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Accurate Indoor Positioning Using
Temporal–Spatial Constraints Based on Wi-Fi

Fine Time Measurements
Wenhua Shao , Haiyong Luo , Fang Zhao, Hui Tian , Member, IEEE, Shuo Yan, and Antonino Crivello

Abstract—The IEEE 802.11mc-2016 protocol enables certified
devices to obtain precise ranging information using time-of-
flight-based techniques. The ranging error increases in indoor
environments due to the multipath effect. Traditional methods
utilize only the ranging measurements of the current location,
thus limiting the abilities to reduce the influence of multipath
problems. This article introduces a robust positioning method
that leverages the constraints of multiple positioning nodes at
different positions. We transfer a sequence of temporal ranging
measurements into multiple virtual positioning clients (VPCs)
in the spatial domain by considering their spatial constraints.
Defining an objective function and the spatial constraints of the
VPCs as Karush–Kuhn–Tucker conditions, we solve the posi-
tioning estimation with nonconvex optimization. We propose an
iterative weight estimation method for the time of flight ranging
and the VPC to optimize the positioning model. An exten-
sive experimental campaign demonstrates that our proposal can
remarkably improve the positioning accuracy in complex indoor
environments.

Index Terms—Fine time measurements (FTMs), IEEE
802.11mc-2016, indoor positioning, Internet of Things, Wi-Fi
positioning.
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I. INTRODUCTION

I INDOOR location-based services (LBSs) have received
increasing attention due to the high demand for

location-aware applications [1]–[4]. Wireless local
area network (WLAN)-based localization methods are
attractive owing to their advantages of ubiquitous and open
access. Generally, the positions of already installed Wi-Fi
access points (APs) are unknown and the low accuracy of
distance estimation in the log-distance path-loss (LDPL)
model, most of the WLAN positioning methods rely on
fingerprinting methods [5]–[7]. The fingerprinting methods
improve positioning accuracies, but the method also requires
sample signal fingerprints for each point in the map and
to update the fingerprint database periodically, therefore,
the cost of the fingerprint method is too expensive when
be applied in a large area. On the other hand, in order
to implement high-accuracy indoor positioning services,
multiple-input–multiple-output (MIMO)-based positioning
techniques have been presented [8], [9], showing accuracies
better than 1 m. However, these methods require multiple
antennas to extract the channel state information (CSI) and
the CSI packets require high bandwidth, which limits its
application in a real-world scenario.

In order to enable an easy and accurate positioning ability
of WLAN, researchers have proposed the IEEE 802.11mc fine
time measurement (FTM) protocol in 2016 [10]. The protocol
enables certified devices to precisely obtain ranging measure-
ments using the Time-of-Flight (ToF) technique. Intel reports
that based on their chip, the one sigma ranging accuracy and
the positioning accuracy reach 1.4 and 2 m, respectively, in
an ideal environment [11]. Considering that the electromag-
netic characteristics in a nonideal indoor scenario are much
more complicated, Ibrahim et al. [12] have verified the FTM
ranging performance in real-world environments. Their results
reveal that the average indoor ranging performance is much
lower than the performance in outdoor environments due to the
multipath problems and to the multiple access interferences
which prevent the Wi-Fi chip to precisely decide the time of
arrival of the ranging signals. Therefore, several challenges
are still open in reaching high positioning accuracies through
FTM ranging-based systems.

The first challenge is due to the variations of FTM rang-
ing accuracies. Conventional ranging systems average multiple
measurements on the same location to improve the ranging
performance. This operation helps filter out sensor noises but

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on June 29,2023 at 16:16:24 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-2440-9981
https://orcid.org/0000-0001-6827-4225
https://orcid.org/0000-0001-8876-1389
https://orcid.org/0000-0001-7238-2181


SHAO et al.: ACCURATE INDOOR POSITIONING USING TEMPORAL–SPATIAL CONSTRAINTS BASED ON Wi-Fi FINE TIME MEASUREMENTS 11007

cannot eliminate the multipath effect, which leads to distance
overestimation. Ibrahim et al. [12] built a window of ten bursts
which each being 30 packets long, then estimate the most
probable distance by building a histogram for each window.
The method improves positioning accuracy, but it is difficult
to be used in moving objects because the client only gets
one observation at each location. Considering that the rang-
ing error is mainly caused by multipath problems, therefore is
location related, we affirm that leveraging the observations at
different places reduces the side effect caused by the multipath
problem. We transform multiple FTM ranging measurements
gathered at different places into a series of virtual position-
ing clients (VPCs). Then, these VPCs are considered together
with their spatial constraints. Noting that the multipath effect
varies at different locations, we convert the real-time posi-
tion estimation problem to a combined position optimization
by considering multiple VPCs, thus increasing the amount of
available information.

Another challenge is due to the diversity and the complex-
ity of the available positioning information when considering
multiple VPCs. For example, the estimated accuracy of VPC
moving distance varies for different kinds of positioning
clients; an optimal position estimation needs to consider the
ranging accuracy between different VPCs and Wi-Fi AP pairs;
and the available number of ranging measurement and posi-
tioning ability of each VPC also varies. Therefore, we model
the VPCs positioning as a nonconvex optimization problem
with multiple constraints, then we solve it with the Karush–
Kuhn–Tucker (KKT) conditions [13]. The proposed method
successfully combines multiple positioning constraints, there-
fore improves the positioning accuracy and its robustness.

The third challenge is how to estimate the quality of rang-
ing measurements and that of each VPC positioning accuracy
using only a few observations at each point. Considering the
complexity of the ranging error distribution for each point, it
is too difficult to precisely compute their distributions, respec-
tively. Therefore, considering the environment similarity of
a building, we propose that using one identical distribution
to approximate all the ranging errors of the same building.
Then, based on ranging measurement residuals, we can adopt
the mean/median estimation for these measurements with only
a few measurements. Based on the robust statistics theory [14],
we transfer the mean/median estimation into ranging weights.
We also propose that the sum of all the ranging weights of
one VPC contains both available ranging APs and ranging
qualities, therefore it can be used as an indicator of VPC
positioning quality. Finally, weight estimations are iteratively
updated when position estimations are updated. The proposed
dynamic weight updating method improves the robustness of
dealing with poor FTM ranging measurements and poor VPCs
whose all ranging measurements are influenced.

Specifically, we provide the following contributions.
1) To attenuate the side effect of the multipath problem in

complex indoor environments, we convert the ranging
measurements at different places into multiple VPCs.
Considering the spatial constraints of VPCs, we combine
the measurement at different locations thus improving
the robustness of our proposal.

2) In order to tackle the diversity and complex positioning
information from multiple VPCs, we propose a position-
ing KKT condition model that integrates the information
from VPC spatial constraint, ranging quality, and VPC
positioning quality.

3) To estimate the ranging measurement and VPC posi-
tioning quality, we establish the ranging measurement
model and iteratively update the quality weight, which
improves the system robustness of dealing poor ranging
measurements and VPCs.

4) We have conducted extensive experiments to evaluate the
positioning performances, also showing the algorithm
convergence rate using different parameters.

The remainder of this article is organized as follows. Related
work is reviewed in Section II. Section III introduces the
challenges and the system overview and the overall position-
ing algorithm. The details of the proposed temporal–spatial
optimization models are given in Section IV. Implementation
details and experimental results are presented and discussed
in Sections V. Finally, Section VI concludes this article.

II. RELATED WORK

Many indoor positioning techniques have been presented
over the past years, including magnetic field [15]–[17],
acoustic [18], PDR [19], [20], camera [21], Bluetooth [22],
and Wi-Fi [23]–[25]. Amongst all these techniques, those
which uses Wi-Fi infrastructure have attracted growing atten-
tion due to its pervasiveness in indoor environments.

A. RSS-Based Wi-Fi Positioning Methods

The received signal strength (RSS) of APs is a piece of eas-
ily available information, therefore many Wi-Fi localization
approaches rely on RSS. Deterministic approaches, for exam-
ple, RADAR [6], estimate positions through selecting a set
of reference points whose fingerprints are the closest to the
online measurements. Considering the time-varying natures
of RSS, the performance of deterministic methods can be
improved if all fingerprints of a reference point are used.
The probabilistic approaches leverage the whole ensemble of
RSS fingerprints to provide statistical features of the area. For
example, Fang’s algorithm [26] intelligently transforms RSS
into principal components such that the information of all
APs is more efficiently utilized. The technique replaces the
elements with a subset of principal components to simultane-
ously improve the accuracy and reduce the online computation.
With the development of machine learning, pattern recog-
nition techniques have been introduced in RSS-based local-
ization. Location classifiers, including convolutional neural
networks [23], support vector machine [27], and linear dis-
criminant analysis [28] are trained using surveyed fingerprints
and then used to discriminate online RSS measurements.

In general, considering the fluctuating natures of Wi-Fi sig-
nals, fingerprinting-based methods unlikely to provide accurate
positioning information and the high cost for surveying the
environment also limits its application.
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B. MIMO-Based Wi-Fi Positioning Methods

In order to improve indoor positioning performances, in
recent years, MIMO-based positioning techniques have been
presented showing accuracies under 1 m. These techniques can
be classified into two categories: 1) Angle of Arrival (AoA)
and 2) Time of Arrival (ToA). AoA measurement deter-
mines the direction of propagation of a radio-frequency wave
incident on an antenna array or determined from maximum
signal strength during antenna rotation. ArrayTrack [29], pio-
neering in MIMO-based Wi-Fi positioning, the authors use
a software-defined radio platform and up to 16 antennas
for each AP. Later, Ubicarse [30] shows the application of
synthetic aperture radar to improve accuracy. However, the
method requires users to twist devices while they walk.
More recently, SpotFi [9] and Phaser [31] successfully apply
phased arrays on commodity APs. Several advances use the
physical layer information to accurately deduce the ToA (i.e.,
the travel time of a radio signal from a signal transmitter to
a remote single receiver), breaking the meter accuracy barrier.
Splicer [32] combines CSI from multiple channels for an accu-
rate power delay profile. On the other hand, ToneTrack [33]
further increases the accuracy by integrating the combination
process with a superresolution ToA estimation. Chronus [34]
modifies the Wi-Fi card driver to support fast channel hop-
ping. SiFi [8] presents a single AP-based positioning system
able to reach accuracy under 1 m with a single channel only.

Despite the high accuracies reached in the above-mentioned
MIMO-based works, unfortunately, the techniques require
antenna arrays or multiple antennas to extract the CSI
information, which limits the size of terminals and the man-
ner to deploy the antennas. Another problem with CSI-based
localization is that the CSI packets require high bandwidth.

C. FTM-Based Wi-Fi Positioning Methods

In order to provide an easy way to acquire precise ranging
measurements, researchers attempt to implement ranging-
based positioning by using round trip time (RTT) techniques.
Günther and Hoene [35] proposed an RTT method to esti-
mate the distance between WLAN nodes without using addi-
tional hardware and achieved 8-m ranging accuracy. Then,
Ciurana et al. [36] utilized the available WLAN card clock
at 44 MHz achieving 1 m of accuracy. Giustiniano and
Mangold [37] implemented carrier sense-based ranging meth-
ods further improving the systems’ accuracy also reaching
an accuracy under 1 m. Recently, Intel proposed the Wi-Fi
ToF protocol [11] and related chips, providing an off-the-
shelf way to implement high-accuracy indoor positioning.
They propose several articles based on the FTM ranging
technology. Schatzberg et al. [38] integrated Wi-Fi FTM
and inertial sensors with extended Kalman filter to har-
ness each other’s advantages. Banin et al. [39] updated the
protocol with a collaborative ToA that enables an unlim-
ited number of users to position themselves through Wi-Fi
information. Dvorecki et al. [40] have presented a super-
vised deep neural network able to outperform the accuracies
reached from classic maximum-likelihood estimation methods.
Giustiniano et al. [41] conducted an extensive experimental

campaign based on a customized Wi-Fi echo technique in
order to understand the noise source which affects ToF mea-
surements. Then, Rea et al. [42] combined statistical learning
and robust statistics in a single filter that is better suited for the
inherent large noise as found in Wi-Fi radios. Verification [12]
introduces an open platform for experiments with FTM rang-
ing. The authors analyze the key factors and parameters
that affect the ranging performance and present that meter-
level ranging accuracy can only be consistently achieved
in low-multipath environments. Yu et al. [43] proposed an
unscented Kalman filter-based dead reckoning algorithm to
combine the results of Wi-Fi FTM and multiple sensors.
Niesen et al. [44] applied the Wi-Fi FTM ranging on the
problem of range estimation between pairs of moving vehi-
cles. He developed a range estimation algorithm using local
polynomial smoothing of the vehicle motion.

As a summary, though FTM positioning accuracies under
1 m can be achieved using, for example, trilateration in an
outdoor environment [12]. Instead, in indoor complex sce-
narios, the positioning performance drops remarkably mainly
due to the multipath effect on the ranging measurements.
The existing FTM-based positioning techniques focus on
improving performance considering a single Wi-Fi measure-
ment and, eventually, integrating data from inertial sensors.
Nevertheless, the positioning accuracy and applicable scenar-
ios are limited. Different from these studies, in this article,
we consider multiple previous FTM measurements also eval-
uating their relative spatial relations. Our approach is able
to estimate ranging qualities, adjust measurement weights,
and estimate the target positions using multiple FTM mea-
surements. Furthermore, by identifying and decreasing the
weight of poor ranging measurements, the proposed system
remarkably improves positioning accuracy in complex indoor
environments.

III. SYSTEM OVERVIEW

State-of-the-art positioning methods based on FTM RTT [9]
leverage the latest ranging measurements to estimate the cur-
rent position. The potential useful history of restrictions is
generally discarded. In order to utilize historical information
of the positioning client, we propose a based joint positioning
method to jointly optimize the client’s position. This section
first introduces challenges for FTM ranging in indoor envi-
ronments, then proposes the VPC concept to implement joint
positioning. Finally, we introduce the system architecture.

A. Fine Time Measurement Ranging Challenges

The FTM protocol of the IEEE 802.11mc-2016 standard
enables certified products to measure each other’s distances
with the RTT method. The ranging method reaches submeter
accuracy in ideal Line-of-Sight (LoS) environments [12], but
the performance drops in complicated indoor environments.
As Fig. 1 reveals, several factors may affect the RTT ranging
performance, but the most serious factors are the multipath
effect and electromagnetic interference.

The multipath effect is the problem that Wi-Fi signals prop-
agate to the client by several paths, therefore arrive at the
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Fig. 1. Indoor challenges for FTM ranging.

receiver at different times. As Fig. 1 reveals, when an FTM
beacon sends a ranging frame to a client, the client not only
receives signals from LoS path SL but also reflected signals
from other paths, for instance, roofs S2 and filling cabinets S1.
Therefore, the actual received signal at the receiver is the sum
of signals from different paths, that is, SL + S1 + S2. Because
the length of propagation paths Sl, Sp1, and Sp2 is different,
the ranging signal is divided into several pieces that arriving
at the client at different times. Therefore, the multipath effect
introducing serious interferences to the client receiver, leading
to a decrease of ranging accuracy.

On the other hand, a lot of Wi-Fi APs are deployed within
indoor environments to fulfill communication requirements.
However, these normal APs work in the same frequency
of FTM ranging signals. These signals from normal APs
Sn interferes with the wave shape of FTM ranging sig-
nals, thus decreasing the ranging accuracy. Consider all these
interferences, it is difficult for the system to exactly deter-
mine the arrival time of FTM frames, therefore the ranging
and positioning accuracy decrease in indoor environments.

B. Virtual Positioning Client Creation

The interference strength generally varies at different loca-
tions of the indoor environment. If several clients are in
the same area and the distances between them are given,
then positioning estimations can be improved by optimizing
the ranging measurements of all the clients simultaneously.
Fig. 2 shows an example in which six location-known FTM
beacons, namely, B1–B6, and two location-unknown clients,
namely, C1 and C2, have been placed in the indoor area. Client
C1 receives four ranging measurements from B1,B2,B5, and
B6. Due to the wall’s attenuation, client C2 receives only two
measurements from B3 and B4. A positioning algorithm, based
on ranging measurements, will estimate the position of C2
within a location area with an uncertainty, namely, A1. If the
algorithm takes into account also the distance d between the
two clients and the ranging measurements of C1, then the
area of uncertainty for estimating the positioning of C2 can
be decreased from A1 to the area A2, thus increasing the
positioning estimation accuracy of C2.

In this article, to decrease the size of the uncertain area in
which the client is localized, we introduce new constraints
elaborating on the neighboring locations.

The same scheme is also applied to one client case.
We exploit the advantages of a combined positioning by

Fig. 2. Example of combined positioning for two clients.

Fig. 3. Example of VPCs.

introducing the concept of VPC and using FTM ranging
measurements retrieved from the client at previous locations.
In Fig. 3, we show an example in which a client moves
from position 1 to position 3 passing through position 2
(P1 → P2 → P3). In correspondence of each position, the
client performs FTM ranging actions. The proposed position-
ing system marks the three positions as VPC (V1,V2,V3).
Given the distances between VPCs, the position estimation
accuracy of V3 can be improved by elaborating the ranging
measurements retrieved from V3 and all the measurements
collected from V1 and V2.

Knowing the previous VPC positions help improve accu-
racy during the current VPC position estimation. Considering
that the accurate distance between VPCs is unknown, our
proposed system utilizes a moving distance estimation module
to coarsely estimate the distances between VPCs. The number
of distance-based constraints is equal to the number of adjacent
VPC pairs. Assume m is the number of VPCs, then the number
of estimated distances between VPCs is m − 1. For example,
in Fig. 3, the distances between three VPCs are the estimated
distances between V2 and V1 (̂l2,1) and V3 and V2(̂l3,2). These
two distances are applied as spatial constraints in our method.

C. System Architecture

A positioning scenario in which the proposed positioning
system can apply is as follows. A target client, for example,
a user which carries an FTM certified smartphone, moves into
an indoor environment. The client periodically sends FTM
ranging requests to nearby FTM certified Wi-Fi APs which
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Fig. 4. Overview of the proposed system.

answer with an acknowledgment (ACK) frame so enabling the
ranging evaluation. Then, the positioning client estimates itself
a position by evaluating the received ranging measurements.

The positioning method proposed in this article relies on the
spatial constraints of multiple positioning beacons displaced
into the indoor environment. We convert a sequence of ranging
measurements in the temporal domain into multiple VPCs in
the spatial domain considering their spatial constraints. These
VPCs are served as the positioning nodes. The current posi-
tion estimation is the result of a combined optimization of
multiple VPC positions. Indeed, by establishing a robust posi-
tioning objective function and the VPC spatial constraints
expressed as KKT conditions, we evaluate the current posi-
tion through a nonconvex optimization. Finally, the system
proposed includes an iterative ToF ranging and a VPC posi-
tioning weight estimation method to optimize the positioning
model. The proposed system architecture, shown in Fig. 4,
relies on six functional modules: 1) the initial position esti-
mation; 2) the initial VPC creation; 3) the weight estimation
of ranging measurements; 4) the weight estimation of VPCs;
5) the KKT-constrained optimization; and 6) the client moving
distance estimation.

Initial Position Estimation: This module measures the dis-
tance from the client to the nearby APs and then by knowing
the measurements and the position of the Wi-Fi APs, the mod-
ule estimates the initial rough position of the target client. The
module determines the position of the target client evaluating
simultaneously range measurements from more than three Wi-
Fi APs located at a known site. This procedure is known as
trilateration [45]. We solve the initial position problem using
the least-square (LS) method.

VPC Creation: The function of this module is to trans-
form a sequence of FTM gathered in the temporal domain

TABLE I
OVERALL POSITIONING ALGORITHM

into a series of VPCs and to evaluate their spatial constraints.
These constraints are used to improve accuracy performances.

Weight Estimation of Ranging Measurements: The mod-
ule adjusts the weights of ranging measurements using robust
statistics to reduce the influences of multipath effects.

Weight Estimation of VPCs: When a mobile client moves,
the interferences at different positions vary. Therefore, the
weights of VPCs in the objective function should be tuned. The
module estimates VPC weights using the information about the
number of VPCs and ranging residuals.

KKT-Constrained Optimization: This module evaluates
errors from current and historical FTM ranging and estimates
the possible moving distances of adjacent VPCs. It builds
an objective function of VPC measurements, then it reduces
the solution domain of the objective function considering the
connections between VPCs.

Client Moving Distance Estimation: The module estimates
the distances between different VPCs. For example, an accel-
eration frequency-based step length model [46] can be applied
to estimate the moving distance of a person who holds
a smartphone terminal.

The overall process of the proposed positioning is shown
in Table I. When a user moves, the positioning client collects
FTM ranging measurements and construct VPCs. Then, the
system roughly estimates VPC initial positions. Based on the
initial positions, we further improve the positioning accuracy
with temporal–spatial optimizations.

IV. KKT-CONSTRAINED OPTIMIZATION WITH

TEMPORAL–SPATIAL MODELS

This section models the multiconstraint positioning problem
with KKT conditions and Lagrangian multipliers. Then, we
detail the key parameter estimation algorithms in the model,
which is the Huber-based robust ranging weight estimation
and the VPC weight estimation.

A. KKT-Constrained Temporal–Spatial Optimization

The initial positioning estimation can be improved by
considering VPC temporal–spatial constraints. This section
explains a KKT-based method that is able to solve the con-
strained optimization problem. We analyze the key parameters
that influence ranging quality and how to leverage the quality
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TABLE II
KKT-CONSTRAINED POSITIONING OPTIMIZATION ALGORITHM

coefficients in order to adjust the weights of the ranging during
the positioning estimation process. The proposed algorithm is
shown in Table II.

Starting from the estimated initial position of VPCs, our
algorithm updates the weights of ranging measurements ωi,j

and the weights of VPC position estimations ψi. Then, the
system defines the objective function and temporal–spatial
constraints. Successively, the optimization routine constructs
the unconstrained Lagrangian and the KKT conditions. Finally,
the system solves the objective function and update the VPC
position estimations. For each loop, we calculate the average
of VPC position variation distances δ. The variation average
less than a fixed value means that the positioning result is
converged and the system produces the final VPC position
estimation as output.

We define the objective function of the optimization
problem as the squared sum of the residual between the
estimated distance and the FTM ranging measurement

J(p̃1, . . . ,p̃m) =
m

∑

i=1

ψi(·) ·
n

∑

j=1

[

ωi,j(·) · (

̂di,j − ∥

∥p̃i − p̌j
∥

∥

2

)]2

(1)

where p̃i is the estimated position of the ith VPC, p̌j is the
given position of the jth Wi-Fi beacon, and ̂di,j is the rang-
ing measurement from p̃i to p̌j. Considering that the multipath
effect varies at different positions, the ranging qualities of each
measurement are different, therefore, we add a weight esti-
mation function ωi,j(·) to adjust the influence of the ranging
qualities and a weight estimation function ψi(·) to adjust the
influence of VPC position confidences. These two functions
are discussed in the following sections.

In order to improve the positioning performance, the system
implements temporal–spatial constraints in order to decrease
the definition domain of the objective function. These con-
straints restrict the possible position patterns of VPCs, there-
fore many error patterns are filtered out improving the system’s
performances.

VPC Moving Distance Range Constraints: When a user
moves, the moving distance estimator module evaluates the

distance between two consecutive VPCs. The estimator also
provides a relative position relationship which restricts the
possible position of the VPCs. Considering the difference in
the accuracy of different moving distance estimation methods,
we propose a ring definition domain to represent the above-
mentioned restrictions as constraints. Therefore, we calculate
the standard deviation σe of the moving distance estimation
error and we use the error standard deviation as a constraint of
the objective function. The moving distance of adjacent VPCs
falls in the gap (̂lk,k+1 − 2σe, ̂lk,k+12σe, ), where the param-
eter ̂lk,k+1 is the VPC moving distance estimation. The two
constraints can be represented with the following equations:

gk,k+1(p̃k, p̃k+1) = ‖p̃k − p̃k+1‖2
2 −

(

̂lk,k+1+2σe

)2 ≤ 0,

for k = 1, . . . ,m − 1 (2)

hk,k+1(p̃k, p̃k+1) =
(

̂lk,k+1 − 2σe

)2 − ‖p̃k − p̃k+1‖2
2 ≤ 0,

for k = 1, . . . ,m − 1. (3)

Equations (2) and (3) restrict, respectively, the maximum
and minimum bound of the moving distance between two con-
secutive VPCs. We utilize the two inequalities to constrain
the possible scope of the VPC moving distance rather than
one equality to restrict the step length. The benefit is that
the proposed method is adaptive to different moving distance
estimation accuracies.

Positioning Bound Constraints: We consider the maximum
and the minimum coordinates of all the Wi-Fi beacons to
constrain the VPC positioning results

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u1
j

(

x̃j
) = x̃j − xmax ≤ 0, for j = 1, . . . ,m

u2
j

(

x̃j
) = −x̃j + xmin ≤ 0, for j = 1, . . . ,m

u3
j

(

ỹj
) = ỹj − ymax ≤ 0, for j = 1, . . . ,m

u4
j

(

ỹj
) = −ỹj + ymin ≤ 0, for j = 1, . . . ,m

xmax = max(x1, . . . , xn)

xmin = min(x1, . . . , xn)

ymax = max(y1, . . . , yn)

ymin = min(y1, . . . , yn)

(4)

where xmax, xmin, ymax, and ymin are the coordinate bound of
Wi-Fi beacons. Then, we utilize four equations u1

j , u2
j , u3

j , and
u4

j to ensure the positioning results lies within the bound.
In order to solve the constrained optimization problem, we

construct the Lagrange multiplier and the KKT conditions.
Based on the objective function (1) and constraints (2)–(4),
the positioning problem can be represented as the following
inequality constrained optimization:

min
p̃1,...,p̃m

J(p̃1, . . . , p̃m)

s.t. gk,k+1(p̃k, p̃k+1) ≤ 0, for k = 1, . . . ,m − 1

hk,k+1(p̃k, p̃k+1) ≤ 0, for k = 1, . . . ,m − 1

u1
j

(

x̃j
) ≤ 0, for j = 1, . . . ,m

u2
j

(

x̃j
) ≤ 0, for j = 1, . . . ,m

u3
j

(

ỹj
) ≤ 0, for j = 1, . . . ,m

u4
j

(

ỹj
) ≤ 0, for j = 1, . . . ,m. (5)

Equation (5) represents that solving the positions of VPCs
p̃1, . . . ,p̃m is to find the minimum of the objective function
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J(·). We construct the unconstrained Language optimization
function based on (5) as

L(p̃1, . . . , p̃m, λ1, . . . , λm−1, η1, . . . , ηm−1

θ1, . . . , θm, ξ1, . . . , ξm, τ1, . . . , τm, γ1, . . . , γm)

= J +
m−1
∑

k=1

(

λkgk,k+1 + ηkhk,k+1
)

+
m

∑

j=1

(

θju
1
j + ξju

2
j + τju

3
j + γju

4
j

)

. (6)

The parameter λk, ηk ∈ R for k = 1, . . . ,m−1 and θj, ξj, τj,

γj ∈ R for j = 1, . . . ,m are regularization items. The feasible
positioning results can be resolved with the following KKT
conditions:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∇(x̃1,ỹ1,...,x̃m,ỹm)L(·) = 0
λkgk,k+1 = 0, for k = 1, . . . ,m − 1
ηkhk,k+1 = 0, for k = 1, . . . ,m − 1
θju1

j = 0, for j = 1, . . . ,m
ξju2

j = 0, for j = 1, . . . ,m
τju3

j = 0, for j = 1, . . . ,m
ωju4

j = 0, for j = 1, . . . ,m
hk,k+1 ≤ 0, gk,k+1 ≤ 0, for k = 1, . . . ,m − 1
u1

j ≤ 0, u2
j ≤ 0, u3

j ≤ 0, u4
j ≤ 0, for j = 1, . . . ,m

λk ≥ 0, ηk ≥ 0, for k = 1, . . . ,m − 1
θj ≥ 0, ξj ≥ 0, τj ≥ 0, γj ≥ 0, for j = 1, . . . ,m

∇(2)
(x̃1,ỹ1,...,x̃m,ỹm)

L(·) is positive definite.

(7)

It is worth noting that (7) only calculates feasible solu-
tions. Therefore, when the Lagrangian L(·) is not convex
on the whole definition domain, (7) will output several local
minimums that are satisfied with the KKT conditions. Our
algorithm checks the corresponding value of the objective
function (1), then selects the minimum value as the final result.

B. Ranging Weight Estimation

The serious multipath effect of the indoor environment
and the narrow bandwidth of ranging radio frequency makes
the FTM signal noisy and the measurements contain outliers
(e.g., large-ranging errors). Generally, the outliers are detected
and removed. Unfortunately, removing criteria are subjec-
tive and, potentially, good ranging measurements are deleted.
Therefore, we propose that leveraging the mean/median esti-
mation to adjust the weight parameter ωi,j of the FTM ranging
measurements.

The FTM ranging model can be represented as

̂di,j = ∥

∥pi − p̌j
∥

∥

2 + ε (8)

where p̌j are the coordinates of the jth Wi-Fi beacons. pi are
the ground-truth coordinates of the ith VPC. ε is the random
measurement noise. ‖pi − p̌j‖2 is the true Euclidean distance
between the Wi-Fi beacon and the VPC. ̂di,j is the measured
value of ‖pi − p̌j‖2.

Wi-Fi FTM ranging is based on the signal flying time,
therefore the ranging error distributions of different ranging
distances can be approximated as independent and identi-
cally distributed (IID). Consequently, the positions of multiple

VPCs are evaluated by maximizing the joint probability of
different measurements of different VPC and Wi-Fi beacon
pairs. Considering the ranging error ε of (8), the maximum-
likelihood estimation of p1, . . . , pm is the solution of

{

maxp1,...,pm

∏m
i=1

∏n
j=1 f (ri,j) = MAX

ri,j = ̂di,j − ∥

∥pi − p̌j
∥

∥

2
(9)

where ri,j represents the ranging residual. Adjusting the posi-
tion of p1, . . . , pm, when the joint probability reaches the
maximum MAX, the positions are the optimal estimations
p1, . . . , pm represented as p̃i, . . . p̃m. When a ranging measure-
ment is not available, the probability of this beacon and VPC
pair is set to 1.

In order to simplify the evaluation cost of (9), the equation
is transferred into a minimization problem

⎧

⎨

⎩

p̃i, . . . p̃m = minp1,...,pm

∑m
i=1

∑n
j=1 ρ(pi) = MIN

ρ(pi) = −log
(

f
(

ri,j
))

MIN = −log(MAX).
(10)

Based on the robust statistics theory [14], we define the dis-
tribution f as a normal distribution if the residual r is smaller
than a threshold T , or as a double exponential distribution
otherwise

f (ri,j) =
⎧

⎨

⎩

1√
2π

e− (ri,j)
2

2
(∣

∣ri,j
∣

∣ < T
)

1
2 e−|ri,j| (∣

∣ri,j
∣

∣ > T
)

.

(11)

Considering that the distributions of all the residuals are
IID, the optimal solution of (10) is when all items of the equa-
tion reach their minimum value. Therefore, when f is subject
to a normal distribution, the optimal p̃i is at the point when
its (11)’s derivative equals zero or, in other words, when the
optimal point set of p̃i lies in a circle with its radius equal to
the mean of measurements ̂di,j

∥

∥pi − p̌j
∥

∥

2 = mean
(

̂di,j
)

. (12)

When f is subject to a double exponential distribution, the
optimal p̃i is the median value [14]

∥

∥pi − p̌j
∥

∥

2 = Med
(

̂di,j
)

(13)

and the optimal point set of p̃i lies in a circle with its radius
equal to the median of measurements ̂di,j.

Because the sample median is more robust than the sample
mean, we use the median value when the residual is greater
than the threshold T . On the other hand, the median’s robust-
ness needs a higher sample price [14], therefore, we adopt
mean estimation when the residual is small.

When the positioning client moves, the client only gets one
sample per location. Consequently, it is difficult to adopt the
mean/median estimations based on a single sample. Therefore,
we leverage the weight function to transfer the mean/median
estimation into FTM ranging weights. Then, we can adopt
robust statistics on multiple single measurements. The weight
function is defined as [14]

W(ri,j) = dρ

dri,j
/ri,j. (14)
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Adopting the definition to (11). Therefore, the weight
function ωi,j(t) of FTM ranging is

ωi,j(·) = W(ri,j) =
{

1, for
∣

∣ri,j
∣

∣ = T
T/

∣

∣ri,j
∣

∣, for
∣

∣ri,j
∣

∣ > T.
(15)

Note that (15) depends on pi that represents the ground-
truth coordinates of the ith VPC. Obviously, the ground-truth
coordinates are unknown in real-time positioning. In practice,
we leverage the VPC position estimation of every iteration to
replace pi, then we adjust the ranging weight during the next
iteration of the algorithm.

C. VPC Weight Estimation

In order to further improve system positioning accuracies,
the proposed system leverages the temporal–spatial constraints
of multiple VPCs to shrink the feasible solution domain of the
objective function (1). VPCs are located at different places, so
the interference level of each VPC varies. Therefore, identi-
fying the position confidence of each VPC and consequently
adjust their weight is important in improving the evaluation
of the objective function. Therefore, we propose a heuristic
method to adjust the VPC weight ψi in (1).

Based on our experience, the number of ranging measure-
ments and the accuracy of each ranging are the two key factors
that decide the performance of VPC position estimation in tri-
lateration. Obviously, more FTM ranging measurements are
helpful in improving positioning robustness, because, with
more measurements, outliers are more easily be identified. On
the other hand, accurate ranging is the precondition of high
accuracy positioning. The parameter ωi,j(·) is a robust weight
estimation of the ranging residual which just represents the
confidence of each ranging measurement. Therefore, as (16)
reveals, we propose that utilizing the sum of all the rang-
ing weights of a VPC to represent the potential positioning
confidence of the VPC

ψi(·) =
n

∑

j=1

ωi,j. (16)

V. IMPLEMENTATION AND EVALUATION

This section exhibits the performance of the proposed posi-
tioning system. It describes the experimental environment,
platforms, and the key parameter of the algorithm. Finally,
comprehensive performance tests are discussed and compared
with state-of-the-art methods.

A. Experimental Environment

Because the IEEE 802.11mc protocol is newly proposed in
Android 9, most of the off-the-shelf smartphones and Wi-Fi
APs still not support the protocol yet. Therefore, we assem-
ble experimental platforms by ourselves. As Fig. 5 reveals, we
use an Intel Dual Band Wireless-AC 8260 Wi-Fi card as the
FTM ranging terminals because the card supports the IEEE
802.11mc protocol and open accessing FTM measurements.
The card is mounted on a commercial desktop device in order
to make it a beacon transmitter. We also replace the Wi-Fi
card of a commercial DELL Inspiron 5488 with the same

Fig. 5. Equipment of the proposed systems.

Intel 8260 card. In this case, the laptop serves as the target
client. In order to expose the Wi-Fi antenna of the beacon
transmitter, we extended the PCI-E slot of the beacon with
an extension cable instead of extending the antenna. Because
the signal traveling velocity in cables is different from the
speed in vacuum [12], extending the cable does not introduce
a time delay.

The operating system (OS) in both the Wi-Fi beacons trans-
mitter and target client is Linux kernel version 3.19.0-61 low
latency because it is the only version that is supported by the
backport LinuxCore releases of the IWLWIFI driver [12]. We
configure the positioning nodes with the iw Linux command-
line tool (the iw is an nl80211-based CLI configuration utility
for wireless devices).

We chose to perform the experimental campaign in a real-
world indoor environment, where the multipath problem is
complicated by reflections from walls, ceilings, doors, and fur-
niture. The testbed is located on the seventh floor of an office
building and it covers an area of 40 m×15 m, with a ceiling
of 3-m high. The chosen area, as shown in Fig. 6, presents
a challenging scenario, due to the dense number of worksta-
tions, chairs, a big iron plant rack standing in the middle of
the positioning area, glass walls, and windows. These objects
reflect FTM signals in various directions, thus causing serious
multipath problems compared to an outdoor open space [12].
The electromagnetic environment is also complex due to the
presence of many Wi-Fi APs, Bluetooth beacons, and personal
computers. Our positioning system is configured ranging with
20-MHz bandwidth in 2.4 GHz. More than 200 normal Wi-Fi
APs and Bluetooth beacons can be detected in this frequency,
therefore the FTM ranging signal is interfered by these noises.
A user held the client and walked along the testing path within
the experiment area. The FTM sample frequency is 1 Hz.

B. Impact of the VPC Moving Distance Estimation

The estimation accuracy of the user moving distance decides
the range of the possible VPC moving distance formulated as
KKT conditions. In this evaluation, we simulate different lev-
els of estimation accuracies of the moving distance estimation
module. We ask a user to randomly walk within the position-
ing area, the ground-truth moving distance is extracted from
the LiDAR measurements. Then, we simulate different grades
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Fig. 6. Floor plan of our experimental office building. The bottom picture
is a photograph of the positioning area.

Fig. 7. System positioning accuracy considering different VPC moving
distance estimator accuracies.

of moving distance estimation accuracies comparing with the
ground-truth measurements. Given the ground-truth moving
distance L, the standard deviation σe of the moving distance
estimation error is L ·x%. We apply the constraints to the KKT
condition (2) and (3). The goal of the experiment is to find out
how the spatial constraints of adjacent VPCs affect the system
positioning accuracy.

By repeating the same experiment for all the σe values, we
found the optimal empirical σe value. The results are shown
in Fig. 7. The minimum available σe is 2L. When the esti-
mator accuracy is too low, the spatial constraint expressed
as KKT conditions have little effect on improving the posi-
tioning accuracy. When the estimator accuracy improves, the
system positioning accuracy also increases, but the perfor-
mances improve more slowly. When the estimator accuracy is
higher than 0.05L, the improvement of the positioning accu-
racy is so low that it can be ignored, because other factors
become the major sources of errors.

Fig. 8. System positioning accuracy at different mean/median thresholds and
the effects to apply the VPC weight estimation.

C. Impact of the Ranging and VPC Weight Parameter

In the second experiment, we evaluate the VPC weight esti-
mation process and the effects of the mean/median estimation.
Given the threshold T the mean/median estimation, we cal-
culate the positioning residual of each iteration. In order to
generalize the selection of the threshold T , we choose the
standard deviation σ of FTM ranging errors as an indicator of
the threshold T . We set T = σ · x%. If the residual is greater
than T , indicating that measurement is probably an outlier,
we utilize the robust median estimation. Otherwise, we adopt
the precise mean estimation. When the optimal threshold T is
selected, we also compare the positioning performance with
and without the VPC weight estimation.

First, we calculate the error standard deviation σ . In our
experiment, considering all the FTM ranging errors, σ= 2.5
m. Then, we repeat the same experiment for all the T val-
ues and found the optimal empirical T value. The results are
shown in Fig. 8. When the threshold T is too small, for exam-
ple, T= 0.1σ , the system performs a median estimation of
all the FTM measurements, leading to low positioning accu-
racy, because the system cannot leverage the mean method
to get a better ranging estimation. As the threshold becomes
bigger, T= 1.2σ for instance, the FTM ranging accuracy is
improved as such as the positioning accuracy. However, when
the T value is too big, the system applies the same value
to all the FTM measurements, which equals to adjusting the
weight of the ranging measurements. Therefore, the CDF lines
of T= 50σ and T = constant are coincident.

Furthermore, setting the threshold T equals to the optimal
value 1.2σ , we apply the VPC weight estimation to the
objective function (29). The result shows that although the
improvement was small, the VPC weight estimation improves
the overall positioning performance.

D. Number of VPC and Accumulative Error

In this section, we evaluate the impact on the positioning
performances when different numbers of VPCs are considered.
Fig. 9(a) shows the positioning performances by repeating
the same evaluation and varying the number of VPCs from
2 to 9. The positioning accuracy increases as more VPCs are
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Fig. 9. (a) Positioning accuracy considering a different amount of VPC.
(b) Running time statistics.

involved. The result confirms that increasing the number of
VPCs is helpful in reducing the influence of the multipath
effect. The multipath effect is location related and VPCs
are evaluated at different locations. When more VPCs are
involved, the risk that all VPCs during a positioning request
suffer from serious multipath effects is decreased. Therefore,
although the proposed method decreases the weight of poor
measurements, there are still enough ranging measurements to
improve positioning accuracy.

It is worth noting that the accuracy improvement from 4 to
6 VPCs is slower than the improvement from 2 to 4 VPCs.
When the number of VPCs exceeds 6, more VPCs produce
little accuracy improvements. The phenomena confirm that as
the number of VPCs increases, the influence of accumulative
error from VPC distance estimations becomes prominent. The
proposed algorithm leverages the constraints of multiple esti-
mated distances between VPCs to shrink the solution space.
Nevertheless, the accumulative error increases when more
VPCs are involved. When the benefits from introducing VPC
distance constraints and the harm from the accumulative errors
of VPC distance estimations are balanced, the system posi-
tioning improvement stops. Therefore, in order to control the
influence of the accumulative error, we implement a sliding
window to only select the latest VPCs considered into the
objective function evaluation.

Furthermore, increasing the number of VPCs enlarges the
computing cost. As Fig. 9(b) reveals, the mean computation
time is linear for different VPCs because the KKT condition
is linear. On the other hand, the average time gap between
the first and third quartile also enlarges as the VPC number
increases, indicating that while the number of VPC spatial
constraints increases, the variation of the problem complexity
also enlarges.

E. Performance With Different Number of APs

Increasing the density of APs is an effective way to
improve system positioning accuracy. As previously described,
the experimental environment contains eight APs deployed
according to Fig. 6(a). We collect ranging measurements from
all the APs. Then, in this experiment, we randomly reduce the
number of APs and their corresponding ranging measurements.

We test the positioning performance using 4–8 APs, respec-
tively. As Fig. 10 shows, the positioning accuracy improves

Fig. 10. Positioning accuracy according to different numbers of APs.

Fig. 11. Positioning error under a different number of iterations.

as the number of APs increases. Considering more APs lead
to evaluate more spatial constraints in the solution space and
to reduce the influence of ranging errors so improving the
positioning accuracy. However, the proposed algorithm obtains
accurate positioning performances also with a lower num-
ber of APs making the system applicable in different indoor
environments.

F. Convergence Rate

The proposed algorithm is composed of an iterative rou-
tine that optimizes temporal–spatial measurements, which may
have downsides when the convergence rate is low. In this sec-
tion, we evaluate several key parameters that may affect system
performance.

We examine the positioning accuracy obtained with a dif-
ferent number of iterations. Fig. 11 shows log10 of error (error
in meters) per iteration, given eight VPCs. When the system is
initialized applying the LS method, the median error is more
than 5 m, and due to ranging outliers, we observe errors up
to more than 100 m. Then, after the initialization, the median
and maximum errors drop to 0.64 and 2.1 m, respectively,
indicating that the measurement weights have been properly
adjusted and the outlier measurements have been effectively
removed. However, when more iterations are performed, the
accuracy improvement becomes very small. The results show
that the main improvement of positioning accuracy occurs at
the first iteration.

Then, we perform an ablation study [47] by applying dif-
ferent experimental conditions and we find two key factors
that affect the algorithm convergence rate: 1) the number of
VPCs and 2) the iteration stop threshold δ applied during the
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Fig. 12. Iteration number of different VPCs.

Fig. 13. Iteration number with different position variation thresholds.

analysis of the variation of the VPC position. We observe the
number of iterations adopting a different number of VPCs,
given an iteration stop threshold δ= 0.67. As Fig. 12 reveals,
the required number of iterations is proportional to the number
of VPCs because more VPCs contain more ranging measure-
ments. Basically, the problem becomes more complex when
more ranging measurements are included, therefore, the num-
ber of required iterations is increased. Finally, we observe the
number of iterations using different stop threshold δ, given
eight VPCs. Fig. 13 reveals that the required number of
iterations is inversely proportional to the iteration stop thresh-
old δ, because the system needs more iterations to reduce
the variations of the VPC position. However, the accuracy
improvement is very small after the first two iterations as
shown in Fig. 11, thus the choice of the iteration stop thresh-
old can vary. Based on our experience, choosing δ that keeps
the median of iteration number equals two is a proper value
(e.g., δ= 0.67 in Fig. 13).

We conclude that our proposed algorithm can converge
within two iterations for most of the cases. In order to examine
whether the algorithm is able to converge within a reason-
ably short time, we calculate the average running time of
one iteration under different circumstances. From our exper-
iments, we find that the average iteration time is relevant
to the number of available ranging measurements and the
index of the iteration. Considering that the successful ranging
rate of different VPCs varies, the number of available rang-
ing measurements (e.g., in Fig. 3, V1,V2, and V3 retrieved
3, 3, and 4 measurements, respectively, the total number of
available ranging measurements is 10) is a precise metric
for evaluating the complexity of the position optimization.
In this experiment, we classify the number of measurements
into five groups: 1) 6–15; 2) 16–25; 3) 26–35; 4) 36–45;
and 5) 46–55, then we calculate the average running time

Fig. 14. Average running time with different available ranging measurements.

of each iteration. The result is shown in Fig. 14. It can be
observed that considering an iteration index, the average run-
ning time shows a linear trend related to the number of ranging
measurements. On the other hand, considering a number of
available ranging measurements, the running time decreases
as the iteration index increases. In fact, the algorithm uses
a KKT routine to solve the KKT equations through sequential
quadratic programming [48], and the running time is relevant
during the evaluation of the initial position. Therefore, when
the solution is close to the optimal, the running time decreases.

In conclusion, in order to make the algorithm converge in
a reasonably short time, it is important to select a proper num-
ber of VPCs and select the top-n ranging measurements based
on their qualities, especially for scenarios with a large amount
of FTM-enabled APs.

G. Performance Comparison With Other FTM RTT-Based
Positioning Methods

We evaluated the positioning performance comparing dif-
ferent Wi-Fi FTM RTT-based positioning approaches, namely,
the LS, robust LS, position regression neural network (PRNN),
ranging error compensation neural network (RECNN), and
multidimensional scaling (MDS) with the proposed position-
ing method (using six VPCs). The LS and MDS are classical
positioning methods that implement triangulation with equal
weight ranging measurements. The robust LS updates the clas-
sical LS to reduce the effect of multipath problems. This
method is an iterative algorithm that adjusts the weight of
ranging measurements in each iteration. We also tried the
state-of-the-art artificial intelligence methods. The PRNN is
a stack-structured artificial neural network (ANN) that maps
a set of FTM measurements into VPC positions. The neural
network consists of three layers and the adjacent layers are
fully connected. We also add a rectified linear unit (ReLu)
neuron at each layer to deal with nonlinearity. We sampled
ground-truth positions and trained the PRNN with a back-
propagation algorithm. In the positioning phase, the PRNN
receives the FTM measurements as inputs and predicts position
regression results. The RECNN is similar to the PRNN, the
difference is that the RECNN outputs are ranging error com-
pensations and it compensates FTM ranging measurements
and positioning through the LS method. We also compared
the performance of traditional RSS-based methods [5].
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Fig. 15. Positioning performance comparison with different Wi-Fi FTM
positioning methods.

The results of the comparison are shown in Fig. 15. The
traditional RSS-based positioning method is worse than any
other FTM-based methods because the positioning oriented
FTM protocol provides more location-related information. The
performance of the LS method is the worst FTM positioning
method because the LS method is easily affected by ranging
outliers. The serious multipath effect in indoor environments
generates lots of ranging errors, therefore the performance
of the indoor LS method drops comparing to outdoor envi-
ronments. The performance of the MDS method is better
than the LS method because the coordinate alignment elim-
inates the effect of ranging outliers to a certain degree. The
PRNN and RECNN methods improve positioning performance
because the training process enables the system to find outliers.
However, the multipath effect at different positions changes
significantly. Therefore, a large number of training samples
to prevent overfitting problems is needed, which increases the
deployment cost. The difference between the proposed method
and the robust LS method is that the robust LS method does
not consider the temporal–spatial constraints of VPCs. The
robust LS method performs better than other methods because
it also considers the weight of FTM ranging. Our proposal also
leverages the temporal–spatial constraints of adjacent VPCs,
which improves the system’s capability to reduce the influ-
ence of FTM ranging outliers. Therefore, the proposed method
reaches a submeter level of positioning accuracy at 80% in
complex indoor environments.

VI. CONCLUSION

In this article, we proposed a robust indoor position-
ing method based on Wi-Fi FTM RTT measurements. Our
algorithm relies on the temporal–spatial constraints between
adjacent VPCs. The technique provides robust localization
accuracy in a complex indoor environment in which the
multipath effect and signal interferences are serious.

The main contributions of this article are threefold. We con-
vert the real-time position estimation problem into multiple
VPC combined position optimization to reduces the multipath
effect. We establish the VPC spatial-constrained KKT condi-
tions to model the constrained objective functions. Finally, we
propose an iterative ToF ranging and VPC weight estimation

method to optimize the positioning model. Initial experi-
ments using open platform wireless cards have confirmed
that our novel scheme improves the positioning performances
significantly if compared to classical positioning methods.
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