
Y API: Y et Another P ath Index for XML

searc hing

Giusepp e Amato

1

, F ranca Deb ole

1

, P a v el Zezula

2

, and F austo Rabitti

1

1

ISTI-CNR, Pisa, Italy ,

f G.Amato,F.Debole,F.Rabitti g @is ti.c nr.it

WWW home page: http://www.isti.cnr.it

2

Masaryk Univ ersit y , Brno, Czec h Republic,

zezula@fi.muni.cz

WWW home page: http://www.fi.muni.cz

Abstract. As man y metadata are enco ded in XML, and man y digital

libraries need to manage XML do cumen ts, eÆcien t tec hniques for searc h-

ing in suc h formatted data are required. In order to eÆcien tly pro cess

path expressions with wildcards on XML data, a new path index is pro-

p osed. Extensiv e ev aluation con�rms b etter p erformance with resp ect

to other tec hniques prop osed in the literature. An extension of the pro-

p osed tec hnique to deal with the con ten t of XML do cumen ts in addition

to their structure is also discussed.

1 In tro duction

EÆcien t managemen t of metadata is an imp ortan t issue in Digital Library sys-

tems. Simple
at solutions to metadata collections suc h as the Dublin Core

cannot b e applied to complex metadata mo dels requested b y adv anced m ulti-

media digital libraries. These complex metadata mo dels often include nested

structures, hierarc hies, m ultiple views, and semistructured information, whic h

cannot eÆcien tly b e handled b y tec hniques based on a simple term in v ersion or

b y application of the relational databases. Instead, eÆcien t tec hnology for the

managemen t of suc h data should b e dev elop ed.

Recen tly , sev eral in teresting trends to pro cessing complex metadata b y means

of XML structures ha v e b een observ ed. Sp eci�cally , new generation digital li-

braries, suc h as ECHO [1] or Op enDlib [5], ha v e c hosen to enco de their sup-

p orted metadata with XML. Recen t standards, for instance the MPEG-7 [8],

require to enco de metadata in XML. Moreo v er, some digital libraries consider

XML do cumen ts as their nativ e format of do cumen ts.

The ob vious adv an tage of enco ding metadata in XML is that they can easily

b e exp orted and imp orted. They can also b e easily read b y h uman user in their

ra w format. In addition to the do cumen ts' con ten t, XML do cumen ts con tain

explicit information on their structures. Ho w ev er, eÆcien t managemen t of large

XML do cumen t rep ositories is still a c hallenge. Searc hing for information in an

XML do cumen t rep ository in v olv es c hec king structural relationships in addition

to con ten t predicates, and the pro cess of �nding structural relationships has b een

recognized as the most critical for ac hieving the global eÆciency . Sev eral XML

query languages, as for instance XP ath [6] and X Query [7], are based on the use

of path expressions con taining optional wildcards. This p oses a new problem,

giv en that traditional query pro cessing approac hes ha v e b een pro v en not to b e

eÆcien t in this case.

The aim of this pap er is to prop ose a path index, that is an index structure

to supp ort ev aluation of con tainmen t relationships for XML searc hing. The pro-

p osed index is able to eÆcien tly pro cess path expressions ev en in the presence of

wildcards, and exp erimen ts ha v e sho wn an eviden t sup eriorit y of our tec hnique

with resp ect to other approac hes. An extension of the path index to deal with

the con ten t of elemen ts or the v alue of attributes is also discussed.

The pap er is organized as follo ws. Section 2 surv eys the basic concepts, and

Section 3 presen ts the idea of the path index. Section 4 discusses ho w the path

index can b e extended to also deal with con ten t. Section 5 presen ts a comparativ e

ev aluation of the prop osed tec hnique. Section 6 concludes the pap er.

2 Preliminaries

In this section w e brie
y discuss some general concepts, necessary for the rest

of the pap er. W e �rst in tro duce the in v erted index as an access structure t ypi-

cally used for eÆcien t text do cumen t retriev al. Then, w e surv ey a tec hnique for

pro cessing partially sp eci�ed query terms.

2.1 In v erted index

EÆcien t text retriev al is t ypically supp orted b y the use of an inverte d index

[9]. This index structure asso ciates terms, con tained in text do cumen ts, with

items describing their o ccurrence. An item can b e just a reference to a text

do cumen t con taining the term or it migh t con tain additional information, suc h

as the lo cation of the term in the text or the term frequency . An in v erted index

consists of t w o main comp onen ts: a set of inverte d �le entries or p osting lists ,

eac h con taining a list of items corresp onding to the asso ciated term; and a se ar ch

structur e that maps terms to the corresp onding p osting lists. The set of terms

indexed b y the searc h structure, that is the set of terms con tained in the whole

text collection, is called the lexic on .

In order to searc h for text do cumen ts con taining a sp eci�c term, the searc h

structure is used �rst to obtain the p osting list. Then the p osting list is used to

get the qualifying items.

2.2 P artially sp eci�ed query terms

A tec hnique for pro cessing partially sp eci�ed query terms (queries with wild-

cards) in text databases w as prop osed in [3]. This tec hnique is based on the

construction of a r otate d (or p ermute d) lexic on , consisting of all p ossible rota-

tions of all terms in the original lexicon.

Let us supp ose that our original lexicon includes the term apple . The ro-

tated lexicon will con tain the terms apple^ , pple^a , ple^ap , le^app , e^appl ,

^apple , where ^ is used as the string terminating c haracter. The rotated lex-

icon is alphab etically ordered b y using the sort sequence ^ , a,b,c,... and it

is inserted in an in v erted index using a searc h structure that main tains the ro-

tated lexicon ordered. This can b e obtained, for instance, b y using a B

+

-T ree.

Rotated v ersions of all terms in the original lexicon are mapp ed to the p osting

list asso ciated with the original term.

By using the ordered rotated lexicon, query patterns A, *A, A*B, A*, and

A (A, and B are sub-terms that comp ose the en tire query term, and * is the

wildcard) can b e pro cessed b y transforming the query according to the follo wing

transformation rules:

I) A transforms to ^ A; I I) *A transforms to A ^ *; I I I) A*B transforms

to B ^ A*; IV) A* transforms to ^ A*; V) *A* transforms to A*.

Then the transformed query terms are used to searc h in the rotated lex-

icon. F or example, supp ose that our original lexicon con tains apple, aisle,

appeal, employ, staple . Figure 1 sho ws the obtained rotated lexicon, ordered

alphab etically . No w consider the follo wing queries: apple , *ple , app* , *pl* ,

and a*le . Figure 1 also sho ws ho w they are transformed and ho w the trans-

formed query terms are matc hed against the rotated lexicon. F or instance, the

query *pl* is transformed in to pl* , that matc hes the en tries ple^ap, ple^sta,

ploy^em corresp onding to the terms apple, staple, employ of the original lex-

icon.

A dra wbac k of this tec hnique is the memory o v erhead due to the rotation.

In fact, an a v erage memory o v erhead observ ed in [12] is ab out 250%. A memory

reducing v arian t of this metho d is discussed in [2]. The memory o v erhead is

reduced b y represen ting the rotated lexicon as an arra y of p oin ters, one for eac h

p osition in the original lexicon. This arra y of p oin ters is sorted accordingly to

the rotated form of eac h term. By using this tec hnique, [12] rep orts the memory

o v erhead of ab out 30%.

3 Rotated P ath Index

Wildcards are also frequen tly used in XP ath expressions. In man y systems these

expressions are pro cessed b y m ultiple c ontainment joins [11, 4], whic h can b e

v ery ineÆcien t in case of long paths or elemen t names with man y o ccurrences.

W e prop ose an alternativ e approac h that exploits the rotated lexicon tec hnique.

In this w a y , t ypical XP ath expressions, con taining wildcards, are pro cessed eÆ-

cien tly ev en in presence of long paths and high frequency of elemen t names.

An XML do cumen t can b e seen as a
at represen tation of a tree structure.

F or example, see Figure 2 for a p ortion of an XML do cumen t and its tree repre-

sen tation. In the �gure, white no des represen t XML elemen ts, and blac k no des

represen t the XML con ten t. Additional no de t yp es can b e used to represen t el-

emen ts' attributes { in our example w e omit them for the sak e of simplicit y .

Rotated lexicon:

Term Posting list IDs
^ai s l e 1
^appeal 2
^appl e 3
^empl oy 4
^st apl e 5
ai s l e^ 1
al ^appe 2
apl e^st 5
appeal ^ 2
appl e^ 3
e^ai s l 1
e^appl 3
e^st apl 5
eal ^app 2
empl oy^ 4
i s l e^a 1
l ^appea 2
l e^ai s 1
l e^app 3
l e^st ap 5
l oy^emp 4
mpl oy^e 4
oy^empl 4
peal ^ap 2
pl e^ap 3
pl e^st a 5
pl oy^em 4
ppeal ^a 2
ppl e^a 3
s l e^ai 1
st apl e^ 5
t apl e^s 5
y^empl o 4

Original lexicon:

Term Posting list IDs
ai s l e 1
appeal 2
appl e 3
empl oy 4
st apl e 5

Queries:

Query term: Transformed query:
appl e ^appl e

* pl e pl e^ *

* pl * pl *

app* ^app*

a* l e l e^a*

Fig. 1. The original lexicon, the rotated lexicon, and some queries pro cessed on the

rotated lexicon

T o iden tify sp eci�c elemen ts in an XML do cumen t, no des of the tree are also

asso ciated with a unique iden ti�er, whic h w e call element instanc e identi�er ,

assigned with a preorder visit to the tree. In the remainder of this pap er, XML

do cumen t of Figure 2 and the corresp onding tree represen tation will b e used as

a running example to explain the tec hnique that w e prop ose.

A simple p ossibilit y of indexing the structure of XML do cumen ts is to use

an in v erted index to asso ciate eac h pathname, app earing in an XML do cu-

men t, with the list of its o ccurrences. F or instance, in our example, the path

/people/person/a ddr es s is asso ciated with a p osting list con taining elemen t

instance iden ti�ers 8 and 16. This approac h has some similarit y to text indexing,

considering that the paths pla y the role of terms and the names of elemen ts pla y

the role of c haracters. In text retriev al systems, eac h term is asso ciated with

the list of its o ccurrences. Here eac h path is asso ciated with the list of elemen ts

that can b e reac hed follo wing the path. By analogy to the terminology used in

text retriev al systems, w e call p ath lexic on and element lexic on , resp ectiv ely , the

set of pathnames and the set of elemen t names o ccurring in an XML do cumen t

rep ository .

By exploiting this analogy , our prop osal is to use the rotated lexicon tec h-

nique from Section 2.2 to build a r otate d p ath lexic on . In this w a y , w e are able to

eÆcien tly pro cess common path expressions con taining wildcards, with no need

of con tainmen t joins. W e call the r otate d p ath a path generated through the rota-

tion. Note that names of attributes can also b e indexed b y using this tec hnique.

In fact, they can b e considered as c hildren of the corresp onding elemen ts and

<peopl e>
 <per son>
 <name>
 <f n>John</ f n>
 <l n>Smi t h</ l n>
 </ name>
 <addr ess>St . Mar y St r eet , Bost on
 </ addr ess>
 …
 </ per son>
 <per son>
 <name>
 <f n>Bi l l </ f n>
 <l n>McCul l oc</ l n>
 </ name>
 <addr ess>Queen St r eet , S. Fr anci sco
 </ addr ess>
 …
 </ per son>
 …
</ peopl e>

John

per son per son

peopl e

Smi t h

St . Mar y St r . , Bost on

Bi l l McCul l oc

Queen St r . , S. Fr anci sco

f n f nl n l n

addr ess addr essname name

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17 9

Fig. 2. An example of XML data and its tree represen tation

managed similarly to the elemen ts. The c haracter @ , accordingly to the XP ath

syn tax, is added in fron t of attribute names to distinguish them from elemen ts.

XP ath uses t w o di�eren t t yp es of wildcards. One is // and stands for an y

descenden t elemen t or self (that is 0 or more optional steps). The other is * and

stands for exactly one elemen t

3

(that is exactly one step). Let P , P 1, and P 2,

b e pur e p ath expr essions , that is path expressions con taining just a sequence of

elemen t (and attribute) names, with no wildcards, and predicates. In addition to

pure path expressions, the rotated path lexicon allo ws pro cessing the follo wing

path expressions con taining wildcards: // P , P 1 // P 2, P // , and // P //

4

. This is

obtained b y using the query translation rules discussed in Section 2.2.

With a small additional computational e�ort, w e can also pro cess paths * P ,

P 1 * P 2, P * , and * P * . The idea is to use again the query translation rules and

�lter out paths whose length is not equal to the length of the query path.

Other generic XP ath expressions can b e pro cessed b y decomp osing them in

sub-expressions, consisten t with the patterns describ ed ab o v e, and com bining

the obtained results through con tainmen t joins.

T o reduce the storage space required for the rotated path lexicon, eac h ele-

men t name is enco ded b y an unique iden ti�er (not to b e confused with elemen t

instance iden ti�ers in tro duced b efore) implemen ted, for instance, as an in teger.

Th us, pathnames are represen ted as enc o de d p athnames consisting of sequences

of enco ded elemen ts, instead of strings. A sp eci�c iden ti�er is reserv ed for the

p ath terminating element . The n um b er of en tries in the rotated path lexicon is

P L � (av g P L l en), where # P L is the cardinalit y of the path lexicon and

av g P L l en is the a v erage length of paths in the path lexicon, including the ter-

3

In text retriev al systems * is t ypically used to substitute an y sequence of c haracters,

as w e said in Section 2.2, so the XP ath corresp onden t is // rather than * .

4

T o b e precise, note that P// and //P// alone are not syn tactically v alid XP ath

expression. In fact, they should b e completed as P// node() and //P// node() , for

instance. In this pap er, w e simplify the notation b y omitting the node() function.

Element lexicon: Encoded element lexicon
Ter m. el ement 0
peopl e 1
per son 2
name 3
f n 4
l n 5
addr ess 6

Path lexicon Encoded path lexicon Posting lists:
/ peopl e / 1/ 0 1- >{ 1}
/ peopl e/ per son / 1/ 2/ 0 2- >{ 2, 10}
/ peopl e/ per son/ name / 1/ 2/ 3/ 0 3- >{ 3, 11}
/ peopl e/ per son/ name/ f n / 1/ 2/ 3/ 4/ 0 4- >{ 4, 12}
/ peopl e/ per son/ name/ l n / 1/ 2/ 3/ 5/ 0 5- >{ 6, 14}
/ peopl e/ per son/ addr ess / 1/ 2/ 6/ 0 6- >{ 8, 16}

Rotated path lex. Posting list ID:
/ 0/ 1 1
/ 0/ 1/ 2 2
/ 0/ 1/ 2/ 3 3
/ 0/ 1/ 2/ 3/ 4 4
/ 0/ 1/ 2/ 3/ 5 5
/ 0/ 1/ 2/ 6 6
/ 1/ 0 1
/ 1/ 2/ 0 2
/ 1/ 2/ 3/ 0 3
/ 1/ 2/ 3/ 4/ 0 4
/ 1/ 2/ 3/ 5/ 0 5
/ 1/ 2/ 6/ 0 6
/ 2/ 0/ 1 2
/ 2/ 3/ 0/ 1 3
/ 2/ 3/ 4/ 0/ 1 4
/ 2/ 3/ 5/ 0/ 1 5
/ 2/ 6/ 0/ 1 6
/ 3/ 0/ 1/ 2 3
/ 3/ 4/ 0/ 1/ 2 4
/ 3/ 5/ 0/ 1/ 2 5
/ 4/ 0/ 1/ 2/ 3 4
/ 5/ 0/ 1/ 2/ 3 5
/ 6/ 0/ 1/ 2 6

Fig. 3. Elemen t lexicon, path lexicon, rotated path lexicon, and p osting lists relativ e

to XML example in Figure 2.

minating elemen t. In our example # P L is 6, av g P L l en is 3 : 8

�

3 , so the n um b er

of en tries in the rotated path lexicon is 23. Note that the n um b er of elemen t

instances a�ects only the size of p osting lists. T o illustrate, Figure 3 sho ws the

elemen t lexicon, the path lexicon, and the rotated path lexicon, obtained from

our example, along with their resp ectiv e enco ding. The p osting list, asso ciated

with eac h pathname in the example, is also sho wn.

Example Supp ose the XP ath expression //person/name// . The elemen t name

iden ti�ers asso ciated with person and name are 2 and 3, resp ectiv ely , and the

enco ded query is //2/3//. According to the query translation rules, this query is

pro cessed b y searc hing the rotated lexicon for /2/3//. Rotated paths that qualify

for this query are /2/3/0/1, /2/3/4/0/1, and /2/3/5/0/1, corresp onding to path

names /people/person/n ame , /people/person/n am e/f n , and /people/person

/name/ln . By merging their p osting lists, w e decide elemen ts relev an t to this

XP ath expression as those asso ciated with the elemen t instance iden ti�ers f 3, 4,

6, 11, 12, 14 g .

4 Indexing XML data structures and their con ten t

Supp ose the XP ath expression /people//name[fn= "B ill "] /fn . This returns

all fn elemen ts that are c hildren of a name elemen t, and that are descendan ts

of a people ro ot elemen t, whose con ten t is exactly the string Bill . T o pro cess

this query , con ten t predicates, in addition to structural relationships, should b e

separately v eri�ed. This can b e ineÆcien t since either the access to the do cu-

men t, in case of non indexed con ten t, or additional con tainmen t joins, in case

of indexed con ten t, are required. Ho w ev er, the rotated path index tec hnique can

b e extended in suc h a w a y that con ten t predicates and structural relationships

can b e handled sim ultaneously . In the follo wing, t w o di�eren t implemen tation

directions are discussed.

4.1 Structure+con ten t queries b y extending the path index

Con ten t of an elemen t can b e seen as a sp ecial c hild of the elemen t so it can also

b e included as last elemen t of a path. W e add a sp ecial c haracter <

5

in fron t

of the con ten t string to distinguish it from name of elemen ts and attributes.

F or instance, Bill will b e <Bill , and the path from the ro ot to the con ten t is

/people/person/n ame /f n/< Bi ll . In Section 3, w e prop osed a similar tec hnique

to index names of attributes.

Supp ose P = < cont is a pathname, where cont is the con ten t and P the path

from the ro ot. The p osting list asso ciated with P = < cont (and its rotations) con-

tains the list of elemen ts reac hable via P that ha v e con ten t cont . This is a subset

of the p osting list asso ciated with P .

Of course, it do es not mak e sense to index con ten t of all elemen ts and at-

tributes. The database administrator can decide, tac king in to accoun t p erfor-

mance issues, whic h elemen ts and attributes should ha v e their con ten t indexed.

Supp ose in our example that w e decide to index the con ten t of elemen ts fn . In

this case, pathnames /people/person/na me /fn /< Bi ll and /people/person/na

me/fn/<John are added to the path lexicon. The rotated path lexicon is also up-

dated with the corresp onding rotated paths. The corresp onding p osting lists

are f 4 g and f 12 g . Note that in this example the p osting lists con tain just one

elemen t. Ho w ev er, if sev eral p ersons whose �rst name is Bill o ccur, the corre-

sp onding p osting lists w ould b e larger.

By using this extension, our original XP ath expression can simply b e pro-

cessed b y a single access to the path index as:

1. let R

1

= pathI ndexS ear ch (/people//name/fn /<B il l);

2. return R

1

and w e are able to pro cess XP ath expressions that con tain equalit y predicates

on sp eci�c elemen ts or attributes, with just one access to the path index.

4.2 Structure+con ten t queries b y indexing p osting lists

Another p ossibilit y to supp ort eÆcien t pro cessing of path expressions with pred-

icates on con ten t is to organize the elemen t instance iden ti�ers of p osting lists b y

using sp eci�c access metho ds. F or instance, eac h p osting lists corresp onding to

frequen tly searc hed elemen ts can b e indexed with a di�eren t B

+

-T ree that uses

con ten t of elemen ts as k eys. This implies that elemen ts satisfying a predicate

can b e eÆcien tly retriev ed from these p osting lists. This idea is illustrated in

Figure 4.

5

W e use < as
ag since con ten t of an elemen t or attribute cannot start with it.

B+-Tree

B+Tree

B+-Tree

B+-Tree

Rotated
Path
Lexicon

Posting lists

Fig. 4. Some p osting lists are indexed b y a dedicate B

+

-T ree, so con ten t predicates on

elemen ts of these p osting lists can b e pro cessed eÆcien tly .

In this approac h, a path expression can b e pro cessed in t w o steps. First, the

path index is searc hed to �nd the p osting lists satisfying the structural part.

Then, the obtained indexed p osting lists are searc hed through the asso ciated

access metho d, using the con ten t predicate. P osting lists that are not indexed

should b e searc hed c hec king the con ten t of eac h elemen t.

Our query example /people//name[fn ="B il l"]/f n can b e pro cessed with

just t w o index accesses as:

1. let R

1

= pathI ndexS ear ch (/people//name/fn);

2. let R

2

= contentI ndexS ear ch (R

1

," Bill ");

3. return R

2

where w e supp ose that the p osting list R

1

asso ciated with /people/person/n a

me/fn is indexed with a B

+

-T ree, so it can b e searc hed as a con ten t index.

The adv an tage of this tec hnique is that all predicates supp orted b y the access

metho d used to index the p osting list, suc h as < , > , � , � , and =, in case of

B

+

-T ree, can b e pro cessed eÆcien tly .

5 Exp erimen ts

The path index w as implemen ted b y using Berk eleyDB. Sp eci�cally , the searc h

structure w as implemen ted as a B

+

-tree with m ultiple k eys, so p osting lists

are automatically managed b y Berk eleyDB. Elemen ts in p osting lists con tain,

in addition to the elemen t instance iden ti�er, the start and the end p osition

of the corresp onding elemen t { start and end p ositions are, resp ectiv ely , the

p ositions of the start and the end tags of elemen ts in XML do cumen ts. In this

w a y , con tainmen t joins can still b e used to pro cess queries that are not complian t

to the supp orted path expressions.

Small Dataset Medium Dataset Large Dataset

XML �les 430 4300 43000

<article> o ccurrences 430 4300 43000

<prolog> o ccurrences 430 4300 43000

<authors> o ccurrences 405 4037 40432

<author> o ccurrences 10047 98523 989752

<contact> o ccurrences 10047 98523 989752

<email> o ccurrences 9224 90729 910420

total elemen ts 625726 5684115 56505321

T able 1. Num b er of �les, o ccurrences of sp eci�c elemen ts, and total n um b er of elemen ts

in the three generated datasets.

W e compared our path index with the con tainmen t join according to the im-

plemen tation from [11]. Accordingly , an Element Index w as used that asso ciates

eac h elemen t with its (start,end) p osition and the con tainmen t join w as imple-

men ted as the Multi Predicate MerGe JoiN (MPMGJN). The elemen t index w as

dev elop ed as a B

+

-tree with m ultiple k eys in Berk eleyDB.

Retriev al of the p osting list asso ciated with a k ey (a rotated path in case of

the path index, an elemen t name in case of the elemen t index) w as implemen ted

with the bulk retriev al functionalit y , pro vided b y the Berk eleyDB. Ev erything

w as implemen ted in Ja v a, JDK 1.4.0 and run on a PC with a 1800 GHz In tel p en-

tium 4, 512 Mb main memory , EIDE disk, running Windo ws 2000 Professional

edition with NT �le system (NTFS).

W e ha v e used a b enc hmark from XBenc h [10] to run our exp erimen ts. Sp ecif-

ically w e ha v e used the T ext Cen tric Multiple Do cumen ts (TC/MD) b enc hmark

whose Sc hema diagram is sho wn in Figure 5. This b enc hmark sim ulates a rep osi-

tory of text do cumen ts similar to the Reuters news corpus or the Springer Digital

library . It consists of n umerous relativ ely small text-cen tric do cumen ts with ex-

plicit structure description, lo oseness of sc hema and p ossibly recursiv e elemen ts.

W e ha v e mo di�ed the XBenc h P erl scripts to b e able to con trol the n um b er

of generated XML �les. Then, w e ha v e generated three di�eren t datasets with

increasing size, to test the scalabilit y of the path index with increasing n um b er

of elemen ts. Statistics of the three generated datasets can b e seen in T able 1.

W e ha v e run the exp erimen ts using v arious path expressions based on the

query patterns supp orted b y the path index. W e ha v e co ded query names as

Q< p >< l > , where < p > tak es v alues b et w een 1 and 4, in corresp ondence of the

query pattern tested, < l > indicates the length of the path expression, in terms of

n um b er of elemen t names, and can b e L (ong) or S (hort). T able 2 details the test

queries, while the n um b er of o ccurrences in the datatses of the elemen t names

that w e ha v e used in the queries is rep orted in T able 1. W e ha v e pro cessed Q1< l >

and Q2< l > b oth with path index and con tainmen t join. The other queries, Q3< l >

and Q4< l > , w ere only pro cessed with the path index, since pro cessing them with

the con tainmen t join only is not p ossible.

Fig. 5. Sc hema Diagram of the used b enc hmark

P erformance comparison b et w een path index and con tainemen t join is sho wn

in T able 3 w ere the pro cessing time, expressed in milliseconds, and the n um b er

of elemen ts retriev ed b y eac h query is rep orted. Pro cessing time includes access

to the path index and retriev al of the p osting lists. In case of con tainmen t join,

pro cessing time includes access to the elemen t index and execution of the join

algorithm (whic h also include retriev al of the needed p osting lists).

The exp erimen ts w e ha v e p erformed ha v e sho wn an eviden t sup eriorit y of the

path index with resp ect to the con tainmen t join. The di�erence in p erformance

can b e justi�ed b y observing that the dominan t cost is due to the retriev al of

the p osting lists. In fact, the cost of accessing the searc h structures is negligible.

Ho w ev er, while in case of the path index just the �nal p osting lists should b e

retriev ed, the con tainmen t join has to retriev e a p osting list for eac h elemen t

name sp eci�ed in the path expressions, in order to join them. Th us as exp ected,

p erformance of the path index is practically indep enden t on the length of the

path expression, while p erformance of the con tainmen t join degrades with longer

path expressions. This is eviden t when the size of the in termediate p osting lists,

corresp onding to the n um b er of o ccurrences of the in termediate elemen t names

sp eci�ed in the query , is large. The path index do es not need to access these

h uge p osting lists since it directly accesses the p osting lists asso ciated with en-

tire paths that matc h the query . As a consequence, the path index has also the

Query P attern XP ath expression

Q1L //P //authors/author/contact/emai l

Q1S //contact/email

Q2L P1//P2 /article/prolog//contact/emai l

Q2S /article//email

Q3L P// /article/prolog/authors/autho r//

Q3S /article/prolog//

Q4L //P// //authors/author//

Q4S //author//

T able 2. Queries used for the exp erimen ts

Query Dataset P ath index Con t. join #Retr. el

Q1L

Small

Medium

Large

19

75

1079

86

612

62601

9224

90729

910420

Q2L

Small

Medium

Large

19

75

1074

81

421

48268

9224

90729

910420

Q3L

Small

Medium

Large

106

906

5056

-

46269

454239

4562725

Q4L

Small

Medium

Large

106

906

5020

-

46269

454239

4562725

Q1S

Small

Medium

Large

19

75

1100

53

194

25686

9224

90729

910420

Q2S

Small

Medium

Large

19

75

1092

36

132

3351

9224

90729

910420

Q3S

Small

Medium

Large

267

590

5435

-

53119

521753

5242441

Q4S

Small

Medium

Large

105

904

4982

-

46269

454239

4562725

T able 3. P erformance comparison. Time is expressed in milliseconds.

prop ert y of b etter scaling when the n um b er of XML elemen ts, and consequen tly

the size of p osting lists asso ciated with elemen ts names, increase. In our exp er-

imen ts, this is particularly eviden t for queries Q1L , Q2L , and Q1S , where, using

the large dataset, p erformance of the con tainmen t join b ecomes more than one

order of magnitude w orse than the path index.

6 Conclusions

W e ha v e prop osed a path index that supp orts eÆcien t pro cessing of t ypical

path expressions con taining wildcards. The prop osed index structure can b e

easily extended to also supp ort path expressions con taining con ten t predicates

in addition to constrain ts on structural relationships. Extensiv e ev aluations ha v e

demonstrated the sup eriorit y of our approac h to the previously prop osed tec h-

niques.

References

1. Giusepp e Amato, Claudio Gennaro, and P asquale Sa vino. Indexing and retrieving

do cumen tary �lms: managing metadata in the ECHO system. In 4th Intl. Work-

shop on Multime dia Information R etrieval De c emb er 6, Juan-les-Pins, F r anc e, in

c onjunction with A CM Multime dia , 2002.

2. G. Gonnet anf R. Baeza-Y ates. Handb o ok of data structur e and algorithms .

Addison-W esley , Reading, Massac h ussets, second edition, 1991.

3. P . Brately and Y. Chouek a. Pro cessing truncated terms in do cumen t retriev al

systems. Information Pr o c essing & Management , 18(5):257 { 266, 1982.

4. Nicolas Bruno, Nic k Koudas, and Div esh Sriv asta v a. Holistic t wig joins: Optimal

XML pattern matc hing. In Pr o c e e dings of the 2002 A CM SIGMOD International

Confer enc e on Management of Data, pp. 310{321, Madison Wisc onsin, USA, June

2002 . A CM, 2002.

5. Donatella Castelli and P asquale P agano. Op endlib: A digital library service system.

In Maristella Agosti and Constan tino Thanos, editors, 6th Eur op e an Confer enc e,

ECDL 2002, R ome, Italy, Septemb er 16-18, 2002, Pr o c e e dings , v olume 2458 of

LNCS , pages 292{308. Springer, 2002.

6. W orld Wide W eb Consortium. XML path language (XPath), v ersion 1.0, W3C.

Recommendation, No v em b er 1999.

7. W orld Wide W eb Consortium. XQuery 1.0: An XML query language. W3C W ork-

ing Draft, No v em b er 2002. h ttp://www.w3.org/TR/xquery .

8. N. Da y and J.M. Martnez. In tro duction to MPEG-

7 (v4.0). w orking do cumen t N4675, 2002. Av ailable at:

h ttp://mp eg.telecomitalialab.com/w orking do cumen ts.h tm.

9. Gerald Salton and Mic hael J. McGill. Intr o duction to Mo dern Information R e-

trieval . McGra w-Hill Bo ok Compan y , 1983.

10. Benjamin Bin Y ao, M. T amer

�

Ozsu, and John Keenleyside.

XBenc h - a family of b enc hmarks for XML DBMSs. T ec hni-

cal Rep ort TR-CS-2002-39, Univ ersit y of W aterlo o, Decem b er 2002.

h ttp://db.u w aterlo o.ca/ � ddbms/pro jects/xb enc h/index.h tml.

11. Ch un Zhang, Je�rey F. Naugh ton, Da vid J. DeWitt, Qiong Luo, and Guy M.

Lohman. On supp orting con tainmen t queries in relational database managemen t

systems. In W alid G. Aref, editor, A CM SIGMOD Confer enc e 2001: Santa Barb ar a,

CA, USA, Pr o c e e dings . A CM, 2001.

12. Justin Zob el, Alistair Mo�at, and Ron Sac ks-Da vis. Searc hing large lexicons for

partially sp eci�ed terms using compressed in v erted �les. In Rak esh Agra w al, Se� an

Bak er, and Da vid A. Bell, editors, 19th International Confer enc e on V ery L ar ge

Data Bases, A ugust 24-27, 1993, Dublin, Ir eland, Pr o c e e dings , pages 290{301. Mor-

gan Kaufmann, 1993.

