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Abstract. The way people interact in daily life is a challenging phenomenon to be captured and studied without altering the
natural rhythm of the interactions. We investigate the development of automated tools that may provide information to the
researchers that analyse interactions among humans. One important requirement of these tools is that should not interfere with
the subjects under observation, in order to avoid any alteration in the subject’s normal behaviour. Our approach is based on the
detection of proximity among groups of people that is obtained using commercial wearable wireless tags based on Bluetooth
Low Energy (BLE) and a novel algorithm called Remote Detection of Human Proximity (ReD-HuP) that analyses the wireless
signal of tags and produce the proximity information. The algorithm, which has been validated against the ground truth of an
experimental dataset, achieves an accuracy of 95.91% and an F-Score of 95.79%.
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1. Introduction

The analysis of social interactions, meant as the ten-
dency of humans to interact with their own kind over
time is a complex task being social interactions gen-
erally not easy to understand, capture and study with
automated tools. However, this can be achieved indi-
rectly by analyzing the features (sociological markers)
that characterise the human interactions [1]. Among
these markers, it is worth mentioning the co-location
(or proximity) of people and their explicit interactions
(if they talk to each other, their gestures, etc.). The
combination of these markers with their duration over
time, their intimacy, and their emotional intensity de-
termine the strength of such interaction, as reported in
[2]. In particular, proximity is a mandatory condition
to identify ties among humans in the real world, since
two humans need to be in the same place at the same

time to have a face-to-face meeting. For this reason,
the information about proximity can reveal non-trivial
social dynamics that, in turn, can be used in many ap-
plications, like the detection of crowded areas and the
optimisation of the work [3–5], the presence detec-
tion in indoor environments [6–9], or the forecasting of
the spread of infection diseases [10]. The conventional
methods for the detection of proximity rely on ques-
tionnaires or direct observations of the subjects under
study [11, 12]. However, these methods are feasible for
small groups of people, and they may also introduce
biases since they may give the users a sense of con-
trol and of observation that, in the end, may alter their
interactions.

For this reason, we aim at the development of a plat-
form for the automatic detection of proximity among
people in indoor environments. This platform is un-
obtrusive and low-cost, based on off-the-shelves de-
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vices (on wristbands and small fixed stations) and on
a novel algorithm, called Remote Detection of Hu-
man Proximity (ReD-HuP). The platform architecture
is modular and follows the paradigm of remote posi-
tioning, where the wristbands act as beacon emitters
(beacons are short 30 bytes messages sent in broad-
cast) and the fixed stations, forming the infrastructure,
receive the beacons and analyse them. In our specific
case, the wristband are Bluetooth Low Energy (BLE)
commercial tags, which have been already validated
for this purpose in [13–16]. The wristbands are con-
figured with appropriate frequency and power of emis-
sion of the beacons, so to limit the number and range
of the beacons sent. The stations, in turn, collect all the
beacons received, analyse, and aggregate them to iden-
tify who among the users are in proximity with each
other. The ReD-HuP algorithm has been validated with
a dataset produced in a data collection campaign in
which we physically simulated real-world interactions
and also collected the ground truth.

With respect to the previous work in the literature,
the novelty of our approach is in the use of cheap,
off-the-shelf commercial devices that are not specif-
ically designed for the detection of proximity, in the
use of BLE technology that is now available in most
smart devices (like smartphones, wristbands and smart
watches), and in the use of the novel ReD-HuP algo-
rithm that runs over a distributed platform of fixed sta-
tions and that is based on a voting-based mechanism to
aggregate the results computed from all the stations1.

According to the experiments conducted with our
dataset, the proposed algorithm achieves a 95% accu-
racy and an F-Score of up to 95%. The dataset, which
includes about 100.000 beacons, has been constructed
with a group of people in a real indoor environment of
about 90m2 with 4 stations deployed.

The rest of the paper is organised as follows: Section
2 reports the state of the art in this area, sections 3 and

1This work extends our previous work [17] by: a new extensive
analysis of state-of-the-art algorithms and techniques in the field of
social interactions detection; a novel in-depth analysis of the col-
lected dataset used in the experimentation with a focus on the statis-
tics of the collected RSSI that characterise the functionalities of the
distributed system at node level both during the actual social inter-
action and when no interaction is ongoing; a brand new thoroughly
performance analysis of the ReD-HuP algorithm with a new metric
(Cohen’s kappa coefficient), with a focus on the reliability and scal-
ability of the system. The new analysis is based on the evaluation of
the performance (accuracy, F-score, and Cohen’s kappa coefficient)
when decreasing the number of used fixed stations (up to a single
station).

4 present the ReD-HuP algorithm and the experimental
settings, respectively. Finally, Section 5 discusses the
results obtained and Section 6 presents the conclusions
and the work planned for the future.

2. Related Work

Automatic proximity detection and localisation [18]
has been extensively studied with different technolo-
gies. The SocioPatterns2 platform [19, 20] is an inter-
esting project which aims at studying dynamics of hu-
man interactions with real-world experiments. Differ-
ently from our approach, the platform is based on cus-
tom hardware. Specifically, it is composed by wearable
badges equipped with RFID emitters and a number of
RFID receivers deployed in the environment. Badges
are configured to periodically emit low-power signals,
while receivers record the signals and store them for
further analysis. Badges are generally worn around the
neck and receivers, typically, are deployed on the ceil-
ing, these settings lead to an optimal scenario for de-
tecting proximity among people. A similar approach
is represented by the Sociometric Badge [3, 21]. Au-
thors exploit a custom hardware to detect proximity
among people and their voice activity. The badge not
only emits and records RFID signals, but it also anal-
yses data collected from voice activity, with the goal
of detecting when people are in touch and when they
are talking to each other. A recent improvement of the
Sociometric Badge is the Rhythm platform presented
in [4]. Rhythm is also designed for the assessment of
human organisations, it is based on a Bluetooth badge
acting as emitter and on mobile and stationary clients
able to record and to store the data collected. SocioPat-
terns and the Sociometric Badge represent state-of-the-
art platforms for studying dynamics of human interac-
tions. However, they both rely on a custom hardware
design which makes it difficult to think to a large-scale
experiment. Furthermore, both of the badges are based
on the RFID technology not always available on com-
mercial smart phones or wearable smart devices.

A different approach is described in [22]. Authors
propose a custom wristband based on BLE beacons to
detect social interactions. The wristbands are based on
the Android Wear OS and Tizen smartwatches, they
emit, collect, and store beacons locally. The data anal-
ysis is achieved with a post-processing tool based on a

2http://www.sociopatterns.org/
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binary classifier. Also in this case, the hardware plat-
form described is not a ready-to-use commercial prod-
uct. It is worth to notice another interesting project
named the Copenhagen Networks Study [23]. Such
study involved approximately 800 students from Uni-
versity of Denmark for a period of two years. The
study aims to collect different kind of data through a
mobile app. Among the data collected, also the prox-
imity among students is detected by exploiting Blue-
tooth periodic scans and WiFi signals as reported in
[24]. Such work increases the dimension of the exper-
iments with a large dataset collected over the years.

Finally, a BLE-based approach for proximity detec-
tion have been proposed in [25]. Authors show a sys-
tem able to recognise social interactions by utilizing
commercial smartphone devices. Through the evalua-
tion of Bluetooth RSSI values as input of a machine
learning model, authors classified the proximity be-
tween two devices into three interaction zones.

Similar approaches based on radio signals involve
Wi-Fi information are described in [26]: authors ex-
hibits a system based on commercial smartphones able
to recognize spatial settings between subjects and to
utilise the built-in accelerometer for speech activity
identification. The idea to utilise commercial smart-
phone has been also proposed in [27]. Authors present
a sensor-driven social sharing application within the
working environment of a research institution. Their
study involves conversation monitoring and interaction
with physical objects but authors report findings re-
garding privacy and user experience issues in terms of
acceptability of such services by the users.

It is worth mentioning that some of the above-
described technologies can be used as basis for a
strictly-related application as indoor positioning and
localisation or more generic [28–32] location-based
services [33–37].

Besides radio-based technologies, in the litera-
ture are present video-based and/or audio-based ap-
proaches. In [38], authors present a system able to
recognise human proximity with the use of audio sens-
ing and a combination of the smartphone’s accelerom-
eter and microphone. The system proposed by the au-
thors performs the voice profiling of the users and is
able to detect real-time conversation. Unfortunately,
their approach requires a continuous audio recording
from each user’s smartphone and, consequently, it has
a big impact on the battery energy consumption. On
the other hand, video-based techniques have been pro-
posed in [39, 40]. In [40], authors propose a system
able to detect social events using a ground-truth man-

ually annotated. In [39], authors show a video-based
approach able to track people or a single user show-
ing interesting performances on a dataset collected
on an outdoor scenario. However, video-based and
audio-based approaches are resource-hungry. Further-
more, it is important to highlight that these approaches
also bring more sensitive issues about privacy. Conse-
quently, systems based on radio technologies are the
most promising for detecting social interactions in in-
door environment.

2.1. Bluetooth Low Energy working principles

The Bluetooth Low Energy (BLE) technology has
emerged as a communication protocol enabling the In-
ternet of Things paradigm due to its low energy con-
sumption and to its wide support by end user devices.
Basically, a BLE-equipped device advertises its pres-
ence to other devices. The protocol establishes three
functional modes: idle, device discovery, and connec-
tion.

During the idle mode the device does not transmit
or receive packets. The discovery mode allow three
states: initiating, scanning and advertising. During the
initiating state, the BLE device tries to initiate a con-
nection with other devices. In scanning state, the de-
vice actively looks for advertisers. Basically, the de-
vice periodically scans the advertising channels and
listens to advertising information sent by other de-
vices. In the advertising state, the device periodically
sends advertisement packets through a broadcasting
operation. Finally, during the connection state, the
BLE device can serve in slave or master role. If the pre-
vious state of the device was initiating, the device as-
sumes the master role and set the transmission timing.
A master device can be connected to multiple slaves.
Otherwise, the device assumes the slave mode and it
can be connected to one master device only. In ad-
vertising mode, a device transmits advertising packets.
The advertising packets may contain a data payload
and can be forwarded towards a specific device. Gen-
erally, the advertising events can be undirected and di-
rected. An undirected advertising is used for detecting
unknown devices and allows different responses. A di-
rected advertising is used for establishing connections
with already known devices.

3. Proximity detection through voting strategy

This proposed solution addresses the discovery of
interactions among people inside an indoor environ-
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ment. The implemented algorithm, called Remote De-
tection of Human Proximity (ReD-HuP), is able to de-
tect an intentional proximity event among human be-
ings. This section describes the algorithm and shows
the proposed sensing architecture in order to build a
dataset of BLE measurements for testing and valida-
tion purposes.

3.1. Human proximity detection through the
ReD-Hup algorithm

A social interaction happens if a dyad of people stay
at the same point at a short distance. We first set the
lower bound of the distance ranging from 0.5 to 1.5
meters [41]. If the distance exceed the range we con-
sider the proximity event as unintentional.

The proximity event is evaluated through the analy-
sis of the BLE beacons. In this paper, the beacons are
emitted by wearable devices (tags). In particular, BLE
tags are off-the-shelf devices able to transmit and re-
ceive BLE beacons. A BLE device first set the trans-
mission frequency and the power intensity and then
it send beacons periodically. These beacons, in BLE
technology they are also called advertisements, can
be listened and received from nearby devices. A re-
ceiver device which collects a beacon estimates the Re-
ceived Signal Strength Indicator (RSSI) in a decibel
scale (dbm) and, potentially, it can be able to estimate
the distance between the transmitter and itself [42–44].

In our experimental setting, we deploy transmitter
stations in which the algorithm runs to collect and to
analyse the beacons sent by tags. ReD-Hup collects
beacons and RSSI values from tags worn by two users
that are sending beacons at the same time.

As an example, Figure 1 shows data collected during
a proximity event among two users. During this event,
the users have a face-to-face meeting 4 minutes long.
Successively, the meeting ends for 4 minutes. The
red continuous line in Figure 1 represents the meet-
ing ground-truth. The figure also shows the raw RSSI
measurements gathered by each station deployed into
the environment under different conditions. In fact, the
graph on the top shows raw data collected from the
closest station to the point in which the meeting oc-
curs. In this case, the distribution of the RSSI values
has a clear pattern in which the values increases dur-
ing the meeting and decreases when the meetings ends
and the users leave the meeting point. The meeting de-
tection is not a trivial task, in fact, the second case of
the figure shows a meeting that produces patterns not
clearly recognizable. In fact, the RSSI measurements

collected have a similar distribution. It is worth noting
that the performances are strongly related to the avail-
ability of the raw data. In fact, in a real scenario, the
quality of the beacon measurements depends on fac-
tors (e.g., users’ body orientation, multipath effects).
The ReD-HuP algorithm proposed in this paper take
into account all these factors.

ReD-HuP is able to to estimate the time intervals
during which a couple of people are in proximity. The
main idea behind the algorithm is to perform a vot-
ing system considering the information retrieved from
each station deployed into the environment. The voting
process is performed through two steps.

Initially, the algorithm analyses the RSSI measure-
ments received from all the station. Basically, each sta-
tion votes 1 if a proximity events is detected, -1 if a
no proximity events is detected and 0 otherwise. These
output are produced according to the analysis of the
RSSI values sent by a couple of tags during a time
window of duration τ. Into the algorithm two threshold
are set, namely σRS S I and ∆RS S I . The threshold σRS S I

limits the analysis to pairs of users that are both close
enough to the fixed station that is analysing their RSSI.
This value is set because we empirically observed the
performances improves if data from two users that are
far away from the fixed station are not considered. In
other word, σRS S I set the limit for considering two
users close enough to the fixed station. The value of
∆RS S I is the difference between the RSSI received
from both users; if ∆RS S I is small enough means, the
possibility that a meeting is ongoing is high.

The second phase of the algorithm mixes together
the votes expressed by each station and produces the
final output for a specific time interval. Basically, if the
majority of the stations votes proximity, the sum of all
votes are greater than 0. Then, the algorithm returns
proximity for the couple of users. If the sum is less
than 0, the ReD-HuP algorithm returns non-proximity.
The sum is equal to 0 may mean that the stations are
not able to provide a vote or that some stations voted
proximity and others non proximity. In this case, the
algorithm gives priority to the station that recorded
with higher accuracy beacons emitted by the couple of
users. Basically, each station evaluates and stores the
RSSI mean value for each couple of users. If the sum
is equal to 0, the algorithm provides the same output of
the station in which the mean value is max. Differently,
ReD-HuP is not able to detect proximity for the cur-
rent time interval, and it returns the previous valid re-
sponse (if available). More details on the implemented
algorithm can be found in [17].
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Fig. 1. Examples of data collected during a proximity event among two users (dyads) gathered by each station deployed into the environment
under different conditions (on top: raw data collected from the closest station to the point in which the meeting occurs; on the bottom: a meeting
that produces patterns not clearly recognizable).

Web Server

Fixed Stations

Mobile BLE Tags

GET VOTES

Algorithm Analyzer

ReD-HuP
Output

Input

Database

Station A

Station D

PHASE 2PHASE 1

OutA

OutD

Fig. 2. The sensing architecture: users wear wristbands emitting BLE beacons at a given frequency and power; beacons are collected by fixed
stations deployed in the environment; stations periodically produce a vote for every pair of users according to the ReD-Hup algorithm.

3.2. Sensing Architecture for Proximity Detection

In order to collect and analyse the RSSI values of
BLE tags, we designed a distributed architecture as re-
ported in Figure 2. Users wear BLE wristbands that
only emit BLE beacons at a given frequency and power
of emission. Beacons are collected by a number of
fixed stations deployed in the environment. Stations
periodically produce a vote for every pair of users ac-
cording to the ReD-Hup algorithm. The available votes
are: proximity (value 1); no proximity (value -1); no
answer (value 0) for a pair of users. The Web Server
runs the phase 2 of the ReD-HuP algorithm: it queries

all the stations to retrieve the votes generated and it
takes a final decision based on the ReD-Hup algorithm.

Table 1
Data format of each BLE signal received by stations and stored in
the database.

Epoch-
Time

Date-
Time Type ID-

Receiver
ID-

Sender RSSI
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Note that stations store in their database only a lim-
ited number of beacon information, Table 1 shows the
fields currently stored in the local databases.

4. The Experimental Dataset

We tested the ReD-HuP algorithm with a real-world
dataset. The dataset mimics real-world face-to-face in-
teractions among people in our working environment.
This section firstly describes how we organise the data
collection campaign (Section 4.1) and then it provides
an analysis of the data we collect with the goal of as-
sessing the quality of the dataset (Section 4.2).

4.1. The Testing Environment

The dataset has been collected in our research insti-
tute, namely ISTI-CNR3 located in Pisa, Italy. We se-
lected one of the wings of ISTI-CNR, whose layout is
reported in Figure 3. The map covers approximately
130 m2 with 4 offices (referred to as A to D) opening
on the right and left side of the main corridor. The of-
fices are approximately 25 m2 and they are equipped
with common working furniture such as wood-based
desks, metal closets and chairs. The floor is made of
tiles of 60x60 cm2, Figure 3 shows a super-imposed
grid.

Test 7
Test 8

Test 5
Test 6

Test 3
Test 4

Test 9
Test 10

Test 1
Test 2 AB

C

D
60x60 cm2

Interaction point

Station

Starting point user 1

Starting point user 2

Fig. 3. Map of the testing area: approximately 130 m2 with 4 offices
(referred to as A to D) approximately 25 m2 equipped with common
working furniture.

Interactions are reproduced with a pair of volunteers
(the dyad) conducting several tests in 5 different loca-

3lat: 43.718302, lon: 10.422085

tions shown as red dots in Figure 3. In each of the lo-
cations, the dyad executes 2 tests for a total of 10 tests.
Each test consists of 2 stages: 4 minutes or Non In-
teraction followed by 4 minutes of interaction. During
the Non Interaction stage, volunteers rest in their start-
ing point (shown as blue and yellow markers in Figure
3), while during the Interaction stage volunteers move
close to each other at a distance of approximately 1.5
meters in one of the 5 locations.

During the tests, volunteers are asked to wear a
commercial BLE wristband produced by Global Tag4.
The wristband is equipped with a easy-to-configure
and fully compliant Bluetooth v4 chipset designed to
advertise BLE beacons in broadcast. Every wristband
supports several settings. In particular it is possible to
configure the beacon protocol (Eddystone or iBeacon),
the beacon advertisement rate (from 1Hz to 10Hz) and
the transmission power (from -23 dbm to 4 dbm). We
configure the wristbands with the iBeacon protocol set
at 2Hz and -6 dBm.

The environment is also equipped with several fixed
stations, shown as green markers in Figure 3. The
stations are powered with Raspberry PI boards pro-
visioned with an USB Bluetooth dongle, namely the
BLED112 from Bluegiga5. Stations are connected to a
local network via Ethernet wired cable. In particular,
the life-cycle of the Java code is designed to perform
one single operation: stations listen for BLE beacons
sent by the wristbands. Beacons are uploaded remotely
with a REST API that we also coded. The API allows
to upload a BLE beacon as a JSON object and to store
the object in a NO-SQL database. To this end, we con-
figured a MongoDB collection.

Figure 2 reports the whole monitoring infrastructure
used for our tests. We deploy 4 stations in our envi-
ronment, one in each office. Stations are generally de-
ployed over desks and they are connected to the power
line.

Table 2 reports the distance (in meters) between
each of the 4 stations and the starting point of the two
volunteers. We record a maximum distance of 8.4 me-
ters (S A - User 1) and a minimum distance of 2.4 me-
ters (S B - User 2).

We also asked to volunteers to log in diary the start-
ing and ending time of each of the interactions that
they had, as well as any important remarks during the
tests. Such log represents our ground-truth that we

4http://www.global-tag.com
5https://www.bluegiga.com/



P. Baronti et al. / 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Distances in meters between stations and each of the volunteer’s
starting points.

User ID
Distance from starting point [m]

S A S B S C S D

1 8.42 5.47 3.01 2.47

2 7.25 2.40 3.10 6.02

used to assess the performance of the ReD-HuP algo-
rithm.

4.2. Analysis of the Dataset

We now analyse the quality of the dataset. The anal-
ysis first focuses on the amount of beacons collected
and lost during the tests, and then it provides a detailed
analysis of the RSSI distribution reported from all the
stations both during the Non Interaction and Interac-
tions stages.

Table 3 provides an overview of the tests. The table
shows for each interaction point (Room A, B, C, D
and Corridor): the tests performed in such point, the
distance (in meters) from the stations, the number of
BLE beacons collected and the duration of the tests.

Our dataset comprises a total of about 100.000 bea-
cons recorded from 5 stations, with an average of
19.878 beacons recorded at each interaction point. We
experience that the 5 stations do not record the same
amount of beacons in each interaction point. In partic-
ular, tests in Room B report the minimum number of
BLE beacons (17.970), while tests in Room C report
the highest value (22.572). Such differences can be
caused by multiple factors. As for example, the pres-
ence of obstacles between a station and a wristband,
the posture of the volunteers during the interactions
and any wireless interference are all factors that might
decrease the amount of beacons that a station records.

We further investigate the ratio between the amount
of beacon recorded with respect to the amount of bea-
cons expected, we refer to such ratio as the beacon loss
rate. Table 4 reports the beacon loss rate computed for
all the stations and for all the 10 tests conducted. The
table also reports the average beacon loss rate for each
station during the 10 tests (last column of Table 4).
The amount of beacons expected is determined by the
advertisement rate of the wristband set to 2Hz for our
tests. As expected, the beacon loss rate increases with
the distance between emitter and receiver. As a general
trend, the higher the distance the higher the beacon loss

rate. However, this trend is not always confirmed. As a
meaningful example, we observe that the beacon loss
rate of Station A for tests 3 and 4 in Room B is higher
than that of tests 5 and 6 in Room C (94.2 dbm - 94.1
dbm for tests 3 - 4, 80.1 dbm - 79.4 dbm for tests 5 -6
) even if the distance between Station A and Room B
is lower than that of Room C (6.79, 7.75 respectively).
Stations report a beacon loss rate ranging from 59.8%
(Station B) to 84.7% (Station A) with an average of
67.9% for all the stations.

We also compute the beacon loss rate during each
test, it ranges from 63.9% in test 5 to 73.7% in test 3
with an average of approximately 67%.

Furthermore, we study how stations located in dif-
ferent locations record beacons during the same test. In
particular, we analyse the RSSI variations of beacons
recorded from 4 stations at different distances from the
same interaction point during the Interaction and Non
Interaction stages. To this purpose, we decided to con-
sider a meaningful example able to highlight some in-
teresting features of RSSI variation among the station.
We select test 7 located in Room D, and we analyse
the RSSI values from Station A to D, as shown in Fig-
ure 4 and Figure 5. Figure 4 shows two overlapping
time series, one for each of the volunteer joining test
7. The figure also shows as a blue-star line the ground
truth, namely the time intervals during which the dyad
is interacting. Station C is located in Room C and it
is placed at 2.9 meters away from Room D. The time
series recorded are similar most of the time since Sta-
tion C is not able to clearly distinguish between the
Interaction and Non Interaction. Differently, Station D
is located at 2.9 meters away from Room D and it
records RSSI values that change more clearly during
the time. Station C and D represent two opposite cases.
In particular, Station C represents our worst case in
which the beacons collected are not so helpful to dis-
tinguish between Interaction and Non Interaction. Sta-
tion D represents our an optimal case, not only for the
amount of beacons collected but also for the evident
fluctuation of the values of RSSI during Interaction
and Non Interaction. In this last case, it is easy to dis-
tinguish between Interaction (increase of the value of
the RSSI) and Non Interaction (decrease of the value of
the RSSI). Stations A and B are also interesting cases.
Station A is located 7.94 meters away from Room D, it
collects few beacons with apparently few fluctuations
during the two stages. Station B is located 5.2 meters
away from Room D. User 1 remains in Room D for
all the time, since the interaction point and the starting
point are on Room D. Differently, User 2 moves from
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Table 3
Dataset overview.

Interaction point Tests
Distance from interaction point [m]

Collected Beacons Duration of each test [min]
S A S B S C S D

Room A 1,2 3.34 6.92 7.25 9.57 19225 32.2

Room B 3,4 6.79 3.13 4.17 7.08 17970 32.5

Room C 5,6 7.75 3.29 1.52 3.67 22572 32.2

Room D 7,8 7.94 5.27 2.91 2.9 19445 32.4

Corridor 9,10 5.3 4.95 3.95 5.72 20149 32.3

Table 4
Ratio between the amount of beacon recorded with respect to the amount of beacons expected, we refer to such ratio as the Beacon Loss Rate.

Station User ID
Test

Total
1 2 3 4 5 6 7 8 9 10

A
1 73.196 71.912 94.285 94.177 80.196 79.406 95.092 87.513 83.196 80.963

84.772
2 71.186 73.928 93.132 89.61 84.54 81.835 93.43 94.221 89.038 84.183

B
1 58.015 57.855 64.172 60.159 58.195 57.674 63.522 61.455 65.98 70.067

59.852
2 62.268 57.339 55.305 53.617 57.316 55.866 59.202 63.416 57.874 57.702

C
1 65.103 64.393 70.323 62.724 59.928 59.302 60.583 61.429 61.58 62.983

64.097
2 76.443 72.946 71.912 63.751 59.074 58.579 66.028 64.19 60.911 59.686

D
1 69.794 68.786 67.581 59.03 52.74 55.504 54.908 52.58 59.701 60.046

63.38
2 80.747 79.948 74.27 65.162 58.842 57.597 62.091 60.939 61.297 66.023

Total 69.59 68.47 73.72 68.38 63.97 63.32 69.10 68.25 67.40 67.69

its starting point located in Room B to the interaction
point located in Room D. The two time series obtained
from Station B well reflects such mobility. In particu-
lar, the RSSI values of User 2 increase while the dyad
is not interacting and they decrease while they are in-
teracting.

We finally analyse the probability density function
of the RSSI in order to better understand the contribu-
tion of RSSI during the Interaction and Non Interac-
tion stages, as shown in Figure 6. The figure shows,
for each station, the probability density of User 1 (red
curve) compared to User 2 (blue curve) during Inter-
action and Non Interaction by considering all the tests.
Each density also shows a super-imposed line useful
to better understand the trend, the line is obtained with
a Kernel Density Estimation (KDE) interpolation. As
previously discussed, some stations cannot clearly dis-
tinguish between beacons emitted during Interaction
and Non Interaction stages. This is the case of Stations
C in which the densities during Interaction and Non

Interaction are very similar when compared to the ones
obtained from Station D. It is worth to notice that also
Station A provides useful values of RSSI. In this last
case, even if the amount of beacon is limited, the den-
sities are different during the two stages.

Out of the 10 tests described in Table 4, Test 7 repre-
sents a good benchmark for our experimental analysis
for two main reasons:

– Stations A to D exhibit remarkable different
trends of the RSSI collected during the Interac-
tion and Non Interaction stages. Such trends will
be further analysed in the following section. In
particular, we will show the optimal case of Sta-
tion D that clearly distinguish between the two
stages, and the worst case of Station C that does
not provide clearly such a distinction. Differently,
stations A and B also provide some interesting
corners-cases. Such consideration are better re-
flected with test 7 with respect to the other ones.
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Fig. 4. RSSI variations of beacons recorded from 4 stations at different distances from the same interaction point during the Interaction and Non
Interaction stages.
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– We selected a test with a considerable percent-

age of beacon loss so that to discuss features of

the RSSI in a typical scenario and not in an ideal

condition. To this purpose and based on the pre-
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Fig. 6. Probability density function of the RSSI during Interaction and Non Interaction stages. For each station, the probability density of User 1
(red curve) is compared to User 2 (blue curve) during Interaction and Non Interaction by considering all the tests.

vious consideration, we selected test 7 which re-
sults with 69% of beacon loss rate (that is, the
80th percentile of the beacon loss percentages we
measured).

5. Experimental Settings and Results

In order to assess the performance of the solution
proposed, we compare the results of ReD-HuP against

the ground truth. As a meaningful example, we show in
Figure 7 a graphical representation of the performance
of ReD-HuP in Test 7. Figure 7 shows a time series of
the outputs computed by ReD-HuP with red dots. We
also report as a star-line the ground truth, namely the
time intervals during which the two volunteers had a
social interaction. The figure shows qualitatively that
ReD-HuP is able to detect correctly all the interactions
and non interaction during the 4 runs of Test 7.
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Fig. 7. Time series of the classification result of the ReD-HuP with respect to the ground truth in Test 7: the outputs computed by ReD-HuP (red
dots); ground truth (blue star dots). ReD-HuP is able to detect correctly all the interactions and non interaction during the 4 runs of Test 7.

In order to measure quantitatively the performance
of ReD-HuP, we build the confusion matrix. It mea-
sures the following quantities: true positive (TP), true
negative (TN), false positive (FP) and false negative
(FN) answers. These metrics assess the number of
right/wrong answers given by ReD-HuP, with respect
to the events reported by the ground truth diary (i.e. the
existence or not of an interaction for the dyad).

Given the confusion matrix, we consider the follow-
ing 3 evaluation metrics, namely Accuracy, F-Score
and Kappa. Accuracy is given by:

Accuracy =
T P + T N

T P + T N + FP + FN

it measures the proportion of correct answers of the al-
gorithm with respect to the total amount of observa-
tions. F-Score is defined as:

F − S core =
2 ∗ P ∗ R

P + R

and it combines both precision P = T P/(T P + FP)
and recall R = T P/(T P+ FN). When F −S core = 1,
the algorithm obtains perfect precision (P = 1) and
perfect recall (R = 1). Finally, we consider Kappa co-
efficient defined as:

Kappa =
Accuracy − RA

1 − RA

where Random Accuracy (RA) is the proportion of
agreements expected purely by chance. RA is defined
as RA = (T N+FP)∗(T N+FN)+(FN+T P)∗(FP+T P)

N , with N
being the total number of occurrences. Kappa coef-
ficient measures the inter-rate reliability of the two

classes and how much homogeneity exists between
them. This coefficient is important in the case that one
of the classes to be identified is much more prevalent
with respect to the others. In this case, a generic clas-
sification algorithm might result with a high value of
accuracy, but with a a low value of Kappa coefficient.

We first consider the two parameters of our algo-
rithm, namely σRS S I and ∆RS S I . We evaluate the over-
all accuracy, F-Score and Kappa for all the tests, by
varying such parameters from 0.5 to 10 (with a step of
0.5) and from -83dbm to -87dBm for ∆RS S I and σRS S I

respectively.
Figure 8 shows a graphical representation of ac-

curacy and F-score metrics. From the figure we ob-
serve that the two graphs have a similar trend: they in-
crease as ∆RS S I increases up to the maximum value of
∆RS S I = 2.5. Moreover we observe that the trend of
the two metrics decrease with values of ∆RS S I > 5.
It is worth to notice that values of ∆RS S I and σRS S I

outside the ranges reported in Figure 8 do not affect
significantly the accuracy and F-Score.

From such results, we can derive the optimal setting
of ReD-HuP:

∆RS S I = 2.5, σRS S I = −85dBm (1)

With such settings, we obtain an overall accuracy of
95.91% and F-Score of 95.79%. We further analyse the
performance of ReD-HuP by analysing the Kappa co-
efficient with the optimal setting, as shown in Figure 9.
At this conditions, we obtain a value of Kappa of 92%
that confirms the effectiveness of ReD-HuP in detect-
ing social interactions. Finally, we report on Table 5
the cumulative confusion matrix obtained by consider-
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Fig. 8. Variation of Accuracy and F-Score with σRS S I and ∆RS S I . The two graphs increase as ∆RS S I increases up to the maximum value of
∆RS S I = 2.5, while the trend of the two metrics decrease with values of ∆RS S I > 5.

Fig. 9. Variation of Kappa coefficient with σRS S I and ∆RS S I . We
obtain a Kappa coefficient with the optimal setting of 92% that con-
firms the effectiveness of ReD-HuP in detecting social interactions.

ing the optimal configuration of σRS S I and ∆RS S I re-
ported in (1).

The results presented in Figure 8 and 9 have been
obtained by exploiting the 4 available voting stations
A to D, as reported in Figure 3. We finally analyse the
robustness of ReD-HuP by reducing progressively the
number of stations moving from 4 to 1 single station.
The process we follow consists in computing the ac-
curacy, F-Score and Kappa with 4, 3, 2 and 1 station
and by considering all the available combinations. As
a result, we tested ReD-HuP with 14 different settings,
as shown in Table 6. From the table we observe that
ReD-HuP is able to provide high performance with at
least one combination of stations. In particular, we re-

port below the optimal values obtained with the num-
ber of voting stations and their layout:

– with 4 stations ReD-HuP obtains 95.91 %, 95.79
% and 92% of accuracy, F-score and Kappa re-
spectively;

– with 3 stations and layout S A S B S D ReD-HuP
obtains 87.23%, 87.07% and 74.45% of accuracy,
F-score and Kappa respectively;

– with 2 stations and layout S A S D ReD-HuP ob-
tains 89.72%, 89.94% and 79.44% of accuracy,
F-score and Kappa respectively;

– with 1 stations and layout S D ReD-HuP obtains
85.67%, 85.11% and 71.33% of accuracy, F-score
and Kappa respectively;

6. Conclusions

The automatic detection of proximity among hu-
mans is a useful tool to support the analysis of human
social interactions and the studies in social networking.
We have presented a platform that makes use of low-
cost, off-the-shelf commercial BLE wristbands and a
small network of fixed stations that receive the BLE
beacons emitted by the wristbands and execute ReD-
HuP, a novel algorithm for proximity detection. This
approach opens a new perspective on the detection of
social interaction, as, in the future, BLE beacons can
even be easily embedded into clothes, thus further re-
ducing the impact for the users.

In our future work we plan to further pursue this ap-
proach, by further developing the ReD-HuP algorithm.
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Table 5
Cumulative confusion matrix.

True conditions
Accuracy [%] F-Score [%] K-statistic [%]

Interaction No-Interaction

ReD-HuP: Interaction 296 3
95.91 95.79 92.00

ReD-HuP: No-Interaction 23 313

Table 6
Performance of ReD-HuP algorithm by varying the number of vot-
ing stations.

Number
of

stations

Stations
Layout

Accuracy
[%]

F-Score
[%]

K-statistic
[%]

4
S A S B
S C S D

95.91 95.79 92.00

3

S A S B
S C

68.22 63.83 36.40

S A S B
S D

87.23 87.07 74.45

S A S C
S D

75.23 74.15 50.45

S B S C
S D

85.20 85.54 70.41

2

S A S B 84.58 84.98 69.16

S A S C 55.30 51.44 10.55

S A S D 89.72 89.94 79.44

S B S C 68.22 67.41 36.44

S B S D 84.58 83.95 69.15

S C S D 71.03 65.56 42.00

1

S A 54.52 53.80 9.03

S B 83.84 83.82 67.26

S C 57.17 55.72 14.31

S D 85.67 85.11 71.33

To this purpose, we also plan to extend the experimen-
tal campaign to collect a larger dataset, also with set-
tings including more than two people, in order to op-
timise the two parameters σRS S I and ∆RS S I of ReD-
HuP. We will also aim at the automatic reconfiguration
of these two parameters in order to avoid the additional
calibration of the system when it is deployed in a new
environment.
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