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Abstract5

Understanding the human spoken language recognition process is still a far scientific goal. Nowadays,6

commercial automatic speech recognisers (ASRs) achieve high performance at recognising clean speech,7

but their approaches are poorly related to human speech recognition. They commonly process the phonetic8

structure of speech while neglecting supra-segmental and syllabic tracts integral to human speech recogni-9

tion. As a result, these ASRs achieve low performance on spontaneous speech and require enormous costs10

to build up phonetic and pronunciation models and catch the large variability of human speech. This paper11

presents a novel ASR that addresses these issues and questions conventional ASR approaches. It uses alter-12

native acoustic models and an exhaustive decoding algorithm to process speech at a syllabic temporal scale13

(100-250 ms) through a multi-temporal approach inspired by psycho-acoustic studies. Performance com-14

parison on the recognition of spoken Italian numbers (from 0 to 1 million) demonstrates that our approach15

is cost-effective, outperforms standard phonetic models, and reaches state-of-the-art performance.16
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1. Introduction20

Spoken language recognition in human beings is natural, robust, and effective. People recognise each21

other’s words also in situations of high background noise and reverberation using complex multi-channel22

information processing (Hawkins and Smith, 2001). However, emulating and understanding these mecha-23

nisms goes beyond our current technological capabilities (Pieraccini, 2012; Markowitz, 2015). Nevertheless,24
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automatic speech recognition has evolved in the last decades to propose high-performance commercial prod-25

ucts to the large public (Li et al., 2015; Mustafa et al., 2019). The approaches of modern automatic speech26

recogniser (ASRs) are poorly related with human speech recognition processes, and building ASRs requires27

significant economic investments (CBInsights, 2019). Indeed, high costs depend mainly on the manual28

preparation of large corpora of audio samples annotated at multiple levels (usually from sentence to pho-29

netic levels), pronunciation models, and grammars. As a result, the implementation of high-performance30

ASRs is usually bounded to few and large corporations and their applications are confined to simple sen-31

tence transcribers or interactive voice responders. These ASRs usually neglect acoustic indicators such as32

intonation and supra-segmental tracts that are essential in human spoken dialogues, because these would33

be expensive in terms of modelling and data preparation. Consequently, modern ASRs have still issues at34

recognising spontaneous and conversational speech with a high accuracy (Szaszák et al., 2016; Sahu et al.,35

2018; Naing and Pa Pa, 2018; Knill et al., 2019).36

The classic ASR architecture we took as a reference to build our ASR, is made up of four main processes37

(Figure 1): (i) feature extraction, (ii) acoustic unit recognition, (iii) language model, and (iv) decoding. The38

first process extracts real numbered vectors of acoustic features out of an audio file. The temporal scale39

of these features is usually strictly sub-segmental and reflects the search for stationary spectral conditions40

as much as possible. The second process - acoustic unit recognition - extends the temporal scope of the41

speech chain processing. The acoustic units used in most ASRs are classically related with the acoustic42

characteristics of the phonotactic distribution of co-articulatory processes. Indeed, most ASRs use contextual43

phones/tri-phones as acoustic units. This approach embeds coarse assumptions on the internal dynamics of44

the speech signal and attempts to model a form of contextual prediction of acoustic phenomena related45

with the nature of connected speech. Consequently, a classic ASR includes a large (∼cubic) combination of46

elementary acoustic phonetic models. A further process estimates the likelihoods of these combined models47

to a segment of speech signal. State-of-the-art ASRs use between ~2,000 and ~10,000 hours of speech48

to train these models (CMUSphinx, 2017; Mwiti, 2019). However, these acoustic models are not robust49

enough to manage the reduction processes that are frequent also in clear speech and that are more easily50

treated with a syllable-based approach (Greenberg, 1996; Ostendorf et al., 1996; Cutugno et al., 2018).51

The third process - language model - calculates the joint probability of a sequence of words and guides52
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the ASR search among alternative words during the recognition. This model uses a grammar that specifies53

the permissible structures of the language. Statistical grammars (e.g. N-grams, Dunning (1994)) are used54

to model complex languages and are automatically learned from large textual corpora. On the basis of a55

grammar, the language model assigns a higher probability to more likely word sequences. As a prerequisite,56

this process requires specifying all possible allowed words (the lexicon) and all different ways in which the57

used units of speech can be combined to build these words (pronunciation models). The language model58

is dependent on the particular lexicon and dialogue context the ASR is meant to manage. State-of-the-art59

large-vocabulary ASRs include a 106 order of magnitude words, and the language model is trained on tens60

of gigabytes of reference texts (Huang et al., 2001; Google, 2019). The fourth process - decoding - combines61

acoustic models with the language model to produce the most probable transcription of an input audio file. In62

most ASRs, acoustic models are implemented as Hidden Markov Models (HMMs, Markov (1913); Rabiner63

and Juang (1986)), and the decoding process is strictly dependent on their state-based nature, where initial64

and final states establish the acoustic boundaries between consecutive speech units (Young et al., 1989). This65

type of HMM is a double stochastic model defined by (i) a finite set of states (ii) a transition matrix between66

consecutive states, (iii) a set of emission probability densities for each state to be associated with the vectors67

of acoustic features at a certain time, and (iv) a set of initial-state probability densities. Alternative models68

have been proposed to enhance HMM performance, for example Factorial HMMs (FHMMs, Ghahramani69

and Jordan (1996)) use sets of HMMs all with the same number of states and independent of each other,70

except for the fact that the emission probability of one state of an HMM depends also on the states of the other71

HMMs (Logan and Moreno, 1998). Most state-of-the-art ASRs use Deep Learning models to (i) classify72

speech-units, (ii) model HMMs emission densities, and (iii) extract acoustic features (Cosi, 1998; Cosi and73

Hosom, 1999; Ahad et al., 2002; Abdel-Hamid et al., 2014; Hinton et al., 2012; Swietojanski et al., 2014).74

In particular, Deep Neural Networks (DNNs) are commonly used to model emission probabilities (Povey75

et al., 2011; Pan et al., 2012; Cosi, 2015) and in some cases are replaced by Recurrent Neural Networks and76

Long Short-Term Memory models (LSTMs) (Sak et al., 2014; Soltau et al., 2016; Senior et al., 2015; Qu77

et al., 2017). LSTMs model longer-term dependencies between the elements of the input sequence (Bengio78

et al., 1994; Hochreiter, 1991; Massoli et al., 2019) and have demonstrated high performance when used to79

classify single phonemes and syllables (Sak et al., 2014; Senior et al., 2015; Soltau et al., 2016; Qu et al.,80
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2017).81

End-to-end ASRs are valid alternative architectures and can reach state-of-the-art performance (Rao82

et al., 2017; Zhang et al., 2017; Chiu et al., 2018; Weng et al., 2018; Watanabe et al., 2018; Zeghidour et al.,83

2018a,b; Jaitly et al., 2019; Sainath et al., 2019). These systems jointly learn all ASR components in one84

integrated approach, which reduces training and decoding time. However, they require an amount of training85

data that is by far higher than what is required by classic ASR architectures (Graves et al., 2006; Graves and86

Jaitly, 2014; Novoa et al., 2018; Audhkhasi et al., 2019).87

In this paper, a comparison between ASRs using both conventional and non-conventional approaches88

is presented. In particular, a novel approach for an ASR is proposed (Figure 2) that uses several possible89

alternative acoustic models. Each time the ASR is instantiated, one among four models is used for acoustic90

unit modelling. Three of these models (FHMM, CNN, LSTM) are inspired by studies on the involvement91

of psycho-acoustic related features of human speech recognition, i.e. the multi-temporal processing of the92

speech signal at syllabic and phonetic levels (Greenberg, 1996; Jenkins and Strange, 1999; Hawkins and93

Smith, 2001; Malaia and Wilbur, 2019). Our study complies with the idea that although speech recognition94

in humans and machines is implemented in different ways, they should compute the speech signal in a similar95

way (Marr, 1982). Other studies have investigated this similarity at a computational level, to build ASRs that96

accounted for the high variability of acoustic realisations of lexical representations, speaker independence,97

and new-word recognition (Scharenborg et al., 2005). For example, the Shortlist and SpeM ASRs addressed98

these properties by pursuing the hypothesis that human speech processing separates pre-lexical (abstract99

phonological representations before processing) and lexical levels (Norris, 1994; Scharenborg et al., 2005).100

Shortlist-B proposed a further pre-processing of the speech signal to reflect the characteristics of human101

pre-lexical processing (Norris and McQueen, 2008). However, these ASRs still worked at a phonetic-scale102

(i.e. with phonetic base units) and were mainly conceived for Hidden Markov Models-based acoustic units.103

Instead, our ASR uses syllabic-scale units and different acoustic model implementations and embeds a new104

decoding algorithm that is independent of the acoustic model used. The proposed acoustic models address105

syllable-related dynamics inspired by multi-temporal processing studies. Our results show that these models106

- especially two involving deep learning models - can use a limited training material to gain performance107

that is comparable with that of state-of-the-art systems on a non-trivial recognition task. Furthermore, our108
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ASR can outperform standard-approach ASRs built upon the same training material. One drawback is its109

higher computational complexity, which requires using parallel or distributed processing for operational110

applications. As benchmark experiments, the recognition of spoken Italian digits (0-9) and numbers ranging111

from 0 to 1 million (excluded) from telephone-quality recordings were used. Digit recognition was used112

to compare ASR performance on controlled speech with a simple grammar and a low variability in the113

utterance of the syllables. Instead, the 0-1 million number experiment was used to test ASR performance114

with a non-trivial language model and with noisy audio that potentially included features of spontaneous115

speech (omissions, uncertain speech, false starts, etc.). In these experiments, when our ASR used LSTM116

syllabic acoustic models through an exhaustive decoding algorithm it had comparable performance with the117

state-of-the-art Google speech-to-text service (Google, 2019) although it was trained with just one hour of118

speech samples. Overall, our experiment is a preliminary approach to open the way for questioning base119

ASR components and thus to provide a cost- and resource-effective solution to build ASRs.120

Our results support the hypothesis that involving psycho-acoustic and supra-segmental information in121

an ASR, through the modelling of long and short term dynamics, likely increases its performance. This is122

an important topic impacting many different situations where general-purpose ASRs may not be applica-123

ble. First of all, ASRs based on DNNs are challenging for low-resource languages, which may be cut-off124

from a number of speech interfaces. Domain-specific recognition is also a challenge as it often poses strict125

constraints to ASRs. For example, pathological speech depends on the effect that a disease may have on126

human voice and requires strong ASR customisation. Further, domain-specific applications may use words127

or expressions that are not modelled by general-purpose systems, and sensitive data may not be sent to third128

parties for transcription. From the point of view of the open source community and of small enterprises,129

it is important to have the option not to depend on large companies to include speech-to-text capabilities130

in their applications. In general, a psycho-acoustically motivated solution provides significant adaptation131

capabilities and flexibility.132

Overall, the main research question addressed by this paper is: Can cognitive and psycho-acoustic the-133

ories on the syllable’s role in human speech recognition inspire effective syllabic models and ASR architec-134

tures?135

This paper is organised as follows: Section 2 describes the assumptions, the material, and the models136
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used in our ASR and alternative baseline ASRs. Section 3 reports the performance comparison between all137

ASRs on the recognition of syllables, digits, and numbers. Section 4 discusses the results and draws the138

conclusions.139

2. Material and Methods140

2.1. The Base Unit of Speech141

The base unit of speech is the minimal form of acoustic information around which human spoken lan-142

guage recognition is organised (Massaro, 1972). Indeed, the assumption that just one base unit exists is an143

exemplification of automatic modelling, since linguistic studies have instead indicated that language is or-144

ganised around a combination of units with different temporal ranges (Greenberg, 1996). Generally, human145

speech recognition uses several units with different time-scales, each containing coherent information at a146

given linguistic or paralinguistic level, and likely processes these units concurrently (Hawkins and Smith,147

2001). In automatic speech recognition, the base unit of speech is usually modelled as one unit (i) having148

a high number of manifestations, (ii) spectrally defined, and (iii) allowing the implementation of computa-149

tionally efficient algorithms. The following subsections describe two base units commonly used in ASRs:150

Phonemes3 and syllables.151

2.1.1. Phoneme152

Spoken language continuum is still commonly represented by a string of phonetic symbols (e.g. the153

International Phonetic Alphabet). This representation "hides" co-articulatory transitions and partial supra-154

segmental labelling (mainly word stress) (Ostendorf, 1999), but allows representing an entire language using155

a large combination of few tens of symbols. The pronunciation of the string of symbols varies from person156

to person and from word to word. Generally, a phonetic symbol in the IPA alphabet is associated to a set157

of reference spectral frequencies (fundamental and formant frequencies) in its stationary section, and all158

transitional and dynamic spectral variations are assumed to be at the head and the tail of this section. These159

complex dynamics depend on the variable shape of the vocal tract and the possible activity of the vocal cords160

3For brevity, in our model descriptions we will improperly use the term "phoneme" to both indicate classes of speech sounds
(phonemes) and their realisations (phones).
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during the production of the sound. The identification of a phoneme from a portion of the signal spectrum161

requires catching the exact period in which the vocal tract has a defined structure that produces a stationary162

signal, and capturing expected transitions toward the following speech sound. ASRs apply an iterative163

window of ∼10 ms, running on the speech signal to capture both transitions and dynamics. Consequently,164

the identification of a speech segment as a given unit requires using statistical models that take into account165

its spectral context and the large variability of the phoneme across phonotactic contexts and speakers. Most166

ASRs use tri-phones as base units. However, this assumption neglects a large amount of information with167

higher time range contained in the spoken realisation of syllables and words (Fujimura, 1975; Yule and168

Bernini, 1997).169

2.1.2. Syllable170

One empirical definition of phonetic syllable (or pseudo-syllable, Martin (2010)), is reported in D’Alessandro171

and Mertens (1995):172

“[. . . ] a continuous voiced segment of speech organised around one local loudness peak, and173

possibly preceded and/or followed by voiceless segments.”174

This definition is application-oriented and is useful in automatic segmentation processes. However, while175

keeping the term phonetic syllable, we adopt a more precise definition by Roach (Roach, 2000, p. 70) that176

better accounts for co-articulation dynamics:177

“[. . . ] consisting of a centre which has little or no obstruction to airflow and which sounds178

comparatively loud; before and after that centre [. . . ] there will be greater obstruction to airflow179

and/or less loud sound.”180

Thus, a syllable can also be seen as a 100-250 ms segment of signal constructed around a high energy peak181

(nucleus), possibly preceded by an increasing energy slope (onset) and followed by a tail of decreasing182

energy (coda).183

Syllables are probably the units around which human speech production developed (MacNeilage and184

Davis, 2000). Several studies have highlighted the importance of syllables in human speech perception,185
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because syllables can be perceived in a spoken word also when they are not actually uttered (mirage ef-186

fect) (Fujimura, 1994; Warren et al., 1996; Arnal et al., 2016). However, in "Categories" Aristotle already187

observed the vague nature of syllables, i.e. although each syllable is heard as separated from the other,188

generally they do not have defined boundaries. Indeed, disfluencies and reduction processes, observed also189

in clear but connected speech, can cause segment cancellation and indeterminacy of clear syllabic bound-190

aries (Greenberg, 1999). However, the rhythmical structure is always preserved, which means that more191

prominent units are usually less reduced and thus guarantee the preservation of speech-chain intelligibility192

(Cutugno et al., 2012). From a psycho-acoustic point of view, a syllable contains much more information193

than the sequence of sounds constituting it (Wu et al., 1998; Kahn, 2015). Different brain activation pat-194

terns have been observed in human subjects hearing sequences of syllables or single syllables alternatively195

(Peeva et al., 2010; Rong et al., 2018). These experiments have also highlighted specific activation patterns196

in different brain areas, corresponding to multiple temporal scales of phonetic, syllabic, and supra-syllabic197

lengths.198

One drawback of using syllable as a base unit in ASR, is that it is difficult to numerically describe all199

syllabic-scale (∼ 100 − 250 ms) speech properties that psycho-acoustic studies have indicated as related200

with human speech recognition robustness to speaker differences and adverse environmental conditions201

(Kingsbury et al., 1998; Greenberg, 1996). Also, syllable boundaries lack a consistent psycho-acoustic202

and linguistic definition that makes acoustic model specification non-uniquely defined (Wu et al., 1998;203

Huang et al., 2001). Indeed, most syllabic-scale features are related with prosody, energy contour, and204

slow modulations (around 4 Hz). Several studies have demonstrated that incorporating this information in205

syllabic acoustic models can increase the performance of an ASR (Cutugno et al., 2005; Coro, 2008; Baby206

and Hamme, 2015; Batliner and Möbius, 2019). However, these studies have also highlighted that it is not207

convenient to re-use standard ASR algorithms and assumptions when using syllabic base units (Wu et al.,208

1998; Chang, 2002; Pinson and Pinson, 2019). Generally, most syllabic ASRs either represent syllables as209

sequences of phonetic acoustic models or build one acoustic model per syllable (or demi-syllable) while210

using phonetic features extracted from ~10 ms signal windows.211

From a speech-processing operational point of view, pseudo-syllables bring more advantages than tri-212

phones. The automatic segmentation of a speech signal into pseudo-syllabic segments is facilitated by the213
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correlation of these units with the modulations of sonority movements. In every group of sounds, there214

are as many syllables as clear relative peaks of sonority (Jespersen, 1905). Furthermore, speech-intensity215

change is correlated with tonal speech perception (House, 1996) and is typically maximum between pseudo-216

syllables’ onsets and nuclei. These properties allow detecting tonal units automatically (Cutugno et al.,217

2002; D’Anna and Cutugno, 2003; D’Anna and Petrillo, 2003). Moreover, the acoustic correlates of pseudo-218

syllables can be used to model pitch movements and produce effective pitch contour stylisation, especially219

over signal segments with complex spectral content (Origlia et al., 2013). These characteristics allow to build220

automatic pseudo-syllable classification and segmentation algorithms based on sound-intensity and spectral221

entropy analysis, overcoming common issues related with sonorant consonants with high intensity (e.g.222

nasals sounds) (Origlia and Cutugno, 2016). Moreover, automatic emotion detection and tracking models223

can be more efficient using pseudo-syllabic-scale analyses, instead of phonetic-scale analyses, by harnessing224

nuclei’s spectral richness and extracting information on speech rate and style (Origlia et al., 2014).225

Overall, pseudo-syllables are (i) widely used in psycho-acoustic studies as the base unit of analysis,226

(ii) correlated with observable neural activity, (iii) phonetically describable through specific intensity and227

spectral patterns, (iv) automatically detectable by computationally efficient algorithms, and (v) based on228

clear phonetic templates. Thus, using pseudo-syllables in ASR allows including human-related patterns and229

automatically identifying the signal segments that should be extracted and annotated to train the acoustic230

models and define word pronunciation models. The Italian part of the corpus used in this paper (Section 2.2)231

was also annotated at the pseudo-syllable level to foster experiments that could explore these operational232

advantages. For all these reasons, in this paper acoustic models are based on pseudo-syllables, although the233

term syllabic model is used for simplicity.234

2.2. Lexicon, Language Model and Acoustic Features235

The experiment reported in this paper uses a controlled lexicon to test the performance and the properties236

of different acoustic models and decoding algorithms. This lexicon was selected to require short preparation,237

analysis, and development times, and also to produce a non-trivial language model that included sufficiently238

varied speech and some characteristics of spontaneous and large-vocabulary contexts. Based on these re-239

quirements and following the suggestions of other works (Wu et al., 1998; Chang, 2002), the range of240
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numbers between 0 and 999,999 - hereinafter indicated as [0,1M) - was selected as a benchmark vocabulary.241

The Speecon Italian corpus (Siemund et al., 2000; ELRA, 2019) includes sentences in this numeric range,242

recorded at 16kHz from 400 different speakers with telephonic quality (with 25dB ± 3dB signal-to-noise243

ratio). Moreover, Speecon includes annotations for numbers and digits (i.e. from 0 to 9) at the phonetic,244

syllabic, and sentence levels. A total of 42 syllables (Table 1) and 19 phonemes - plus two silence models245

- and ~220 syllabic combinations were sufficient to build up a language model for the lexicon of numbers246

in [0,1M). Although the number of phonemes involved is not far from that of the whole Italian language247

(~32), 42 syllables are just a subset of the thousands of syllables of Italian. However, even with these sylla-248

bles, spoken long numbers present characteristics of spontaneous speech, e.g. omissions, false starts, dialect249

inflexions, and uncertain speech.250

In our experiment, the Speecon recordings were divided into 80-20% training and test sets within a cross-251

validation process and did not include the same speakers. The Speecon syllabic-level annotations allowed252

to extract ~65 minutes of speech to train acoustic models and ~13 minutes to test their performance. Word-253

level annotations allowed to prepare recordings to test ASRs’ performance on numbers (~140 minutes) and254

digits (~55 minutes). The language model for [0,1M) was built using the CMUCLMTK toolkit v7 (CMU,255

2019) as a statistical model trained with syllabic mono-grams, bi-grams, and tri-grams, and had a non-trivial256

perplexity of 9.8. As a training set for the language model, the linguistic syllabic subdivisions of all numbers257

in [0,1M) were used, plus their syllabic transcriptions in Speecon. These transcriptions report the syllables258

actually uttered in long numbers and thus simulate spoken sentence alterations due to continuous speech,259

which in turn allows building a more realistic syllabic language model. Finally, back-off probabilities were260

used to account for non-observed syllabic concatenations.261

As acoustic features, 13 Mel-frequency cepstral coefficients (MFCCs, Davis and Mermelstein (1980))262

were used, with delta and double-delta features, for a total number of 39 features extracted from ~10 ms263

windows sliding over the signal with 50% overlap (5 ms). MFCCs are standard features used in ASR (Sahu264

et al., 2018). They are extracted out of the application of a filter bank based on the mel scale, which simulates265

the response of the human auditory system to speech frequencies. Although other types of mel scale-based266

features could be used (Tyagi and Wellekens, 2005; Parcollet et al., 2018; Kim et al., 2019), MFCCs were267

the set of features that all ASRs involved in our experiments could use. Thus, MFCCs allowed to measure268
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performance differences that depended on the architectures and acoustic models rather than on the signal269

representation. Furthermore, MFCCs typically allow to use a lower number of spectral features (typically270

13 per window) than alternative methods (e.g. Mel-filter bank energies, which typically require 40 features271

per window) (Paliwal, 1999), which was beneficial to avoid overfitting issues with our limited training set.272

Although our proposed acoustic models were syllabic (i.e. our ASR used syllables as base units), they273

were committed to extracting syllabic information from sequences of phonetic-scale features. Indeed, alter-274

native features using syllabic-scale windows directly (100-250 ms) do not have the same consistency and275

robustness as MFCCs for speech recognition (Kingsbury et al., 1998; Tyagi et al., 2003; Baby and Hamme,276

2015).277

2.3. Speech Decoding278

The decoding process used by our reference ASRs (e.g. Token Passing, Young et al. (1989)) relies on the279

alignment between sequences of HMM states and the audio signal and makes use of the initial and final states280

to estimate phonetic and syllabic boundaries. However, some of the syllabic acoustic models proposed in this281

paper are not made up of sequences of states, thus decoders conceived to work with HMMs could not be used.282

For this reason, a new decoding algorithm was used that was independent of the nature of the incorporated283

syllabic acoustic model used. The algorithm described in Coro et al. (2007) (hereinafter named exhaustive284

Viterbi) fitted our scopes because it uses syllabic acoustic models as black-boxes. This algorithm optimises285

the alignment of each acoustic model to the signal because it calculates the likelihoods of the models to286

all possible sub-sequences of the acoustic features extracted from the audio signal, i.e. it tests all possible287

alignments of the models to the signal. This approach increases the performance also of standard syllabic288

HMMs with respect to other decoding algorithms and has also been used in a commercial ASR (D’Anna289

et al., 2009). In particular, the algorithm calculates the conditional probability distribution P (W ∣X) of a290

sequence of n syllables W = w1w2..wn given a sequence of T features X = x1x2..xn extracted from the291

audio signal, where T is the length of the audio signal. During the calculation, the algorithm combines292

a syllable-based language model with syllabic acoustic models to find the optimal sequence of syllables293

W ∗ associated to X . The output of the algorithm is thus the sequence of syllables that is most probably294

associated with the audio signal. Through the pronunciation models it is possible to associate lexicon words295
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to the optimal sequence of syllables and produce the orthographic transcription of the audio.296

Formally, the algorithm produces the following optimal solution (the demonstration is reported in Coro297

et al. (2007)):298

P (W ∗∣X) = argmax
m∈Syl

{f(m,T ) ⋅E(m)}

where Syl is the complete set of N syllables included in the language model, E(m) is the probability299

of model m to be an ending syllable, and f(m, t) is the solution to the sub-problem of unit alignment in the300

time interval [1,t], defined as301

f(m, t) =max
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P (Xt
1∣m) ⋅ π(m)

max
1⩽t∗<t,n∈Syl

{f(n, t∗) ⋅ P (m∣n)γ ⋅ P (Xt
t∗+1∣m)}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
where γ is the language model’s weight. Starting from time T , a backtracking process follows the302

definition of P (W ∗∣X) to find the best alignment between the models and the signal. In particular, ac-303

cording to the definition of f(m, t), the algorithm efficiently tests all possible alignments of all models304

to all segments of the audio signal, and thus optimises the models’ recognition accuracy. However, one305

drawback is that it requires a pre-calculation of all models’ likelihoods to all subsets of observations, i.e.306

P (Xtj
ti
∣m) ∀m ∈ Syl,0 ⩽ ti ⩽ T,0 ⩽ tj ⩽ T . In particular, the algorithm first computes the V matrix:307

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

P (X1
1 ∣m) P (X2

1 ∣m) ... P (XT−1
1 ∣m) P (XT

1 ∣m)
0 P (X2

2 ∣m) ... P (XT−1
2 ∣m) P (XT

2 ∣m)
... ... ... ... ...

0 0 ... 0 P (XT
T ∣m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and then the backtracking procedure rapidly reconstructs the optimal solution. The overall algorithm’s308

complexity is O(T 2N2Cl), i.e. it is quadratic in T and N , and also depends on the complexity of all309

likelihood calculations Cl by the acoustic models. The complexity of the algorithm can be reduced by intro-310

ducing constraints on the minimum and maximum tj − ti difference, and through a beam search strategy in311

the f(m, t) calculations that filters out all likelihoods falling under a certain threshold. This strategy strongly312
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reduces the number of non-zero elements in the V matrix and thus reduces computational time. In our exper-313

iment, forcing 100ms ≤ tj − ti ≤ 250ms and relative likelihood ⩾ 0.5 made our ASR return results in short314

time without losing performance. Further, since each element of the V matrix is independent of the other,315

the matrix calculation can be parallelised to (linearly) reduce decoding time (Section 4). The main differ-316

ence between the exhaustive Viterbi algorithm and Token Passing is that the former treats acoustic models as317

black boxes. Indeed, exhaustive Viterbi is independent of the acoustic model implementation used and only318

requires likelihood calculations from these models. Instead, Token Passing is strongly based on the assump-319

tion that acoustic models are made up of sequences of states and that the transition from one model to another320

can occur only from a final state to an initial state. This assumption strongly reduces the computational com-321

plexity of the decoding strategy. In particular, Token Passing defines the minimum alignment cost, between322

the vectors Xt
1 and a sequence of model states ending in state j, as sj(t) = min

i∈all states
{si(t − 1) + pij} + dij .323

With pij being a transition cost that is given either by the model state-transition matrix or by the language324

model (when j is an initial state and {i} are the final states of other models). The optimal sequence of states325

is the one having the minimum cost S =min
j
{sj(T )}. Using a bi-gram language model, the computational326

complexity of the unit-to-signal alignment is between O(TNlog(N)Cl) and O(TN2Cl), where N is the327

number of connected units (e.g. syllables) and Cl is the complexity of the likelihood calculation of the state-328

based model used. Instead, the models managed by exhaustive Viterbi can be non-state-based, which is the329

main reason for its higher computational complexity but also for its higher flexibility.330

2.4. Hidden Markov Models331

Hidden Markov Models (HMMs) are the most used choice for acoustic modelling (Figure 1-a). Given a332

sequence of acoustic featuresX , they estimate the conditional probability distribution P (X ∣S) ofX given a333

sequence of states S = s1, s2, .., sT . Based on this definition, the Viterbi algorithm (Viterbi, 1967) efficiently334

estimates the likelihood of an HMM to X as the conditional probability P (X ∣S∗) of the sequence of states335

S∗ that maximises P (X ∣S) (i.e. the one most likely associated to X). An HMM that models a phoneme is336

trained (e.g. through the Baum-Welch algorithm) on many examples of acoustic features for that phoneme,337

in order to model the inter-speaker and inter-word variability of that phoneme. Likewise, a syllabic HMM338

is trained on the acoustic features of a syllable (Figure 2-a), i.e. concatenations of phonetic-scale features.339
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Often, ASRs use concatenations of phonetic HMMs to build up di-phone or tri-phone models that are re-340

trained to better assess inter-model transitions (CMUSphinx, 2017). Modern ASRs need thousands of hours341

of annotated material to train phonetic acoustic models for large-vocabulary applications. For the experiment342

reported in this paper, HMM implementations from JAHMM (Francois, 2019), KALDI (Povey et al., 2011),343

and CMUSphinx (Lamere et al., 2003) were used to implement syllabic and tri-phonetic HMMs.344

For decades, ASRs have used HMMs with Gaussian mixtures (GMMs) to model emission densities345

(Huang et al., 2001). However, current state-of-the-art ASRs use DNNs to model emission densities (Figure346

1-b) as softmax(oi(Xt)), where oi(Xt) is the value of the activation function in the output layer of the347

node corresponding to state i (Yu and Deng, 2015). This type of ASR is currently used in many domains and348

reaches state-of-the-art performance (Serizel and Giuliani, 2017; Ravanelli and Omologo, 2017; Maas et al.,349

2017; Novoa et al., 2018; Patel et al., 2018; Smit et al., 2018; Chao et al., 2019; Mao et al., 2019). The used350

DNNs are typically multi-layer perceptrons with many layers (~7), with the training phase initialised by a351

pre-training algorithm. KALDI provides two main implementations of HMM-DNNs, one using Restricted352

Boltzmann Machines for pre-training and Stochastic Gradient Descent for training (HMM-DNN-nnet1),353

and the other one using Natural Gradient for Stochastic Gradient Descent and Parameter Averaging (HMM-354

DNN-nnet2).355

2.5. Factorial Hidden Markov Models356

An FHMM is made up of a set of HMMs, all with the same number of states, and inter-dependent357

emission probabilities usually modelled as multi-variate Gaussians (Figure 2-b) (Logan and Moreno, 1998).358

FHMMs are particularly suited for speech processing, in particular to model concurrent and overlapping359

dynamics that are generated by multiple and loosely-coupled processes, as those present in a speech signal360

(Ghahramani and Jordan, 1996; Gael et al., 2009; Florian et al., 2011). Multi-temporal ASRs have used this361

property to model the syllabic and phonetic structures contained in ~200 ms speech segments. In particular,362

the transition probability distributions of syllabic FHMM acoustic models with 2 parallel HMMs have high-363

lighted the presence of two inter-linked syllabic-scale and phonetic-scale dynamics (Coro, 2008). These are364

likely responsible for the higher performance of FHMMs with respect to HMMs in syllable modelling. FH-365

MMs have been used in ASRs with the aim to include results from psycho-acoustic studies on overlapping366
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speech dynamics (Logan and Moreno, 1998; Virtanen, 2006; Tu et al., 2016). For the experiment reported in367

this paper, FHMMs were implemented in Java by porting and optimising the original Matlab implementation368

by Z. Ghahramani (Ghahramani, 2002).369

2.6. Deep Learning models370

Deep Learning (DL) models leverage a multi-layered structure to extract information from raw input371

data. DNNs are conventional DL models where each layer of the network is assumed to produce an internal372

representation of the input (feature map), with deeper layers producing higher levels of information abstrac-373

tion. The increasing computational power of graphic processing units (GPUs) has allowed introducing DL374

models in a vast number of domains, e.g. from computer vision (Krizhevsky et al., 2012; Massoli et al.,375

2020; Girshick, 2015) to natural language processing (Deng and Liu, 2018; Ortis et al., 2019). In our ex-376

perimental campaign, two different DL models were implemented - with PyTorch (Paszke et al., 2019) - as377

acoustic syllabic models (without embedding them in an HMM): a Convolutional Neural Network (CNN,378

LeCun et al. (1995)) and a Long Short-Term Memory model (LSTM, Hochreiter and Schmidhuber (1997)).379

2.6.1. Convolutional Neural Network380

DNNs (which include CNNs) process signal segments in a “static” way, i.e. like they were images (Coro,381

2004; Coro et al., 2019). Normally, they do not model time as an internal parameter and this limitation neg-382

atively affects their performance in automatic speech recognition with respect to other time-explicit models.383

In order to account for this issue, a CNN was built to model pseudo-syllables using a multi-temporal anal-384

ysis within a convolutional stage (Figure 2-c). This model uses the following operations: Each unit of the385

convolutional layer is computed by means of multiplications between the input data and a matrix (kernel),386

whose optimal values and size were assessed during the training phase. The kernel size corresponds to the387

size of the input that is convolved with the kernel (receptive field) so that each convolution only looks at a388

small portion of the input. Through the use of small receptive fields, convolutional layers are generally able389

to extract and combine local information from the input data, i.e. information contained in segments (of390

speech signal, in our case) with a predefined length. Our CNN used four 1D convolutional layers - each with391

a different kernel size - that corresponded to different filters and windows on the syllabic signal. The size of392

each window represents the time scale processed by each convolutional operation. During the convolution,393
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a window stride of one sample maximises the capture of local relations through the signal. In summary, our394

CNN analyses a syllabic speech signal at multiple time scales through a multi-window processing. After395

the convolutional step, vector pooling and stacking operations are followed by a flattening operation that396

projected all the resulting feature vectors (feature maps) on a new 1D vector, whose optimal length was esti-397

mated during the training phase. This vector is input to a fully-connected (FC) neural network layer, whose398

optimal size was estimated during the training phase. A rectified linear unit (ReLU) activation function399

(max(0, x)) is applied to each node of this layer to reduce the vanishing gradient problem (Bengio et al.,400

1994; Kapur, 2020) and favour generalisation capability (Mishkin et al., 2017; Novak et al., 2018). In order401

to reduce the risk of data overfitting due to the small amount of training data available, the dropout technique402

(Srivastava et al., 2014) was used on the FC layer. Dropout statistically excludes some nodes of the FC layer403

from one training session and re-introduces these nodes with their original weights after the non-dropped404

nodes connections have been trained. At each training step, a new set of nodes is selected to be dropped.405

Finally, during the inference phase, each node’s output is multiplied by a dropout probability to account406

for their possibly missed training steps. Overall, this procedure simulates an ensemble of a high number407

of different models whose output is eventually averaged at inference time. The last stage of our CNN is a408

classification layer, i.e. another FC layer with 44 neurons, one for each unit to recognise. This layer allows409

classifying the acoustic features of a syllabic signal as one among the syllabic units reported in Table 1.410

Indeed, a softmax function applied to the layer’s outputs makes the CNN overall simulate a posterior prob-411

ability density P (W ∣X) of each syllable W given the input vector X (Muller, 2014). In turn, this reduces412

the complexity of the decoding algorithm, because the probabilities of all syllables for a signal segment are413

calculated just after one propagation of the input through the network. The described architecture came after414

testing a large number of alternative architectures, including chained windows and deeper networks. It was415

the architecture using the lowest number of parameters and gaining the highest performance on the tasks416

reported in this paper.417

2.7. Long Short-Term Memory Model418

LSTMs are naturally suited to process observation sequences and time series (Hochreiter and Schmidhu-419

ber, 1997), because they consist of one computational unit that is iteratively used to process the observations420
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of an input time series (processing steps). The unit uses gating mechanisms that process a temporal flow421

of data while controlling the retain and the release of memorised information. Since an LSTM is suited to422

simulate a posterior probability density P (W ∣X) of all acoustic units W given the input features series X ,423

it cannot directly replace an HMM (which calculates likelihood). Furthermore, the processing steps cannot424

be treated as the sequence of states of an acoustic HMM and thus cannot be used in classic speech decoding425

processes.426

In this paper, an LSTM model was implemented to classify pseudo-syllabic acoustic units directly and427

was later combined with a speech decoding algorithm, which was able to harness its multi-temporal pro-428

cessing of the speech signal. Our LSTM model’s unit processes one vector of the input time series (i.e. one429

window of acoustic features) at a time. It uses a standard unit characterised by one forget gate, one input430

gate, and one output gate (Figure 2-d), all implemented as single-layered neural networks. Within the unit,431

the cell state ct is a Real-valued vector that roughly stores the “long-term” memory of the model, whereas the432

hidden state ht is the output vector of the LSTM unit that manages “short-term” memory. At each processing433

step, the LSTM unit receives the current input vector of acoustic features, and the cell and hidden states of434

the previous unit. The unit outputs a new cell state and a new hidden state. All gates receive the current435

unit input vector and the previous hidden state as input. As a first operation, the cell state of the previous436

processing step is multiplied by the output of the forget gate, i.e. a neural network with sigmoid activation437

function with range [0,1], where 0 represents a complete blockading (forget) of an input element and 1 a438

complete pass (remember). Another process point-wise multiplies the output of a sigmoid-activated neural439

network (input gate) by the output (proposed cell state) of a tanh-activated neural network. The output of440

this process is summed to the output of the forget gate in order to establish which part of the information re-441

tained by the forget gate should be updated. This result is the unit’s cell state that is passed to the next LSTM442

processing step. The hidden state is calculated by first passing the cell state to a tanh function (to re-scale its443

values in [-1,1]) and then multiplying this result with the output of another sigmoid-activated neural network444

(output gate). Overall, this final step roughly decides what portion of the cell state is produced as the output445

of the LSTM unit. As a final step, our LSTM-based syllabic acoustic model uses the last processing step’s446

output as an input to a classification layer, whose input size is equal to the hidden state size. Similarly to447

the CNN model, a softmax function is applied to the output of this classification layer in order to simulate448
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the posterior probability density P (W ∣X) of each syllable W given the input vector X , and to reduce the449

decoding algorithm complexity.450

2.8. Baseline Speech Recognisers451

Several instances of our ASR were produced to assess its performance depending on the acoustic model452

used. Each instance used one among the four supported models. It is worth noting that some of these models453

are more suited for recognising entire syllables, but their performance could be positively or negatively454

affected by the combination with the decoding algorithm (Section 3.3). In particular, syllabic HMMs were455

enabled in our ASR architecture to measure the performance enhancement that our decoding algorithm456

would bring to a classic model. Similarly, FHHMs were used to evaluate the performance in word and457

sentence recognition of a naturally suited model for single pseudo-syllable recognition (Coro et al., 2007).458

Finally, the CNN and LSTM acoustic models were used to evaluate the performance gained by our psycho-459

acoustic inspired models in word and sentence recognition.460

CMUSphinx (Lamere et al., 2003) and KALDI (Povey et al., 2011) were used as reference ASRs. These461

systems use tri-phonetic HMM-GMMs and HMM-DNNs respectively within a reference ASR architecture,462

and were trained with an open source reference corpus suited for our recognition tasks. The Italian VoxForge463

corpus (VoxForge, 2012) was used to train phonetic and tri-phonetic HMMs with 19 hours of speech that464

involved regional inflexions. Although the dimension of VoxForge is generally not sufficient to build a465

high-performance large-vocabulary ASR, it was sufficient to build high-performance baseline ASRs for466

spoken digits and numbers. In particular, CMUSphinx and KALDI were trained through the following467

operations: (i) Pronunciation models for words uttered in the VoxForge recordings were taken from the468

large database of Cosi (2015); (ii) phonetic acoustic models (and tri-phones) from the pronunciation models469

were aligned to the recordings through automatic alignment processes; (iii) the language models described in470

Section 2.2 were integrated to produce two recognisers, one for digit recognition and another one for number471

recognition. Furthermore, in the single-syllable recognition task (Section 3.2) the phonetic transcriptions472

from Cosi (2015) were used to model the pronunciations of the 42 syllables of Table 1.473

As a second baseline ASR, the Google Speech-to-Text cloud service was used (Google, 2019). This474

HMM-DNN based ASR, trained with thousands of hours of speech, has top-level performance and high re-475
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sponse efficiency, and is used by almost all Google technology. Google constantly improves its performance476

after periodically collecting users’ data and revising acoustic, pronunciation, and language models. This477

ASR uses phonetic transcriptions of 10 times the words of an entire language dictionary, for each of the 120478

languages supported, and also includes a context-specific adaptation process that is able to resize the gram-479

mar and to optimise the transcription according the language context (Peters et al., 2011; Ballinger et al.,480

2011; Google, 2019). For example, on number recognition tasks the Google service is able to report the481

numerical form of the uttered number (e.g. "one hundred three" is reported as 103), while insertions, false482

starts, and other non-numerical words are deleted if not uttered clearly (Google, 2019). Google Speech-to-483

Text (Dec. 2019 version) was used as a reference state-of-the-art ASR. Indeed, comparing the performance484

of our method with that of the Google ASR may not be an optimal choice, because of the different train-485

ing corpora used (voices, data size, data preparation, etc.) and the lack of details about the Google ASR’s486

architecture. Nevertheless, the Google’s context-specific adaptation feature and the relatively small testing487

context (numbers) reasonably allow to use the comparison as a proxy for a quality assessment of our ASR.488

3. Results489

This section reports a performance comparison between the models described in the previous section.490

Accuracy is used as a comparison metric, defined as491

Accuracy = number of correctly recognised units − number of over − inserted units
total number of units in the manual transcription

.

In order to make comparisons consistent, the interpretation of "unit" in the accuracy formula changed492

according to the test case. In fact, the compared ASRs had heterogeneous architectures and used different493

speech units and output types. For example, the Google ASR reported the entire recognised sentence with494

numerical symbols (e.g. "1" for a digit and "1350" for a number). Furthermore, the other ASRs used either495

tri-phones or pseudo-syllables. In this context, a comparison could be consistent only at a final orthographic496

transcription level. Thus, in the single-syllable recognition task, accuracy was calculated on the number of497

correctly transcribed orthographic syllables. On digit and number recognition tasks, accuracy was calculated498
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on the orthographic transcription of the entire sentence.499

3.1. Acoustic Model Topologies500

The machine-learning models reported in the Section 2, were trained to recognise the 44 units reported501

in Table 1. Multiple parametrisations and implementations of the models were tested. Eventually, the502

topologies and implementations gaining the highest performance were selected for the comparison. This503

operation required testing thousands of parameter combinations.504

Optimal HMMs for GMM-based tri-phone models were produced with KALDI and used 5 states and505

32 mixtures, whereas HMM-DNN phonetic models used 7 hidden layers in the DNN. Out of these HMMs,506

syllables were represented as concatenations of phonetic HMMs. Optimal syllabic HMMs were produced507

with JAHMM and had 7 states and 39 Gaussian mixtures. Optimal FHMMs used 2 HMMs with 7 states508

each and one multivariate Gaussian emission density.509

Regarding the deep learning models, cross-validation was used to find optimal parameters and topologies510

of the CNN and the LSTM acoustic models. Specifically, the optimal CNN topology used windows of 48,511

80, 96 and 112 ms to create 64-length feature maps after convolution, and was made up of two FC layers512

(one hidden layer and one output layer). The feature map was optimally flattened to 1,280 elements, the513

dropout probability was 20%, and the optimal size of the first FC layer was 300. The final FC classification514

layer had 44 neurons, one for each syllable to recognise. Moreover, the importance of introducing non-515

linearity in the output of this FC layer through ReLU was tested: All models were also trained without516

ReLU, and a performance degradation up to 4% was observed, which confirms the positive contribution of517

this transformation and the need to include it in the acoustic model.518

The optimal LSTM was a mono-directional model with one hidden state with 1000 neurons and a final519

classification layer with 44 neurons, one for each syllable to recognise. The training phases of both models520

used the Adam optimiser (Kingma and Ba, 2014) with cross entropy loss criterion and a learning rate of521

1.e−3, reduced of 5 times whenever loss reached a plateau.522

As for ASR configuration, the language model of CMUSphinx was trained with mono-grams, bi-grams,523

and tri-grams. This ASR used HMM phonetic models with 32 Gaussian mixtures, trained with 19 hours of524

annotated recordings from the VoxForge corpus. Our ASR used the exhaustive Viterbi algorithm described in525
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Section 2.3 alternatively combined with HMM, FMM, CNN, and LSTM syllabic acoustic models. The ASR526

used a language model based on the bi-grams prepared for CMUSphinx. Finally, the Google Speech-to-Text527

service was used through a Java client that streamed audio files and collected transcriptions.528

3.2. Syllable Recognition529

Acoustic models’ performance was first compared on the recognition of the syllables and silence units of530

Table 1, without the interference of the language model and the decoding process. This performance com-531

parison (Table 2-a) showed that our LSTM outperforms phonetic HMMs by 8.91% absolute accuracy and532

the second optimal model (HMM-DNN-nnet2) by 2.63%. A Chi-squared test confirmed that this discrep-533

ancy was highly significant with our test set size (with p-value of non-significant discrepancy null hypothesis534

lower than 0.0001) (NIST, 2018). The accuracy of our LSTM increased non-linearly with the vector length535

of the LSTM hidden state (Figure 3), which indicated that a ~1000 length was really required to model the536

complexity and variability of the syllables. Interestingly, our multi-temporal CNN had comparable perfor-537

mance with HMM-DNN models, and the HMM-DNN model using Natural Gradient had a slightly higher538

performance than the other HMM-DNN implementation. FHMMs and syllabic HMMs outperformed pho-539

netic HMMs, in agreement with other studies (Logan and Moreno, 1998; Coro et al., 2007; Gael et al., 2009),540

but had lower performance than the deep learning models. Since HMM-DNN-nnet2 was the second optimal541

model, it was selected to be used in the KALDI ASR for the comparison on digit and number recognition542

tasks.543

3.3. Digit Recognition544

Although digits are made up of a maximum of two non-silence syllables, spoken digit recognition in-545

volves the issue of aligning sequences of silence models, short pauses, and (one or two) syllables to the546

signal. Thus, a performance comparison on digit recognition highlighted how much the slight misalignment547

of syllabic models to the uttered syllables influenced word recognition. In this case, accuracy was calculated548

on the recognition of entire words directly, especially for a fair comparison with the Google Speech-to-Text549

service. The context-specific adaptation of the Google ASR made the reported comparison meaningful be-550

cause it restricted the grammar to the particular task and deletes non-numeric insertions that were not loudly551

uttered.552
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Also, due to the moderately-high signal-to-noise ratio, no model reached 100% performance on this553

"simple" task (Table 2-b). The exhaustive Viterbi algorithm optimised the alignment of the various acoustic554

models to the speech signal and made syllabic HMMs and FHMMs outperform a standard-approach ASR.555

Performance was generally high for all ASRs, but the accuracy discrepancy between the CNN and the556

LSTM models (4%) was higher than in the syllable recognition case (2.76%). Indeed, the CNN model was557

sensitive to syllable alterations (e.g. stretching and reduction) since it processed signal segments as they558

were static images. Generally, the difference between the CNN and the LSTM models in accounting for559

syllabic alterations is more and more evident as long as speech tends to be continuous and spontaneous.560

For example, alterations of "kwa ttro" as "kwa tro" and of "o tto" as "o to" are more probable within long561

numbers but also exist with digits. Overall, the high performance of the LSTM-based ASR indicated that our562

LSTM was a suitable acoustic model for an ASR, and the recogniser also slightly outperformed the Google563

service (98% vs 97.5% accuracy). A Chi-squared test confirmed that this discrepancy was significant (with564

p-value of non-significant discrepancy null hypothesis lower than 0.05). Finally, the KALDI ASR using565

the best tri-phone models (HMM-DNN-nnet2) gained 1.1% higher relative accuracy than the CNN-based566

model, but lower relative accuracy than the Google ASR (2.5%) and the LSTM-based ASR (3%).567

3.4. Number Recognition568

The performance comparison on the recognition of [0,1M) numbers further highlighted the differences569

between the ASRs (Table 2-c). The main difference with respect to the digit recognition case was the higher570

performance of CMUSphinx with respect to the CNN-, FHMM-, and syllabic HMM-ASRs. This enhance-571

ment was due to the higher amount of training material used to build the CMUSphinx ASR, and also to572

the lower flexibility of the other models to work on the more continuous and spontaneous speech of the573

uttered numbers, which presents a large variability due to omissions, false starts, and uncertain speech. In574

this context, the acoustic syllabic structures can be very different from those of the training set. Models575

like CNN, FHMMs, and Syllabic HMMs would require more training material to handle this structural vari-576

ability. In particular, our CNN model was re-adapted from image processing and does not fully capture the577

unfolding of information in time and its variability across the training set. Instead, the phonetic CMUSphinx578

and the KALDI ASRs had comparable performance with Google (3.4% and 0.7% relative accuracy, respec-579
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tively) due to a training material suited for the task. In particular, KALDI demonstrated the high quality and580

performance that HMM-DNN-based ASRs can reach.581

Interestingly, when our ASR used the LSTM acoustic model, it outperformed all other ASRs. Indeed, our582

ASR had a 3.7% higher relative accuracy than the Google ASR and a 7% higher accuracy than CMUSphinx.583

A Chi-squared test confirmed that these discrepancies were significant (with p-value of non-significant dis-584

crepancy null hypothesis lower than 0.001). The generalisation capability of the LSTM-based ASR and its585

flexibility to account for syllable alterations was impressive. The LSTM had optimal performance in all586

presented cases, and the acoustic models used only ~1 hour of training material, which was much lower than587

the 19 hours used for CMUSphinx and KALDI and the thousands of Google.588

3.5. Issues with large-vocabulary speech recognisers589

A one-million-number sentence-set was used instead of a large vocabulary because building a large590

vocabulary speech recogniser (LVSR) requires solving other additional research questions that were out of591

our scope. Generally, it is nearly impossible to build a state-of-the-art LVSR for a low-resource language592

like Italian using publicly available corpora for acoustic and language model training. To better highlight593

this aspect (and also produce a reference for our future studies), we trained and compared several LVSRs -594

based on KALDI and CMUSphinx - using alternative open (or low-cost) textual and audio corpora (Table595

3). The aim of this comparison was principally to highlight some intrinsic practical difficulties in building596

LVSRs.597

We compared recognition performance on a 15-minute corpus extracted from the Italian VoxForge corpus598

(VoxForge, 2012) that was not used during ASR training. The textual corpora used for (4-gram) language599

model training included: (i) the "Italian Web corpus" (itWaC), made up of texts collected from the Internet600

and including 1.5 billion words (Baroni et al., 2009); (ii) Paisà, a large and expert-revised collection of Italian601

texts from the Internet containing ∼250 million tokens (Lyding et al., 2014); (iii) CLEF, a large collection602

of Italian national newspaper articles from the 90’s containing ∼1 million words overall (CLEF, 2020); and603

(iii) the Italian Content Annotation Bank (I-CAB), which contains 525 local (Trento province) newspaper604

articles with ∼180,000 words overall (Magnini et al., 2006). The audio corpora used were VoxForge (∼20605

hours) and APASCI (∼2 hours), whose audio was based on the same spoken text. The performance across606
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multiple textual corpora was reported only for CMUSphinx for simplicity to highlight performance decrease607

across the corpora. The following difficulties emerged, which depended on the lack of great effort (and608

money) investment in data collection and cleaning:609

1. The performance gap between the Google ASR and the other LVSRs was very high (from -25.46% to610

-49.75% word accuracy);611

2. Using uncontrolled large textual corpora (e.g. itWaC) may end in lower performance because text612

from social networks introduces too much noise in the language model and is unsuited for spoken613

dialogues;614

3. Combining different textual corpora (e.g. Paisà+CLEF) may end in lower performance because of too615

different language structures (e.g. Internet v.s. newspapers);616

4. Data cleaning included in Paisà made this corpus the optimal choice to train the language model, but617

required greater effort by the corpus producers;618

5. Generally, using many hours of speech (i.e. VoxForge instead of APASCI) and deep learning mod-619

els for training acoustic models increases performance, but combining different audio corpora can620

decrease performance probably because of practical audio-transcription inconsistencies between the621

corpora;622

6. Smaller vocabularies (e.g. CLEF and I-CAB) - even containing thousands of words - may not be623

sufficient to gain high performance.624

Thus, selecting and preparing optimal textual and speech corpora for LVSRs is complex and effort-625

demanding, especially for low-resource languages. Investigating these issues was outside of this paper’s626

scope, which instead aims at introducing new acoustic models and a new decoding algorithm and comparing627

them with a state-of-the-art ASR on a common vocabulary. However, our future experiments will investigate628

the above issues because they call for new ways to achieve state-of-the-art performance with less training629

material and new decoding strategies that optimally use the language model.630

In summary, a one-million-number benchmark sentence-set was used because it corresponded to a non-631

trivial language model that did not depend on the used training textual corpus and was reasonably comparable632

with the one used by a reference state-of-the-art ASR. Furthermore, although the lexicon required a short633
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preparation phase, the speech included several features of spontaneous and large-vocabulary speech (e.g.634

variability, omissions, uncertain speech, and false starts).635

4. Discussion and Conclusions636

4.1. Summary637

In this paper, novel syllabic acoustic models and a new ASR have been described and compared with638

state-of-the-art alternatives. On the single-syllable recognition task, the deep-learning models showed very639

high performance. FHMMs gained higher performance than syllabic and phonetic HMMs, likely because640

they recognised both syllabic- and phonetic-scale dynamics associated with different transition speeds in the641

two parallel HMMs (Coro et al., 2007). Also, our multi-temporal CNN model forced a multi-scale analysis642

(from phonetic to syllabic scales) and gained high performance. However, this model was not able to fully643

capture the information contained in feature modulations and transitions in the digit and number recognition644

tasks. Thus, its performance decreased when the acoustic structures of the modelled syllables were not645

preserved. The properly trained CMUSphinx and KALDI ASRs reached a very high performance on the646

[0,1M) number recognition task, but still lower than the cutting edge technology of the Google ASR.647

In the presented experiment, our LSTM acoustic model reported the highest performance both when used648

alone and when combined with a decoding algorithm that optimised its prediction capability. In particular,649

on syllable recognition - i.e. without the presence of the exhaustive Viterbi decoder - the LSTM model650

outperformed the other models. The performance remained optimal also on digit and number recognition, i.e.651

when the LSTM was combined with the exhaustive decoding algorithm. This was not the case of the CNN652

and the other acoustic models, which lost accuracy with respect to the baseline systems as the recognition653

task became more and more difficult. Thus, the LSTM model both outperformed the other acoustic models654

and was optimally used by the decoding algorithm. This property indicates that the decoding algorithm655

was able to use this model at best, although the LSTM performance was already optimal by itself. The656

LSTM model explicitly accounts for the unfolding of information in time, similarly to HMMs, but also657

models both long- and short-term information. This likely corresponds to modelling high-rate and low-rate658

dynamics within one syllable, in agreement with psycho-acoustic studies. At the same time, this behaviour659

also overcomes the issue of modelling inter-syllabic variability from a small training set, which affected the660
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CNN model’s performance. Our results indicate that the LSTM probably learned this variability from the661

training set and thus was able to manage a more continuous-like speech. Finally, the separation between the662

speakers in the training and test sets reduced the potential artefact that the model was trained on the same663

corpus the test set belonged to.664

4.2. Using our approach with larger vocabularies and other languages665

Extending our approach to an LVSR principally requires the availability of annotations of the syllables666

actually spoken in the utterances (pseudo-syllables) that allow to develop an effective syllabic language667

model. The use of the Speecon Italian corpus in the presented experiment was mainly driven by the avail-668

ability of this information. Given the generality of our approach, the presented results are likely valid for669

all languages currently managed by the reference ASRs of Figure 1, as long as pseudo-syllables are used670

for acoustic modelling. Indeed, pseudo-syllables ensure the stability of the syllable structure and increase671

acoustic-model performance (Section 2.1.2). Nevertheless, our future work will test the new proposed ASR672

on other languages. It is worth noting that the obtained results are compliant with those reported by other673

studies for English. The Google ASR and HMM-DNN-based ASRs can reach over 99% accuracy on clean674

English spoken digits (Li et al., 2015) and ∼97% accuracy on noisy speech (with a ∼15dB signal-to-noise675

ratio) (Milde and Köhn, 2018). On a task to recognise ∼30,000 English numbers (Cole et al., 1995), per-676

formance can range around a 93% word-recognition accuracy (Greenberg, 1997; Wu et al., 1998; Dimi-677

trakakis and Bengio, 2011). As a general reference, with clean dialogue speech the Google ASR can reach678

∼93% word-recognition accuracy on a ∼5000 vocabulary of English words (Novoa et al., 2018), and ∼63%679

word-recognition accuracy on a 7.5 million vocabulary of English words (Kimura et al., 2019). On the680

same million-word vocabulary, an ASR based on KALDI and HMM-DNN acoustic models can reach ∼63%681

word-recognition accuracy but is much more sensible to audio noise than the Google ASR (Kimura et al.,682

2019).683

Differently from the soft alignment process used in end-to-end models (Wang et al., 2019), our ASR684

aligns acoustic models to the signal exhaustively and explicitly, and can re-use statistical language models685

of standard ASRs. Overall, with respect to end-to-end models, our ASR presents a clear separation - as686

modules - between the phases of feature extraction, language and acoustic modelling, and decoding. This687
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property allows improving the ASR by substituting alternative processes to these modules. One drawback of688

our ASR is its high computational complexity that mainly depends on the pre-calculation of a large number689

of likelihoods (Section 2.3). However, this complexity does not compromise efficiency for practical usages690

of the ASR: Using a parallel implementation of the decoding algorithm on 8 cores with HMM syllabic691

models, the recognition of a spoken number requires averagely ~5 seconds on a machine with an Intel692

Core i7-7700HQ CPU and 16GB of Random Access Memory. Parallelising the computation on multiple693

cores or machines would make computational time manageable also if a large number of syllables were694

involved, e.g. a large vocabulary (∼500 syllables) would require ∼5s on a distributed computation using ∼100695

cores/machines on a cloud computing platform. Furthermore, the search space of the decoding algorithm696

could be drastically reduced through "islands’ recognition", i.e. by focusing the process on those portions697

of the speech signal that are (i) acoustically relevant (prominent) compared to the surrounding units, (ii)698

pronounced with reasonable accuracy, and (iii) more clearly recognisable (Ludusan et al., 2011). We will699

explore also this research direction in the future.700

4.3. Concluding remarks701

In summary, a completely new ASR architecture has been presented. Our approach’s main novel char-702

acteristics are the inspiration by studies on the multi-temporal processing of speech in human beings and703

the use of pseudo-syllables instead of tri-phones as acoustic models. These features have produced high-704

quality results compared to the Google ASR and the KALDI tri-phonic HMM-DNN ASR. Furthermore,705

our approach has the technical advantage that it can be applied to new acoustic models and can re-use sta-706

tistical language models of classic ASRs. The reported results suggest that taking into account the results707

of psycho-acoustic studies - i.e. including also non-phonetic dynamics - and questioning the standard-used708

ASR approaches may produce effective solutions. This observation positively answers to our original re-709

search question. Furthermore, our results show that the high performance of our ASR and acoustic models710

is likely due to the use of pseudo-syllables instead of tri-phones on the reported recognition tasks, i.e. a per-711

ceptual syllable definition has direct benefits for both the acoustic models and the ASR. One open question712

is if the multi-temporal processing included in our acoustic models was crucial to increase ASR perfor-713

mance. Indeed, our CNN explicitly modelled multi-temporal processing but did not gain top performance.714
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In contrast, the LSTM model implicitly accounted for different time-scale dynamics and gained very high715

performance.716
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algorithm and of the HMM-based syllabic acoustic models, and the DL trained models are available on the722

GitHub at723

https://github.com/gianpaolocoro/AutomaticSpeechRecognitionResearch724

The source code for training the deep learning acoustic models is available at725

https://github.com/fvmassoli/deep-acoustic-modeling726

References727

Abdel-Hamid, O., Mohamed, A.r., Jiang, H., Deng, L., Penn, G., Yu, D., 2014. Convolutional neural networks for728

speech recognition. IEEE/ACM Transactions on audio, speech, and language processing 22, 1533–1545.729

Ahad, A., Fayyaz, A., Mehmood, T., 2002. Speech recognition using multilayer perceptron, in: IEEE Students Confer-730

ence, ISCON’02. Proceedings., IEEE. pp. 103–109.731

Arnal, L.H., Poeppel, D., Giraud, A.L., 2016. A neurophysiological perspective on speech processing in “the neurobi-732

ology of language”, in: Neurobiology of language. Elsevier, pp. 463–478.733

Audhkhasi, K., Saon, G., Tüske, Z., Kingsbury, B., Picheny, M., 2019. Forget a bit to learn better: Soft forgetting for734

ctc-based automatic speech recognition. Proc. Interspeech 2019 , 2618–2622.735

Baby, D., Hamme, H.V., 2015. Investigating modulation spectrogram features for deep neural network-based automatic736

speech recognition, in: Sixteenth Annual Conference of the International Speech Communication Association, pp.737

2479–2483.738

28



Ballinger, B.M., Schalkwyk, J., Cohen, M.H., Allauzen, C.G.L., Riley, M.D., 2011. Speech to text conversion. US739

Patent App. 12/976,972.740

Baroni, M., Bernardini, S., Ferraresi, A., Zanchetta, E., 2009. The wacky wide web: a collection of very large linguisti-741

cally processed web-crawled corpora. Language resources and evaluation 43, 209–226.742

Batliner, A., Möbius, B., 2019. Prosody in automatic speech processing.743

Bengio, Y., Simard, P., Frasconi, P., et al., 1994. Learning long-term dependencies with gradient descent is difficult.744

IEEE transactions on neural networks 5, 157–166.745

CBInsights, 2019. How Big Tech Is Battling To Own The $ 49B Voice Market. https://www.cbinsights.com/746

research/facebook-amazon-microsoft-google-apple-voice/.747

Chang, S., 2002. A syllable, articulatory-feature, and stress-accent model of speech recognition. Ph.D. thesis. University748

of California, Berkeley.749

Chao, G.L., Chan, W., Lane, I., 2019. Speaker-targeted audio-visual models for speech recognition in cocktail-party750

environments. arXiv preprint arXiv:1906.05962 .751

Chiu, C.C., Sainath, T.N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., Kannan, A., Weiss, R.J., Rao, K., Gonina,752

E., et al., 2018. State-of-the-art speech recognition with sequence-to-sequence models, in: 2018 IEEE International753

Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. pp. 4774–4778.754

CLEF, 2020. The clef initiative corpus. http://www.clef-initiative.eu/web/clef-initiative/755

home.756

CMU, 2019. The Carnegie Mellon University CLM Toolkit. https://sourceforge.net/projects/757

cmusphinx/files/cmuclmtk/0.7/.758

CMUSphinx, 2017. Training an acoustic model for CMUSphinx. https://cmusphinx.github.io/wiki/759

tutorialam/.760

Cole, R.A., Noel, M., Lander, T., Durham, T., 1995. New telephone speech corpora at cslu, in: Fourth European761

Conference on Speech Communication and Technology, pp. 1–4.762

Coro, G., 2004. Automatic speech recognition: A syllabic approach.763

Https://sites.google.com/site/gianpaolocoro/ricerca/tesi-di-laurea.764

29



Coro, G., 2008. A step forward in multi-granular automatic speech recognition. Ph.D. thesis. University of Naples,765

Federico II, Naples, Italy.766

Coro, G., Cutugno, F., Caropreso, F., 2007. Speech recognition with factorial-HMM syllabic acoustic models, in: Eighth767

Annual Conference of the International Speech Communication Association (Interspeech), pp. 870–873.768

Coro, G., Masetti, G., Bonhoeffer, P., Betcher, M., 2019. Distinguishing violinists and pianists based on their brain769
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di dje do due dze kwa kwan kwe kwin la lle

mi nno no o ran ro se sei sil sp ssan

sse ta ti to tre tren tSa tSen tSi tSin tSo

ttan tte tto ttor ttro tu u un van ve ven

Table 1: Overall set of 42 pseudo-syllables involved in our experiment, plus two silence annotations: "sil" indicates a long silence
(⩾ 200ms), whereas "sp" indicates a shorter pause.
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Model Name Accuracy (%)

a - Syllable Recognition

LSTM 93.01

HMM-DNN-nnet2 90.38

CNN 90.25

HMM-DNN-nnet1 89.91

FHMMs 86.53

Syllabic HMMs 85.79

Phonetic HMMs 84.10

b - Digit Recognition

LSTM + Exhaustive Viterbi 98.00

Google Speech-to-Text 97.50

KALDI - HMM-DNN-nnet2 95.06

CNN + Exhaustive Viterbi 94.00

FHMMs + Exhaustive Viterbi 93.30

Syllabic HMMs + Exhaustive Viterbi 92.00

CMUSphinx 87.74

c - Number Recognition

LSTM + Exhaustive Viterbi 85.00

Google Speech-to-Text 81.81

KALDI - HMM-DNN-nnet2 81.20

CMUSphinx 79.00

CNN + Exhaustive Viterbi 76.60

FHMMs + Exhaustive Viterbi 72.00

Syllabic HMMs + Exhaustive Viterbi 70.00

Table 2: Performance comparison between alternative speech recognition models on the recognition of (a) the 44 units involved in our
corpus of data, (b) spoken numbers from 0 to 9 (digits), (c) spoken numbers between 0 and 999,999.
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ASR Engine Corpus for LM Corpus for AM Word Accuracy (%)

Google ASR Google Google 89.10

KALDI - HMM-DNN-nnet2 Paisà VoxForge 63.64

KALDI - HMM-DNN-nnet2 Paisà VoxForge+APASCI 67.00

CMUSphinx Paisà VoxForge 51.58

CMUSphinx Paisà VoxForge+APASCI 54.41

CMUSphinx Paisà + I-CAB VoxForge 49.70

CMUSphinx Paisà + CLEF + I-CAB VoxForge 49.90

CMUSphinx Paisà + CLEF VoxForge 49.90

CMUSphinx CLEF VoxForge 42.60

CMUSphinx CLEF + I-CAB VoxForge 42.00

CMUSphinx itWaC VoxForge 44.00

CMUSphinx I-CAB VoxForge 34.40

KALDI - HMM-DNN-nnet2 Paisà APASCI 57.95

CMUSphinx Paisà APASCI 39.35

Table 3: Performance comparison between several large-vocabulary automatic speech recognisers at the variation of the corpora used
for language model (LM) and acoustic model (AM) training: the Google speech-to-text service (Google ASR), KALDI with deep neural
network emission densities used in acoustic models (KALDI - HMM-DNN-nnet2), and the Gaussian-mixture based CMUSphinx.
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Figure 1: Diagram of a standard ASR with alternative acoustic models: a) tri-phonetic HMMs using GMM emission probabilities, b)
tri-phonetic HMMs using a DNN to simulate emission probabilities. The Token Passing schema is adapted from Padrell-Sendra et al.
(2006).
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Figure 2: Diagram of our ASR with acoustic models used alternatively (only one in an ASR instance): a) syllabic HMMs using GMM
emission probabilities, b) syllabic Factorial HMMs, c) Convolutional Neural Network using multi-temporal windows, with one output
neuron for each syllable, and d) Long Short Term Memory model, with one output for each syllable.
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Figure 3: Variation of the accuracy of our LSTM model on the recognition of syllables of numbers between 0 and 999,999, with respect
to the LSTM hidden-state length.
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