Scalability Comparison of Peer-to-Peer
Similarity-Search Structures

Michal Batko? David Novak ® Fabrizio Falchi? Pavel Zezula ?

& Masaryk University, Brno, Czech Republic
PISTI-CNR, Pisa, Italy

Abstract

Due to the increasing complexity of current digital data, the similarity search has
become a fundamental computational task in many applications. Unfortunately, its
costs are still high and grow linearly on single server structures, which prevents
them from efficient application on large data volumes. In this paper, we briefly
describe four recent scalable distributed techniques for similarity search and study
their performance of executing queries on three different datasets. Though all the
methods employ parallelism to speed up query execution, our experiments identify
different advantages for different objectives. The reported results could be helpful
when choosing the best implementations for specific applications and they can also
be used for designing new and better indexing structures in the future.

Key words: similarity search, scalability, metric space, distributed index
structures, peer-to-peer networks

1 Introduction

Efficiently looking up a specific word in a dictionary containing hundreds of
thousands of words or locating a specific record in millions of bank accounts
are both quite straightforward tasks for present-day computers. Since records
in such domains can be sorted, and every record either fully satisfies the search
condition or it does not at all, hashing or tree-like structures can be applied as
indexes. High scalability of such technologies is guaranteed by logarithmically
bounded search time with respect to the size of the file.

Email addresses: xbatko@fi.muni.cz (Michal Batko), xnovak8@fi.muni.cz
(David Novak), fabrizio.falchi@isti.cnr.it (Fabrizio Falchi),
zezula@fi.muni.cz (Pavel Zezula).

Preprint submitted to Future Generation Computer Systems 14th July 2006

However, to find images of sport cars, time series with similar development, or
groups of customers with common buying patterns in respective data collec-
tions, the traditional technologies simply fail. Here, the required comparison is
gradual, rather than binary, because, once a reference (query) pattern is given,
each instance in a search file and the pattern are in a certain relation which
is measured by a user-defined dissimilarity function. Such searches are more
and more important for a variety of current complex digital data collections
and are generally designated as the similarity search.

Although many similarity search approaches have been proposed, the most
generic one considers the mathematical metric space as a suitable abstraction
of similarity [1]. The simple but powerful concept of the metric space consists
of a domain of objects and a distance function that measures proximity of pairs
of objects. It can be applied not only to multi-dimensional vector spaces, but
also to different forms of string objects, as well as to sets or groups of various
natures, etc. However, the similarity search is inherently expensive and for
centralized indexes the search costs increase linearly as the stored dataset
grows. Thus, this prevents them from being applied to huge files that have
become common and the predictions expect a continuous rapid growth.

Very recently, we have proposed four scalable distributed similarity search
structures for metric data. The first two structures adopt the basic ball and
generalized hyperplane partitioning principles [2] and they are called the VPT*
and the GHT*, respectively [3]. The other two apply transformation strate-
gies — the metric similarity search problem is transformed into a series of
range queries executed on existing distributed keyword structures, namely the
CAN [4] and the Chord [5]. By analogy, we call them the MCAN [6] and
the M-Chord [7]. Each of the structures is able to execute similarity queries
for any metric dataset, and they all exploit parallelism for query execution.
However, due to the completely different underlying principles, an important
question arises: What are the advantages and disadvantages of the individual
approaches in terms of search costs and scalability for different real-life search
problems?

In this paper, we report on implementations of the VPT*, GHT*, MCAN
and M-Chord systems over the same infrastructure of peer computers. We
have conducted numerous experiments on three different datasets and present
our most telling findings. We focus on scalability with respect to the size
of the query, the size of the dataset, and the number of queries executed

simultaneously. The results reported in this paper have been presented at the
INFOSCALE 06 conference [8].

The remainder of the paper is organized as follows. The necessary background
and related work are reported in Section 2. A brief specification of our four
indexing techniques is available in Section 3, while the assumptions and results
of our experiments can be found in Section 4. The paper concludes in Section 5.

2 Background and Related Work

In this section, we provide a theoretical background for the similarity search.
Then we mention the distributed paradigm adopted by all presented solutions.
We also give a brief related work survey at the end of this section.

2.1 Metric-based similarity search

Let us recall basic definitions and principles that are necessary for the metric-
based indexing.

Definition 1: Metric space M is a pair M = (D, d), where D is the domain
of objects and d is the total distance function d : D x D — R satisfying the
following conditions for all objects x,y, z € D:

d(x,y) >0 (non-negativity),
d(xz,y)=0iff z = (identity),

d(r,y) = d(y, v) (symmetry),

d(z,z) < d(z,y)+d(y, 2) (triangle inequality).

Several types of similarity queries are defined in the literature, but we focus
on the two most common ones — the range query and the k-nearest neighbors
query. Let I C D be a finite set of data objects indexed by an index structure.

Definition 2: Given an object ¢ € D and a maximal search radius r, range
query Range(q,r) selects a subset S4 C I of indexed objects such that
Sa={zrell|d(qzx) <r}.

Definition 3: Given an object ¢ € D and an integer k > 1, k-nearest neighbors
query kININ(q, k) retrieves a subset Sy C I such that |[Sa| = k, Vo € Sy, Vy €

I\ Sy:d(qg,x) <d(q,y)

Since there is no coordinate system in the metric world, the only way to
divide and prune the indexed data is to use relative distances between the
data objects and some preset objects.

The following principle based on the properties of d lies behind most of
the metric indexing methods. For a Range(q,) query, every indexed object
x € I may be excluded from the result without evaluating d(q, z) if |d(z, p) —
d(q,p)| > r, where d(x, p) and d(q, p) are precomputed distances to some fixed
object p € D. Furthermore, having a set of n objects (pivots) po, ..., pn_1 € D
and having values of d(x,py),...,d(x,p,—1) for an object z € D, this object

can be excluded if

3,0 <i<n:l|dp,z)—dpiq)| >r (1)

In the following, we refer to this formula as the pivot filtering criterion [1].

2.2 Peer-to-Peer Paradigm

All the presented systems are based on the P2P philosophy and constitute
purely-decentralized structured P2P networks. These terms refer to the fact
that peers (nodes participating in the network) offer the same functionality
and the system follows some distributed logic that facilitates an effective intra-
system navigation.

Generally, every node of such a system consists of the following components
and expects them from the other peers:

e resources — storage and computational power,

e communication — every node can contact any other node directly if its net-
work identification is known,

e navigation — internal structure that ensures correct routing among the peers.

To ensure a maximal scalability, all the systems also adopt the requirements
of the Scalable and Distributed Data Structures [9]:

e data expands to new nodes gracefully, and only when the nodes already
used are efficiently loaded;

e there is no master site to be accessed when searching for objects, e.g., there
is no centralized directory;

e the data access and maintenance primitives, e.g., search, insertion, split,
etc., never require atomic updates to multiple nodes.

2.8 Related work

Many metric-based indexing principles and index structures have been pro-
posed, focusing on pruning the search space at query time [10,11,1]. However,
even with the most sophisticated techniques, the similarity search becomes
too expensive when the volume of stored data grows, because the search costs
increase linearly with respect to the dataset size [12]. This fact calls for an
attempt to exploit a distributed processing approach.

After the boom of Distributed Hash Tables, the decentralized structured P2P
networks began to focus on the efficient processing of single-dimensional in-
terval queries — see, for example, P-Grid [13], Skip Graphs [14], SkipNet [15]

or P-Ring [16]. Recently, the P2P query-paradigm has been generalized to
multi-dimensional interval queries in vector spaces which are supported, for
instance, by the following structures MAAN [17], SCRAP and MURK [18] or
Mercury [19]. In the specific case of the vector spaces with Euclidian distance,
the interval queries can be used to implement the similarity range query.

Several proposed P2P systems are designed to resolve nearest-neighbors queries.
The pSearch structure [20] is a P2P information retrieval system for text doc-
uments; Distributed Quadtree [21] solves the nearest-neighbors problem in
spatial data and SWAM [22] — a family of small-world based access methods —
provides a solution for the range and nearest neighbors search in vector data.

Unfortunately, all the structures mentioned above are designed either for very
specific data types or for vector spaces of low dimensionality which is not
sufficient for multimedia data types, for example. Moreover, the vector space
approach cannot be applied to many important types where the similarity is
measured by functions such as Hausdorff distance, Jaccard’s coefficient, edit
distance, etc.

To the best of our knowledge, the four systems analyzed in this paper are
the only metric-based distributed data structures published so far. In this
respect, this work presents the first and extensive performance comparison of
all distributed similarity-search indexes designed for general metric spaces.

3 Distributed Metric Approaches

This section contains short descriptions of the four different distributed struc-
tures for indexing and similarity searches in the metric data. The first two,
GHT* and VPT*, are native metric index structures whereas the other two,
MCAN and M-Chord, transform the metric search issue into a different prob-
lem and take advantage of some existing solutions. Each description consists
of the main idea of the particular approach, the basic architecture of the sys-
tem, and the schema of algorithms for the Range queries. All the structures
adopt a very similar approach to solve the KINN queries and this technique is
explained at the end of this section.

3.1 GHT" & VPT*

In this section, we describe two distributed metric index structures — the
GHT* [3] and its extension called the VPT™*. Both of them exploit native met-
ric partitioning principles using them to build a distributed binary tree [23].

In both the GHT* and the VPT*, the dataset is distributed among peers
participating in the network. Every peer holds sets of objects in its storage

areas called buckets. A bucket is a limited space dedicated to storing objects,
e.g., a memory segment or a block on a disk. The number of buckets managed
by a peer depends on its own potential.

Since both structures are dynamic and new objects can be inserted at any
time, a bucket on a peer may reach its capacity limit. In this situation, a new
bucket is created and some objects from the full bucket are moved to it. This
new bucket may be located on a peer different from the original one. Thus,
the structures grow as new data come in.

The core of the algorithm lays down a mechanism for locating respective peers
which hold requested objects. The component of the structure responsible for
this navigation is called the Address Search Tree (AST), an instance of which
is present at every peer. Whenever a peer wants to access or modify the data
in the GHT* structure, it must first consult its own AST to get locations,
i.e. peers, where the data resides. Then, it contacts the peers via network
communication to actually process the operation.

Since we are in a distributed environment, it is practically impossible to main-
tain a precise address for every object in every peer. Thus, the ASTs at the
peers contain only limited navigation information which may be imprecise.
The locating step is repeated on contacted peers whenever AST is impre-
cise until the desired peers are reached. The algorithm guarantees that the
destination peers are always found. Both of these structures also provide a
mechanism called image adjustment for updating the imprecise parts of the
AST automatically. For more technical details see [3].

3.1.1 Address Search Tree

The AST is a binary search tree based on the Generalized Hyperplane Tree
(GHT) [2] in GHT*, and on the Vantage Point Tree (VPT) [2] for the VPT*
structure. Its inner nodes hold the routing information according to the par-
titioning principle and each leaf node represents a pointer to either a local
bucket (denoted as BID) or a remote peer (denoted as NNID) where the data
of the respective partition is located.

An example of AST using the generalized hyperplane partitioning is depicted
in Figure 1. In order to divide a set of objects I = {01, ..., 09} into two sepa-
rated partitions 7, I using the generalized hyperplane, we must first select a
pair of objects from the set. In Figure 1, we select objects 019, 012 and promote
them to pivots of the first level of the AST. Then, the original set [is split
by measuring the distance between every object o € I and both the pivots. If
d(0,019) < d(0,012), i.e. the object o is closer to the pivot 019, the object is
assigned to the partition I; and vice versa. This principle is used recursively
until all the partitions are small enough and a binary tree representing the
partitioning is built accordingly. Figure 1 shows an example of such a tree.

@ @ ®
@ ©

® @
i5)

® @

Figure 1. Address Search Tree with the generalized hyperplane partitioning

Observe that the leaf nodes are denoted by BID; and NNID,; symbols. This
means that the corresponding partition (which is small enough to stop the
recursion) is stored either in a local bucket or on a remote peer respectively.

The vantage point partitioning, which is used by the VPT* structure, can
be seen in Figure 2. In general, this principle also divides a set I into two
partitions I; and I,. However, only one pivot o017 is selected from the set and
the objects are divided by a radius ;. More specifically, if the distance between
the pivot o;; and an object o € I is smaller or equal to the specified radius
r1, i.e. if d(0,011) < 7y then the object belongs to partition I;. Otherwise,
the object is assigned to I. Similarly, the algorithm is applied recursively to
build a binary tree. The leaf nodes follow the same schema for addressing local
buckets and remote peers.

@ n
‘@ Iz ‘@ I3
@D
‘\ ‘\ \“\
OO ® ® e@®
@O®
@@ ®@ @

Figure 2. Address Search Tree with the vantage point partitioning

3.1.2 Range Search

The Range(q,) query search in both the GHT* and VPT* structures pro-
ceeds as follows. The evaluation starts by traversing the local AST of the peer
which issued the query. For every inner node in the tree, we evaluate the fol-
lowing conditions. Having the generalized hyperplane partitioning with the
inner node of format (p;, pe):

d(p1,q) —r < d(p2,q) + 1, (2)

d(p1,q) +r > d(pa,q) — 1. (3)

For the vantage point partitioning with the inner node of format (p,r,):

d(p,q) —r <1, (4)

d(p,q) +r >, (5)

The right subtree of the inner node is traversed if Condition 2 for the GHT*
or Condition 4 for the VPT* qualifies. The left subtree is traversed whenever
Condition 3 or Condition 5 holds respectively. It is clear that both conditions
may qualify at the same time for a particular range search. Therefore, multiple
paths may be followed and, finally, multiple leaf nodes may be reached.

For all qualifying paths having an NNID pointer in their leaves, the query
request is forwarded to identified peers until a BID pointer is found in every
leaf. The range search condition (see Definition 2.1) is evaluated by the peers in
every bucket determined by the BID pointers. All qualifying objects together
form the query response set.

In order to avoid some distance computations, both the structures apply addi-
tional filtering using Equation 1. For every stored object, the distances to all
pivots on the AST path from the root to the leaf with the respective bucket
are held together with the data object. For example, object 0, in Figure 1 has
four associated numbers — the distances d(o1, 019), d(01, 012), d(01, 08), d(01, 019)
which were evaluated during the insertion of 0, into bucket BID;. In the case
of VPT"* structure, only half of the distances are stored, because only one pivot
is present in every inner node. As is obvious, the deeper the bucket where the
object is stored, the more precomputed distances are stored for that particular
object and the better the effect of the filtering.

3.2 MCAN

In order to manage metric data, the MCAN [6] uses a pivot-based technique
that maps data objects # € D to an N-dimensional vector space RY. Then,
the CAN [4] Peer-to-Peer protocol is used to partition the space and for navi-
gation. Having a set of N pivots py,...,py selected from D, MCAN maps
an object x € D to the vector space by means of the following function
F:D— RN

F(z) = (d(z,p1),d(z,p2),...,d(x,pNn)). (6)

Coordinates in the virtual vector space designate the placement of object x
within the MCAN structure. The CAN protocol divides the vector space into

regions and assigns them to the participating peers. Object x is stored by the
peer whose region contains F'(x). Using L> as a distance function in the vector
space, the mapping F is contractive, i.e. L°(F(z), F(y)) < d(x,y), which can
be proved using the triangle inequality of the metric function d [6]. Thus, the
algorithm for Range(q,) query involves only the regions that cover objects
x for which L*(F(z), F(q)) < r. In other words, it accesses the regions that
intersect the hypercube with side 2r centered in F'(q) (see Figure 3).

L hai it AR B A)
2500 3000 3600 4000 4500 0 £500

Figure 3. Example of an MCAN range query

In order to further reduce the number of the distances evaluated, MCAN uses
the additional pivot-based filtering according to Formula 1. All peers use the
same set of pivots: the N pivots from the mapping function F' (Equation 6)
plus additional pivots since N is typically low. All the pivots are selected from
a sample dataset using the incremental pivot-selection technique [24].

Routing in MCAN works in the same way as in the original CAN. Every peer
maintains a coordinate-based routing table containing the network identifiers
and coordinates of its neighboring peers in the virtual RY space. In every
step, the routing algorithm passes the query to the neighbor whose region is
the closest to the target point in the vector space. Given a dataset, the average
number of neighbors per peer is proportional to the dimensionality N while
the average number of hops to reach a peer is inversely proportional to this
value [4].

3.2.1 Insert Operation

When inserting an object x € D into MCAN, the initiating peer computes
distances between x and all pivots. These values are used for mapping x into
RY by Equation 6. The insertion request is then forwarded (using the CAN

navigation) to the peer that covers value F'(z). The receiving peer stores z
and splits if its storage capacity limit (or some other defined condition) is
reached. The peer’s region is split into two parts trying to divide the storage
equally. One of the new regions is assigned to a new active peer and the other
one replaces the original region.

3.2.2 Range Search Algorithm

The peer that initiates a Range(q,) query first computes distances between
q and all the pivots. The CAN protocol is then employed in order to reach
the region which covers F'(q). When a peer visited during the routing process
intersects the query area, the request is spread to all other relevant peers
using a CAN multicast algorithm [25]. A peer intersecting the query region is
always reached sooner or later. Every affected peer searches its data storage
employing the pivot filtering mechanism and returns the answer directly to
the initiator.

3.8 M-Chord

Similarly to the MCAN, the M-Chord [7] approach also transforms the original
metric space. The core idea is to map the data space into a one-dimensional
domain and navigate in this domain using the Chord routing protocol [5].

Specifically, this approach exploits the idea of a wector index method Dis-
tance [26], which partitions the data space into clusters (C;), identifies refer-
ence points (p;) within the clusters, and defines one-dimensional mapping of
the data objects according to their distances from the cluster reference point.
Having a separation constant ¢, the iDistance key for an object x € C; is
idist(x) = d(p;,x) +1i - c.

Figure 4a visualizes the mapping schema. Handling a Range(q,) query, the
space to be searched is specified by iDistance intervals for such clusters that
intersect the query sphere — see an example in Figure 4b.

C

(iDistance)

Zc

Figure 4. The principles of iDistance

10

This method is generalized to metric spaces in the M-Chord. No vector co-
ordinate system can be utilized in order to partition a general metric space,
therefore, a set of n pivots py, ..., p._1 is selected from a sample dataset and
the space is partitioned according to these pivots. The partitioning is done in
a Voronoi-like manner [10] (every object is assigned to its closest pivot).

Because the iDistance domain is to be used as the key space for the Chord
protocol, the domain is transformed by an order-preserving hash function h
into M-Chord domain of size 2. The distribution of A is uniform on a given
sample dataset. Thus, for an object x € C;, 0 < i < n, the M-Chord key-
assignment formula becomes:

m-chord(x) = h(d(p;,x) +i-c). (7)

3.3.1 The M-Chord Structure

Having the data space mapped into the one-dimensional M-Chord domain,
every active node of the system takes over the responsibility for an interval
of keys. The structure of the system is formed by the Chord circle [5]. This
Peer-to-Peer protocol provides an efficient localization of the node responsible
for a given key.

When inserting an object x € D into the structure, the initiating node N;,,
computes the m-chord(x) key using Formula 7 and employs Chord to forward
a store request to the node responsible for key m-chord(x) (see Figure 5a).

The nodes store data in Bt-tree storage according to their M-Chord keys.
When a node reaches its storage capacity limit (or another defined condition)
it requests a split. A new node is placed on the M-Chord circle, so that the
requester’s storage can be split evenly.

3.3.2 Range Search Algorithm

The node N, that initiates the Range(q, r) query uses the iDistance pruning
idea to choose the M-Chord intervals to be examined. The Chord protocol is
then employed to reach nodes responsible for middle points of these intervals.

The request is then spread to all nodes covering the particular interval (see
Figure 5b).

From the metric point of view, the iDistance pruning technique filters out
all objects x € C; that fulfil |d(x,p;) — d(q,p;)| > r. But in M-Chord, when
inserting an object x, all distances d(x, p;) have to be computed Vi : 0 < i < n.
These values are stored together with object and the general metric filtering
criterion (Equation 1) improves the pruning of the search space.

11

insert(x): S

k:=m-chord(x) o “o\ns
forward(k,x) B
- b 08
receive(k,x): e
AT
m~chord(x} -\ e
@ (b)

Figure 5. The insert (a) and range search (b)
3.4 Nearest Neighbors Search

The previous brief descriptions of the structures do not mention algorithms
for kNN queries. Generally, all the systems adopt a similar approach to
kNN(q, k) queries evaluation that exploits the range search. The idea is to
estimate radius r, so that the Range(q,r) query returns at least k nearest
objects.

More precisely, the general kNN algorithm has the following two phases:

(1) Send a request to the node where object ¢ would be stored and search
for k objects that are “near” g. Measure the distance r to the k'® nearest
object found.

(2) Execute the Range(q,) query and return the k nearest objects from the
query result (skip the space searched during the first phase).

If less than k objects are found in the storage during the first phase then some
other estimation techniques are used — see [27] for details.

The space limitations do not permit us to present kKININ performance results
and, thus, the following section, that evaluates the performance of the struc-
tures, concerns the Range search only. Because the kNN algorithm is directly
based on the Range search, the scalability trends are very similar for both
algorithms and all the presented results are relevant for the kNN query pro-
cessing as well.

4 Evaluation of Performance Scalability

In this section, we provide a comparison of these four approaches through
the results of our extensive experiments. For each data structure, the tests
have been conducted on the same datasets and in the same test environment.
Moreover, all the structures have been implemented over the very same in-
frastructure sharing a lower-level code. Consequently, we consider the results

12

of these experiments sufficiently comparable.

When designing the experiments, we focused on particular aspects of the scal-
ability of the systems. Namely, we studied scalability with respect to the query
selectivity, with respect to the size of the indexed dataset, and in consideration
of the number of queries executed concurrently.

4.1 FExperiments Settings

All the compared systems are dynamic. Each structure maintains a set of
available inactive nodes employing them when splitting overloaded nodes. For
the experiments, the systems consisted of up to 300 active nodes. Each of
the GHT* and VPT* peers maintained five buckets with capacity of 1,000
objects and the MCAN and M-Chord peers had a storage capacity of 5,000
objects. The implementations built the overlay structures over a high-speed
LAN communicating via the TCP and UDP protocols.

We selected the following significantly different real-life datasets to conduct
the experiments on:

VEC 45-dimensional vectors of extracted color image features. The similarity
of the vectors was measured by a quadratic-form distance [28]. The distribu-
tion of the dataset is quite uniform and such a high-dimensional data space
is extremely sparse.

TTL titles and subtitles of Czech books and periodicals collected from several
academic libraries. These strings were of lengths from 3 to 200 characters
and are compared by the edit distance [29] on the level of individual char-
acters. The distance distribution of this dataset is skewed.

DINA protein symbol sequences of length sixteen. The sequences were com-
pared by a weighted edit distance according to the Needleman-Wunsch al-
gorithm [30]. This distance function has quite a limited domain of possible
values — the returned values are integers between 0 and 100.

Observe that none of these datasets can be efficiently indexed and searched
by a standard vector data structure. If not stated otherwise, the stored data
volume is 500,000 objects. When considering the scalability with respect to the
growing dataset size, larger datasets consisting of 1,000,000 objects are used
(900,000 for TTL). As for other settings specific to particular data structures,
the MCAN uses 4 pivots to build the routing vector space and 40 pivots for
filtering. The M-Chord uses 40 pivots as well. The GHT* and VPT™* structures
use variable numbers of filtering pivots according to the depth of the AST tree
(see Section 3.1).

All of these performance characteristics of query processing have been obtained
as an average over 100 queries with randomly chosen query objects.

13

4.2 Measurements

In real applications as well as in the described datasets, evaluating the dis-
tance function d typically makes high computational demands. Therefore, the
objective of metric-based data structures is to decrease the number of distance
computations at query time. This value is typically considered an indicator of
structure efficiency. The CPU costs of other operations (and often I/O costs
as well) are practically negligible compared to the distance evaluation time.

Concerning the distributed environment, we use the following two character-
istics to measure the computational costs of query processing:

e total distance computations — the sum of the number of the distance function
evaluations on all involved peers,

e parallel distance computations — the maximal number of distance evaluations
performed in a sequential manner during query processing.

Note that the total number corresponds to costs on a centralized version of
the specific structure. The communication costs of a query evaluation are
measured by the following indicators:

e total number of messages — the number of all messages (requests and re-
sponses) sent during a particular query processing,

e mazximal hop count — the maximal number of messages sent in a serial way
in order to complete the query.

Since the technical resources used for testing were not dedicated but opened
for public use, the actual query response times were fluctuating and we cannot
report them precisely. However, we have usually observed that one range query
evaluation took less than one second for small radii and approximately two
seconds for the big ones regardless of the dataset size. The parallel distance
computations together with the maximal hop count can be used as a fair re-
sponse time estimation. Another indicator that we monitored is the percentage
of nodes that were involved in processing a particular query.

4.3 Changing the Query Size

In the first set of experiments, we have focused on the systems’ scalability with
respect to the size of the processed query. Namely, we let the structures handle
a set of Range(q,r) queries with growing radii r. The size of the stored data
was 500,000 objects. The average load ratio of nodes for all the structures was
60-70% resulting in approximately 150 active nodes in each of the systems.

We present results of these experiments for all the three datasets. All graphs in
this section represent the dependency of various measurements (vertical axis)

14

on the range query radius r (horizontal axis). The datasets are indicated by
titles. For the VEC dataset, we varied the radii r from 200 to 2,000 and for
the TTL and DINA datasets from 2 to 20.

VEC VEC
10000 ; S 140 . .
279000 . —— all structures | S Lol e VICAN
o) g%g r b4 100! -~ VPT* - - - M-Chord
S 6000 | B g0t
3 5000 2 I
& 4000 ¢ < 60
B 1000 ‘ | g B L | |
0 500 1000 1500 2000 0 500 1000 1500 20(
range query radius range query radius
TTL TTL
16000 " S 140 . .
% 14000 | [—— al structures S 120l[— GHI* MCAN
L L e | R VPT* - - - M—-Chord
& 12000 8 oot
© 10000 | B gol
T 8000 ¢ e I
g 6000 5 90 o
‘= 4000 r = 40 - :»:_: _____________
T 2000 | @ 20t o lommIiee
= 0 L L > 0 = L L
0 5 10 15 20 0 5 10 15 2
range query radius range query radius
DNA DNA
o 9000 i . 140 : .
8000 | (——_al structures] S Ipol[— GHTF MCAN
B 7000 | 2 logl VPT* - - - M-Chord
56000 g I T N
5000 S 80 e
B 2000 - S 6of I
3000 2 4l S
'S 2000 2 T
T 1000 | > 20t -
0 : : 0 = : :
0 5 10 15 20 0 5 10 15 2
range query radius range query radius

Figure 6. (a) Number of retrieved objects; (b) Percentage of visited nodes

In the first group of graphs, shown in Figure 6a, we report on the relation
between the query radius size and the number of objects retrieved. As this
depicts, the greater the radius the higher the number of objects satisfying
the query. Since we have used the same datasets, query objects and radii,
all the structures return the same number of objects. We can see that the
number of results grows exponentially with respect to the query radius for all
the datasets. Note that, for example, the greatest radius 2,000 in the VEC
dataset selects almost 10,000 objects (2% of the whole database). Obviously,
such large radii are not usually practical for applications (e.g., two titles with
an edit distance 20 differ considerably), but we provide the results in order to
study the behavior of the structures in these cases as well. Smaller radii return
reasonable numbers of objects, for instance, radius 6 results in approximately
30 objects in the DN A dataset.

The number of visited nodes is reported in Figure 6b. More specifically, the
graphs show the ratio of the number of nodes that are involved in a partic-
ular range query evaluation to the total number of active peers forming the
structure. As mentioned earlier, the number of active peers in the network was
around 150, thus, value 20% in the graph means that approximately 30 peers
were used to complete the query. We can see that the number of employed
peers grows practically linearly with the size of the radius. The only exception

15

is the GHT* algorithm, which visits almost all active nodes very soon as the
radius grows. This is caused by the fact that the generalized hyperplane par-
titioning does not guarantee a balanced split, unlike the other three methods.
Moreover, because we count all the nodes that evaluate distances as visited,
the VPT* and the GHT™ algorithms are somewhat handicapped. Recall that
they need to compute distances to pivots during the navigation which means
that the nodes that only forwards the query are also considered visited.

Note that the dataset influences the number of visited nodes. For instance,
the DNA metric function has a very limited set of discrete distance values,
thus, both the native and transformation methods are not as efficient as for
the VEC dataset and more peers have to be accessed. From this point of
view, the M-Chord structure performs best for the VEC dataset and also
for smaller radii in the DN A dataset, but it is outperformed by the MCAN
algorithm for the TTL dataset.

S VEC g VEC
: 9 4500 : ‘ ‘
g 180000/ [—— orT* © 4000r| — GHT* e
© 160000 VPT* % 3500 VPT* e
@ 140000 | = MCAN € 3000k MCAN P
€ 120000r| - - - M—Chord 1 8 5500} L=~ -~ M-Chord o
S 100000¢ @ 5300k o
® 8000 -
S 60000 < 1500 L
< 40000 ~ 210007 o
£ 2000(()) = I sogf e
S ‘ ‘ = = ‘ ‘
0 500 1000 1500 20 o 0 500 1000 1500 201
range query radius range query radius
S TTL =) TTL
£ 180000 ‘ : 9 6000 ‘
8 160000~ CHT P o 5000l
140000(R 3 [
8 120000f| " MCAN A < 4000{ T
S 100000¢ M-Chord| = 8 |l===M=Chord.-"— -~~~ .
& “g0000f 7 2 3000
7] 7 °
5 60000F A7 < 2000
T8 2 o0
9 0 - L L E 0 L L L
0 5 10 15 2 o 0 5 10 15 2
range query radius range query radius
S DNA g DNA
£ 400000 : ‘ 9 8000 : : :
S 3500001 — SHT* o 7000t~ GHT* e
o VPT* 8 so000! VPT* -
g 300000f....... MCAN of g B000T) oo MCAN p
L 250000f| - - - M—Chord B & 50007| - - - M~Chord e
& 200000 s B 4000F .
2 150000 s S 3000¢ -
% 100000 - D 2000+ -
8 50000 g T 1000¢
L 0 ===t : g 0 : :
0 5 10 15 2 Q 0 5 10 15 2
range query radius range query radius
(a) (b)

Figure 7. The total (a) and parallel (b) number of distance computations

The next group of experiments, depicted in Figure 7, shows the computational
costs with respect to the query radius. We provide a pair of graphs for each
dataset. The graphs on the left (a) report the total number of distance com-
putations needed to evaluate a range query. This measure can be interpreted
as the query costs in centralized index structures. The graphs on the right
(b) illustrate the parallel number of distance computations, i.e. the costs of a
query in the distributed environment.

Since the distance computations are the most time consuming operations dur-

16

ing the evaluation, all the structures employ the pivot filtering criteria to avoid
as much distance computations as possible (as mentioned in Section 2). As
explained, the number of pivots used for filtering strongly affects its effective-
ness, i.e. the more pivots we have the more effective the filtering is and the
fewer distances need to be computed. The MCAN and the M-Chord structures
use a fixed set of 40 pivots for filtering, as opposed to the GHT* and VPT™*
which use the pivots in the AST. Thus, objects in buckets in lower levels of
the AST have more pivots for filtering and vice versa. Also, the GHT* parti-
tioning implies two pivots per inner tree node, but VPT* contains only one
pivot, resulting in half the number of pivots used in the GHT*. In particular,
the GHT™ has used 48 pivots in its longest branch and only 10 in the shortest
one, while the VPT* has used maximally 18 and minimally 5 pivots.

Looking at the total numbers of distance computations in Figure 7, we can
see that the filtering was rather ineffective in the DINA dataset, where the
structures have computed the distances for up to twice as many objects than
that of the TTL and VEC datasets. The queries with larger radii in the
DNA dataset have to access about 60% of the whole database, which would
be very slow in a centralized index.

Figure 7b illustrates the parallel computational costs of the query processing.
We can see that the number of necessary distance computations is significantly
reduced, which emerges from the fact that the computational load is divided
among the participating peers running in parallel. We can see that the GHT™
structure has the best parallel distance computation and seems to be unaf-
fected by the dataset used. However, its lowest parallel cost is counterbalanced
by the high percentage of visited nodes (shown in Figure 6b), which is in fact
correlated to the parallel distance computations cost for all the structures.

Note also that the increase of parallel cost is bounded by the value of 5,000
distance computations — this can be most clearly seen in the TTL dataset.
This is a straightforward implication of the fact that every node has only
a limited storage capacity, i.e. if a peer holds up to 5,000 objects it cannot
evaluate more distance computations between the query and its objects. This
seems to be in contradiction with the M-Chord graph for the DN A dataset, for
which the following problem has arisen. Due to the small number of possible
distance values of the DN A dataset, the M-Chord transformation resulted in
the formation of “clusters” of objects mapped onto the same M-Chord key.
Those objects had to be kept on one peer only and, thus, the capacity limit
of 5,000 objects was exceeded.

The last group of measurements in this section, depicted in Figure 8, reports
on the communication costs measured as the total number of messages sent
and as the maximal hop count, i.e. the maximal number of messages sent in
a serial manner. Since the GHT™* and the VPT* count all nodes involved in
navigation as visited (as explained earlier), the percentage of visited nodes

17

VEC

= VEC
O 450 —— GHT* - MCAN 3 20f[— GHT ‘
Q 400(]...... vpT* - - - M-Chord © o VPT
o 3507 g 15f| MCAN e -- T
@ 250l < 107***M—Ch(/)rg/,f
€ 200+ o) -
T 150f = - e
S 1007 X 55 = ’
= 58 Pt g
so ‘ ‘ 0 ‘ ‘ ‘
500 1000 1500 201 0 500 1000 1500 20
range query radius range query radius
TTL = TTL
c
0 450 18 ‘
O 40— GHT MCAN 3 16/ GHT*
& 3500 VPT* - - - M—-Chord O 14t VPT* |
@ 350 o 14t 1
% 300f S 12(| T MCAN -7
@ 250(RS < 10f M=Chord]. - ~ 1
€ 2001 =TT T 8f ----~)
< 1501 ---7 .7 £ 6 e T
S 1001 =X 4r 7
= 501 g 2t
0 ‘ : : 0 ‘ : :
5 10 15 2 0 5 10 15 2
range query radius range query radius
DNA - DNA
c
(%] F 25 T
© 70— GHT* —— MCAN 3 [[— GHT* -
Q 6007 - VPT* - - - M—Chord ©20f VPT* -
» 5007 g || MCAN -
Q 400f B 215fl=- - M-Chord| -~
E 300f DI ® 10} T
8 200 /=TT E O
2 100t L x5 T
0 ‘ ‘ ‘ € o ‘ ‘ ‘
5 10 15 2 0 5 10 15 2
range query radius range query radius
(a) (b)

Figure 8. The total number of messages (a) and the maximal hop count (b)

(Figure 6b) and the total number of messages (Figure 8a) are strictly corre-
lated for these structures. The MCAN structure needs the lowest number of
messages for small ranges, but as the radius grows, the number of messages
increases quickly. This comes from the fact that the MCAN range search algo-
rithm uses multicast to spread the query and, thus, one peer may be contacted
with a particular query request several times. However, every peer evaluates
each request only once. For the M-Chord structure, we can see that the total
cost is considerably high even for small radii, but it grows very slowly as the
radius increases. This is caused by the fact that the M-Chord needs to access
at least one peer for every M-Chord cluster even for small range queries, see
Section 3.3.

The parallel costs, i.e. the maximal hop count, are practically constant for
different sizes of the radii across all the structures except for M-Chord in
which it grows. This increase is caused by the serial nature of the current
algorithm for contacting the adjacent peers in particular clusters.

In summary, we can say that all the structures scale well with respect to the
size of the radius. In fact, the parallel distance computation costs grow sub-
linearly and they are bounded by the capacity limits of the peers. The parallel
communication costs remain practically constant for the GHT*, VPT*, and
MCAN structures and grows linearly for the M-Chord.

18

4.4 Increasing the Dataset Size

Let us concern the systems’ scalability with respect to the growing volume of
data stored in the structures. We have monitored the performance of Range(q,)
queries processing on systems storing from 50,000 to 1,000,000 objects. We
conducted these experiments for the following radii: 500, 1,000 and 1,500 for
the VEC dataset and radii 5, 10 and 15 for the TTL and DN A datasets.

Space limitations do not permit us to present all of our results, therefore, we
include graphs for only one dataset for each type of measurement if the other
graphs exhibit the same trend. The title of each graph in this section specifies
the dataset used and the search radius 7.

The number of retrieved objects — see graph for radius 10 and the TTL dataset
in Figure 9a — grows precisely linearly because the data were inserted to the
structures in random order.

100 TTL forr=10 . VEC for r = 1000
T T T T (=] T T T
§ 350 [——dlsiuures | S 120[[— GAT* — MCAN
P * - — = —

8 s0¢ @ 100 VPT M-Chord
© 250 B s80f
B 200 c Lo]
8 ol S N e
= 100 L A0 e]
;a_.)' 50t z 20+ s S

0 L L L . > 0 L . L .

0 100 200 300 400 500 600 700 800 900 0 200 400 600 800 10
dataset size (*1000) dataset size (*1000)

@

Figure 9. Retrieved objects (a) and visited nodes (b) for growing dataset

Figure 9b depicts the percentage of nodes affected by the range query process-
ing. For all the structures but the GHT™, this value decreases because the data
space becomes denser and, thus, the nodes cover smaller regions of the space.
Therefore, the space covered by the involved nodes comes closer to the exact
space portion covered by the query itself. As mentioned in Section 4.3, the
GHT* partitioning is not balanced, therefore, the query processing is spread
over larger number of participating nodes.

Figure 10 presents the computational costs in terms of both total and parallel
numbers of distance computations. As expected, the total costs (a) increase
linearly with the data volume stored. This well-known trend, which corre-
sponds to the costs of centralized solutions, is the main motivation for design-
ing distributed structures. The graph exhibits practically the same trend for
the M-Chord and MCAN structures since they both use a filtering mechanism
based on a fixed sets of pivots, as explained in Section 4.3. The total costs for
the GHT* and the VPT* are slightly higher due to smaller sets of filtering
pivots.

The parallel number of distance computations (Figure 10b) grows very slowly.
For instance, the parallel costs for the GHT™ increase by 50% while the dataset

19

a VEC for r = 1000 £ VEC for r = 1000
50000 s : \ \ 9 2500 \ \ : \
g 45000 —— GHT* o s m 2N o
© 40000 VPT* @ 20001 = T
§ 35000 -+ MCAN c PR
€ 30000 — - - M-Chord & 1500[4w
& 25000(- 7]
@ 20000 T 1000 * —— GHT*
S 15000 < VPT*
< 10000 = 500f | MCAN |1
5 5008’ e ‘ ‘ ‘ 1 S 0 - - - M—Chord
= 0 200 400 600 800 10008

0 200 400 600 800
dataset size (*1000) dataset size (*1000)
@)

Figure 10. The total (a) and parallel (b) computational costs for VEC

grows 10 times and the M-Chord exhibits a 10% increment for a doubled
dataset size from 500,000 to 1,000,000. The increase is caused by the fact that
the nodes involved in the search contain more of the relevant objects while
making the data space denser. This corresponds to the observable correlation
of this graph and Figure 9b — the less nodes the structure involves, the higher
the parallel costs it exhibits. The transformation techniques, the MCAN and
the M-Chord, concentrate the relevant data on fewer nodes and consequently
have higher parallel costs. The noticeable graph fluctuations are caused by
quite regular splits of overloaded nodes.

Figure 11 presents the same results for DN A dataset. The pivots-based filter-
ing performs less effectively for higher radii (the total costs are quite high) and
it is more sensitive to the number of pivots. The distance function is discrete
with a small variety of possible values. As mentioned in Section 4.3, for this
dataset, the M-Chord mapping collisions may result in overloaded nodes that
cannot be split. Then, the parallel costs in Figure 11b may be over the split
limit of 5,000 objects.

S DNA forr =15 =3 DNA forr =15
£ 450000 ‘ ‘ 9 10000 ‘ ‘
g 400000 — GHT* © "9000f| —— GHT* -
o 350000f VP Y 8000F VPT* 2T
8 300000f| 7 MCAN] & 7000fF| MCAN - - 1
€ 250000fL=—-M=Chord : _-74 & 60001 - - - M-Chord P 1
< L) _ -7 @ 5000(-]
+ 200000 = I _-]
%] o T 4000 P A PO U RRY.
© 150000 LT 10100 i —
— 100000 . L= 2L 2000t 1
& 50000 .z S 1000¢]
2 0 : : : ‘ g 0 ‘ : : :
0 200 400 600 800 1060 0 200 400 600 800 10
datase(t s)lze (*1000) dataset size (*1000)
a b

Figure 11. The total (a) and parallel (b) computational costs for DNA

Figure 12 shows the communication costs in terms of the total number of
messages (a) and the maximal hop count (b). The total message costs for the
GHT* grow faster because it contacts higher percentages of nodes. The M-
Chord graphs indicate that the total message costs grow slowly while the major
increase of the messages sending is in a sequential manner which negatively
influences the hop count.

20

TTL forr =10 = TTL forr =10
g O ——ar | 36— earr |
g 500 VPT* O14¢| - VPT* 1
3 400t MCAN 212 MCAN -
3 - - - M=Chord £10fl==-M-Chord| _ -~~~ 1
£ 300r S E
5 200/ L Ee
2 100f 7 é ol
o L= o 0 e
0 100 200 300 400 500 600 700 800 900 O 100 200 300 400 500 600 700 800
dataset size (*1000) dataset size (*1000)
(@) b

Figure 12. The total messages (a) and the maximal hop count (b)

4.5 Number of Simultaneous Queries

In this section, we focus on the scalability of the systems with respect to the
number of queries executed simultaneously. In other words, we consider the
interquery parallelism [31] of the queries processing.

In our experiments, we have simultaneously executed groups of 10 to 100
queries — each from a different node. We have measured the overall parallel
costs of the set of queries as the maximal number of distance computations
performed on a single node of the system. Since the communication time costs
are lower than the computational costs, this value can be considered as a
characterization of the overall response time. We have run these experiments
for all datasets using the same query radii as in Section 4.4.

In order to establish a baseline, we have calculated the sum of the parallel
costs of the individual queries. The ratio of this value to the overall parallel
costs characterizes the improvement achieved by the interquery parallelism
and we refer to this value as the interquery improvement ratio. This value
can be also interpreted as the number of queries that can be handled by the
systems simultaneously without slowing them down.

Looking at Figures 13a, 14a and 15a, we can see the overall parallel costs for
all the datasets and selected radii. The trend of the progress is identical for
all the structures and, surprisingly, the actual values are very similar.

VEC for r = 1000 VEC for r = 1000

3} =

. 45000 T - =7
T 40000r| —— GHT* (g 5l -l ___]
© 35000 VPT* T g el em et e
T 30000f| MCAN 2 S -

5 25000{L=~ - M=Chord .-~ 1 Qg4 » _)

Q. 20000f <y —
= 15000: P g_ Sl — chn

& 10000 e MCAN ||
B 50087 - : . . Q' 0 . . - - - M—Chord

0 20 40 60 80 OO% 0 20 40 60 80 1(

1
number of simultaneous queries number of simultaneous queries

(@)

Figure 13. The overall parallel costs (a) and interquery improvement ratio (b)

Therefore, the difference of the respective interquery improvement ratios,
shown in the (b) graphs, is introduced mainly by difference of the single query

21

S TTLforr=10 = TTL forr=10
. 200000 ‘ ‘ =25 ‘ ‘
S 180000¢ = J— T
© 160000 L 2 =TT T ST oToToo
= 140000 £ =
S 120000 Q15;
8 100000 3
= 780000 GHT* 5 1 —— GHT*
T 60000 VPT* = VPT*
5§ 40000f o~ [MCAN |{ =05 | MCAN
3 20006) ‘ ‘ ~ - - M-Chord]] & 0 ‘ ‘ - - - M—Chord
0 20 40 60 80 100Z "0 20 40 60 80 1c

number of simultaneous queries number of simultaneous queries

(@)

Figure 14. The overall parallel costs (a) and interquery improvement ratio (b)

parallel costs. The M-Chord and the MCAN handle multiple queries slightly
better than the VPT™* and significantly better than GHT™.

5 DNA for r = 15 g DNA for r = 15
. : : =25 ; ‘
< 250000 = = .
o 200000f] VPT* 8 2 s
= . | MCAN £ -
£ 1500001 - - - M-Chord =1 2 L8]
o
2 100000f 51 — GHT*
= S VPT*
5 50000f Eost | MCAN |
> 0 o 0)) — — - M=Chord
3 ‘ ‘ ‘ ‘ S
0 20 40 60 go 10& O 20 40 60 80 A
number of simultaneous queries = number of simultaneous queries

(@)

Figure 15. The overall parallel costs (a) and interquery improvement ratio (b)

The actual improvement ratio values for specific datasets are strongly influ-
enced by the total number of distance computations spread over the nodes
(see Figure 7a) and, therefore, the improvement is lower for DNA than for
VEC.

5 Conclusions

In this paper, we have studied the performance of four different distributed
index structures for metric spaces, namely the GHT*, the VPT*, the MCAN
and the M-Chord. We have focused on their scalability of executing similar-
ity queries from three different points of view: (1) the changing query radii,
(2) the growing volume of data searched, and (3) the accumulating number
of concurrent queries. We have conducted a wide range of experiments and
reported the most interesting findings in the relevant sections of this paper.

All of the considered approaches have demonstrated a strictly sub-linear scal-
ability in all important aspects of similarity search for complex metric func-
tions. The most essential lessons we have learned from the experiments can
be summarized in the following table.

22

single query | multiple queries

GHT* excellent poor
VPT* good satisfactory
MCAN satisfactory good

M-Chord || satisfactory very good

In the table, the single query column expresses the power of a corresponding
structure to speed up execution of an isolated query. This is especially use-
ful when the probability of concurrent query requests is very low (preferably
zero), so only one query is executed at a time and the maximum number of
computational resources can be exploited. On the other hand, the multiple
queries column expresses the ability of our structures to serve several queries
simultaneously without degrading the performance by waiting.

We can see that there is no clear winner considering both the single and the
multiple query performance evaluation. In general, none of the structures has
a poor performance of single query execution, but the GHT™ is certainly the
most suitable for this purpose. However, it is also the least suitable structure
for concurrent query execution — queries in GHT™ are almost always processed
one after the other. The M-Chord structure has the opposite behavior. It can
serve several queries of different users in parallel with the least performance
degradation, but it takes more time to evaluate a single query.

Finally, we would like to emphasize the fact that the transformation-based
techniques, i.e. the M-Chord and MCAN, assume having a characteristic sub-
set of the indexed data in advance to choose proper pivots. In our experiments,
the assumption was that the distance distribution in the datasets does not
change, at least not significantly. If the distribution does change, for example,
due to the lack of a characteristic subset during startup, the performance may
change. From this point of view, the native organizations are more robust. We
plan to systematically investigate this issue hereafter.

In the future, we plan to exploit the pros and cons of the individual approaches
revealed by our experiments to design applications with specific querying char-
acteristics. We would also like to use them to develop new search structures
combining the best of its predecessors. Future work will also concentrate on
performance tuning, which will involve designing structures with respect to
the user defined bounds on the query response time.

23

References

1]

[9]

P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search: The Metric Space
Approach, Vol. 32 of Advances in Database Systems, Springer-Verlag, 2006.

J. K. Uhlmann, Satisfying general proximity/similarity queries with metric
trees, Information Processing Letters 40 (4) (1991) 175-179.

M. Batko, C. Gennaro, P. Zezula, Similarity grid for searching in metric
spaces., in: DELOS Workshop: Digital Library Architectures, Lecture Notes
in Computer Science, Vol. 3664/2005, 2005, pp. 25—44.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content
addressable network, in: Proceedings of ACM SIGCOMM 2001, ACM Press,
2001, pp. 161-172.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, Chord: A
scalable peer-to-peer lookup service for internet applications, in: Proceedings of
ACM SIGCOMM, ACM Press, 2001, pp. 149-160.

F. Falchi, C. Gennaro, P. Zezula, A content-addressable network for similarity
search in metric spaces, in: Proceedings of DBISP2P, 2005, pp. 126-137.

D. Novak, P. Zezula, M-Chord: A scalable distributed similarity search
structure, in: Proceedings of First International Conference on Scalable
Information Systems (INFOSCALE 2006), Hong Kong, May 30 — June 1, ACM
Press, 2006.

M. Batko, D. Novak, F. Falchi, P. Zezula, On scalability of the similarity search
in the world of peers, in: Proceedings of First International Conference on
Scalable Information Systems (INFOSCALE 2006), Hong Kong, May 30 — June
1, 2006, ACM Press, 2006.

W. Litwin, M.-A. Neimat, D. A. Schneider, LH* — A scalable, distributed data
structure, ACM Transactions on Database Systems 21 (4) (1996) 480-525.

[10] G. R. Hjaltason, H. Samet, Index-driven similarity search in metric spaces,

ACM Trans. Database Syst. 28 (4) (2003) 517-580.

[11] E. Chavez, G. Navarro, R. Baeza-Yates, J. L. Marroquin, Searching in metric

spaces, ACM Comput. Surv. 33 (3) (2001) 273-321.

[12] V. Dohnal, C. Gennaro, P. Savino, P. Zezula, D-index: Distance searching index

for metric data sets, Multimedia Tools and Applications 21 (1) (2003) 9-33.

[13] K. Aberer, P-Grid: A self-organizing access structure for P2P information

systems, Lecture Notes in Computer Science 2172 (2001) 179-194.

[14] J. Aspnes, G. Shah, Skip graphs, in: Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, 2003, pp. 384-393.

24

[15] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, A. Wolman, Skipnet: A scalable
overlay network with practical locality properties, in: In proceedings of the
4th USENIX Symposium on Internet Technologies and Systems (USITS ’03),
Seattle, WA, 2003.

[16] A. Crainiceanu, P. Linga, A. Machanavajjhala,
J. Gehrke, J. Shanmugasundaram, P-Ring: An index structure for peer-to-peer
systems, Tech. Rep. TR2004-1946, Cornell University, NY (2004).

[17] M. Cai, M. Frank, J. Chen, P. Szekely, MAAN: A multi-attribute addressable
network for grid information services, in: GRID ’03: Proceedings of the
Fourth International Workshop on Grid Computing, IEEE Computer Society,
Washington, DC, USA, 2003, pp. 184-191.

[18] P. Ganesan, B. Yang, H. Garcia-Molina, One torus to rule them all: Multi-
dimensional queries in P2P systems, in: WebDB ’04: Proceedings of the 7th
International Workshop on the Web and Databases, ACM Press, New York,
NY, USA, 2004, pp. 19-24.

[19] A. R. Bharambe, M. Agrawal, S. Seshan, Mercury: Supporting scalable multi-
attribute range queries, SIGCOMM Comput. Commun. Rev. 34 (4) (2004) 353—
366.

[20] C. Tang, Z. Xu, S. Dwarkadas, Peer-to-peer information retrieval using self-
organizing semantic overlay networks, in: Proceedings of SIGCOMM ’03, ACM
Press, New York, NY, USA, 2003, pp. 175-186.

[21] E. Tanin, A. Harwood, H. Samet, A distributed quadtree index for peer-to-peer
settings, in: ICDE, IEEE Computer Society, 2005, pp. 254—-255.

[22] F. Banaei-Kashani, C. Shahabi, SWAM: A family of access methods for
similarity-search in peer-to-peer data networks, in: CIKM ’04: Proceedings of
the Thirteenth ACM conference on Information and knowledge management,

ACM Press, 2004, pp. 304-313.

[23] B. Kroll, P. Widmayer, Distributing a search tree among a growing number of
processors, in: Proceedings of the 1994 ACM SIGMOD International Conference
on Management of Data, Minneapolis, ACM Press, 1994, pp. 265—276.

[24] B. Bustos, G. Navarro, E. Chdvez, Pivot selection techniques for proximity
searching in metric spaces, Pattern Recognition Letters 24 (14) (2003) 2357—
2366.

[25] S. Ratnasamy, M. Handley, R. M. Karp, S. Shenker, Application-level multicast
using content-addressable networks, in: NGC ’01: Proceedings of the Third
International COST264 Workshop on Networked Group Communication,
Springer-Verlag, London, UK, 2001, pp. 14-29.

[26] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, R. Zhang, iDistance: An adaptive
BT-tree based indexing method for nearest neighbor search, ACM Trans.
Database Syst. 30 (2) (2005) 364-397.

25

[27] M. Batko, C. Gennaro, P. Zezula, A scalable nearest neighbor search in P2P
systems, in: Procedings of DBISP2P, Vol. 3367 of Lecture Notes in Computer
Science, 2004, pp. 79-92.

[28] T. Seidl, H.-P. Kriegel, Efficient user-adaptable similarity search in large
multimedia databases, in: The VLDB Journal, 1997, pp. 506-515.

[29] V. I. Levenshtein, Binary codes capable of correcting spurious insertions and
deletions of ones, Problems of Information Transmission 1 (1965) 8-17.

[30] S. B. Needleman, C. D. Wunsch, A general method applicable to the search for
similarities in the amino acid sequence of two proteins, Journal of Molecular
Biology 48 (1970) 443-453.

[31] M. T. Ozsu, P. Valduriez, Distributed and parallel database systems, ACM
Comput. Surv. 28 (1) (1996) 125-128.

26

