØ
LR 0.122 11.564 0.356 20.405 0.464 24.608

PCCA
LR 0.091 (-25.5%) 8.563 (-26.0%) 0.279 (-21.5%) 15.031 (-26.3%) 0.352 (-24.2%) 18.605 (-24.4%)

PCCF1
LR 0.092 (-25.0%) 8.606 (-25.6%) 0.172 (-51.6%) 11.222 (-45.0%) 0.212 (-54.2%) 16.117 (-34.5%)

PCCAE
LR 0.079 (-35.3%) 7.348 (-36.5%) 0.154 (-56.6%) 13.066 (-36.0%) 0.211 (-54.6%) 19.597 (-20.4%)

PCCØ
RF 0.199 18.865 0.376 21.592 0.461 24.267

PCCA
RF 0.198 (-0.7%) 18.753 (-0.6%) 0.368 (-2.0%) 21.209 (-1.8%) 0.482 (+4.7%) 25.349 (+4.5%)

PCCF1
RF 0.195 (-2.1%) 18.459 (-2.2%) 0.372 (-0.9%) 21.319 (-1.3%) 0.466 (+1.1%) 24.563 (+1.2%)

PCCAE
RF 0.196 (-1.4%) 18.565 (-1.6%) 0.366 (-2.5%) 21.088 (-2.3%) 0.462 (+0.3%) 24.379 (+0.5%)

PCCØ
MNB 0.171 15.928 0.478 24.702 0.498 25.453

PCCA
MNB 0.168 (-1.7%) 15.663 (-1.7%) 0.381 (-20.3%) 20.396 (-17.4%) 0.497 (-0.2%) 25.397 (-0.2%)

PCCF1
MNB 0.167 (-2.2%) 15.617 (-2.0%) 0.380 (-20.4%) 20.369 (-17.5%) 0.473 (-5.0%) 24.487 (-3.8%)

PCCAE
MNB 0.160 (-6.4%) 14.907 (-6.4%) 0.380 (-20.4%) 20.396 (-17.4%) 0.473 (-5.0%) 24.479 (-3.8%)

PCCØ
CNN 0.110 9.994 0.111 10.448 0.257 18.368

PCCA
CNN 0.105 (-4.8%) 9.893 (-1.0%) 0.154 (+39.2%) 10.775 (+3.1%) 0.389 (+51.6%) 21.093 (+14.8%)

PCCF1
CNN 0.099 (-10.3%) 9.377 (-6.2%) 0.111 (+0.3%) 9.474 (-9.3%) 0.251 (-2.2%) 17.005 (-7.4%)

PCCAE
CNN 0.145 (+31.3%) 11.146 (+11.5%) 0.148 (+33.8%) 14.017 (+34.2%) 0.156 (-39.3%) 14.644 (-20.3%)

5 Conclusions

One of the takeaway messages from the present work is that, when using CC
and/or its variants as baselines in their research on learning to quantify, re-
searchers should properly optimise these baselines (i.e., use a truly quantification-
oriented protocol, which includes the use of a quantification-oriented loss, in
hyperparameter optimisation), lest these baselines become strawmen. The ex-
tensive empirical evaluation we have carried out shows that, in general, the
performance of CC and its variants improves when the underlying learner has
been optimised with a quantification-oriented loss (AE). The results of our ex-
periments are less clear about whether optimising AE or F1 (which, despite
being a classification-oriented loss, is one that rewards classifiers that balance
FPs and FNs) is better, although they indicate that optimising AE is preferable
for PACC, the strongest among the variants of CC.
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Table 5. Same as Table 2, but with PACC instead of CC.

IMDB Kindle HP

AE RAE AE RAE AE RAE

PACCØ
SVM 0.021 1.166 0.059 2.464 0.137 8.368

PACCA
SVM 0.021 (-3.2%) 1.215 (+4.3%) 0.065 (+10.0%) 2.893 (+17.4%) 0.106 (-22.8%) 6.425 (-23.2%)

PACCF1
SVM 0.021 (-3.4%) 1.202 (+3.1%) 0.066 (+11.4%) 2.979 (+20.9%) 0.148 (+8.2%) 8.723 (+4.2%)

PACCAE
SVM 0.022 (+5.1%) 1.363 (+17.0%) 0.059 (-1.4%) 2.333 (-5.3%) 0.114 (-16.6%) 7.497 (-10.4%)

PACCØ
LR 0.017 0.846 0.064 2.456 0.119 9.639

PACCA
LR 0.021 (+22.0%) 1.087 (+28.4%) 0.053 (-16.7%) 2.177 (-11.4%) 0.147 (+23.1%) 8.316 (-13.7%)

PACCF1
LR 0.021 (+24.5%) 1.176 (+39.0%) 0.065 (+2.2%) 2.060 (-16.1%) 0.091 (-23.2%) 7.748 (-19.6%)

PACCAE
LR 0.021 (+26.5%) 1.237 (+46.3%) 0.068 (+5.5%) 2.253 (-8.3%) 0.104 (-12.3%) 8.812 (-8.6%)

PACCØ
RF 0.030 1.221 0.074 2.923 0.168 10.322

PACCA
RF 0.022 (-28.4%) 0.877 (-28.2%) 0.082 (+10.4%) 3.367 (+15.2%) 0.180 (+7.1%) 11.095 (+7.5%)

PACCF1
RF 0.021 (-29.8%) 0.952 (-22.0%) 0.079 (+6.9%) 3.331 (+13.9%) 0.160 (-5.1%) 10.350 (+0.3%)

PACCAE
RF 0.020 (-33.2%) 0.914 (-25.1%) 0.081 (+8.9%) 3.286 (+12.4%) 0.140 (-17.1%) 10.067 (-2.5%)

PACCØ
MNB 0.055 3.253 0.180 7.352 0.195 10.930

PACCA
MNB 0.058 (+4.8%) 3.412 (+4.9%) 0.130 (-27.7%) 6.058 (-17.6%) 0.335 (+71.6%) 17.883 (+63.6%)

PACCF1
MNB 0.060 (+8.1%) 3.487 (+7.2%) 0.122 (-32.2%) 5.570 (-24.2%) 0.363 (+86.0%) 18.138 (+65.9%)

PACCAE
MNB 0.063 (+14.9%) 3.815 (+17.3%) 0.144 (-19.6%) 6.626 (-9.9%) 0.248 (+27.2%) 13.999 (+28.1%)

PACCØ
CNN 0.022 1.205 0.064 1.414 0.181 9.808

PACCA
CNN 0.019 (-11.1%) 0.970 (-19.5%) 0.079 (+23.0%) 1.664 (+17.7%) 0.161 (-11.3%) 9.293 (-5.3%)

PACCF1
CNN 0.019 (-14.4%) 0.928 (-23.0%) 0.073 (+13.0%) 1.464 (+3.5%) 0.169 (-6.5%) 9.034 (-7.9%)

PACCAE
CNN 0.018 (-17.3%) 0.830 (-31.2%) 0.069 (+6.9%) 1.367 (-3.3%) 0.165 (-9.1%) 8.829 (-10.0%)

Table 6. Two-sided t-test results on related samples of error scores across datasets
and learners. For a pair of optimization measures X vs. Y, symbol � (resp. >) indicates
that method X performs better (i.e., yields lower error) than Y, and that the difference
in performance, as averaged across pairs of experiments on all datasets and learners, is
statistically significant at a confidence score of α = 0.001 (resp. α = 0.05). Symbols �
and < have a similar meaning but indicate that X performs worse (i.e., yields higher
error) than Y. Symbol ∼ instead indicates that the differences in performance between
X and Y are not statistically significantly different, i.e., that p-value ≥ 0.05.

CC ACC PCC PACC
AE RAE AE RAE AE RAE AE RAE

AE vs F1 � ∼ � � � � � �
AE vs A � � � > � � � �
AE vs Ø � � � � � � � ∼
F1 vs A � � � � � � ∼ ∼
F1 vs Ø � � � � � � � �
A vs Ø � � � � � � � �
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Table 7. Results showing how CC and its variants, once optimised using a
quantification-oriented measure, compare with more modern quantification methods.
Boldface indicates the best method. For columns AE and RAE, the best/worst results
are highlighted in bright green/red; the colour for the other scores is a linearly inter-
polation between these two extremes. For columns rAE and rRAE, green/red is used to
denote methods which have obtained higher/lower rank positions once the CC variants
have been optimised for AE, with respect to the case in which they have not been
optimised at all. All scores are different, in a statistically significant sense, from the
best one according to a paired sample, two-tailed t-test at a confidence level of 0.001.

IMDB Kindle HP IMDB Kindle HP
AE RAE AE RAE AE RAE rAE rRAE rAE rRAE rAE rRAE

C
C

a
n
d

it
s

va
ri

a
n
ts

CCAE
SVM 0.065 6.091 0.100 7.555 0.119 10.593 20 (20) 20 (20) 13 (21) 15 (21) 8 (22) 11 (20)

ACCAE
SVM 0.020 0.933 0.069 3.193 0.108 7.225 7 (8) 7 (6) 8 (6) 9 (9) 5 (16) 4 (15)

PCCAE
SVM 0.100 9.484 0.254 14.461 0.386 20.607 25 (23) 25 (23) 24 (19) 24 (20) 21 (17) 22 (18)

PACCAE
SVM 0.022 1.363 0.059 2.333 0.114 7.497 9 (6) 11 (7) 3 (3) 7 (7) 7 (5) 5 (3)

CCAE
LR 0.062 5.745 0.094 7.087 0.110 10.304 14 (14) 15 (14) 12 (26) 14 (26) 6 (29) 10 (28)

ACCAE
LR 0.018 0.850 0.065 2.891 0.092 5.849 4 (2) 5 (3) 4 (20) 8 (17) 3 (28) 3 (27)

PCCAE
LR 0.079 7.348 0.154 13.066 0.211 19.597 22 (25) 22 (25) 19 (22) 22 (22) 16 (21) 20 (22)

PACCAE
LR 0.021 1.237 0.068 2.253 0.104 8.812 8 (3) 10 (4) 5 (4) 6 (6) 4 (3) 6 (5)

CCAE
RF 0.079 7.487 0.464 23.721 0.500 25.487 23 (26) 23 (26) 29 (25) 28 (24) 29 (24) 29 (23)

ACCAE
RF 0.019 0.554 0.197 6.057 0.499 25.436 5 (11) 3 (11) 21 (14) 11 (10) 27 (19) 26 (19)

PCCAE
RF 0.196 18.565 0.366 21.088 0.462 24.379 28 (28) 28 (28) 25 (23) 26 (23) 24 (20) 24 (21)

PACCAE
RF 0.020 0.914 0.081 3.286 0.140 10.067 6 (10) 6 (10) 10 (9) 10 (8) 10 (6) 9 (7)

CCAE
MNB 0.097 8.431 0.443 22.701 0.499 25.464 24 (22) 24 (22) 28 (29) 27 (29) 28 (26) 28 (29)

ACCAE
MNB 0.051 2.591 0.213 10.376 0.451 23.146 12 (12) 12 (12) 23 (27) 20 (25) 23 (27) 23 (26)

PCCAE
MNB 0.160 14.907 0.380 20.396 0.473 24.479 27 (27) 27 (27) 26 (28) 25 (27) 25 (25) 25 (25)

PACCAE
MNB 0.063 3.815 0.144 6.626 0.248 13.999 16 (13) 13 (13) 16 (17) 12 (12) 19 (10) 17 (9)

CCAE
CNN 0.074 6.613 0.109 8.591 0.343 19.008 21 (21) 21 (21) 14 (11) 17 (14) 20 (14) 19 (14)

ACCAE
CNN 0.023 1.072 0.068 1.399 0.174 10.810 10 (5) 8 (5) 6 (8) 3 (3) 13 (7) 12 (8)

PCCAE
CNN 0.145 11.146 0.148 14.017 0.156 14.644 26 (24) 26 (24) 17 (12) 23 (18) 11 (15) 18 (16)

PACCAE
CNN 0.018 0.830 0.069 1.367 0.165 8.829 2 (7) 4 (9) 7 (5) 2 (2) 12 (8) 7 (6)

B
a
se

li
n
es

SLDAE
LR 0.014 0.216 0.048 1.606 0.042 0.195 1 (1) 1 (1) 1 (1) 4 (4) 1 (1) 1 (1)

SVM(KLD)AE 0.064 5.936 0.122 7.866 0.185 12.185 18 (18) 18 (18) 15 (13) 16 (13) 14 (9) 14 (11)
SVM(NKLD)AE 0.065 5.927 0.085 6.693 0.121 9.566 19 (19) 16 (16) 11 (10) 13 (11) 9 (4) 8 (4)
SVM(Q)AE 0.064 5.928 0.208 11.384 0.386 19.956 17 (17) 17 (17) 22 (18) 21 (19) 22 (18) 21 (17)
SVM(AE)AE 0.060 5.572 0.159 9.705 0.219 13.090 13 (15) 14 (15) 20 (16) 19 (16) 17 (12) 15 (12)
SVM(RAE)RAE 0.063 5.957 0.152 9.242 0.239 13.575 15 (16) 19 (19) 18 (15) 18 (15) 18 (13) 16 (13)
HDyAE

LR 0.018 0.420 0.055 1.027 0.058 2.970 3 (4) 2 (2) 2 (2) 1 (1) 2 (2) 2 (2)
QuaNetAE

CNN 0.027 1.175 0.070 2.119 0.210 11.433 11 (9) 9 (8) 9 (7) 5 (5) 15 (11) 13 (10)

MLPEØ
Ø 0.262 24.874 0.429 25.266 0.484 25.447 29 (29) 29 (29) 27 (24) 29 (28) 26 (23) 27 (24)
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