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Sommario

Partendo dalle esperienze e soluzioni esistenti nell’ambito della identificazione di oggetti
digitali duplicati in collezioni "Big Data", questa tesi affronta il piu ampio e complesso
problema della deduplicazione di entità in grafi di grandi dimensioni. Per “grafi” si intende
ogni rappresentazione di un modello Entità-Relazione, definito da Tipi di Entità (e relative
proprietà strutturate) e da relazioni tra esse. Per “grandi dimensioni” si intende la limita-
zione delle soluzioni e tecnologie tradizionali a supportare il processo di identificazione
dei duplicati in collezioni di notevole dimensione (decine di milioni ed oltre). Per “dedupli-
cazione di entità” intendiamo la combinazione dei processi di identificazione dei duplicati
e di disambiguazione del grafo. Il primo ha l’obiettivo di identificare in modo efficiente (ed
efficace) coppie di oggetti dello stesso tipo, mentre il secondo mira ad eliminare dal grafo
la duplicazione di informazione.

Ad oggi svariate applicazioni popolano e manutengono grafi di grandi dimensioni, tra
questi vi sono: (i) collezioni sulle quali non vi è alcun controllo di duplicazione, (ii) ag-
gregazioni di diverse collezioni dati che necessitano di deduplicazione continua o estem-
poranea. Esempi spaziano dalla duplicazione di record anagrafici, alla duplicazione degli
autori in aggregazioni di collezioni bibliografiche (es. Google Scholar, Thomson Reuters,
OpenAIRE), alla deduplicazione di cataloghi provenienti da molteplici esercizi commer-
ciali, alla deduplicazione dei risultati di integrazione tra diverse collezioni “Linked Open
Data”, a qualsiasi sottoinsieme del Web, etc...

Ad oggi gli utenti responsabili per la cura dei dati (“data curator”) hanno a disposizio-
ne una pletora di strumenti a supporto del processo di identificazione dei duplicati, che
possono adottare per processare collezioni contenti oggetti del medesimo tipo. Tuttavia,
l’estensione di tali strumenti agli scenari posti dall’avvento di “Big Data” è limitata, cosi
come il supporto alla disambiguazione di grafi. Per implementare un workflow comple-
to per la disambiguazione di grafi di grandi dimensioni, gli utenti curatori finiscono per
realizzare sistemi di sistemi, costruiti su misura per lo specifico modello dei dati a gra-
fo, spesso vincolato ad una specifica rappresentazione fisica del grafo stesso (sistema
di basi di dati per grafi), dispendiosi in termini di progettazione, sviluppo, manutenibilità,
ed in generale poco adatti ad essere riutilizzati da altri professionisti che necessitano di
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risolvere problematiche analoghe in diversi domini applicativi.
Il primo contributo di questa tesi è costituito da una architettura di riferimento per i

“Big Graph Entity Deduplication System” (BGEDS), ossia un sistema integrato, scalabile,
generico per la deduplicazione di entità in grafi di grandi dimensioni. Tali sistemi mirano
a supportare i data curators con funzionalità per la realizzazione di tutte le fasi previste
dal workflow di identificazione dei duplicati e disambiguazione del grafo. L’architettura
definisce formalmente il problema, fornendo un linguaggio dei tipi per i grafi e per gli
oggetti del grafo, fornisce la specifica per le fasi di deduplicazione delle entità, e di come
tali fasi manipolano il grafo iniziale fino alla sua versione disambiguata. Inoltre si specifica
il livello di configurazione e di personalizzazione che i data curator possono utilizzare
affidandosi a tale sistema.

Il secondo contributo di questa tesi è GDup, una implementazione di BGEDS la cui
istanza è oggi utilizzata in regime di produzione nel contesto della infrastruttura tecno-
logica OpenAIRE, riferimento europeo per l’Open Science e l’Open Access. GDup puo’
essere utilizzato per operare su grafi di grandi dimensioni rappresentati utilizzando stan-
dard come RFD o JSON-LD, e conformi a qualsiasi schema per grafi. Il sistema supporta
fasi altamente configurabili di identificazione dei duplicati e di disambiguazione del grafo,
consentendo ai data curator di adattare le funzioni di confronto alle caratteristiche degli
oggetti nel grafo, nonchè di definire le strategie di fusione degli oggetti duplicati. GDup
inoltre consente di gestire in modo semi automatico un Ground-Truth, ossia un insieme
di asserzioni di equivalenza tra gli oggetti del grafo, le quali possono essere utilizzate
per pre-processare le entità di un certo tipo, al fine di ridurre i tempi di computazione.
Il sistema è concepito per poter essere esteso con ulteriori, e possibilmente nuove, me-
todologie proprie della deduplicazione (ad esempio funzioni di clustering e di similarità),
e per supportare scalabilità orizzontale nel processamento di grafi di grandi dimensioni
sfruttando il framework Hadoop Map Reduce, ed HBase.







Abstract

In this thesis we start from the experiences and solutions for duplicate identification in
Big Data collections and address the broader and more complex problem of Entity De-
duplication over Big Graphs. By “Graph” we mean any digital representation of an Entity
Relationship model, hence entity types (structured properties) and relationships between
them. By “Big” we mean that duplicate identification over the objects of such entity types
cannot be handled with traditional back-ends and solutions, e.g. ranging from tens of mil-
lions of objects to any higher number. By “entity deduplication” we mean the combined
process of duplicate identification and graph disambiguation. Duplicate identification has
the aim of efficiently identifying pairs of equivalent objects for the same entity type, while
graph disambiguation has the goal of removing the duplication anomaly from the graph. A
large number of Big Graphs are today being maintained, e.g. collections populated over
time with no duplicate controls, aggregations of multiple collections, which need continu-
ous or extemporaneous entity deduplication cleaning. Examples are person deduplica-
tion in census records, deduplication of authors on library bibliographical collections (e.g.
Google Scholar graph, Thomson Reuters citation graph, OpenAIRE graph), deduplication
of catalogues from multiple stores, deduplication of Linked Open Data clouds resulting
from integration of multiple clouds, any subset of the Web, etc.. As things stand today,
data curators can find a plethora of tools supporting duplicate identification for Big col-
lections of objects, which they can adopt to efficiently process the objects of individual
entity type collections. However, the extension of such tools to the Big Data scenario
is absent, as well as the support for graph disambiguation. In order to implement a full
entity deduplication workflow for Big Graphs data curators end-up realizing patchwork
systems, tailored to their graph data model, often bound to their physical representa-
tion of the graph (i.e. graph storage), expensive in terms of design, development, and
maintenance, and in general not reusable by other practitioners with similar problems in
different domains.

This first contribution of this thesis is a reference architecture for Big Graph Entity De-
duplication Systems (BGEDSs), which are integrated, scalable, general-purpose systems
for entity deduplication over Big Graphs. BGEDSs are intended to support data curators



X

with the out-of-the-box functionalities they need to implement all phases of duplicates
identification and graph disambiguation. The architecture formally defines the challenge,
by providing graph type language and graph object language, defining the specifics of the
entity deduplication phases, and explaining how such phases manipulate the initial graph
to eventually return the final disambiguated graph. Most importantly, it defines the level of
configuration, i.e. customization, that data curators should be able to exploit when relying
on BGEDSs to implement entity deduplication.

The second contribution of this thesis is GDup, an implementation of a BGEDS whose
instantiation is today used in the real production environment of the OpenAIRE infrastruc-
ture, the European e-infrastructure for Open Science and Access. GDup can be used to
operate over Big Graphs represented using standards such as RDF-graphs or JSON-LD
graphs and conforming to any graph schema. The system supports highly configurable
duplicate identification and graph disambiguation settings, allowing data curators to tailor
object matching functions by entity type properties and define the strategy of duplicate
objects merging that will disambiguate the graph. GDup also provides functionalities to
semi-automatically manage a Ground Truth, i.e. a set of trustworthy assertions of equality
between objects, that can be used to pre-process objects of the same entity type and re-
duce computation time. The system is conceived to be extensible with other, possibly new
methods in the deduplication domain (e.g. clustering functions, similarity functions) and
supports scalability and performance over Big Graphs by exploiting an HBase - Hadoop
MapReduce stack.
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Introduction

1.1 Motivation

In the last decade research in computer science has grown increasing interest in “Big
Data”. Big Data is a term used to describe all kinds of data management problems that
pose challenges in terms of the three dimensions of Volume, Variety and Velocity (3Vs).
Volume refers to the amount of data, which today typically ranges in the order of terabytes
and exabytes. Variety refers to the number of types of data characterizing the problem
to be addressed, which may range from structured or semi-structured databases, to mul-
timedia, videos, social data, mobile or unstructured. Velocity refers to the speed of data
generation and processing, which range from batch, to periodic, near-real time and real
time. To get a sense, every hour of social media and email activities on the Internet yields
72 hours of video uploaded to Youtube, 4 million search inquiries on Google, 200 millions
sent emails, 2,5 millions shares on Facebook, and 300,000 tweets on Twitter1.

The 3Vs are relative concepts, in the sense that their measure and thresholds are
constantly pushed beyond extant limits by technological advances and decrease on the
cost of hardware. In the recent years Big Data caused a serious groundshift, dividing the
database community into a debate between the usage of traditional database technolo-
gies, such as Relational Database Management Systems, and more unstructured and
parallel solutions introduced by the so-called NoSQL movement. This new paradigm pro-
motes database systems that sacrifice the relational model with highly optimized systems
in favour of unstructured models leveraging horizontal scalability and parallel processing.
Aided by the decreased cost of commodity hardware and data storage systems, today
shifted to cloud solutions (infrastructures as a service), such novel solutions have be-
come increasingly adopted by data practitioners of all sorts in industry and research. As
a consequence, research in computer science is today living a period of renaissance.
Known and solved problems are acquiring a new and appealing flavour of scalability and

1 http://www.visualcapitalist.com/order-from-chaos-how-big-data-will-change-the-world (last read
on 5th of January, 2016)
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performance, while known efficiency and performance open challenges can today find
alternative solutions under Big Data paradigms.

Among these renovated challenges, the one of interest and touched by this thesis is
the problem of duplicate identification, intended as the challenge of identifying pairs of du-
plicates. Extensive scientific literature has been written on this matter and under different
names and variations of the problem. When the goal is that of identifying similar/equival-
ent objects across independent collections, the problem is referred to as Record Linkage
(RL) [66, 23] or Entity Resolution (ER) [89, 10]. Examples of ER scenarios are linking
of census records, linking of publications and citations (Thomson Reuters citation index
[37]), identifying duplicate customers in enterprise databases, comparison shopping, etc..
When objects belong to the same collection, the problem is known as Entity Deduplication
(ED) as the goal is about disambiguating the collection by identifying duplicate objects.
In general, the outcome of duplicate identification is a list of pairs of equivalent objects,
obtained by matching all possible pairs of objects with a similarity function. Theoretic-
ally this operation requires pairwise object comparisons, hence a Cartesian product with
quadratic complexity O(n2); therefore, even in cases where the number of objects is not
considerable, the complexity can reach intractable dimensions. To overcome this issue,
solutions typically consists of two phases, candidate identification and candidate match-
ing. Candidate identification aims at tackling efficiency issues by implementing heuristics
(i.e. blocking, nearest neighborhood [64]) capable of skimming out pairs of objects that
are unlikely identical. Candidate matching is the phase where every pair of objects identi-
fied in the candidate identification phase are matched to return a measure of similarity in
between 0 and 1 [17]. Pairwise similarity is expressed by distance functions in charge of
replacing human judgement, often based on (combinations of) string matching distance
functions. Before Big Data technologies came into place, known duplicate identification
tools were typically based on RDBMS and would take from 3-4 hours (FRIL [40]) to 19-
20 hours (LinkageWiz2in order to identify duplicates in a collection of “only” 10 million
objects [61]. Big Data scenarios, which may count 10s of Millions of objects, are com-
putationally intractable for “old school” solutions. In this context, new advanced solutions
have been proposed, which revise existing techniques in order to fit scalable back-ends
and parallel techniques, such as Hadoop MapReduce, HDFS, MongoDB, etc. Examples
are Dedoop [47], a tool for MapReduce-based entity resolution for large datasets built
on top of Apache Hadoop, PACE [61], an authority control tool conceived to maintain
“aggregation authority files” built on top of a Cassandra storage system [53].

In this thesis we start from the experiences and solutions for duplicate identification
in Big Data collections and address the broader and more complex problem of Entity De-
duplication over Big Graphs. By “Graph” we mean any digital representation of an Entity
Relationship model, hence entity types (structured properties) and relationships between
them. By “Big” we mean that duplicate identification over the objects of such entity types
cannot be handled with traditional back-ends and solutions, e.g. ranging from tens of mil-
lions of objects to any higher number. By “entity deduplication” we mean the combined

2 http://www.linkagewiz.net
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Fig. 1.1: Big Graph deduplication workflow

process of duplicate identification, as described above, and graph disambiguation. Du-
plicate identification can be applied in principle to all collections of objects conforming to
one of the entity types in the graph. Disambiguation follows duplicate identification and is
the action of adjusting a collection of objects by removing the duplication anomaly. This
second phase, although strictly interwoven with duplicate identification, is generally not
addressed as a general-purpose mechanism by deduplication tools but rather left as an
issue to be solved by data curators in their own information systems, where the original
collection is stored, taking advantage of the identified pairs of duplicates. Graph disam-
biguation is not trivial for “flat” collections and in generally very tedious over graphs. As
depicted in Figure 1.1, it consists of two phases, duplicates grouping and duplicates mer-
ging, and may include support for data curators feedback and Ground Truth injection feed-
ing back the phase of duplicate identification. Duplicates grouping applies to each entity
type collection over which duplicate identification was run. It is the process of identifying
groups of equivalent objects starting from the set of pairs of equivalent objects, which
correspond to the problem of deriving maximum cliques in a graph by transitive closure
[65]. Cliques in a graph are sets of elements where each pair of elements is connected,
and listing all the maximum cliques is an NP-complete problem [42], whose tractability in
Big Graphs scenarios becomes a serious challenge. Duplicates merging is the process of
effectively cleaning up an entity type collection by removing duplicates and managing the
consequences of such removal. Removing duplicates typically consist in selecting or cre-
ating a representative object for each group of equivalent objects. Consistency strategies
are applied to either select one of the objects of the group or instead create a new object
out of the objects of the group (e.g. combining their properties). Moreover, since we are
disambiguating in a graph, an important constraint to consider are the relationships occur-
ring between the objects, which must be propagated to the representative objects, again
according to given consistency strategies. An important outcome of duplicates merging is
the ability to construct and curate a Ground Truth (GT), intended as a trusted outcome of
deduplication. A GT incarnates a map between “raw” objects and “representative objects”
that can be used to pre-process the collection at hand in order to disambiguate it before
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a new deduplication round, this time limited to the new objects in the collection, is per-
formed. Adopting GT approaches is not an obvious choice, as it depends on the trade-off
between GT maintenance and time-to-process. The challenge is regarded as a problem
of preparation of the collection to be deduplicated and deduplication tools do not provide
general-purpose support for it. Finally, an important element of graph disambiguation is
the ability of supporting data curators with the possibility to manage a set of manual as-
sertions ("A is duplicate of B", "A is not a duplicate of B") in order to correct the inevitable
errors and exceptions introduced by automated deduplication. Assertions are used by
the system as feedbacks to apply ex-post refinement of the deduplication identification
process and are again not trivial and not supported as general-purpose mechanisms by
existing tools.

A large number of Big Graphs are today being maintained, e.g. collections populated
over time with no duplicate controls, aggregations of multiple collections, which need
continuous or extemporaneous entity deduplication cleaning. Examples are person dedu-
plication in census records, deduplication of authors on library bibliographical collections
(e.g. Google Scholar graph, Thomson Reuters citation graph, OpenAIRE graph), dedu-
plication of catalogues from multiple stores, deduplication of Linked Open Data clouds
resulting from integration of multiple clouds, any subset of the Web, etc.. As things stand
today, data curators can find a plethora of tools supporting duplicate identification for Big
collections of objects, which they can adopt to efficiently process the objects of the en-
tity type collections in the graph. However, in order to implement the entity deduplication
processes described above, data curators end-up realizing patchwork systems, tailored
to their graph data model, often bound to their physical representation of the graph (i.e.
graph storage), expensive in terms of design, development, and maintenance, and in
general not reusable by other practitioners with similar problems in different domains.

1.2 Research contributions

The first contribution of this thesis is a reference architecture for Big Graph Entity Dedu-
plication Systems (BGEDSs), which are integrated, scalable, general-purpose systems
for entity deduplication over Big Graphs. BGEDSs are intended to support data curators
with the end-user functionalities they need to realize all workflow phases of duplicates
identification and graph disambiguation depicted in Figure 1.1. The second contribution
is GDup, an implementation of a BGEDS whose instantiation is today used in the real pro-
duction environment of the OpenAIRE infrastructure 3. Specifically, GDup supports data
curators with the following functionalities: (i) import of Big Graphs using standards such
as RDF-graphs or JSON-LD graphs4, (ii) configurable duplicate identification settings at
the level of entity types, (iii) support for efficient and scalable duplicates grouping, (iv)
configurable duplicate merging strategy for representative object election and redistribu-
tion of relationships (v) Ground Truth management at the level of entity types, and (vi)
3 OpenAIRE, http://www.openaire.eu
4 JSON for Linking Data, http://json-ld.org

http://www.openaire.eu
http://json-ld.org
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data curator feedbacks support. The system is conceived to be extensible with other
methods in the deduplication domain (e.g. clustering functions, similarity functions) and
supports scalability and performance over Big Graphs by exploiting an HBase - Hadoop
- MapReduce stack.

1.3 Thesis outline

The remainder of this thesis is organised as follows. In Chapter 2 we present a survey of
the existing deduplication tools to compare their entity deduplication functionality equip-
ment with the one provided by GDup and therefore motivate its realization. In Chapter 3
we introduce a real-case scenario, which will serve to describe the criticalities of the entity
deduplication and identify in more detail the requirements of an architecture for BGEDSs.
The real-case is that of the OpenAIRE infrastructure [58], whose production services are
populating a Big Graph of around 30 million objects describing publications, authors, pro-
jects, organizations, and other related entities by aggregating information from thousands
of potentially overlapping data sources on the Web. In Chapter 4, thanks to the analysis
of the OpenAIRE use case, we formalize the core requirements of BGEDSs, to be used
in Chapter 5 to define a functional reference architecture for BGEDSs. In Chapter 6 we
present an implementation of the BGEDS reference architecture: GDup. It is based on
Apache HBase and Hadoop MapReduce paradigm, today instantiated to operate as part
of the production environment of the OpenAIRE infrastructure. In Chapter 7 we elaborate
on the specific usage of GDup in OpenAIRE and report on the results of its operation
after three years since its launch. Finally, in Chapter 8 we draw our final remarks and and
discuss the future work.





2

Related work

The literature about deduplication is ironically affected by duplication. There are differ-
ent common names used to refer to this research topic. Among these we can mention:
Record Linkage (RL), Entity Resolution (ER), duplicate detection, coreference resolution,
object consolidation, reference reconciliation, fuzzy match, object identification, object
consolidation, entity clustering, merge/purge, identity uncertainty, etc.. Many techniques
developed in such research field were implemented in various deduplication tools over the
years. In this Chapter we introduce existing tools for deduplication of object collections
(found available on the web, free commercial trials or open source tools), highlighting their
ability to address the requirements of a BGEDS (BGEDS), as illustrated in figure 2.1.

• Graph oriented approach: graph shaped information spaces should be 1st level cit-
izens of modern deduplication tools. They should support structured records, allow to
merge them as well as support strategies to guarantee the consistency of the existing
relationships between records;

• Experiment driven: users must be supported by tools that enable the possibility to
experiment new configurations without affecting trusted results;

• General purposeness: tooling should be customizable and configurable in order to
allow reuse in different application contexts;

• Ground Truth: typically ground truth-based techniques are not integrated into the de-
duplication system, but rather applied as a pre-processing phase;

• Scalability : deduplication is a challenging task per se, especially in terms of computa-
tional cost. In order to process large graphs the architecture of deduplication systems
should allow to scale out by adding new resources;

• Data curators feedback : No machinery will ever replace human ability to judge
whether two objects of the same entity are indeed duplicates. To this end deduplica-
tion systems must allow domain experts to evaluate the results and provide feedback
to the system;

The following sections present existing open source and/or commercial tools and the
functionalities they offer, classifying the solutions based on the fact they address or not
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Fig. 2.1: Big Graph Entity Deduplication Systems: tooling requirements

address the non-functional requirement of scalability. Finally, we draw some remarks on
the limits of such approaches w.r.t. Big Data deduplication scenario.

2.1 Before Big Data advent

The literature and the market offer a number of tools, which mainly address record linkage
between information systems or deduplication of one information system. Record linkage
tools focus on the problem of identifying a set of record matches across two or more
information systems to be integrated or combined for processing. Typically, candidate
identification is not necessarily intended for record merging and deduplication. Strengths
and differences of such tools [14] lie in:

• the techniques devised to effectively and efficiently identify candidate record duplic-
ates;

• the level of usability (i.e. user-friendly interfaces versus low-level configuration) and
personalisation (i.e. , general-purpose versus domain specific tools [74, 86].

We examined differences and similarities among existing tools, which we believe are
relevant and representative with respect to the goals of GDup . The following tools were
selected, which target record linkage and deduplication at different degrees: LinkageWiz1,
FRIL2 [40], D-Dupe3 [41], Febrl4 [13], SRA5 [70].
1 LinkageWiz http://www.linkagewiz.com
2 Fine-grained Records Integration and Linkage http://fril.sourceforge.net
3 D-Dupe http://linqs.umiacs.umd.edu/projects/ddupe
4 Freely Extensible Biomedical Record Linkage https://sourceforge.net/projects/febrl
5 Systematic Review Assistant https://github.com/CREBP/SRA

http://www.linkagewiz.com
http://fril. sourceforge.net
http://linqs.umiacs.umd.edu/projects/ddupe
https://sourceforge.net/projects/febrl
https://github.com/CREBP/SRA
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In the analysis, we focused on the common data processing phases they support:

• records import;
• candidate identification configuration;
• generation of results.

Data processing phases: The records import phase is characterised by user inter-
faces to load records from files or to fetch records from data sources. Tools differ by:

• Data import functionality : Febrl, LinkageWiz and FRIL allow for cleansing (normalisa-
tion) of imported records, while FRIL also allows for deduplication of data sources to
be linked.

• Data import formats and protocols: Febrl and FRIL support Excel and CSV Text Files,
LinkageWiz supports Excel, CSV, DBASE, FoxPro and MS Access, while D-Dupe
works with a proprietary representation of relational data. LinkageWiz and FRIL can
also collect data from JDBC connections, while SRA, although providing a tight integ-
ration with the Thomson Reuters commercial tool EndNote6, supports also importing
data from CSV files.

The candidate identification configuration phase consists in user interfaces for the spe-
cification of the parameters for record matching algorithms and probabilistic similarity
functions. Tools differ by:

• Clustering methods the users can choose from: all of them offer traditional blocking
(i.e. the string representation of field values is used as blocking key), FRIL, Febrl
and D-Dupe support also literature variations of blocking (i.e. , values obtained from
elaboration of field values, such as metaphone and soundex), while FRIL and Febrl
also provide sorted neighbourhood [16]. In general, the selection of a method requires
pre-processing of the records before matching can be applied.

• Similarity distances the users can choose from: record similarity function is based on
a weighed mean that can be configured based on a list of distance functions, field
weights and in some cases, such as in FRIL, introducing conditions. SRA provides a
predefined algorithm tailored to identify duplicates in bibliographic references.

The generation of result phase generally allows users to export the result of record link-
age or deduplication as processable text files. Tools differ by the way the output can be
handled by users before the final export. In FRIL, users can only opt for what should
be exported, which is either data source records purged of the duplicates (deduplica-
tion mode) or the identified record pairs together with a confidence level (record linkage
mode). LinkageWiz allows users instead to tune up the thresholds for automated approval
or manual approval of record pairs, offering user interfaces to visualise and manually ap-
prove or reject record pairs. D-Dupe graphically visualises record pairs (with a maximum
limit of 300) together with the graph of records related with them, to help users make the
right choice. Febrl and SRA offers user interfaces to scroll through and evaluate candidate
pairs for linking or deduplication (i.e. “clerical evaluation”).
6 http://endnote.com

http://endnote.com
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2.2 After Big Data advent

In recent years, as the new established paradigm of Infrastructure as a Service facilitated
the provision of computing infrastructures, the possibility to develop new systems for Big
Data, as well as re-thinking existing solutions led to the emergence of new research and
a variety of innovative systems. In particular the Map Reduce programming model has
been widely adopted as it enables distributed processing of large data volumes, while
abstracting the details of distributed computing and the treatment of hardware failures.
Map Reduce permitted to re-implement well known methods for Entity Deduplication,
and among these the blocking technique [64] is well suited for a parallel implementation,
as the record blocks can be processed to compute detailed comparisons independently
by parallel processes. This new approach leaded to significant gain in term of process
efficiency, as the underlying infrastructure can scale out thanks to the addition of new
commodity hardware.

One of the most mature tools (as well as available online) that directly address the
efficiency issues of deduplication is Dedoop7[47]. It exploits the MapReduce programming
model to implement several optimized blocking strategies [51], [50] on top of Apache
Hadoop clusters8to realise efficient entity resolution functionalities:

• a web interface to specify entity resolution strategies for match tasks;
• automatic transformation of the workflow specification into an executable Map Reduce

workflow and manages its submission and execution on Hadoop clusters;
• it is designed to serve multiple users that may simultaneously execute multiple work-

flows on the same or different Hadoop clusters;
• provides load balancing strategies to evenly utilize all nodes of the cluster;
• includes a graphical HDFS and S3 file manager that allows users to upload CSV files;
• supports the repeated execution of jobs within a Map Reduce workflow until a stop

condition if fulfilled;
• supports to configure and launch new Hadoop clusters on Amazon EC2;
• can be adapted to configure, schedule, and monitor arbitrary Map Reduce workflows.

A generic framework for declarative entity resolution is Dedupalog [1]. It provides a
powerful syntax to express the identification of duplicate entities, i.e. the definition of
matching cases that produces equality relationships. However, its scope is limited to a
sub-part of our goal.

Another tool that addresses the problem of authority control is PACE (Programmable
Authority Control Engine) [61]. Authority control is the combination of software resources
and human actions required to maintain authority files, which are lists of authoritative
records uniquely and unambiguously describing corresponding sets of entities in an in-
formation system. PACE user interfaces deliver a framework where data curators can cre-
ate and maintain their authority files. Its novelty is that curators can conduct continuous

7 Dedoop http://dbs.uni-leipzig.de/dedoop
8 Hadoop https://hadoop.apache.org
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activities of population, customisation and evaluation of record matching algorithms. The
back end copes with storage and processing scalability of a high number of records and
hence, with the potentially high I/O costs implied by sorting, reading and writing million of
records, by relying on multi-core parallelism and Cassandra’s storage technology [53].

2.3 Remarks

In this thesis we focus on BGEDSs , integrated systems that operate over graphs of
interlinked objects to provide tooling for both candidate identification and graph disam-
biguation.

Overall, existing tools for deduplication fail to meet one or more of the requirements
of BGEDSs. As described above the deduplication tools considered in our analysis are
mostly focused on resolving record duplicates in datasets (CSV files are the most com-
mon type of input), or one information system (typically a relational database). As for
highlighting their ability to address the requirements of Big Graph deduplication scen-
arios illustrated in figure 2.1, we can conclude that:

• Graph oriented approach: among the tools considered in our analysis the only one
that support graph functionalities is D-Dupe. However, graph data structures are not
supported in the input phase, as it allows users to explore the overlay graph of the
equivalence relationships produced by a given configuration. This feature however
is limited to 300 pairs of equivalent records. LinkageWiz and FRIL support JDBC
connections as data source, this means that the objects subject to deduplication can
be enriched with the contextual information surrounding them in a given E-R data
model (i.e. table joins). Finally, Dedoop only works with CSV files.

• Experiment driven: all the analysed tools can be used to run deduplication experi-
ments. Except for D-Dupe with its graphical network visualisation, and PACE with its
user interfaces supporting candidate records evaluation and merge, all the other tools
lack of an integrated result visualisation/exploration of the results, therefore the results
evaluation must be performed by manually checking the output files, or using external
tools to visualise them.

• General purposeness: most of the analysed tools can be configured to work on dif-
ferent application domains: LinkageWiz was used to link patient records in clinical
registries [35] [77], D-Dupe was used to disambiguate author names in bibliographic
metadata records [30], Febrl (although the name suggests its use is limited to the
biomedical field) contains different techniques for data cleaning, deduplication and
record linkage, exposes them on a graphical user interface, and it is fairly easy to
integrate new record linkage techniques in it [13]. Dedoop supports a number of gen-
eral purpose matching techniques that makes it work effectively on hetereogeneous
datasets. PACE, thanks to the customisation of the similarity algorithms can be ad-
apted to different application domains that requires to maintain aggregation authority
files. Finally, SRA is tool conceived for a very specific application domain, although it
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integrates data curation functionalities it is intended to maintain small sized data sets
and it does not consider graph data.

• Ground Truth: perhaps the only tool in our analysis that allows to maintain a ground
truth is PACE. In fact authority files can be seen as a sort of ground truth. However,
none of the other tools consider ground truth information, which is left outside the
workflow, and eventually needs to be applied as a pre-processing phase;

• Scalability : among the tools in our analysis the only one that are designed to process
large datasets are Dedoop and PACE. Dedup is built on top of Apache Hadoop, allows
to address complex entity resolution workflows by properly sizing the cluster, i.e. by
defining the number of nodes and the resources for each of them. The dataset is then
distributed across the cluster nodes and whose splits are processed in parallel; PACE
exploits the parallelism of multiple cpu cores on a single node for the data processing,
and delegates the persistence layer to a scalable NoSQL database.

• Data curators feedback : Except for D-Dupe, which is specifically designed as an in-
teractive tool supporting data curators with an iterative and interactive deduplication
process [41], the other tools in our analysis are less prone to include the data curator
feedback into account in the application workflow.

A general analysis of the requirements of the functionalities for deduplication and re-
cord linkage systems was proposed by Köpcke, Thor and Rahm in [52]. However, the
premises and constraints of the Entity Disambiguation problem on graphs of interlinked
objects are not entirely addressed in the current state of the art, and from the analysis we
carried out, none of the tools consider all the requirements we described in this chapter.
In particular the most important remark is about the lack of tools that consider the Entity
Deduplication workflow from end to end, i.e. from the graph input phase to the material-
isation of the disambiguated results, mediated by end user feedbacks. Another important
aspect is the lack of support for the import, construction and reuse of ground truth inform-
ation.
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Real-case scenario: the OpenAIRE infrastructure

To describe the problem of Big Graph deduplication and motivate the need of Big Graph
Entity Deduplication Systems (BGEDSs), in this chapter we introduce the OpenAIRE
infrastructure system, whose services populate a very large graph of scientific publica-
tions, authors, and other related entities, and whose size and deduplication challenges
are representative of this class of problems. The next sections describe the OpenAIRE
services and graph data model, then focus on the deduplication issues introduced by this
scenario and highlight the functional and non-functional challenges arising when trying
to formulate the respective solutions.

3.1 The OpenAIRE Information Space Graph

The OpenAIRE initiative (http://www.openaire.eu, [60]) is funded by the European Com-
mission to become the point of reference for Open Access and Open Science in Europe.
Its mission is to foster an Open Science e-Infrastructure that links people, ideas and re-
sources for the free flow, access, sharing, and re-use of research outcomes, services
and processes for the advancement of research and the dissemination of scientific know-
ledge. OpenAIRE operates an open, participatory, service-oriented infrastructure that
supports:

• The realization of a pan-European network for the definition, promotion and imple-
mentation of shared interoperability guidelines and best practices for managing, shar-
ing, re-using, and preserving research outcomes of different typologies;

• The promotion of Open Science policies and practices at all stages of the research
life-cycle and across research communities belonging to different application domains
and geographical areas;

• The discovery of and access to research outcomes via a centralized entry point,
where research outcomes are enriched with contextual information via links to ob-
jects relevant to the research life-cycle;

• The measurements of the impact of Open Science and the return of investment of
national and international funding agencies.

http://www.openaire.eu
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Fig. 3.1: OpenAIRE Data Model

In particular, OpenAIRE operates a technological infrastructure supporting this pro-
cess. The infrastructure provides aggregation services [60] capable of collecting content
from data sources on the web in order to populate the so-called OpenAIRE Information
Space, a graph-like information space describing the relationships between scientific art-
icles, their authors, the research datasets related with them, their funders, the relative
grants and associated beneficiaries. By searching, browsing, and post processing the
graph, funders can find the information they require to evaluate research impact (i.e.
return of investment) at the level of grants and funding schemes, organized by discip-
lines and access rights, while scientists can find the Open Access versions of scientific
trends of interest. The OpenAIRE Information Space is then made available for pro-
grammatic access via several APIs (Search HTTP APIs, OAI-PMH, and soon Linked
Open Data) [57], for search, browse and statistics consultation via the OpenAIRE portal
(www.openaire.eu), and for data sources with Notification Broker Services [2].

The graph data model [59], depicted in Figure 3.1, is inspired by the standards for
research data description and research management (e.g. organizations, projects, fa-
cilities) description provided by DataCite1and CERIF2, respectively. Its main entities are
Results (datasets and publications), Persons, Organizations, Funders, Funding Streams,
Projects, and Data Sources:

Results are intended as the outcome of research activities and may be related to Pro-
jects. OpenAIRE supports two kinds of research outcome: Datasets (e.g. experi-
mental data) and Publications (other research products, such as Patents and Soft-
ware will be introduced). As a result of merging equivalent objects collected from
separate data sources, a Result object may have several physical manifestations,

1 Data Cite, https://www.datacite.org
2 EuroCRIS, CERIF features, http://eurocris.org/cerif/main-features-cerif

www.openaire.eu
https://www.datacite.org
http://eurocris.org/cerif/main-features-cerif
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called instances; instances indicate URL(s) of the payload file, access rights (i.e.
open, embargo, restricted, closed), and a relationship to the data source that hosts
the file (i.e. provenance).

Persons are individuals that have one (or more) role(s) in the research domain, such as
authors of a Result or coordinator of a Project.

Organizations include companies, research centers or institutions involved as project
partners or that are responsible for operating data sources.

Funders (e.g. European Commission, Wellcome Trust, FCT Portugal, Australian Re-
search Council) are Organizations responsible for a list of Funding Streams (e.g. FP7
and H2020 for the EC), which are strands of investments. Funding Streams identify
the strands of funding managed by a Funder and can be nested to form a tree of
sub-funding streams (e.g. FP7-IDEAS, FP7-HEALTH).

Projects are research projects funded by a Funding Stream of a Funder. Investigations
and studies conducted in the context of a Project may lead to one or more Results.

Data Sources , e.g. publication repositories, dataset repositories, CRIS systems, journ-
als, publishers, are the sources on the web from which OpenAIRE collects the ob-
jects populating the OpenAIRE graph – typologies and numbers of data sources cur-
rently included in OpenAIRE are available from https://www.openaire.eu/search/
data-providers. Each object is associated to the data source from which it was col-
lected. More specifically, in order to give visibility to the contributing data sources,
OpenAIRE keeps provenance information about each piece of aggregated inform-
ation. Since de-duplication merges objects collected from different sources and in-
ference enriches such objects, provenance information is kept at the granularity of
the object itself, its properties, and its relationships. Object level provenance tells the
origin of the object that is the data sources from which its different manifestations
were collected. Property and relationship level provenance tells the origin of a spe-
cific property or relationship when inference algorithms derive these, e.g. algorithm
name and version.

Objects and relationships in the OpenAIRE graph are extracted from information
packages, i.e. metadata records, collected from internet/web accessible sources of the
following kinds:

Institutional or thematic repositories Information systems where scientists upload the
bibliographic metadata and PDFs of their articles, due to obligations from their organ-
ization or due to community practices (e.g. ArXiv, EuropePMC);

Open Access Publishers Information system of open access publishers or relative
journals, which offer bibliographic metadata and PDFs of their published articles;

CRIS systems Current Research Information Systems are adopted by research and
academic organizations to keep track of their research administration records and
relative results; examples of CRIS content are articles or datasets funded by pro-
jects, their principal investigators, facilities acquired thanks to funding, etc.;

https://www.openaire.eu/search/data-providers
https://www.openaire.eu/search/data-providers
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Data archives Information systems where scientists deposit descriptive metadata and
files about their research data (also known as scientific data, datasets, etc.); data
archives are in some cases supported by research and academic organizations and
in some cases supported by research communities and/or associations of publishers;

Entity registries Information systems created with the intent of maintaining authoritative
registries of given entities in the scholarly communication, such as OpenDOAR3 for
the institutional repositories or re3data.org4 for the data repositories;

Aggregator services Information systems that, like OpenAIRE, collect descriptive metadata
about publications or datasets from multiple sources in order to enable cross-data
source discovery of given research products; aggregators tend to be driven by re-
search community needs or to target the larger audience of researchers across sev-
eral disciplines; examples are DataCite5 for all research data with DOIs as persistent
identifiers, BASE for scientific publications6, DOAJ for Open Access journals pub-
lications7. Aggregation systems however, find relevant applications also in different
contexts. For example the project HOPE - Heritage of the People’s Europe aggreg-
ates digital collections from social history and the history of the labour movement
from the late 18th to the beginning of the 21st century [3].

From the data sources mentioned above (over 5000 today), the OpenAIRE aggreg-
ation services collect metadata records (mainly XML files, but also CSV files, JSONs,
structured HTML responses, etc.) and perform two actions: (i) extracting from metadata
records OpenAIRE objects and relationships to feed the information space graph and (ii)
harmonizing object properties to make them conforming to the OpenAIRE data model
types. For example, as shown in Figure 3.2, a Dublin Core bibliographic metadata re-
cord describing a scientific article will yield one OpenAIRE publication object and a set of
OpenAIRE person objects (one per author) with relationships between them.

The evolution of the OpenAIRE information space has been observed over the last
10 years, starting from the former EC funded DRIVER projects (2006-2009), to the
OpenAIRE pilot (2009-2011), OpenAIREplus (2011-2014) and OpenAIRE2020 (2015-
2018). Today it counts more than 16 million publications. In order to facilitate interop-
erability across institutional repositories world-wide, the DRIVER projects first and then
OpenAIRE’s series developed in collaboration with the community of institutional reposit-
ory managers – at the global level with COAR, SHARE-US, La Referencia-South Amer-
ica, JISC-UK – the so-called OpenAIRE guidelines for publication metadata records8. The
guidelines are a specialization of the Dublin Core Metadata specification9, an example of
which is illustrated in Figure 3.2, and provide instructions on how to express structure,

3 OpenDOAR - http://opendoar.org
4 Re3data - http://www.re3data.org
5 DataCite - https://www.datacite.org
6 BASE - https://www.base-search.net
7 DOAJ - https://doaj.org
8 OpenAIRE guidelines, http://guidelines.openaire.eu
9 Dublin Core Metadata Element 1.1, http://dublincore.org/documents/dces

http://opendoar.org
http://www.re3data.org
https://www.datacite.org
https://www.base-search.net
https://doaj.org
http://guidelines.openaire.eu
http://dublincore.org/documents/dces
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Fig. 3.2: OpenAIRE harmonization process: from metadata records to OpenAIRE objects

semantics, and exchange format when exposing bibliographic metadata records to third-
party services. Although the adoption of the guidelines is high for European (and bey-
ond) repositories, some of the records they expose are still subject to heterogeneous se-
mantic interpretations. OpenAIRE aggregator services must therefore support a number
of data source-specific metadata transformation mappings, which regard both structure
(e.g. mappings between input entities and OpenAIRE entities, mappings between prop-
erties and OpenAIRE properties) and semantics (e.g. different vocabularies). Examples
of such mappings are:

• Ruling out metadata records: exclude processing of records whose mandatory fields
are empty or missing at all (e.g. title, authors);

• Value extraction: e.g. identify a DOI code in dc:identifier, and define it as a dedicated
field;

• Vocabulary mapping: mapping local vocabularies onto terms defined in system con-
trolled standard vocabularies, e.g. ISO for countries and languages;

• Format normalization: e.g. mapping date formats onto common standard formats;
• Entity extraction: as shown in Figure 3.2, a metadata record may give rise to multiple

interrelated objects in the OpenAIRE graph.

The number of objects of each entity currently included in OpenAIRE are summarized
in Table 3.1, up-to-date figures can be found at http://www.openaire.eu.

3.2 Deduplication issues

As exemplified in Figure 3.2, OpenAIRE aggregation services collect metadata records
from data sources and create the relative OpenAIRE objects and relationships in the
OpenAIRE graph. The quality of the resulting graph suffers from serious duplication phe-
nomena. In particular, objects of the entity types publication, person, and organization

http://www.openaire.eu
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Entity Type Number of objects
Data Source 6,081
Publication 14,632,876
Person 13,727,371
Project 624,392
Organization 62,798

Table 3.1: Number of objects by entity in OpenAIRE (update to date 2016-02)

are affected by different forms of duplication, all providing interesting scenarios which
we will address in this section. The main cause of such phenomena is the scarcity of
use of PIDs, which are unique and global persistent identifiers for the collected objects.
Although the scholarly communication has agreed on some best practices (e.g. DOI for
scientific articles, ORCID identifiers for authors) in several cases such PIDs are not made
available in the metadata collected from the data sources. As a consequence, OpenAIRE
aggregation services generates unique object identifiers for each publication, author, or
organization extracted from the metadata, relying on the original object identifiers locally
assigned by the data source: OpenAIRE identifier generation is stateless (hence invari-
ant) and is based on the combination of the unique identifier of the data source and the
MD5 of the local identifier for the object. More in detail, publications, persons, and organ-
izations suffer of the following duplication issues, caused by intra-data source or cross
data source logics:

Publications Intra data source duplicates for publications are in most cases due to the
fact that the data source is itself an aggregator service (e.g. NARCIS, CORE-UK,
etc), and in some rare cases due to the lack of curation of the data source managers
(users in charge of metadata quality). Not all aggregators collect from other aggreg-
ators, but this is indeed the case for OpenAIRE, which is trying to maximize the
number of publications collected and mitigating data source overlaps by applying de-
duplication. Cross-data source duplicates are instead common as we at least expect
all co-authors of a publication to deposit it in the respective institutional repository of
reference, which will likely be OpenAIRE data sources. In turn, the publication can be
further deposited in thematic repositories or be collected by aggregator services.

Persons Intra data source duplicates for persons of type authors (see Figure 3.3) are
instead very common. All publications of the same author in a repository will gen-
erate a new author object in the graph, potentially different from the others. Cross-
data source duplicates (see Figure 3.4) are mainly due to the fact that co-authors
are depositing in their institutional repositories or in thematic repositories (e.g. ArXiv,
EuropePMC), or again, as in the previous case, their publications have been collected
by an aggregator data source harvested in OpenAIRE.

Organizations Organizations are mainly collected from CRIS systems and entity regis-
tries. Their duplication is mainly due to intra-data source logics, since they are col-
lected from a few data sources where they typically appear as a secondary entity,
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not subject to disambiguation, and in some cases they totally lack of any kind of local
identifier.

Fig. 3.3: Intra-data source duplicates: repository data sources

Fig. 3.4: Cross-data source duplicates: repository data sources

In order to present consistent data to its consumers, which are often interested in stat-
istics for example, OpenAIRE requires to deduplicate objects in the graph. As explained
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in the introduction, the automation of this process must include two phases, duplicates
identification and graph disambiguation:

Duplicate identification OpenAIRE deduplication requirements are quite standard. Du-
plicates identification consists of two steps, candidate identification and candidate
matching, which both act at the level of the individual entities of the graph, hence
over collections of objects of the same type. Candidate matching is based on the
assumption that pairs of objects of a given entity can be compared by means of
their properties in order to establish their similarity measure. As mentioned above,
OpenAIRE aggregation services clean and harmonize the values of object proper-
ties to build uniform entity collections. In theory this process should facilitate both
phases above, by suggesting strategies to identify candidate pairs and subsequently
identify duplicates, but, as we shall see, the real experience tells us a whole different
story and systems supporting this process must very configurable and extensible. In
a scenario like OpenAIRE, matching all pairs of objects is by no means intractable.
To give an idea of the numbers, today, we count about 15M2 matches for publica-
tions and about 70M2 for authors. To solve these issues, candidate identification is
the phase entitled of providing the heuristics and technological support necessary
to avoid this “brute force” solution. Candidate identification is typically solved using
clustering techniques [64]. These are based on a clustering function that associates
to each object, out of its properties, one ore more key value to be used for cluster-
ing. The idea is that objects whose keys fall in the same cluster are more likely to
be similar than across different clusters. This action narrows the pairwise matching
of objects within the clusters, thereby reducing the complexity of the problem from a
O(n2) to O(n logn).
The definition of a good clustering function for deduplication must respect the fol-
lowing strategy: (i) avoiding false negatives: making sure that obvious duplicates fall
in the same cluster, (ii) avoid false positives: making sure that clearly different ob-
jects fall in the same cluster, and (iii) the number of matches becomes tractable by
the technology at hand. While traditionally the problem has been mainly algorithmic,
with the advent of big data technologies, such as the map reduce tooling, an optimal
solution can also count on very high performance ratios.

Graph disambiguation Duplicate identification terminates providing, for each entity
type, a set of pairs of object duplicates. In order to disambiguate the graph, the re-
quirements of OpenAIRE is that duplicates should be “hidden" to be replaced by a
representative object which points to the duplicates it represents (and viceversa) and
becomes the hub of all incoming and outgoing relationships relative to these objects.
As a result, the graph will now be disambiguated but still keep track of its original topo-
graphy. As a consequence, graph disambiguation consists of two phases: duplicate
grouping and duplicates merging. Grouping duplicates requires the identification of
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the connected components10formed by the equivalence relationships identified by du-
plicate identification. Merging the groups of duplicates requires instead the creation
of a representative object for each connected component (or group of duplicates) and
the propagation towards this new object of all incoming and outgoing relationships of
the object it merges. Both actions have serious performance implications, which de-
pend on the topography of the graph (e.g. fragmentation of graph, edge distance of
objects in the graph, number of the duplicates). For example, it is generally expected
that person duplicates have a higher average ratio than those of publications and or-
ganizations. The number of duplicates for one author is at least equal to the number
of author’s publications in the system. The number of duplicates for one publications
depends on the replication of the publication across different data sources, e.g. insti-
tutional repository of the author, thematic repository, and a number of aggregators,
but it is in general not very high (e.g. co-authors, each depositing in their respective
institutional repositories which are in turn harvested by OpenAIRE). Duplicates of the
same organizations are in general not many, as not many data sources in OpenAIRE
are providing information on organizations. Moreover, the order of magnitude of the
collections of different object types varies considerably: 107 for publications and per-
son objects, and 104 for organizations.

In the following we analyse the challenges arising when finding solutions to duplic-
ate identification and graph disambiguation in the case of publications, persons, and or-
ganizations entities in OpenAIRE. As we shall see, the heterogeneity or absence of the
information attached to the aggregated objects, as well as their duplication ratio and char-
acteristics, yield a number of challenges that are typical of Big Graph entity deduplication.
Such challenges result in a set of requirements that a BGEDS should address in order
to support practitioners at facing and solving this class of problems. Finally, as a result if
this analysis we illustrate the functional and non-functional requirements for BGEDSs.

3.2.1 Duplicate identification: publication entity

Publication objects, as collected from data sources, are described by the properties de-
picted in table 3.2. OpenAIRE unique identifiers for publication objects are generated by
combining a unique prefix associated to the data source from which the record was col-
lected and the unique identifier of the record in the scope of the data source. This creates
a unique and stateless (i.e. the same identifier will be created if and when the record will
be collected again) identifier for each publication object in the system.

Candidate matching

In order to define a solid candidate matching function, we need first to identify the prop-
erties that can immediately imply the equivalence of two objects, namely global IDs for
10 In graph theory, a connected component of an undirected graph is a subgraph in which any two

vertices are connected to each other by paths, and which is connected to no additional vertices
in the supergraph.
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Property Multiplicity Type Global ID Percentage
of Null

OpenAIRE_ID 1 String Yes 0%
Title 1..N String No 1%

Author name 0..N String Template No 2%
Date of acceptance 0..1 Date No 5%

Publisher 0..1 String No 60%
Abstract 0..N String No 20%

PID 0..N String Yes 70%
Language 0..N ISO vocabulary No 15%

Subject 0..N String No 60%
URL 1..N URL Yes 0%

Access rights 1 Controlled vocabulary No 0%
Journal codes (e.g. ISSN) 0..1 String Template Yes 70%

Table 3.2: Property of publications: deduplication support

publications. We can identify two of them, PIDs and URLs. Unfortunately the percent-
age of Null values for PID is quite high, but still we can rely on URLs to perform exact
matches. In both cases, however, global IDs are not enough, since the same publications
may have different global IDs, be available without the global ID, or be available at differ-
ent locations, i.e. different URLs. Accordingly, if matches based on publication global IDs
fail, other strategies must be devised. To this aim, we need to identify which properties
are most influential in the matching process, that is best contribute to establishing object
equivalence by (i) introducing lower computational cost (to be multiplied by the number
of matches), (ii) allowing clear cut decisions, i.e. when values are similar chances that
relative objects are similar are high, and (iii) are often present in the objects. It turns out
that the only reliable property is Title, which are present in (almost) all objects and consist
of a relatively short text, which can be fast and reliably processed by known string match-
ing functions [17], and are highly selective. In general, if the titles of two publications are
not “enough” similar, according to a given threshold, then no other property-to-property
match may revise this decision. Of course title equivalence is not enough as one of the
following cases may occur:

• Very short titles, composed of few, commonly used words may lead to obvious equi-
valence; e.g. the title "Report on the project XYZ" may be recurrent, the only difference
being the name “XYZ” of the project;

• Recurrent titles; e.g. the title “Introduction” of some chapter is very common and in-
troduces ambiguity in the decision;

• Presence of numbers in titles of different published works; e.g. the title “A Cat’s per-
spective of the Mouse v2” is likely referring to a publication different from "A Cat’s
perspective of the Mouse", but not different from “A Cat perspective of the Mouse";

As a consequence, the decision process must be supported by further matches which
may strengthen the final conclusion, possibly based on one ore more of the following
publication properties:
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Author names The set of authors of an object consists of a set of strings representing
author full names. They tend to be present in the majority of the cases and their uni-
formity of template (i.e. “Surname, N.”) has a quite high percentage of use. However,
introducing them in the matching process is not trivial for the following reasons:
• Although author names respect the same template their are often written in dif-

ferent manners, e.g. “Turing Alan”, “Turing, Alan” “Turing, Mathison Alan”, “Turing,
M. Alan”, “Turing, Alan M.”; identifying a string matching function and a threshold
capable of identifying pairs of equivalent name strings is rather impossible without
introducing false negatives (if we are too strict) and positives (if we are too toler-
ant);

• Some languages are known to introduce homonyms with a ratio that would make
even exact matches prone to errors; e.g. Chinese author names;

• Some publications have hundreds of authors (e.g. physicians) and would there-
fore introduce a high computational barrier to this process.

De facto, in order to introduce effective name matching we should first deduplicate au-
thors (discussed in following paragraph) and use the relative unique identifiers. As an
alternative, the number of authors can be introduced in the process. Author counting
adds certainty to the choice and rarely introduces false positiveness or negativeness
in the process, when for example authors are wrongly inserted as a sequence of
string in the same author property or one of the authors is missing;

Date of acceptance This property is often present, but not uniformly used, typical mis-
uses including:
• The lack of a day-grain date, compensated using a value of 01-01-YYYY;
• Typos in date values that are hard to identify hence to map onto a common format;
• Different interpretation of the date, which is not always date of acceptance.
• Different versions of the same work might be described with different dates in

some cases, with the same date in others, leading to inconsistent results.
Introducing dates in the matching process has a high risk of introducing false posit-
ives.

Abstract The publication abstract, although in principle contains considerable amount
of context that may help in publication matching, cannot be used as is for string
matching as typical string distance algorithms might be either too costly (e.g. Leven-
stein [71]), or not suited for such long strings (e.g. Jaro-Winkler [17]).

Language Language cannot be used in the matching process as it is not used uniformly;
in most cases it is denoting English and it is not clear if it refers to the abstract of the
article or the full-text of the article;

Subject Subject could be extremely relevant, but due to the high degree of heterogeneity
of subject vocabularies at original sources, which often use free text, this property is
just simple text and cannot therefore be meaningful to deduplication;

Access rights Access rights are always present and obey to a controlled vocabulary but
do not impact on deduplication; in fact, different copies of the same object may well
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have different access rights (e.g. the pre-print open access version and the publisher
journal version);

ISSN As for access rights, ISSN do not impact on deduplication; in fact, different copies
of the same object may be the publisher version and the self-archived, open access
version of the article, available from the institutional repository.

Therefore, a similarity function, based on the availability of certain properties can
take straightforward decisions on equivalence or difference between publications, while
in other cases can only come up with a rank of confidence that depends on the availability
and weights of the properties above. In some cases, however, the lack of information may
lead to identify false positives as duplicates. These errors can be sometime be classified
as categories of publications, for example those with very short and common titles (e.g.
“Introduction”, e.g. “Bullettin”), or those specific pairs of objects notified by users as differ-
ent. In both cases, the deduplication process should be able to blacklist these scenarios,
hence exclude sets of publications that fall in such categories. Similarly, end-users may
suggest that publications that have not been identified as identical are instead duplicates
(for example in the case of classes of object short titles blacklisted by the system on re-
quest of the user). The system should be able to include such duplicates as part of the
duplicate identification phase.

Candidate identification

The definition of a good clustering function for deduplication of publications should start
from the properties in Table 3.2. From the analysis of the properties in the previous para-
graph it seems clear that the only property to be always present and informative enough
is title. Clustering objects starting from a publication title is not easy and may be done
according to different strategies, which avoid or tolerate minor differences in the titles,
typically caused by typos or the partial/full presence of words. Some examples are:

1. removing stop words, blank spaces, etc.;
2. lower-casing all words;
3. using combination of prefixes or postfixes of title words;
4. using ngrams of relevant words;
5. using hashing functions.

Using any of these strategies has implications that depend on the features of titles in the
information space. For example, the heavy presence of short titles, i.e. a few words, may
find in the hashing function a better solution than using prefixes of words. On the other
hand, the adoption of high performance technology may allow for a more greedy ap-
proach, which allows for more matches to be performed hence avoid false negatives. The
OpenAIRE information space is very heterogeneous as both data sources and disciplines
behind publications are of different kinds. As a consequence the preferred approach is
the ones that combines the first letters of words (like an acronym) into a clustering key
and the last letters of words into another clustering key. The approach is quite typo-safe
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and seems to exclude false negatives, on the other hand it includes false positives, which
should be excluded with the subsequent detailed similarity match.

The number of OpenAIRE publications is in the order of tens of millions. As a con-
sequence the requirement is to adopt a big data processing technology, which allows for
scalability as well as for efficient parallel processing, and easily supports a clustering-
based methodology. However, despite the clustering, the number of clusters and the ob-
jects in the clusters is quite high and the number of pairwise matches can reach critical
peaks, e.g. long processing times. Today, for publications the clustering functions identify
1,5M clusters with more than 1 object, which feature an average of around 12 publications
per cluster and a standard deviation of 105 (with the maximum size of a cluster being of
72,000 publications). This means that from the initial 15M publications leading to 15M2

matches, clustering takes the number down 1,5M × X2. The decrease is considerable,
but still the number of matches is quite high (in the order of Billions if X matches the
standard deviation worst case), hence further heuristics can be introduced. An example
of such heuristics is the sliding window technique [10]. Sliding windows techniques are
based on the idea that objects in the cluster are ordered in such a way the chance that
similar objects are closer in the ordering is higher. Objects in the cluster are then pairwise
matched only if they are part of the same sliding window of length K. Once all objects
have been matched, the sliding window is moved to the next element of the ordering and
a new set of pairs is matched. Sliding windows introduce false negatives, since they ex-
clude from the match objects in the same cluster, but control performance by giving an
upper bound to the number of matches in each cluster. In summary, the realization of a
sliding window approach requires providing (i) an hashing function, which returns the key
based on which an object will be sorted, (ii) a sorting function, which will be used to sort
the objects based the relative keys, and (iii) the length of the sliding window, which puts
a maximum threshold on the number of pairwise matches. Such approach is known in
literature as Sorted Neighbourhood [31] [91]. Again several strategies may be adopted,
the title of the publication being the candidate input for the sorting function; here are some
examples of has functions to be sorted as strings:

1. obtaining one string from the title by keeping all relevant lower-cased words in the
title;

2. obtaining one string from the title by keeping all relevant lower-cased words in the
title but excluding vowels.

In OpenAIRE the current solution is the last one, but algorithms are being refined in order
to meet new requirements or solve deduplication failures.

3.2.2 Duplicate identification: person entity

Person objects, mainly authors of articles in OpenAIRE, are described by the properties in
Table 3.3. Authors are created from publication bibliographic records out of author names
strings (see Table 3.3, corresponding to the Original Fullname property. The OpenAIRE
identifier is generated as a combination of the OpenAIRE identifier of the publication



26 3. Real-case scenario: the OpenAIRE infrastructure

object from which the author is being created and the author name. This makes the author
object unique in the system, but generates different persons also when the person is the
same author – this strategy is preferred in order to avoid the creation of person objects
relative to homonyms. Aggregation services apply transformation rules to convert the
string in Original Fullname (e.g. “Turing, M. Alan”) onto separate Surname (e.g. “Turing”)
and Firstname (e.g. “M. Alan”) properties. As we shall see, this structure is important
when de-duplicating person objects. In some rare cases, data sources also provide a
persistent identifier, uniquely identifying the author on the Web (e.g. ORCID identifiers,
Google Scholar idenfiers); as such, identifiers are stored as pairs, together with their
encoding scheme. Authors also include information about their co-authors, which consist
of a list of pairs author full name and relative OpenAIRE identifier in the system.

Property Multiplicity Type Global ID Percentage Percentage of
of Null conformity to template

OpenAIRE_ID 1 String Yes 0% 100%

Persistent identifiers 0..N
scheme: String;
ID: String

Yes 99 % n.a.

Firstname 0..1 String No 35% n.a.
Surname 0..1 String No 35% n.a.

Original fullname 1..1 String No 0% n.a.

Co-authors 0..N
OpenAIRE_ID: String;
firstname: String;
surname: String

No 2% n.a.

email 0..1 String Yes 98% n.a.

Table 3.3: Property of persons: deduplication support

Candidate matching

It is not very common for person objects to feature a global identifier. The reasons is that
only recently the research community, along with research and academic organizations,
has started to feel the urgent need of such powerful disambiguation mechanisms and
started integrating them in their processes and information systems (e.g. ORCID). As
such deduplication of person objects must rely on different strategies. Given the prop-
erties in Table 3.3, the only ones that appear informative enough to enable matching
and draw some conclusions are Firstname, Surname, and Co-authors. Intuitively, by first
matching the first name and surname we can identify a pair of candidate for similarity
(if these are not available we can match the original fullnames, although reliability of
matches is lower). If the match is positive, then the co-author lists can be confronted
(using the OpenAIRE identifiers or the person name strings) and if a minimum number
of matches is found, the two authors can be identified as duplicates. On the other hand,
this decision process introduces two issues. The first is that person objects originated
from single-authored publications cannot be de-duplicated: a person object created from
a single authored publication does not have co-authors, hence does not have enough
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context to take decisions in terms of duplication. The second issue is that person dedu-
plication becomes a circular process. When two person objects are merged into one, a
new identifier is created for the resulting person object. As a consequence (i) this object
contains now the union of the co-authors of the merged authors, (ii) for consistency all
occurrences as co-authors of the two merged authors should now be replaced by the
new object identifier, and (iii) this new, richer scenario can fire a new set of possible
duplication, hence a new cycle of deduplication. The process should be iterated until
it converges (i.e. no more matches are identified, hence co-authors are no longer up-
dated). Due to its circularity, person deduplication cannot be re-executed from scratch
every time new person objects are injected in the graph (as it happens in aggregation
systems like OpenAIRE). The solution seems therefore to suggest an “incremental” ap-
proach, whereas the final result of previous cycles of deduplication become the starting
point for deduplicating new person objects. However, the adoption of a fully incremental
approach is not realistic, as it assumes that all de-duplication cycles are and will be cor-
rect: in other words, matching functions are not prone to errors and that person objects
(e.g. the nature of their names) will never introduce new challenges that will require the
matching functions to be modified. Accordingly, the best solution is typically that of start-
ing from a so called “Ground Truth”, which is a set of deduplicated objects called anchors
whose quality has been somehow validated based on some criteria of quality acceptable
for the community. Anchors are objects that merge raw objects in the graph, hence define
an authoritative map that can be used to disambiguate the original graph of objects. Typ-
ically, the Ground Truth is not only built by means of deduplication tools but a lot of manual
or ad-hoc efforts is invested in its construction. For example to solve the problem of per-
son objects with no co-authors special techniques must be devised, capable of identifying
co-authors from other sources on the Web. The introduction of a Ground Truth approach
changes the perspective of the deduplication process, since part of the deduplication can
be made available before candidate identification by mapping raw objects onto anchor
objects at graph import time. Such pre-processing can considerably reduce the time to
process the whole collection of person objects, limiting the identification of duplicates to
the objects that are not yet part of the Ground Truth.

Candidate identification

Identifying a clustering function for person objects in OpenAIRE can only be based on
the fullname, firstname, or surname properties, which are the only ones with mandatory
content. Different strategise can be adopted, some examples being:

1. lower case all strings;
2. remove known name prefixes, e.g. “Van de”, "De”
3. if surname and first name are available as separate properties, e.g. “Turing” and “M.

Alan”:
a) using person surnames, e.g. “turing”
b) using first letter of names combined with surname, e.g. “mturing” and “aturing”
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4. if only full name is available, e.g. “M. Alan Turing”:
a) using all words of length greater than 2, e.g. “alan”, “turing”
b) using all combinations of first letters of words with other words, e.g. “mturing”,

“aturing”, “talan”, “malan”

Depending on the features of the person names in the information space these strategies
can be combined. On OpenAIRE the majority of the records has a regular (or is mapped
onto a regular) structure of first name and surname. As a consequence the combina-
tion of first letters of names with surname seems the most appropriate, in combination,
when only the full name is available, with the same techniques extended to all "words" in
the person fullname. The approach does not exclude false positives, but excludes false
negatives (unless typos are present). False positives are introduced by culstering keys
obtained from fullnames, when the unfortunate combination of first letter of surname and
firstname, e.g. “talan”, matches an author whose surname matches the given name e.g.
“Alan” and the first name starts with the first letter of the given surname, e.g. “Ted”.

As in the case of publications, the potential large number of objects in the same
clusters calls for the introduction of a sliding window technique. In this case, the cluster-
ing function is based on the fullname of the author, which is the only mandatory field.
The clustering function lower cases the fullname string, excludes the stop words, orders
the words alphabetically, and then combines them in one string, e.g. ‘M. Alan Turing”
becomes ‘alanmturing”.

3.2.3 Duplicate identification: organization entity

Organization objects are collected from entity registry data sources and are described by
the set of properties illustrated in Table 3.4. Organization objects identifiers are obtained
in a stateless way as for publications, when organizations are first-level objects in the ori-
ginal data source (i.e. they are assigned a local original identifier) or second-level object
data sources (i.e. they are extracted from the metadata information of a first-level object
in the data source). As a consequence, all objects have a unique identifier in the system,
even if they represent the same organization.

Property Multiplicity Type Global ID Percentage Percentage of
of Null conformity to template

OpenAIRE_ID 1 String Yes 0% 100%
Name 1..1 String No 3% n.a.

Acronym 1..1 String No 20% 80%
Website 0..1 String No 15% n.a.

Contact person 0..1 String No 80% n.a.
Country 0..1 Vocabulary (ISO) No 98% 100%

Table 3.4: Property of organizations: deduplication support
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Candidate matching

Organization objects do not have a global persistent identifier, hence their deduplication
strategy must be based on their descriptive properties. Interestingly, no property is man-
datory across organization objects, but either the name or the acronym of an organization
object is always present. Moreover, both acronym and name are sometime erroneously
filled in with the same string value, which can be either the name or the acronym. The
country field is almost mandatory, as only a few organizations are missing this informa-
tion.

A matching function should therefore allow the usage of conditional primitives to check
if the name property is present on both objects, since the full name of an organization
can be discriminant to determine a similarity measure between organizations. If so, the
names should be also checked against the acronyms, since in several cases these are
used erroneously, and keep the best similarity match. Finally, if the name-acronym match
gives a reasonable (to be defined) score, the country match becomes crucial to take a
final decision. In general, however, organization disambiguation is a complex problem
due to several factors:

• Names of organizations are expressed in several languages and in English, e.g. “Uni-
versity of Padua” and “Università di Padova”;

• Names of organizations are expressed in different but permitted names, e.g. “Univer-
sity of Pisa” and “Pisa University”;

• The “granularity” of the organization at the original data source is not generally agreed
on or aligned with other data sources, e.g. “University of Pisa” or “Department of
Informatics, University of Pisa” or “XYZ Lab, Department of Informatics, University of
Pisa”.

Organization name matching therefore requires some pre-processing, for example to
translate common words (e.g. University, Research Center, Center, Department, Insti-
tute, School) into a common encoding (e.g. 0001 for “University, Université, Università...”)
generally is agnostic of the ordering of the words in the name, and it based on prefixes of
words, trying to capture common roots.

Another possible strategy is that of matching the acronyms and then relying on the
country match to take a final decision; indeed, although different organizations world-
wide can have identical acronyms, the same cannot be considered true at the level of the
same country.

Lack of information and heterogeneity of names represent an obstacle that will incre-
ment its complexity over time, as long as more organizations enter the system, rather
than fade away. Hence, although inaccuracies of the results can be sometime overcome
by modifying the similarity function or be simply blacklisted, organization disambiguation
requires constant manual curation of the results in order to spot the false negatives that
inevitably survive the automated process.
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Candidate identification

Although the cardinality of organizations does not fall in the category of Big Data, the
adoption of a candidate identification phase can reduce the time to process. In this case, it
seems that two different clustering functions are to be devised, one for each the matching
functions proposed above:

• Generation of keys from name property: due to the multi-linguality and structural het-
erogeneity of names, a good technique is that of generating prefixes of relevant words;
if an encoding of key terms is provided, these can be attached to the prefix once being
alphabetically ordered; for example “University of Pisa” and "Pisa’s University" would
both generate the same key “Pis-0001" and therefore fall in the same cluster;

• Generation of keys from acronym property: for acronyms the idea is to send the ac-
ronym itself, once “cleaned up” of the possible idiosyncrasies (e.g. lower-case letters,
blank spaces, separators)

Since each clustering function has its own similarity matching function, the deduplication
system should support a notion of musical score, which can orchestrate the executions
of these two different cycles and then combine the resulting pairs of duplicates.

3.2.4 Graph disambiguation

Once pairs of duplicates have been identified for publications, persons, and organiza-
tions, the OpenAIRE graph must be disambiguated. The first step is that of grouping
pairs of duplicates by propagating the similarity between pairs of objects. The principle
is that of transitivity of similarity: deduplication identification may have established that
A = B and B = C, hence we now need to derive that A = B = C. This challenge is
known as the connected components identification problem. In graph theory, “a connec-
ted component (or just component) of an undirected graph is a subgraph in which any two
vertices are connected to each other by paths, and which is connected to no additional
vertices in the supergraph”11. A connected component for pairs of duplicates corresponds
to a set of equivalent objects. The underlying system should provide a scalable and ef-
ficient implementation of existing algorithmic solutions and return, for each deduplicated
entity collection, the list of sets of equivalent objects, i.e. connected components in the
graph. The problem is independent from the specific features of entity types, but should
take into account worst cases of connected components whose objects can be at tens of
edges of distance.

Once duplicates grouping is completed, the specific requirement of OpenAIRE is not
that of keeping one object and remove all its duplicates from the information graph, but
rather build an extra object, named representative object, that replaces all duplicates
while giving them visibility. The idea is that the representative object will serve as a high-
quality surrogate of the merged objects, inheriting the union of their properties (maximiz-
ing completeness of information) and their incoming and outgoing relationships from and
11 Wikipedia, https://en.wikipedia.org/wiki/Connected_component_(graph_theory)

https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
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to other objects. Merged objects will therefore be virtually removed from the graph as well
as their incoming and outgoing relationships, while keeping a relationships mergedBy to
the representative object. The construction of a representative object out of the merged
objects as well as the distribution of relationships has implications that depend on the
specific entity type and are described in the following.

Publications

The properties of a representative object for publications are built by selecting the most
relevant object and then enriching its properties when these are missing and provided by
other objects. Criteria of selection are the completeness of relevant metadata (e.g. title,
authors, date) and the availability of PIDs (e.g. DOI).

For relationships, since some of the publication authors may be result of deduplication
(point to an anchor person object) and others may be not (point to a raw person object),
the strategy is to identify the merged object that is more complete in terms of relationships
to anchor objects an include only its relationships in the representative object.

Persons

By introducing a Ground Truth we have two types of persons, anchor and raw persons,
whose importance is different in terms of selection criteria. In this context a representative
object is a new anchor object, which merges other objects of the two kinds. The properties
of a representative object for persons are built by selecting the most relevant anchor
object in the group of duplicates, if any, and then enriching its properties when these are
missing and provided by other objects. Anchor objects with PIDs are certainly the most
relevant and should be considered first, otherwise the presence of a first name and a
second name as separate fields is the second level criteria.

As specified when introducing the Ground Truth, the relative methodology envisages
that part of deduplication is resolved while creating the graph, by using the Ground Truth
as a map between raw objects and the corresponding anchor objects, if any. This ap-
proach can be extended to any result of deduplication cycles. As we have seen, the
application of a Ground Truth is generally followed by a number of cycles of candidate
identification, candidate matching, duplicates grouping and representative object elec-
tion. The resulting set of representative objects is a potential Ground Truth (if properly
validated), but can certainly be injected at graph creation time as it happens for Ground
Truth. The operation is consistent only if the information space is not altered between
deduplication cycles and graph import and can avoid the action of propagating the rela-
tionships.

Organizations

The properties of a representative object for organizations are built by selecting the object
with most complete metadata properties and then enriching the missing properties with
that of other objects, if available. For relationships, all relationships of merged objects are
inherited by the representative.
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Big Graph entity deduplication requirements

In this chapter we analyse the functional and non-functional challenges surfaced in
Chapter 3 in order to draw a list of requirements that any Big Graph Entity Deduplication
System (BGEDSs) should meet. We organize requirements by the different phases of
duplicate identification and graph disambiguation, but also introduce a broader category
of requirements which regard the system seen as a combination of these two phases.

4.1 Duplicate identification requirements

Candidate matching requirements spin around the configurability of the similarity function.
This function should be adaptable to any set of properties an entity type can include and
embed several tools and primitives to set the logic of the match between two objects
based on their common properties.

4.1.1 Candidate identification

CI.1 Clustering functions
Clustering functions offer ways to generate a key out of the property values of an

object. The system should integrate a number of standard and configurable functions
the user may select from to set its candidate identification clustering strategy. At the
same time, end-users must be put in the condition to integrate new proprietary functions,
therefore devise their own strategy.

CI.2 Sliding window (Sorted Neighbourhood)
As part of the clustering function configuration, end-users should be able to activate

a sliding window mechanism. Once the sliding window is active end-users can specify:
(i) the length of the sliding window, (ii) the hashing function used to generate from the
objects the value according to which they will be sorted, and (iii) the sorting function to
be used to order the objects based on such values. The system should embed a number
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of hashing and sorting functions for end-user selection and allow the integration of other
similar functions for end-user customization.

4.1.2 Candidate matching

CM.1 Weighted similarity measure
The similarity between two objects is generally measured as a value in the range

[0 . . . 1]. Since all properties of an object can contribute to the match and in different
extents, the similarity function should allow (i) the definition of the set of matches to be
performed in isolation and (ii) the assignment to each of them of a “weight”, to be used
to combine the scores of the individual matches and return the overall similarity between
the two objects. For examples, in publication matching, “title” properties are more relevant
than the “number of authors” values.

CM.2 Distance functions
Matching property values is not an obvious process, especially when it comes to

string values. Several string distance functions are known in the literature, each applic-
able to specific domain of strings. The system should include these functions and allow
their usage in the definition of the similarity function. Moreover, specific cases may be
handled using ad-hoc similarity functions, targeting specific value types and use cases.
The system should therefore be extensible and allow end-users to plug-in their distance
functions and use them in the definition of the similarity function.

A Comparison of String Distance Metrics for matching names was proposed in [18],
and classifies the functions in:

• Edit-distance like functions
• Token-based distance functions
• Hybrid distance functions

CM.3 Manipulation of values
In several cases property values must be “normalized” to a common domain (e.g.

lower-case strings, removal of version numbers from titles, removal of English stop words)
in order to enable matches that are as much as possible typo-independent and use-case
dependent. Alternatively, values should be mapped onto derived values, which better
encode the similarity of objects (e.g. counting the authors of a publication). The system
should include a set of such accessory functions, to be easily introduced in the definition
of the similarity function when needed, and allow for the introduction of new manipulation
functions.

CM.4 Preconditions
Similarity functions should include a pre-condition section, where a set of matches

can quickly identify if two objects are duplicates (e.g. they share the same global PIDs)
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or are not to be considered duplicates (e.g. they have different PIDs from the same PID
scheme). If any of these conditions apply, then there is not need to calculate a similarity
function as the result is immediately 0 or 1.

CM.5 Conditional statements
The similarity function should include conditional statements, allowing to consider a

set of matches instead of other set of matches based on a precondition, e.g. if “firstname”
and “surname” are not empty, then use them for matching, otherwise use “fullname”.
Conditional statements can also be used in the precondition section.

CM.6 Blacklisting and White-listing
In order to curate and refine the results of the deduplication process, end-users should

be able to explicitly provide assertions on similarity or diversity of object pairs, to be used
in the precondition section (see Req. 4.1.2). In both cases, end-users may specify classes
of assertions (criteria) or specific pairs of objects.

4.2 Graph disambiguation requirements

4.2.1 Duplicates grouping

DG.1 Efficiency and scalability
Duplicates grouping is a time consuming operation, since it has to be executed over all

objects of a given entity type in order to identify all possible connected components. Due
to the number of objects, which can arbitrarily scale up over time, this operation cannot be
simply executed with “brute force” algorithms, i.e. try all possibilities of navigation while
marking already visited objects. Depending on the back-end used to store the graph this
read-write action may be extremely slow and time-consuming. It is a strong requirement
to identify algorithms that can efficiently and repeatedly execute this phase minimizing
execution time. In scenarios such as person deduplication, where deduplication has to
be executed in cycles until it converges, or publication deduplication, where deduplication
has to be executed every time new publications enter the information space, waiting time
may become a criteria to invest or not invest in deduplication for given entity types.

4.2.2 Duplicate merging

As highlighted in Chapter 3, duplicate merging has a twofold objective: (i) creating a
representative object and (ii) distributing the relationships of the merged objects.

DM.1 Creation of representative object The creation of a representative object of a set
of equivalent objects requires end-users to specify which strategy to adopt to assemble
the object. The first action is that of selecting an initial object, the most relevant object,
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from the set. This can be done by a function that sorts the objects, based on the value
of their properties. The system can offer a set of such functions (e.g. sorting lexicograph-
ically the objects by their object IDs) but end-users can define, integrate and use their
own (e.g. select object that has a global identifier property and richest metadata). The
second action is that, starting from the relevant object, constructing the representative
object. This requires (i) the creation of an identifier and (ii) the adoption of a metadata
filling mode. Again the creation of an identifier can be by default by generating a ran-
dom identifier, but end-users can integrate their functions (e.g. stateless identifier out of a
global identifier property of the object). The metadata filling mode is of three kinds: keep
relevant object properties only or for each property: (i) add if missing and exist in other
objects or (ii) always merge other values of the same property of all other objects.

DM.2 Distribution of relationships
Once the representative object is created, the end-user must specify which policy

should be adopted in inheriting incoming and outgoing relationships of the merged ob-
jects. For each relationship, end-users can specify the following options: (i) inherit all
relationships, (ii) inherit relationships of relevant object, (iii) inherit relationship of ob-
ject(s) respecting predicate P over the properties of the object. End-users may specify
other strategies, the specification of the selection function should return the set of ob-
jects from which relationships of the given type must be inherited. The approach does
not differentiate between incoming and outgoing relationships.

DM.3 End-user feedback
Once the representative objects relative to an entity type have been generated, end-

users should be able to explore the result and apply manual corrections, such as (i)
remove false duplicates from a group, (ii) add a duplicate to a group, and (iii) create a
new group. Any assertion manually inserted by end-users should be kept and reapplied
in further deduplication phases for the same entity.

4.3 General system requirements

4.3.1 Configuration and settings

CS.1 Deduplication configuration management
The system should allow end-users to define, store and manage, for each entity type,

multiple deduplication configurations, intended as combinations of (i) clustering function,
(ii) similarity matching function, (iii) sliding window option and configuration.

CS.2 Graph disambiguation
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The system should allow users to define, store and manage, for each entity type,
a set of disambiguation configurations, intended as combinations of (i) representative
object generation options and (ii) relationship distribution options.

CS.3 Entity deduplication scores
For each type, the system should allow to store deduplication scores intended as se-

quences of one ore more deduplication configurations over objects of the same entity
type aiming at feeding a common phase of graph disambiguation, identified by a disam-
biguation configuration.

CS.4 Ground Truth The systems should support the option of Ground Truth over en-
tity types. End-users enabling this option can manage a set of Ground Truth collections
(GTCs) which can be either (i) imported by end-users via API or (ii) be created out of
deduplication rounds of the system. End-users can, for each entity type, decide which
GTC should be used to filter and clean the objects during the next graph import action.

CS.5 Dashboard User interfaces We assume that such a system should offer, where
possible, a configuration Dashboard allowing end-user to configure all aspects of dedu-
plication as depicted in this Chapter. Through the dashboard, end-users must also be
able to execute and monitor the process of graph deduplication and apply their manual
corrections (i.e. remove false duplicates) and additions (i.e. add missing duplicates).

4.3.2 Non-functional requirements

NF.1 Import of graphs The system must offer components to import Big Graphs accord-
ing to standards such as RDF, JSON-LD, or similar ones. It should be possible to import
graphs incrementally, possibly by entity type collection. It is generally intended that the
graph to be imported is ready for deduplication, hence that all its objects contain enough
contextual information to make deduplication decisions.

NF.2 Exports of graphs The system must offer components to export the Big Graph
resulted from the last deduplication round according to standards such as RDF, JSON-
LD, or similar. The exported graph contains the representative objects created after the
last rounds of deduplication, the respective re-distributed relationships, but also the ob-
jects they merge, marked as “virtually deleted”, together with “mergedBy” relationships
between them. Also the relationships relative to merged objects are present and marked
as “virtually deleted”.

NF.3 Efficiency and scalability The system must be able to store Big Graph with in
principle no limits of scalability. The same storage technology should therefore make it
possible to execute all steps of candidate identification and matching, as well as all steps



38 4. Big Graph entity deduplication requirements

of graph disambiguation. Indeed, due to the amount of data involved, it is recommen-
ded not to invest on an approach that adopts multiple storage systems for the different
challenges.
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Big Graph Entity Deduplication Systems

Figure 5.1 depicts the main functional areas of Big Graph Entity Deduplication Systems
(BGEDS), as derived from the relative requirements in Chapter 4. A BGEDS is intended
to provide an end-to-end workflow supporting Big Graph data curators at: (i) importing
their graph in the system, (ii) configuring for each entity type the relative duplicate iden-
tification scores, (iii) managing Ground Truth generation and injection, (iv) configuring
graph disambiguation strategies, (v) supporting data curators at manually fixing the res-
ults of deduplication, and eventually (vi) exporting a disambiguated graph (i.e. devoid of
duplicate nodes). In this chapter we will first describe the type and object language of
BGEDSs, based on the Property Graph Model [73], then introduce the individual areas
of the architecture and the relative functionalities.

Fig. 5.1: BGEDSs: High-level Architecture
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5.1 BGEDSs type language and object language

From the use-cases in Chapter 4 it is clear that a data model for BGEDSs should at
minimum support the following requirements:

DM.1 Graph schema The deduplication workflow processes objects and relationships in
the graph according to data curator configurations that assume the graph has an agreed-
on statically provided schema structure.

DM.2 Structured types Objects may describe any real-world entity, hence their such
types must be expressive enough to model any standard entity out there; we assume
that entity types may be as expressive as XML schema [82], i.e. a tree of possibly nested,
mandatory, repeatable properties.

DM.3 Relationship types Relationships must be directed, i.e. they indicate a source and
a target object, and their semantics is expressed with a label.

A Graph Schema is indeed required to enable the configuration of the different phases
of the deduplication process described in Figure 5.1. Functions, conditions, criteria, are
specified by data curators based on the assumption that the underlying graph conforms to
a given structured type. However, a graph data model underlying BGEDSs should also be
driven by the kind of processing that needs to be executed on top of it. By observing the
different phases of the deduplication workflow we can observe how these are upgrading
the topology of the originally imported graph by adding new object and relationships:

• Raw graph (GR = importGraph()): it is the graph as imported by the data curat-
ors in the system: it matches a given graph schema and it is ready for processing;
objects and relationships in this graph should never be updated or deleted as data
curators always need to distinguish between the original graph and its subsequent
deduplication-driven manipulations;

• Anchored graph (GA = GTinjection(GR)): it is the graph resulting from the Raw
Graph after the injection of a Ground Truth GT for one or more of its entities; as such
it adds to the Raw Graph the anchor objects, relationships to the merged objects,
and new relationships outgoing and incoming the anchor objects as inherited from
the objects they merge;

• Deduped Graph (GD = entityDeduplication(GR,GA)): it is the graph obtained from
the Anchor Graph by applying candidate identification and graph disambiguation
phases and taking into account the assertions from data curators; it reflects the struc-
ture of the Anchored Graph described above.

The BGEDS manages a graph database Gdb that is updated by the steps above. Gdb
is instantiated with the original graph GR and then updated to manage the graphs GA and
GD, together with their intermediate steps. The BGEDSs data model should be able to
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model the manipulation of the Gdb over the different deduplication phases, allowing, after
the last phase, to view Gdb from any of the perspectives above. Accordingly, the following
requirement adds to the first two:

DM.4 Overlay graphs The objects and relationships of a graph always belong to one or
more overlay, indicated with a label. As such an overlay graph is the sub-graph identified
by objects and relationships with the corresponding label.

Among known models for graph representation, the Property Graph Model (PGM) [73]
is not yet standardised, but has been described and adopted in a number of books,
tutorials, and resources across the Web. One one of the most representative descriptions
is the following by Robinson et al. [72], which describes a PGM graph as a set of vertexes
and edges where:

• Vertex : an object that has a unique identifier, a label that denotes the its type, prop-
erties, and incoming and outgoing edges;

• Edge: An object that has properties, a label that denotes the type of relationship
between its two vertexes, and a direction, i.e. tail vertex and head vertex;

• Properties: are a set of key/value pairs associated to a vertex.

PGM has become quite popular in graph databases implementations due to its ex-
pressiveness, which subsumes several and simpler forms of graphs types, e.g. removing
edges directionality allows for representing undirected graphs. However, its model doe
not match the modeling requirements DM.1 (hence DM.2 and DM.3) and DM.4 above
since it misses the notion of graph schema and does not provide any explicit tool to
model overlay graphs. Figure 5.2 provides a visual example of a property graph which
represents the relationships between persons and an article they authored. Unless im-
posed by the application context, PGM does not impose any dependency between the
type of a vertex and its properties or the type of its incoming and outgoing edges.

For similar reasons PGM has been already enriched and specialized in the past.
For example, the data model of Gradoop1, a system for graph analytics, is based on an
extension of PGM referred to as Extended Property Graph Model ( EPGM) [39]. EPGM
adds the further concept of logical graphs to the formalism, where the PGM graph can be
further tagged with labels denoting logical graphs, hence subset of vertexes and edges
bound together by some logic. The same vertices and edges may belong to different
logical graphs.

1 Gradoop - http://dbs.uni-leipzig.de/en/research/projects/gradoop
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Fig. 5.2: Property Graph Example

Unfortunately, although EPGM matches the requirement DM.4, the notion of graph
schema is still missing, as well as the possibility of describing a set of structured prop-
erties as indicated by DM.2. As a consequence, we propose an extension of the EPGM,
which we shall refer to as the Structured Property Graph Model (SPGM).

Fig. 5.3: Structured Property Graph Example
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We can therefore summarize the SPGM as a EPMG graph endowed with the following
notions:

• Graph schema: a set of assertions that constrain the name of a vertex type (i.e. a
vertex label in PGM) with a specific set of structured properties and an edge type with
a semantic label for each of the directions and a set of structured properties;

• Structured properties: instead of modelling the vertex properties as a set of key value
pairs, where key is the attribute name and the values are primitive types (integer,
float, string, ...), value can be themselves structured: another set of properties or a
sequence of values;

• Vertex : an object that has a unique identifier, a label that denotes the entity type it
conforms to, the values instantiating its type, and one or more overlay labels;

• Edge: An object that has a label that denotes the type of relationship between its two
vertexes, a source and a target vertex, and one or more overlay labels.

The figure 5.3 provides a visual example of a SPGM graph instance with GR and GA
overlays, describing the result of applying a Ground Truth for the “Article” entity type. As-
suming the duplicate identification had generated a GT with an anchor object 3 merging
1 and 2, then the application of the Ground Truth to the Raw Graph has created a new
object 3, created a new relationships cites from 3 to 4, as inherited from obejct 1, and
created the relationships merges and isMergedBy necessary to keep track of the mer-
ging action. The resulting graph can be observed from the point of view of the overlay
RawGraph, to draw the initial topology of the graph, or the overlay AnchorGraph, to
select the graph as resulting from Ground Truth injection.

The type language described in Table 5.1 is intended to serve data curators at specify-
ing the structure of the graph in terms of object types, i.e. vertex types, and relationship
types, i.e. edge types. The configuration of the different entity deduplication phases, as
supported by BGEDSs, are based on annotations over the specific types, properties, and
relationships defined in the schema.

T ::= VT = [l1 : U1, . . . , lk : Uk] (entity type declaration)
| rel[VT , VT , lst, lts] (relation type declaration)

U ::= S | S? | S+ | S∗ (multiplicity and optionality)
S ::= [l1 : U1, . . . , lk : Uk] (property set type)

| int | string | bool (atomic types)

Table 5.1: BGEDSs Type language

The clause VT = [l1 : U1, . . . , lk : Uk] declares a new type named VT with properties
li’s of type Ui’s. The type U may be mandatory (S), optional (?), sequence of at least one
(+), or a possibly empty sequence (∗) and take one of the following forms: a property set
type or an atomic type. The clause rel[VTs

, VTt
, lst, lts] declares a bi-directional relation-

ship between the entity types VTs (source) and VTt (target) whose semantic label from
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source to target is lst and from target to source is lts. For example the type of the SPGM
graph in Figure 5.3 is illustrated in Listing 5.1, rows 1-2. Row 4 describes instead the type
of an Article as described in Listing 5.2, where authors have a structured property form.

1 Article = [ title : string , authors: string+, issn: string ?]
2 Rel[ Article , Article , cites ,citedBy]
3

4 Article = [
5 title : string ,
6 doi: string ?,
7 authors: [firstname: string , surname: string],
8 issn: string?
9 ]

Listing 5.1: Example of SPGM graph type for Articles

1 [
2 title = Tail Asymptotic Expansions for L−Statistics,
3 doi = 10.1234/xyz,
4 authors = [
5 [name = E., surname = Hashorva],
6 [name = C., surname = Ling],
7 [name = Z., surname = Peng]
8 ],
9 issn = 1234−5678,

10 ]

Listing 5.2: Structured properties: Article example

BGEDSs handle a graph database Gdb ⊂ P(O) × P(R). Objects and relationships
in Gdb are managed by a number of definitions and operators described in Table 5.2
to refer to their properties or navigate through the graph, which will be useful in the
following to describe the different phases. In Table 5.2, the domain of all objects is
O and the domain of relationships is R = O × O × L, where L is the domains
of labels. Given an object o ∈ O, o : VT denotes that o is of type VT . The object
values can be accessed using a standard “dot notation with wildcards”: for example,
with reference to the object o in Figure 5.2: o.doi returns the value “10.1234/xyz′′,
o.authors[1].surname returns the value “Hashorva′′, o.authors. ∗ .surname returns
the set of values {“Hashorva′′, “Ling′′, “Peng′′}.

Table 5.3 defines all overlay graphs, represented as views of the graph database Gdb
that are produced during the different phases of entity deduplication.
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Overlayo : L→ P(O) sets of objects in Gdb with overlay l
Overlayr : L→ P(R) sets of relationships in Gdb with overlay l
Overlay : L→ P(O)× P(R) the graph in Gdb with overlay l
AddOverlayo : P(O)× L→⊥ adds the overlay l to the set of object O
AddOverlayr : P(R)× L→⊥ adds the overlay l to the set of relationship R
Rin : O → P(R) set of relationships incoming an object
Rout : O → P(R) set of relationships outgoing an object
AddObjects(O) adds a set of objects O to the graph
AddRels(R) adds a set of relationship R to the graph

Table 5.2: BGEDSs object operators

GR = Overlay(rawgraph) (Raw Graph)
GA = Overlay(anchorgraph) (Anchor Graph)
GE = Overlay(equivalencegraph) (Equivalence Graph)
GF = Overlay(feedbackgraph) (Feedback Graph)
GD = Overlay(dedupgraph) (Dedup Graph)

Table 5.3: BGEDSs : Entity Deduplication Graphs

5.2 Architecture overview

In this section we illustrate more in detail the functional architecture of BGEDSs by
presenting the functional breakdown of the deduplication workflow it implements. More
specifically, we shall describe the following phases:

• Graph Import and Export The import phase is responsible of importing a graph
expressed according to known standards, such as RDFG and JSON-LD, into the
BGEDS. The import is possible thanks to a mapping between the external graph
schema and the internal graph schema. As we shall see, this mapping is expressed
by mapping the RDF Trutle and JSON-LD schemas onto the SPGM type language, in-
spired by similar mappings onto the PGM model [73, 29]. This phase creates the Raw
Graph GR in the Gdb. The export phase can be fired by data curators to materialize
the content of the Gdb according to one or more of the overlays.

• Ground Truth injection This phase pre-processes the graph GR by “injecting” a Ground
Truth over each of the entity types VT defined in the graph schema. Each type VT has
a set of potential Ground Truths GT (VT ) = {GTVT 1

, . . . , GTVT k
} and data curators

can select which one is to be adopted to generate a new graph GA.
• Candidate identification and matching This phase operates over the graph GA to

identify a set of pairs of equivalent objects. Data curators can configure this phase
by selecting which score should be adopted for each of the entity types in place. A
score is a sequence of duplicate identification configurations, each specifying a dif-
ferent identification strategy: clustering, clustering blocking, and matching functions.
The graph GA is therefore enriched with set of new relationships which belong to the
equivalence overlay and form the Equivalence Graph GE .
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• Duplicate grouping and merging This phase initially operates over the Equivalence
Graph GE in order to identify from pairs of equivalent objects the groups of equivalent
objects, obtained by transitivity of the equality relationships. For each entity type, data
curators can configure the disambiguation strategy to be adopted: how to generate a
representative object out of each group, and how to distribute the relationships of the
merged objects up to the representative object. The result of this processing phase is
a Deduped Graph GD, obtained from GA by including the representative objects and
the relative relationships.

• Data Curators Feedback Deduplication techniques are based on heuristics and are
therefore subject to a margin of error. For this reason, these techniques are typically
supervised, allowing experienced users to refine the results and to be able to count
on these corrections in subsequent applications of the process. Data curators are
provided with tools with which they can search, browse and visualize the objects
of any entity type, in order to “repair” representative objects that were not correctly
created or create representative objects that were overlooked by the process. Such
feedback results in a set of assertions for each entity type, i.e. assertions of equality
between objects or difference between objects, which are always kept into account in
subsequent runs. Data curators can, once they observe that the collection of objects
of an entity type VT is coherent enough, make it a Ground Truth for the entity type,
i.e. add it to GT (VT ).

In the following we shall describe more in details how the different phases interact in
order to generate a Gout by updating the GR according to data curator configurations.
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5.2.1 Configuration Manager

Data curators interact with the BGEDS thanks to a configuration manager, depicted in
Figure 5.4, that offers a global view of the deduplication workflow and the configuration
parameters for all the different phases.

Fig. 5.4: GDup Configuration Manager

The configuration manager allows data curators to manage the following objects,
whose correlations are depicted in Figure 5.5:

• entity type deduplication configurations (entity config): an entity config has a unique
name and consists of (i) a score for duplicates identification, (ii) a disambiguation
strategy configuration, (iii) of a choice of the Ground Truth to be adopted for each
entity type, and (iv) the option of applying data curators feedback;

• graph entity deduplication configurations (graph config): a graph configuration has a
unique name and consists one entity config for each entity to be deduplicated.
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Fig. 5.5: Configuration Manager Data Model

5.2.2 Graph Import and Export

In the import data curators should provide the graph schema according to the specifica-
tion given in section 5.1 and then import a graph conforming to that schema. Since graphs
out there may be stored in any back-end and their graph-nature be described according
to any schema language, to facilitate the import procedure the BGEDS must be able to
generate a schema, using a standard graph schema language of preference (e.g. RDF
Turtle, JSON-LD schema), that corresponds to the BGEDS graph schema. The system
should then offer a component that is capable of importing a graph that corresponds to
such standard schema and import it in a consistent and controlled way. This approach
delegates data curators the issue of mapping their local representations of the graph onto
a standard exchange format for graphs.

Any time, data curators can opt to export one or more of the overlay graphs in the
graph database Gdb. The export can follow, as for the input, a mapping from the internal
graph schema provided by data curators and one of the standards supported by the
BGEDS at hand.

5.2.3 Ground Truth injection

Ground Truth injection is the entity deduplication phase where a Ground Truth for a given
entity type is applied to the collection of objects in order to resolve part of the duplicates
beforehand. A Ground Truth GTVT

for an entity type VT is typically a collection of anchor
objects whose structure is VT and includes the list of raw objects merged by the anchor
object:



5.2 Architecture overview 49

• Raw object : it is a copy of the original object of the graph GR, hence has type VT and
the same identifier;

• Anchor object : it is an object representing a set of merged raw objects; as such it
is like a representative object in the graph GD whose quality has been somehow
validated based on some criteria of quality, endorsed by data curators. Anchors have
a Type VT , a unique identifier, and includes the list of raw objects it merges.

The introduction of a Ground Truth approach changes the perspective of the dedu-
plication process, since part of the deduplication can be made available before candidate
identification by mapping raw objects onto anchor objects at graph import time. This pre-
processing phase is useful for two main reasons: reducing the computational time of
entity deduplication as a whole – by limiting the identification of duplicates to the objects
that are not yet merged by the Ground Truth – and resolve duplicates based on a Ground
Truth knowledge, typically curated and validated by experts, rather than leaving it to a
mechanical process, which may be prone to errors. Indeed, Ground Truth information
supporting record linkage processes often requires a lot of manual or ad-hoc efforts to
be invested in its construction. Data curators may start from the result of a deduplication
run for a given entity type in the graph GD and then manually curate the entity type object
collection until a given quality is reached. Alternatively, a GTVT

may be imported from the
file system, in a process similar to the import phase described above. In this case, any
external process can be adopted to construct an high-quality GTVT

: for example to solve
the problem of person objects with no co-authors special techniques must be devised,
capable of identifying co-authors from other sources on the Web, as well as platforms
supporting the results validation.

1 Anchor[
2 ( id = 001)
3 properties = [name=Alan, surname=Turing]
4 merged = [
5 Person[
6 ( id = 002)
7 properties = [name=Alan, surname=Turing]
8 ],
9 Person[

10 ( id = 003)
11 properties = [name=Alan Mathison, surname=Turing]
12 ]
13 ]
14 ]

Listing 5.3: GT example - Anchor

An example of a Ground Truth entry, describing an anchor person object of type
Person = [name : string, surname = string]), merging two distinct raw person ob-
jects is illustrated in Listing 5.3. The anchor object explicitly defines an entry of a map
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between the anchor person with identifier 001 and the raw persons with identifier 002 and
003.

Specifically, a ground truth GTVT
is the set of anchor objects, with the functions:

• Merged : P(O)×O → P(O):Merged is a function that takes aGTVT
and an anchor

object o and returns the set Merged(o) of objects merged by o.
• Anchor : P(O) × O → O: Merged is a function that takes a GTVT

and an object o
and returns the anchor object anchor(o) that merges it.

Creation of Anchor Graph

The system supports the management of multiple Ground Truths for the same type VT .
The injection phase takes as input the graph GR and a set of GVT

, one for each of the
VT for which a Ground Truth has been selected in the configuration manager. The phase
generates a graph GA by upgrading the graph Gdb according to the pseudo-algorithm de-
scribed in Listing 5.4, which applies to each GTVT

.

1 // adds anchor objects to the graph
2 AddObjects(GTVT )
3

4 // add the overlay anchorGraph to anchor objects in the graph
5 AddOverlayo(GTVT ,

′ anchorgraph′)
6

7 foreach oa ∈ GTVT do {
8 MergedObjects = +Merges(oa)
9 }

10

11 // add the overlay anchorgraph to all objects that are not merged by anchor objects
12 AddOverlayo(Overlayo(

′rawgraph′)/MergedObjects,′ anchorgraph′)
13 foreach o ∈MergedObjects do {
14 MergedRels = +Rout(o) ∪Rin(o)
15 foreach < o, o′, l >∈ Rout(o) do {
16 AddRels(< o, anchor(o′), l >)
17 AddOverlayr(< o, anchor(o′), l >,′ anchorgraph′)
18 }
19 foreach < o′, o, l >∈ Rin(o) do {
20 AddRels(< anchor(o′), o, l >)
21 AddOverlayr(< anchor(o′), o, l >,′ anchorgraph′)
22 }
23 // adds the overlay anchorGraph to all rels that are not touched by anchor objects
24 AddOverlayr(Overlayr(

′rawgraph′)/MergedRels,′ anchorgraph′)
25 }

Listing 5.4: Anchor graph generation pseudo-algorithm
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5.2.4 Duplicates identification

One of the main features available in BGEDSs is the possibility to process semantic-
ally expressive graphs, providing different entity types linked by relationships of different
semantics, responding to a given BGEDS graph schema. Such graphs might be result-
ing from aggregation processes that integrated heterogeneous information, hence they
have high probability to be affected by duplication of information. In order to satisfy the
duplicates identification requirements depicted in section 4.1, the system supports man-
agement of multiple deduplication configurations, organised by entity type.

For each entity type defined in a given BGEDS graph type, data curators can define
and combine multiple configurations of duplicate identification, in order to identify duplic-
ates based in different strategies. A duplicate identification configuration is strictly bound
an entity type schema VT for which it defines the parameters of the candidate identi-
fication, i.e. a clustering function and a pair blocking-sorting functions, and candidate
matching, i.e. a matching function. A score is a sequence of candidate identification con-
figurations followed by candidate matching configuration.

For example the configuration manager might hold one configuration score for a given
type of entities, whose deduplication results reached a certain degree of acceptance from
the data curator. Likewise it can manage a number of configurations that are still being
tested, and whose results evaluated for a different entity type of the same graph, or that
refer to another graph.

1

2 <dedup_score> ::= <VT > "," <conf> { "," <conf> } "," <merge> "," <rel>
3 <conf> ::= <ctrlStm> | <condStm> "," <simStm> | <simStm>
4 <ctrlStm> ::= "IF" <condStm> "THEN" <simStm> "ELSE" <simStm> "ENDIF"
5 <condStm> ::= "condition [" <b_expr> "]"
6 <b_expr> ::= "not" <expr> | <expr> [ <relOp> <expr> ]
7 <expr> ::= ["("] condFunctionf(pVT )→ (true|false) [")"]
8 <relOp> ::= and | or
9 <simStm> ::= <simF> { "," <simF> }

10 <simF> ::= f(pVT )→ [0 . . . 1] //similarity function
11 <merge> ::= f(GVT )→ RVT //attribute merge function
12 <rel> ::= f(Eij) // relationships fixup

Listing 5.5: BGEDS configuration grammar

Candidate identification

Deduplication systems often provide different techniques to reduce the search space
required by the unpractical quadratic complexity deriving by the pairwise comparisons
between the objects. BGEDSs do no exception, and to satisfy requirement 4.1.1 provide
a number of predefined functions that allows to select the objects eligible for detailed
matching by grouping them into blocks (or canopies [62]). Each block will contain all the
objects that are much likely to produce a match, thus excluding the need to compute a
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large part of true negative matches. To motivate the need to reduce the search space we
can think about a naive approach that computes all the pairwise comparisons |P |2 for 16
million publications in OpenAIRE. Assuming each comparison is 1µs, it would take about
8.1 years to perform all the 2.56 × 1014 comparisons. On the other hand, assuming to
group publications in blocks by some of their features, where the blocks maximum size is,
say 50 × 103, it would take 41.6 minutes to compute all the 2.5 × 109 comparisons. The
main challenges in the blocking technique are (i) the identification of the most relevant
features in the data at hand, and (ii) the proper functions to extract hash keys. In hash
based blocking techniques each block Bi is associated with an hash key hi, such that
the property pi is hashed to the block Bi if hash(pi) = Bi, then all the objects within the
same block are compared with each other. Each block is independent from each other,
allowing to further reduce the execution time by making the candidate matching phase to
be performed by parallel processes. On the other hand, as a certain number of objects
will never be compared as they will be included in disjoint blocks it is possible that the
overall process recall might be affected negatively, depending on the clustering functions
and the data at hand. For this reason the definition of the clustering functions is a crucial
aspect that require knowledge on the application domain.

Blocks are defined by grouping the objects responding to a given Entity Type VT with
dedicated clustering functions. Clustering functions are characterized by a Vertex Type
VT (identifying the objects they will be applied to), a set of specific parameters, and a list
of field values, picked from the given Entity Type instance.

1 EntityType = Article ,
2 clusteringFunction[
3 name = ngrampairs
4 params = [max=1, ngramLen=3]
5 fields = [ title ]
6 ],
7 clusteringFunction[
8 name = suffixprefix
9 params = [max=1, len=3]

10 fields = [ title , authors.surname ]
11 ]

Listing 5.6: GDup multiple clustering functions

As shown in listing 5.6, the BGEDS configuration allows to define multiple hash func-
tions within the same configuration score, causing the same object to be included in more
than one block (or making the blocks to overlap). Each hash function can receive as input
one or more of the object property values defined in a given Entity Type VT , and return
one or more hash keys, depending on the function specific parameters.

Blocks created by the clustering functions might still contain a large number of ob-
jects, making the candidate matching phase unpractical. To overcome this issue the con-
figuration allows to further reduce the number of comparisons performed by the candid-
ate matching phase making use of the so called Sorted Neighbourhood Method (SNM),
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which can be activated depending on the needs (see requirement 4.1.1). Such method
assumes to sort the objects within each block so that similar objects are close to each
other, then only compare objects within a small neighborhood, or window of size w that
is moved sequentially over the sorted block. Sorting is based on a specific key, which
can be obtained from the object properties using the hashing functions available in the
system.

Fig. 5.6: GDup : Sorted Neighbourhood Method

The use of the sliding window limits the number of possible object pair comparisons
for each object to 2w − 1, and the resulting total number of object pair comparisons
(assuming a graph with n objects of a given Entity Type) is O(wn). If we consider also
the cost of sorting the blocks, the total complexity is O(wn+ n log n).

Depending on the data and the configuration it might happen that the clustering func-
tions produce relatively small blocks. In such cases where the average block size is similar
to the sliding window size w, users can configure the system to skip the sorting phase,
as all the objects within each block will be compared with each other.

Candidate matching

Similarity function Candidate matching is the phase in the deduplication workflow that
actually performs the comparison between object pairs. The object matching operation is
defined as the computation of a similarity measure s between two objects. Analogously,
distance functions generally map a pair of strings to a real number d, where smaller
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values of d indicates greater similarity between the two input strings. Since GDup makes
use of both similarity and distance functions, in order to provide a uniform response
all the return values are mapped in the range [0 . . . 1], where higher values indicates
greater similarity. A match between a pair of objects is considered positive when the
score obtained by a given similarity function reaches a given configurable threshold T ,
event that makes the system to assert the equality between the two objects.

In order to meet the requirement described in 4.1.2, as the properties of an object
can contribute to the match in different extents, the system includes in the configuration
the possibility to associate weights to each property associated to a similarity function.
This makes the most significant properties to be more relevant in driving the matching
process. For example, when matching publications, the title can be considered as more
relevant than the publisher. Each similarity function fi is characterized by a name, is
associated to a given data type VT (might it be an Atomic type, or a Structured type),
takes as input a pair of the same property values (or a manipulation of the same) o.l, o′.l
from the two objects o, o′, and returns the similarity measure fi(o, o′) between the two
properties, normalized in the range [0 . . . 1].

Overall, given the two objects o, o′ belonging to a given Entity Type VT , the system
calculates the similarity Fsim(o, o′) as the weighted mean of the contributes form the
different n similarity functions defined in the configuration.

Fsim(o, o′) =

n∑
i=1

(wifi(o.expi, o
′.expi))

n∑
i=1

wi

Where
n∑

i=1

wi = 1 and 0 <= fi <= 1 are respectively the weights and the sim-

ilarity functions w.r.t. to each object property li, and exp is the expression needed to
de-reference the value from the structured properties of the o and o′.

1 similarityFunction [
2 name = LevenshteinDistance
3 weight = 0.8
4 fields = [ title ]
5 ],
6 similarityFunction [
7 name = JaroWinklerDistance
8 weight = 0.2
9 fields = [publisher]

10 ]

Listing 5.7: GDup matching functions

One of the most important capabilities of a general-purpose BGEDS is the possib-
ility to adapt to specific application domains. Therefore the system must (i) support a
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predefined set of general purpose and established similarity functions, and (ii) a mech-
anism to easily include new ones. Special cases of similarity functions can be defined
as:

• multi-field: functions that accept structured properties as input; The function will be re-
sponsible for the value deserialization, and the internal decision process might benefit
from a wider range of information;

• transformed-field: functions that may impact on the selected fi based on a manip-
ulation of the values of the two inputs to be compared; for example, a function that
recognize different variations of a text value by applying a regular expression, or a
function that removes the stop words from a text field etc.

BGEDSs provide a predefined set of generic functions typically used in text analysis.
The selection of such functions was inspired by the work of Cohen, Ravikumar, and Fien-
berg in [17], as well as [21], whose evaluation allowed us to define a set of general
purpose methods to calculate the similarity between a wide range of application specify
cases.

• Edit distance: Given a pair of strings a and b on a defined alphabet Σ (e.g. in text it
might correspond to the set of ASCII characters), the edit distance d(a, b) is the min-
imum weight series of edit operations needed to transforms a into b. A simple sets of
edit operations was defined by Levenshtein in 1966 [55]: insertion, deletion, substitu-
tion of a symbol, each operation associated to a unit cost (except that substitution of
a character by itself has zero cost);

• Jaro distance: Widely used in record linkage literature, this method is based on the
number and order of the common characters between two strings.

• Jaro-Winkler : A variation of the Jaro method, which considers also the length of the
longest common prefix between the two input strings, typically used to match short
strings (e.g. , personal first or last names.).

• Jaccard similarity : Among token based similarity functions, that considers the strings
S and T as bags of words, the Jaccard similarity is simply expressed as the size of
the intersection divided by the size of the union of the same sets |S∩T ||S∪T | ;

Value manipulation Although well known string matching functions represents a power-
ful method to determine that two objects are manifestations of the same real world entity,
several application domains require to introduce customized constructs to support the de-
cision process. Value manipulation is one of the basic functionalities needed to perform
clean-up operations, often needed when dealing with highly noisy data. For example,
in case of date values typically users might need to define dedicated cleaning or value
extraction functions to compensate different cases of ambiguity, lack of information, and
normalization, as it is common to deal with different date formats, or the lack of a day-
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grain date, compensated using a value of 01-01-YYYY. Other cases of value manipulation
functions supporting the data cleaning are:

• Removing noisy information from text fields;
• Identification of numbers (Arabic or Roman) in text;
• Mapping different representations of characters and symbols, e.g. superscript and

underscript to be mapped into ”normal” text;
• Removal of punctuation;
• Normalization of diacritical marks;
• Text encoding normalization.

1 similarityFunction [
2 name = LevenshteinDistance
3 weight = 1.0
4 fields = [ titleCleanup( title ) ]
5 ]

Listing 5.8: GDup data cleaning functions

Listing 5.8 describes an example of cleaning functions available to BGEDSs. The
property values result.title are processed for cleanup by the custom function titleCleanup
before being used to calculate their similarity with LevenshteinDistance. A user-friendly
BGEDS, while defining a matching functions, data curators should select the properties to
be matched and be promoted with a list of “compatibile” similarity functions, pre-selected
based on the type of the selected property.

Pre-conditions In order to enable users to define domain specific decision processes,
BGEDSs support the definition of pre-conditions (requirement 4.1.2). A group of pre-
condition is an optional set of statements defined in GDup configurations that is evaluated
before the similarity functions. Each condition is therefore a function from two objects be-
longing to a given type VT to a Boolean value b. Overall the return values from the set of
conditions can be evaluated using the disjunction operator ∨, or the conjunction operator
∧, allowing to express arbitrary domain-specific conditions. When the evaluation of the
pre-condition set is true, then the system skips the evaluation of the similarity functions,
and considers the similarity between the two objects as 1.



5.2 Architecture overview 57

1 // for Article entity type
2 condition[
3 exactMatch(doi) or exactMatch(PMID)
4 ]
5

6 // for Person entity type
7 condition[
8 exactMatch(email) or
9 (exactMatch(birthdate) and exactMatch(firstname) and exactMatch(surname))

10 ]

Listing 5.9: Pre-condition example

The pre-condition evaluation is typically faster than the similarity functions as pre-
conditions are intended to identify domain specific cases, and can quickly determine if
two objects A,B are duplicates or not. For example, the listing 5.9 shows two different
cases where a combination of multiple equivalence assertions can help in the identifying
the duplicates. In the first case two publications could be considered as duplicates when
they share either a DOI, or a PMID 2. The second case represents an expression of condi-
tions on Person objects, where the most relevant attribute driving the Boolean expression
is the email, alternatively in order to satisfy the condition, all the attributes birth date, first
name, and surname must match.

Conditional statements Another important aspect provided by the configuration is the
possibility to express conditional statements. Conditional statements allows the system
to consider a set of matching behavior instead of another depending on conditions to be
expressed over the object properties or the evaluation of a function over the object prop-
erties. A similar approach was explored by Hall at al.in [28], where is presented a method
to model dependencies among object properties.

2 PubMed Unique Identifier - https://en.wikipedia.org/wiki/PubMed#PubMed_identifier

 https://en.wikipedia.org/wiki/PubMed#PubMed_identifier
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1 IF condition[ isNotNull(firstname) and isNotNull(surname) ] THEN
2 similarityFunction [
3 name = JaroWinkler
4 weight = 0.75
5 fields = [surname]
6 ],
7 similarityFunction [
8 name = JaroWinkler
9 weight = 0.25

10 fields = [firstname]
11 ]
12 ELSE
13 similarityFunction [
14 name = LevenshteinDistance
15 weight = 1.0
16 fields = [fullname]
17 ]
18 ENDIF

Listing 5.10: GDup conditional statement example

White-listing and blacklisting In order to produce accurate results and allow to cus-
tomize the system to catch domain specific aspects, end-users can configure assertions
based on object properties. Assertions can be defined to exclude records from the can-
didate identification phase, or using conditional statements provided by GDup configura-
tions, which can include property-driven conditions to enable blacklisting or white-listing
of groups of objects. In reference to the person objects depicted in figure 5.12, listing 5.11
illustrates a possible way to define rules that configures the system to consider or not a
group of objects as duplicates.

1 condition[
2 exactMatch(surname) and
3 regexMatch(name, "B.*") and
4 regexMatch(birthdate, ".*1983")
5 ]
6

7 condition[
8 not (
9 exactMatch(surname) and

10 regexMatch(name, "B.*") and
11 regexMatch(birthdate, ".*1983") )
12 ]

Listing 5.11: GDup blacklist / whitelist example
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Creation of Equivalence Graph

The duplicate identification phases generate a set of pairs of equivalent objects, which
in turn constitute the Equivalence Graph GE . As a result of the matching, whenever the
distance between two objects o and o′ successfully passes the given threshold, then the
actions in Listing 5.12 are performed: (i) the relationship equalTo between the two is
added to the graph and attached to the overlay equivalenceGraph, and (ii) both objects
are attached to the overlay equivalenceGraph.

1 AddRels({< o, o′, equalTo >,< o′, o, equalTo >})
2 AddOverlayr({< o, o′, equalTo >,< o′, o, equalTo >}, equivalenceGraph)
3 AddOverlayo({o, o′}, equivalencegraph)

Listing 5.12: Populating the Equivalence Graph

Moreover, in order to take into account the equivalence assertions provided by
data curator feedback, GE is further enriched with new edges inherited from the Feed-
back Graph GF . As explained in Section 5.2.6 GF includes relationships of two kinds
equalTo and differentFrom. The duplicate identification phase concludes by adding
the equalTo relationships in GF to the equivalence graph GE , as explained in Listing 5.13

1 equalToRels = {< o, o′, equalTo >∈ GF }
2 AddRels({< o, o′, equalTo >})
3 AddOverlayr({< o, o′, equalTo >,< o′, o, equalTo >}, equivalenceGraph)
4 AddOverlayo({o, o′}, equivalencegraph)

Listing 5.13: Populating the Equivalence Graph

5.2.5 Graph disambiguation

The Equivalence Graph populated by the phase of duplicate identification contains now
the set of pair-wise equivalences identified by the deduplication strategy provided by data
curators and by previous manual feedback of data curators. Figure 5.7 illustrates the over-
lay graph created by the equality edges introduced by the candidates matching phase,
where the equivalence relationship between A and B was provided by data curators.

Graph disambiguation consists of two distinct phases. The first phase is duplicate
grouping and is in charge of identifying all connected components in the Equivalence
Graph. The second phase is duplicate merge and is responsible of, given all connected
components, generating a representative object and distributing the relationships of the
merged objects to keep the graph topology coherent with the newly created representat-
ive object.

Duplicate grouping

The challenge of duplicates grouping derive based on the intuition that a relation of equi-
valence is transitive. For example, with respect to Figure 5.7, since A = B and B = C
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Fig. 5.7: Graph Equality relationships

then we can also conclude that A = C. As a consequence, graph disambiguation can-
not be based on GE alone, i.e. by merging pairs of equivalent objects, but should rather
based on groups of equivalent objects. With respect to the example above, if no other
object in GE is reached via a relationship equalTo from A, B, or C, then the group of
objects {A,B,C} is a connected component in GE and represents a set of equivalent
objects, ready to be merged into one object.

Fig. 5.8: Groups of duplicated objects, graph full mesh

Grouping is required because GE is potentially incomplete. On the one hand, duplic-
ate identification adopts heuristics that may generate false negatives, i.e. overlook pairs of
equivalent objects. Indeed, in an ideal world where deduplication systems would be able
to process duplicate identification in a graph of n objects by computing all the possible n2

matches in a relatively short amount of time, the resulting overlay graph composed by the
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equivalence relationships would correspond to a set of full meshes corresponding to each
duplicates group. The figure 5.8 represents an example of four groups (or clusters) of du-
plicates. However, since the heuristic methods described in paragraph 5.2.4 and 5.2.4
aims at reducing the duplicates search space and therefore the number of matching op-
erations, the overlay graph resulting from the overall duplicates identification phase will
be a set of connected components, each corresponding to a group of duplicates. On
the other hand, matching strategies or available object properties may not be enough
to identify the equivalence of two objects. Only data curators in this case may claim the
proper relationships and feed it to the system. A grouping phase distributes equivalence
relationships until all its connected components are found.

The problem of connected components has well established linear time solutions (with
respect to the numbers of the objects and edges of the graph) using either breadth-first
search (BFS) or depth-first search (DFS). The main idea in BFS search algorithm can be
described as:

• Start at any source object o and visit,
• All objects at distance d = 1,
• Followed by all objects at distance d = 2,
• Followed by all objects at distance d = 3,
• . . .

BFS corresponds to computing shortest path distance (number of edges) from o to
all other objects. Typically, to control progress of BFS and avoid infinite loops, the relative
algorithms “color” the object to mark their visited status:

• White before we start;
• Gray after we visit the object but before we have visited all its adjacent objects;
• Black after we have visited the object and all its adjacent objects (all adjacent objects

are gray).

A simple connected components algorithm CCbyBFS is illustrated in Listing 5.14,
which computes BFS and calculates individual connected components in O(|O| +
|Overlayr(equivalenceGraph)|) time. For all objects in the GE the algorithm computes
the corresponding connected component CC by following a BFS search and then adds
it to the set of all connected components C. The process marks the objects it has visited
to avoid the same connected component is calculated again in further algorithm rounds
and uses a queue Q to remember about all gray objects the algorithm encounters but are
still not done with.
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1 foreach o ∈ O do {
2 if color(o) = white then
3 C = C∪ CCbyBFS(o)
4 }
5

6 CCbyBFS(s) {
7 color[s] = gray
8 CC = {s}
9 ENQUEUE(Q, s)

10 while Q is not empty do {
11 DEQUEUE(Q, o)
12 foreach < o, o′, equalTo >∈ Overlayr(equivalenceGraph) do {
13 if color[o′] = white then {
14 color[o′] = gray
15 CC = CC ∪ {o′}
16 ENQUEUE(Q, o′)
17 }
18 color[o] = black
19 }
20 }
21 return CC
22 }

Listing 5.14: BFS Algorithm

After the execution of the algorithm C contains all connected components in the graph
according to the equalTo relationships, namely groups of duplicate objects. Before such
groups are passed over to the next step of graph disambiguation, which concerns mer-
ging of duplicates, they first need to be validated with respect to the diversity assertions
provided by data curators in the feedback phase. Such assertions are provided in the
form of relationships < o, o′, differentFrom >∈ GF . For each of such triples, all con-
nected components CC ∈ C such that {o, o′} ⊆ CC shold be removed from C. The
intuition is that a relation of difference between two objects of a group has the side effect
of transitively propagating to all objects the group.

Duplicates merging

Once duplicate grouping is completed the deduplication workflow proceeds with the ac-
tion of merging the objects in each group. For each connected component this phase
should build a representative object, elected to literally represent and replace in the graph
all duplicates in the group. This new graph takes for under a different overlay, called
dedupgraph. Two issues must be tackled: (i) election of a representative object for the
group of duplicates and (ii) distribution strategy of the relationships from the objects in
the group to the representative object.

Representative object election As we state in this work the purpose of a deduplica-
tion system, except for the obvious duplicates (or ambiguity) removal, lies in addressing
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a wider spectrum of data quality issues. In fact real world data, other than affected by
duplication of information, is often characterized by missing values, issue that becomes
more prominent in results of data integration tasks. To tackle such kind of issues, the
system exploits the information included in members of a duplicates group to build a rep-
resentative object characterized by higher quality. The basic idea is that of driving the
property fusion process, to obtain a richer representative object. Important aspects in-
volved in the process are (i) generating an identifier for the representative object, and (ii)
merging strategy of the duplicate objects’ properties.

Starting from the results of our BFS algorithm, the system allows users to define the
strategy used to assemble the representative object. Such strategy can be set in the score
configuration by picking a predefined or user-defined function from a list. Such functions
can be grouped in two categories that drives the system on how to proceed with the the
graph disambiguation phase:

• Pick one: in this case the system will choose one of the objects in each connected
component according to a selection criteria defined by the user in the configuration
score. This can be done by a function that sorts the objects, based on the value of
objects properties. The system offers a set of such functions (e.g. sorting lexicograph-
ically the objects by their object IDs) but end-users can define, integrate and use their
own (e.g. select object that has a global identifier property and richest metadata).
Once the objects are sorted, the system picks the head of the list, which will become
representative for the others, in this case the system will not introduce new objects in
the graph.

• Add new: The second action is that constructing the representative object, starting
from all the objects in each connected component. This requires (i) the creation of
an identifier and (ii) the adoption of a metadata filling strategy. Again the creation of
an identifier can be by default by generating a random identifier (at the cost of a loss
of reproducibility), and also in this case end-users can integrate customized functions
(e.g. stateless identifier out of a global identifier property of the object). The objects
metadata filling mode can be configured according to different strategies:

– Union: the representative object metadata will contain the union of all the duplic-
ated objects metadata; this approach allows to not lose any information, deleg-
ating to the whom will consume the disambiguated graph (service or human) the
burden to select the needed information.

– Fill by order: duplicated objects contributing to the representative construction can
be sorted according to user-defined functions (e.g. by assigning a priority to the
duplicates provenance), and merging the attributes according to a given ordering;
This approach allows to “fill the holes” of missing metadata, leading to a general
improvement in the model coverage in the disambiguated graph;

– Selective: only select the attributes according to a given user-defined predicate.
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Distribution of relationships The other aspect involved in the graph disambiguation
process is related to the relationship distribution strategy. As the disambiguation process
takes actions that alter the graph structure (i.e. introduction of new representative objects
and virtual deletion of merged objects), it is important to consider the effect of such ac-
tions on the existing edges, i.e. how the graph disambiguation will affect the relationships
between the entities in the graph, and in general its semantic expressivity.

Fig. 5.9: Graph disambiguation example

Figure 5.9 illustrates two cases where a graph representing the publications P1 and
P2, related to their respective authorsA1,A2,A

′

1,A
′

1, and provided respectively by journ-
als J1 and J2, are identified as duplicates and merged into the publication PR. In case
(a), P1 and P2 are identified as duplicates, and the system was configured to promote
the relationships that originally occurred between P1 and J1, and between P1 and A1,
A2. On the other hand, the case (b) shows the result of a different kind of action taken
over the graph. In that case the system was configured to preserve all the relationships,
making the representative publication to become an hub.

Overall the system allows users to specify the desired policy for the links manage-
ment as part of the deduplication score. The user interfaces allows to pick one policy,
implemented by dedicated functions and applied as part of the graph disambiguation
algorithm. The system provides the following policies:

• Merge All : this policy assumes that all the ingoing and outgoing edges occurring
between a deleted object and its neighbours gets redirected to the representative ob-
ject. This allows to reduce to the minimum the information loss derived by the actions
performed on the graph, however depending on the case it could introduce further
ambiguity. For example, with respect to the figure 5.9 (b) the publication PR will ap-
pear as collected from both Journals J1 and J2 (fact that could represent an added
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value from the end user perspective), but will inherit all the authors of the duplicated
publications P1 and P2, fact that represent a source of ambiguity until also the person
entities are processed for deduplication as depicted in figure 5.10;

• Include by : this policy will redirect only the links that satisfy a given predicate, to be
expressed in term of the duplicate’s neighbour properties, or typology. For example a
certain configuration might redirect only the authorship relationships of authors with a
given provenance.

• Exclude by : this policy will redirect all the existing relationships (ingoing and outgo-
ing edges) occurring between a deleted object and its neighbours, except for those
that satisfy a given predicate, to be expressed in term of the duplicate’s neighbour
properties, or typology.

Fig. 5.10: Multiple entity disambiguation

A special case that needs to be treated differently occurs in graphs that include links
between entities of same type, e.g. a similarity relationship between two publications.
When two (or more) entities gets merged, and they have a link between them, the rela-
tionship would be transformed in a self-loop on the representative object. Depending on
the application domain this behavior may be needed or not, therefore the system allows
to be configured accordingly.

Creation of Dedup Graph

The combination of duplicate grouping and duplicate merging generates a new Dedup
Graph GD, which is obtained, as described in Listing 5.15, by adding to the graph, with
overlay dedupGraph:

• the representative objects obtained from each group CC ∈ C of duplicates, denoted
as repr(CC);
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• the relationships created from and to the representative object;
• all objects and relationships that were not touched in the equivalence graph.

1 reprObjects = {repr(CC)|cc ∈ C}
2

3 // adds representative objects to the graph
4 AddObjects(reprObjects)
5

6 // adds the overlay dedupgraph to representative objects in the graph
7 AddOverlayo(reprObjects, dedupGraph)
8 foreach o ∈ reprObjects do
9 // the set of objects merged by representative objects

10 MergedObjects = +Merges(o)
11

12 // adds the overlay dedupGraph to all objects that are not merged by representative objects
13 AddOverlayo(Overlayo(

′anchorGraph′)/MergedObjects, dedupgraph)
14 foreach o ∈MergedObjects do {
15 MergedRels = +Rout(o) ∪Rin(o)
16 foreach < o, o′, l >∈ Rout(o) do {
17 AddRels(< o, repr(o′), l >)
18 AddOverlayr(< o, repr(o′), l >, dedupgraph)
19 }
20 foreach < o′, o, l >∈ Rin(o) do {
21 AddRels(< repr(o′), o, l >)
22 AddOverlayr(repr(o

′), o, l >, dedupGraph)
23 }
24

25 // adds the overlay dedupGraph to all rels that are not touched by representative objects
26 AddOverlayr(Overlayr(anchorGraph)/MergedRels, deduGraph)
27 }

Listing 5.15: Anchor graph generation pseudo-algorithm

Figure 5.11 illustrates three connected components resulting from the equality overlay
graph and the relative representative objects, generated according to a given strategy.

Fig. 5.11: Connected components and relative representatives
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5.2.6 Data curators feedback

In order to allow data curators to refine the results of the automatic deduplication pro-
cess, the system exposes ways to accept assertions about the equivalence or diversity
between objects. Typically curators have access to the collection of objects of an entity
type as created in the Dedup Graph GD. Curators can apply two kinds of actions:

• Grouping sets of objects to make state their equivalence: data curators can gather
raw or representative objects, in the second case the implicitly insert in the group all
objects merged by the representative object; once the group is “committed” a new
representative object is created, together with a set of assertions of equality between
all pairs of objects in the group;

• Removing one object from the merged objects of a representative object: in one scen-
ario the representative object merged two objects, so the removal of one object re-
moves the representative object from the graph and “frees” the two objects; in the
other scenario the representative object persists and only the object at hand is re-
moved; in both cases, the action results in a set of assertions of diversity between the
removed object and all others that were merged by the representative object.

Fig. 5.12: Equivalence transitivity

Each of these assertions nourish a Feedback Graph GF , where such feedback are
made explicit thanks to relationships between objects of kind equalTo and differentFrom:

• Equivalence assertion: states that two objects B and C are equal. The system will in-
troduce the equivalence relationship by adding the relationships < B,C, equalTo >

and < C,B, equalTo > to the graph, marking them with the overlay feedbackgraph.
After the duplicate identification phase such relationships will be marked with overlay
equivalencegraph so that they can be fed to the next grouping phase. Figure 5.13 il-
lustrates two disjoint connected components [A,B] and [C,D,E] that gets connected
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by the user assertion above, to be incorporated in the otherwise disjoint connected
components that involves them.

Fig. 5.13: User assertions

• Diversity assertion: states that two objectsD and E are distinct. The system will intro-
duce the difference relationship by adding the relationships< D,E, differentFrom >

and< E,D, differentFrom > to the graph, marking them with the overlay feedback
graphGfeedback. Unlike equivalence relationships, these relationships are not propag-
ated after duplicate identification, but rather after the duplicate grouping phase. This
is due to the fact that such statement may be superseded due to transitive clos-
ures of erroneous equivalence relatinships. Figure 5.12 shows three equivalence
relationships resulting from duplicate identification, and < A,B, equalsTo > and
< B,A, equalsTo > are removed by a diversity assertion. By transitivity, the two ob-
jects would again be put together in the grouping phase, overlooking the diversity as-
sertion. In order to respect user’s statement depicted in figure 5.13 the system applies
the transitive property to the diversity assertion as well, such that if D is not equival-
ent to E, then also the object C must be different from D. This causes the duplicates
group to be dissolved, removing the equivalence edge < E,D, eqaulTo > ECD as
well as EDE .
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GDup

In this chapter we describe GDup, a system implementing the BGEDS’s architecture de-
scribed in chapter 5. The section of this chapter will provide the implementation details of
the architectural areas identified in the previous chapter in order to meet the requirements
presented in chapter 4. In the implementation plan we only considered Open Source
tools.

6.1 Import and Storage

In section 5.2.2 we presented the concepts concerning the graph import layer, respons-
ible for acquiring graphs conforming to a given SPGM schema and store them in GDup’s
storage system. In this section we will proceed in describing the encoding used to store
graphs responding to the SPGM and the database system used to implement GDup’s
persistence layer.

6.1.1 Graph encoding

Graphs find two common representations: adjacency matrix, and adjacency list. Depend-
ing on the graph properties at hand the choice might lean towards one representation or
another. In particular, an important property to be considered when choosing the most
adequate representation is the density. In a graph G = (V,E) its density can be defined
as D = |E|

|V | (|V |−1) , thus a dense graph is a graph in which the number of edges is close

to the maximal number of edges, i.e. |E| = O(|V |2). Complementarily a graph is sparse
when its number of edges is close to the minimal number of edges, i.e. |E| = O(|V |).

• Adjacency Matrices (AM) represent a graph as an n × n square matrix M , where
n = |V |, and Mij = 1 represents the existence of a link from node vertex i to j.
Adjacency matrices has the advantage to support mathematical manipulation, and
computation on ingoing and outgoing edges correspond to iterations over the rows
and columns. On the other hand sparse matrices introduces a lot of zeros in case of
sparse graphs, causing considerable waste of storage space;
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G =


a b c d

a 0 1 1 1

b 1 0 1 0

c 0 1 0 1

d 1 1 1 0


• Adjacency Lists (AL) can be seen as a compact representation of the adjacency mat-

rix, in which every vertex has associated a list of its outgoing edges. This make it
easy to compute over outgoing edges, while makes it much more difficult to support
processing over ingoing edges. Moreover adjacency lists are more suited to encode
sparse graphs rather than dense graphs.

G =


a b c d

a 0 1 1 1

b 1 0 1 0

c 0 1 0 1

d 1 1 1 0

 −→
a : b, c, d
b : a, c
c : b, d
d : a, b, c

In general, the level of density is hard to predict as it strictly depends on the nature
of the graph to be deduplicated and on its duplication degree. In fact, even if an original
graph G has low density, its corresponding deduplicated graph Gd may feature higher
density, due to the introduction of representative objects and the redirection of the rela-
tionships (see section 5.2.5). High duplication rates make representative objects become
graph hubs, which in graph theory are vertices with an high degree, i.e. a high number of
edges, thereby increasing the density of G. In general:

D(G) <= D(Gd)

In GDup we opted for representing graphs as adjacency lists, as the average real-
case we were confronted with scenarios that were characterized by low-density graphs.
In general, we believe this choice can cope well with a large class of real world scenarios.
In case of graphs characterized by an high presence of duplicates, it is expected that the
deduplication process will cause a significant increase of density in the deduplicated
graph produced as output. Higher number of duplicates typically implies higher load on
the processing layer. More specifically this results in (i) the candidate matching phase
to produce an higher number of equality relationships between pair of objects, (ii) the
connected component identification algorithm to scan larger components, and (iii) the
relationship distribution phase to process more data. Likewise the resource usage on the
layers dedicated to persist the information will be higher as the HBase rows will store an
average higher number of outgoing edges.
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In the context of OpenAIRE we had the opportunity to face two cases of entities
duplication that well represents the difference between cases of low and high density du-
plication cases, i.e. publication and person, respectively. In fact, as we will discuss more
in details in chapter 7, the average number of duplicated publications in the OpenAIRE
graph was found to be between 2 and 3, while in the case of individuals, typically authors
of publications, the average number of duplicates is much higher. To cope with this duality,
in case of graphs providing high rates of duplicates, GDup can make use of Ground Truth
information, activated for a given entity type. The activation of a Ground Truth changes
the perspective of the deduplication process, since part of the deduplication results can
be made available before the candidate identification is executed, by mapping raw objects
onto anchor objects during the graph import phase. Such pre-processing can consider-
ably reduce the time needed to process the whole collection of person objects, limiting
the identification of duplicates to the objects that are not yet part of the Ground Truth.

6.1.2 Storage Layer

For the purpose of this work, graphs conforming to the SPGM needs to be stored in a
database capable to meet the requirements described in sections 4, more specifically,
the non functional requirement 4.3.2 covers an important role for the realization of a
deduplication system capable to manage graphs of arbitrary size:

NF.3 Efficiency and scalability The system must be able to store Big Graph with
in principle no limits of scalability. The same storage technology should therefore
make it possible to execute all steps of candidate identification and matching, as
well as all steps of graph disambiguation. Indeed, due to the amount of data in-
volved, it is recommended not to invest on an approach that adopts multiple storage
systems for the different challenges.

In fact in GDup we aimed at a database system capable to meet a more elaborate set
of different non functional criteria:

• Persistence of petabytes of data: The system should be able to store huge amount of
data. Scaling up the hardware on single node solutions, other than requiring consid-
erable upfront investment, tend to be unpractical and over expensive beyond certain
requirements, therefore we aimed at distributed storage systems;

• Extendability: The system should be freely extensible in terms of storage and pro-
cessing capacity in order to adapt to new application requirements and accommodate
changes in workloads. This allows to avoid to re-think the whole system architecture
by adding new resources as needed;

• Distributed processing: Complementary to the need to store vast amounts of data
across a set of nodes, data intensive tasks requires efficient processing techniques
that, in case of big data applications, often requires to move the computation as close
as possible to the data itself.
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Moreover, in strike contrast with typical graph databases that implements efficient
graph traversal functionalities, in GDup , like in many other data intensive applica-
tions [25], the requirement is shifted towards efficient bulk read and write operations,
as well as supporting a tight integration with a distributed data processing system.

The architecture of BGEDS described in chapter 5 is typical of systems realizing
an ETL1 + OLAP2 chain. Among the database technologies sprouted from the NoSQL
movement, column stores are well suited to implement OLAP systems, and we found
in HBase3a good candidate for implementing arbitrary large Graph Adjacency Lists. A
number of projects have been proposed in recent years based on HBase, among these
we can mention “Scalable rdf store based on hbase and mapreduce” [80], “HBase and
Hypertable for large scale distributed storage systems”[44], “ Jena-HBase: A distributed,
scalable and efficient RDF triple store” [43], “Distributed semantic web data management
in HBase and MySQL cluster” [24]. HBase is the open source version of BigTable, the
distributed storage system developed by Google for the management of large volume
of structured data. As stated in the article that presented BigTable [11], it is described
as “a distributed storage system for managing structured data that is designed to scale
to a very large size: petabytes of data across thousands of commodity servers.”, and
implements a quite simple, yet powerful data model consisting of a sparse, distributed,
persistent multi-dimensional sorted map.

Such map is indexed by a row key, column key, and a timestamp, and each value in
the map is an uninterpreted array of bytes. HBase is based on the popular framework
Hadoop [88], that in recent years, thanks to the decreasing cost per byte of the stor-
age systems, has been widely adopted in both business and academia, enabling large
scale distributed data processing and analytics thanks to the Map Reduce programming
model [20, 54]. HBase uses HDFS as primary storage layer [26], the open source im-
plementation of the Google File System presented at the 19th ACM Symposium on Op-
erating Systems Principles in 2003 [27]. The Hadoop Distributed File System (HDFS)
is designed to run on commodity hardware, to be highly fault-tolerant, to provide high
throughput access to application that manages large data sets [79, 9].

In the GDup implementation plan we considered using one HBase table for each
graph received from the mapping layer. Each graph is represented as an Adjacency List,
i.e. :

• Vertices: every vertex in the graph corresponds to a row. The vertex identifier is used
to build row keys, that, in order to support efficient bulk read operations (scan) are
built as fixed-length strings, prefixed using a code associated to the Vertex Type (VT ).
For example, in case of a graph containing publications and their authors, row keys
for the two vertex types will be generated as follows:

1 ETL - Extract, Transform, Load
2 OLAP - Online Analytical Processing
3 HBase - https://hbase.apache.org

https://hbase.apache.org
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VT VT code Vertex Id Row key
Publication 00 10.1234/xyz 00|02e0c50bbf0d60f8a378dc611030118e

Person 01 10.1234/xyz::Turing, A. 01|509fd4289a8eaf8da90a2e94c601a30e

Table 6.1: HBase Table - Row Key example

• Properties: the properties (metadata) associated to each object are stored in a dedic-
ated column family metadata, that will hold the serialization of an object conforming
to the properties defined for a given Vertex Type (VT ):

• Status: the vertex status (described in section 5.1) is stored in a dedicated column
family, and contains information about the virtual deletion of a given vertex, and the
provenance of the actions taken by the system on it.

Row key metadata status
00|00 { title : "asd", abstract : "asdasd" } { deleted:false }
01|01 { surname : "Turing", name : "Alan" } { deleted:false }

Table 6.2: HBase Table - Object properties

• Edges: Edges are stored in labelled column families forming semantically homogen-
eous groups of relationships. More specifically, an Edge Type ET defiles a column
family, and each qualifier under that column family is an outgoing edge from a given
row. The cell value will contain the metadata for a single edge. Overall an HBase table
containing a graph that describes articles and authors can be described by table 6.3:

Row key
metadata hasAuthor isAuthor

article person 01|01 01|02 00|00

R1 00|00 { title:"..." } status:{ } status:{ }

R2 01|01 {name:"A1"} status:{ }

R3 01|02 {name:"A2"} status:{ }

Table 6.3: HBase table - Vertices and Edges

Deduplication object model

The deduplication configuration defines a binding between the objects (and their proper-
ties) of the graph represented in the Structured Property Graph Model (SPGM) and the
functions that will process them. To do so, a section of the configuration is dedicated to
define the deduplication document model. It consists of a set of triples name, type, path,
plus an optional function declaration:
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• Name: represent the property name;
• Type: identifies the typology of a property value. Structured values (in particular Lists

and Object values) requires custom deserialisation strategies;
• Path: declares an xpath-like string used to identify the value in the SPGM to be asso-

ciated with the given name.
• Function: declares a function to be applied to the value extracted by the Path, used to

manipulate the value, typically to perform cleaning and normalization operations.

1 "model" : [
2 {
3 "name":" title ",
4 "type ":" String ",
5 "path":" result /metadata/ title [ qualifier #classid = {main title }]/ value"
6 },
7 {
8 "name":"authors",
9 "type ":" List<Person>",

10 "path":" result /authors"
11 }
12 ]

Listing 6.1: GDup configuration document model

The example in listing 6.1 describes an object composed of a title and a sequence of
person objects authors.

6.2 Workflow pipelines

So far we used several times the expression “workflow” to denote the series of activities
that are necessary to complete all the phases of the deduplication task. In order to provide
end users with a system capable to configure, execute, and integrate the individual steps
depicted in the end-to-end deduplication workflow depicted figure 5.1 GDup required a
tool supporting the specifics of such orchestration. In this section we will describe the
technological stack supporting the orchestration of the end-to-end deduplication work-
flow, in particular we will briefly describe the D-Net software toolkit [56], and more spe-
cifically its Manager Service and Resource Orchestration component (MS_RO) [4], that
was extended and used to compose all the different workflows realizing each aspect of
the deduplication task.

6.2.1 D-NET Software toolkit

D-NET is a service-oriented framework specifically designed to support developers at
constructing custom aggregative infrastructures in a cost-effective way. D-NET offers
data management services capable of providing access to different kinds of external
data sources, storing and processing information objects of any data models, converting
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them into common formats, and exposing information objects to third-party applications
through a number of standard access API. Most importantly, D-NET offers infrastruc-
ture enabling services that facilitate the construction of domain-specific aggregative infra-
structures by selecting and configuring the needed services and easily combining them
to form autonomic data processing workflows. The combination of out-of-the box data
management services and tools for assembling them into workflows makes the toolkit an
appealing starting platform for developers having to face the realization of aggregative
infrastructures.

The Enabling Layer contains the Services supporting the application framework.
These provide functionalities such as Service registration, discovery, authentication and
authorization, subscription and notification and data transfer mechanisms through special
ResultSet Services. Most importantly, these Services can be configured to “orchestrate”
Services of other layers to fulfill application specific requirements.

D-NET Manager Service

The Manager Service (MS) addresses service orchestration and monitoring, hence “auto-
nomic behavior”. D-Net workflows are resources describing sequences of steps, where
each step may consists of business logic (i.e. Java code), remote service invocations,
workflow forks (i.e. parallel sub-workflows), and workflow conjunctions (confluence of par-
allel workflows). Workflows can therefore be defined as a directed graph, where nodes
represents actions and edges represents the execution path of such actions. Figure 6.1
provides a visual representation of one of the workflow that can be defined in D-NET.
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Fig. 6.1: D-NET workflow instance
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Typically, service invocations are preceded by a look-up into the Service registry, in
order to discover the “best” service of the needed kind and available to execute the call.

Workflows can be fired manually or as a consequence of the notification of a resource-
related event from D-NET’s Information System or because of scheduled events. Work-
flows are commonly used to automatically schedule data collection from data sources,
population of information spaces, and synchronization of information space mirrors or
information space staging.

Workflows can implement long-term transactions by exploiting subscription and noti-
fication of events in the Information System. When a time-consuming step is to be fired
(e.g. indexing a large set of metadata objects, or fire a long lasting Map Reduce Job),
the invocation is accompanied by a subscription request to the event “conclusion of the
step”. The MS waits for the relative notification before moving on to the next step.

Workflows can also be used as monitoring threads, checking for consistency and
availability of resources or consistency and Quality of Service of the aggregative infra-
structure. For example, aggregative infrastructure policies may require that a given col-
lection of information objects be replicated K times. A monitoring workflow may, at given
time intervals, check that this is really the case and possibly take corrective actions, e.g.
creating a missing replica. When corrective actions are not possible, warning emails can
be sent to administrators.

Fig. 6.2: D-NET Manager Service user interface

The MS user interface offers a graphical overview of the running workflow and allows
administrators to inspect their execution status. It is possible to manually re-execute them
or to redefine their configuration parameters. Administrators can also consult the history
of workflow executions, which keep track of successful and failed workflow steps, as
well as of values of given input/output parameters for such steps (e.g. endpoint of a
service call that did not succeed). Workflows are treated as infrastructure resources,
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hence can be shared by different instances of the Manager Service, and are preserved
in the Information System.

Hadoop as a D-NET Service

In order to support end users with a single access point to the entire end-to-end dedu-
plication workflow, we developed the D-NET Hadoop Service. It acts as a bridge between
the D-NET Manager Service and an arbitrary number of Hadoop clusters, enabling (i) the
implementation of smart discovery mechanisms that allows to address different disam-
biguation tasks on different Hadoop instances, and (ii) a transparent interaction between
the Manager Service and the Hadoop cluster capabilities. More specifically the D-NET
Hadoop service supports the following features:

• HDFS: The Hadoop Distributed File System is made available to all the other services
participating in the D-NET infrastructure. Files on HDFS can contain intermediate
results of data intensive tasks, or provide support for the applications logging;

• HBase: The Manager Service has can access the HBase API. Common opera-
tions include the management of tables, which can be created according to arbitrary
schemata, read operations to individual rows or subset of rows via scan operations4.
In order to feed objects to a table, clients must provide an input ResultSet and the
proper data transformation rules required to map the objects into rows of the HBase
cluster according to the opted physical representation of the data model;

• Map Reduce: Most important, in order to realize the data processing chain described
in the BGEDS architecture 5.2.4,5.2.5 the D-NET Hadoop Service supports interac-
tion with the Hadoop components responsible for submission and monitoring of Map
Reduce jobs (JobTracker on Map Reduce v1, and YARN on Map Reduce v2). The
Manager Service can therefore implement complex data processing chains by com-
bining different Map Reduce jobs, hiding the huge parametrization effort required by
the deduplication algorithms, possibly exploiting different input and output formats for
each job (e.g. input from an HBase table can be processed and the output stored on
HDFS files, or vice versa), monitor the job status to allow the workflow to advance in
its steps.

Workflow nodes meant to submit Map Reduce jobs will stop the workflow’s execution
path, while the D-NET Hadoop service starts monitoring the job progress. Typically in
case of failures the workflow will finish in an error state (providing also the error cause),
while in case of successfully execution it will proceed with the subsequent node. Unlike
the dedicated workflow manager provided in the Hadoop ecosystem Oozie5that supports
only workflows defined as DAGs (Directed Acyclic Graphs), the D-NET Manager Service
allows the definition of loops, which makes it possible to implement iterative Map Reduce
algorithms. In case of loops the stop condition must be handled explicitly in a workflow
node using the parameters found in the workflow environment.
4 https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html
5 https://oozie.apache.org

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html
https://oozie.apache.org
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Each Map Reduce Job managed by the D-NET Hadoop Service has its own configur-
ation profile as a resource persisted in the Information System. It specifies the nature of
the input and output formats (e.g. HBase table, SequenceFile, etc. . . ), the Java classes
implementing the Map and Reduce phases, as well as additional parameters, including
number of Map and Reduce tasks. When reading graph objects from a specific HBase
table, the configuration specifies also the parameters used to set the scan operation.

6.3 Deduplication on Map Reduce

In this section we illustrate how the Map Reduce paradigm allows to efficiently implement
the (i) the candidate identification, (ii) the candidate matching, and (iii) graph disambig-
uation phases described in the end-to-end deduplication workflow. Although the input of
the system is a graph, in this section of the workflow the algorithms implementing candid-
ate identification and candidate matching phases works on top of vertices of a give type
VT , i.e. a collection of homogeneous objects.

Theoretically duplicate identification requires pairwise object comparisons, hence
a Cartesian product with quadratic complexity O(n2). Candidate identification aims at
overcoming the consequent efficiency issues by implementing heuristics (i.e. blocking,
nearest neighborhood [64]) capable of skimming out pairs of objects that are unlikely
identical. Heuristics efficiently identify sub-collections of objects that are likely to be du-
plicates and then apply candidate matching only to those. Heuristics improve efficiency
but may indeed decrease effectiveness, since some pairs of duplicate objects may be
mistakenly left out.

Different implementations were proposed to address object deduplication on large
datasets with Map Reduce, each providing a contribution for different aspects of the
problem. For example, Kolb at al. analyse the memory bottlenecks and load balancing
issues intrinsic in Map Reduce implementations of the Sorted Neighborhood Blocking
method [51, 49, 47]. Hsueh at al. further elaborate on the blocking and load balancing
techniques in [34], McNeill et al. propose a Dynamic Blocking technique in [63], and
Vernica et al. propose a Map Reduce based Set-Similarity Join method [83]. Other ap-
proaches are based on the objects semantic similarity [85]. Currently GDup implements
the candidate identification phase using a variation of the Sorted Neighborhood Blocking
method that uses a configurable set of clustering functions as described in section 5.2.4.

6.3.1 Candidate identification & matching

The candidate identification phase aims to reduce the duplicates search space required
by all the possible pairwise comparisons between the properties of the objects belonging
to a given Type VT . GDup implements a number of predefined functions that allows to
select the objects in the graph that are eligible for detailed matching by grouping them
into blocks. This technique in record linkage literature is known as Blocking and a number



80 6. GDup

of variations have been proposed and evaluated by researchers in the past years [64, 6,
12, 36, 38, 90, 31, 22], as well as non Map Reduce approaches [75]. The general idea of
such methods is that each block is populated by selecting approximately similar objects,
which are much likely to produce a positive match, while excluding a priori a large part
of true negative matches. In GDup we provide an hash based blocking technique, so
that each block Bi is associated with an hash key hi, such that the vertex providing the
property pi is hashed to the block Bi if hash(pi) = Bi. End-users can combine their
own hashing functions with a set of domain independent functions provided in GDup that
includes:

• Acronyms: Given a string value, returns a list of strings built by combining the i − th
character of each significant word in the input text. Parameters allows to drive (i) the
number of hash keys returned, (ii) the minimum and the maximum length of the hash
keys. For example the string "Search for the Standard Model Higgs Boson" might
produce [ssmh, etoi, aadg, rneg];

• Ngrams: Given a string value, returns a list of strings built by picking the first n charac-
ters from a sliding window of size m that shifts over each significant word in the input
text. For example the string "Search for the Standard Model Higgs Boson" might pro-
duce [sea, ear, sta, tan, mod, ode, hig, igg];

• NgramPairs: Given a string value, returns a list of strings built by considering each
pair of significant words in the input text, and for each pair build an hash key by
combining the first n characters of the two. For example the string "Search for the
Standard Model Higgs Boson" might produce [seasta, stamod, modhig];

• Sorted NgramPairs: Based on the NgramPairs function, sorts the significant words
before combining the ngrams. For example the strings "University of Pisa" and "Pisa
University" might both produce [pisuni];

• Ngrams: Given a string value, returns a list of strings, each of them built by combining
the suffix and the prefix of each pair of significant pair of words in the input text.
For example the string "Search for the Standard Model Higgs Boson" might produce
[rchsta, ardmod, delhig, ggsbos].

Each set of objects grouped in blocks by a common hash hi can be processed inde-
pendently from each other. This is where the the Map Reduce programming paradigm
provided by the Hadoop framework contributes to allow candidate identification and
matching phases to scale out. Objects in the graph of a given type VT are bulk read
from HBase and processed for candidate identification by one map task per HBase Re-
gionServer6.

Equivalence matching is the phase where every pair of objects identified in the can-
didate identification phase are matched to return a measure of similarity in between 0
and 1. Such similarity measure is expressed by functions in charge of replacing human
judgement, often based on (combinations of) string matching functions. Similarity func-
tions are hard to define, as they should encode factors that are easy to spot for humans
6 http://hbase.apache.org/book.html#splitter

http://hbase.apache.org/book.html#splitter
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and less easy for machines, as well as deciding beyond which similarity threshold two
objects are to be considered equivalent. Indeed, minimal decimals of difference may lead
to consider two distinct objects as equivalent or dissimilar. For example, when matching
to two publication objects by their titles “A cat perspective on the logic of mouses” and “A
cat perspective on the logic of mouses v2”, the titles are different but may be 0.98 similar.
With an equivalence threshold of 0.99 we would rule out the pair of objects, but we would
lose the case-match for the publications “A cat perspective on the logic of mouses” and
“A cat perspective on the ogic of mouses”, which are mistakenly different due to a typo
(the missing “l”).

Vertex hash keys
A [1, 2]
B [1, 2]
C [2, 4]
D [2, 5]
E [2, 5]
F [1, 3]
G [1, 3]
H [2, 4]

Fig. 6.3: Blocking objects by hash keys

The basic idea for the Map Reduce implementation can be described as follows. Each
map task processes a subset of the objects of a given type VT , and emits a number of
hash keys h, depending on the hash functions fH specified in the configuration.

Algorithm 1: Candidate identification (map phase)
input : conf : the dedup conf, rk: hbase row key, O: object
output: set of pairs [hi, O]

1 Setup(conf)

2 Map(rk,O)
3 for hashf ∈ conf do
4 for h←− Hash(O, conf) do
5 Emit(h, O)
6 end
7 end

On the other hand, each reduce task receives the sequence of objects (objectQueue)
grouped for a given hash value. Then the reduce task calculates the similarity between
each pair of vertices according to the given configuration, and in case of a similarity value
above the configured threshold, emits the equivalence relationships (edges) among the
two vertices. In case of large blocks users should activate the sliding window mechan-
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ism, which will sort the list of objects received by the reduce task by a configurable object
property (or a manipulation of the same), and then perform the comparisons only among
the objects that fall within the window bounds. The algorithm implementation considers
also configurable thresholds to define the window size, as well as the maximum number
of objects to be retained in a block.

Algorithm 2: Candidate matching (reduce phase)
input : conf : the dedup conf, h: the grouping hash, objectQueue: the objects
output: pairs of equivalence relationships between the objects

1 Setup(conf)

2 Reduce()
3 while objectQueue is not empty do
4 pivot←− objectQueue.head()
5 for O ∈ objectQueue do
6 sim←− Similarity(pivot, O, conf)
7 if sim >= conf.threshold then
8 EmitEquivalence(pivot, O)
9 EmitEquivalence(O, pivot)

10 end
11 end
12 end

Figure 6.4 provides an overview of the Map Reduce implementation of the candidate
identification and matching phases.
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Fig. 6.4: Map Reduce - Blocking with Sliding Window

6.3.2 Graph disambiguation on Map Reduce

Each pairwise comparison whose similarity measure is above the configured threshold
produces a new equivalence relationship, which is added to the graph’s adjacency list
stored on HBase.

(a) Equality relationships as Adjacency list (b) Equality Graph GE

Fig. 6.5: Equality relationships in HBase

The challenge arising in duplicates grouping is based on the intuition that a relation
of equivalence is transitive. For example, with respect to Figure 6.5, since A = B and
B = C then we can also conclude that A = C. As a consequence, graph disambiguation
cannot be based on GE alone, i.e. by merging pairs of equivalent objects, but should
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rather be based on groups of equivalent objects. With respect to the example above, if no
other object in GE is reached via a relationship equalsTo from A, B, or C, then the group
of objects {A,B,C} is a connected component in GE and represents a set of equivalent
objects, ready to be merged into one object.

In order to identify each connected component cc in the equivalence graph GE we
need to classify each component to a common key that is unique in GE . A common
solution is to let a component be classified by its lowest id (in our case its row key), e.g.
the component {A,B,C} has the lowest id A, i.e. the classifier for this component.

Finding the connected components of a graph is a problem that has been studied
for a long time. Well known methods perform in linear complexity using depth first (or
breadth first) graph traversal search [81] to discover the connected components. In order
to address the problem on massive graphs, several algorithms were proposed in [5, 78,
32]. Such methods however, although performing in logarithmic time, were based on
shared memory systems, thus not suitable for the Map Reduce programming model,
which is based on shared nothing clusters, and designed to batch process independent
and disjoint sets of data.

The current GDup implementation of the connected component identification was in-
spired by the CC-MR method [76, 69], and further analysed by Kolb et al. in [48].

The CC-MR algorithm is based on the assumption that exists a total ordering of the
graph vertices (in our case the vertex identifiers are generated as fixed length string, thus
they can be ordered lexicographically). It takes as input a graphG = (V,E) and iteratively
transform each connected component in a star-like sub-graph, where the vertex having
the smallest identifier is the center.

The algorithm 3 illustrates the CC-MR algorithm pseudo-code. It assumes an identity
map phase that simply emits the vertices towards the reducers. The described steps are
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applied iteratively until no more merges occur.

Algorithm 3: Connected Component on Map Reduce - CC-MR (reduce phase)
input : Graph composed of connected components
output: Graph composed of a set of star-like sub-graphs Gcc

1 Reduce(Vertex source, Iterator<Vertex> values)
2 locMaxState←− false
3 first←− values.next()
4 if source.id < first.id then
5 locMaxState←− true
6 Emit(source, first) // Forward edge
7

8 end
9 lastId←− first.id

10 while values.hasNext() do
11 curr←− values.next()
12 if curr.id = lastId then
13 continue // Remove duplicates
14

15 end
16 if locMaxState then
17 Emit(source, curr) // Forward edge
18

19 end
20 Emit(first, curr) // Forward edge
21

22 Emit(curr, first) // Backward edge
23

24 lastId←− curr.id
25 end
26 if not locMaxState or source.id < lastId then
27 Emit(source, first) // Backward edge
28

29 end

Given the graph composed of a set of star-like sub-graphs Gcc, the identifier of the
representative object can be created starting from the smallest identifier of each compon-
ent, and introducing a new pair of relationships (mergedId/merges) from each member of
the connected component and the new center of the star.
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Fig. 6.6: Representative object creation

The representative object R depicted in Figure 6.6 will contain the properties of the
objects in the connected component {A,B,C,D} merged according to a given config-
uration. At this stage the graph adjacency list on HBase contains the relationships that
links each original duplicated object to its representative (i.e. a link between pairs of row
keys). However, the row containing the representative object only contains the “merges”
relationships, thus it is needed to process each connected component in order to build
the new set of properties according to the configured policy. The Map Reduce implement-
ation assumes that for each object o in the connected components graph Gcc the set of
properties associated to o is emitted towards the row key in which o is “mergedIn” (map
phase). Then the reducer merges the set of properties and persists the result.

Algorithm 4: Property merge on Map Reduce
input : Graph composed of a set of star-like sub-graphs Gcc

output: A representative object for each sub-graph

1 Setup(conf)

2 Map(row)
3 prop←− row.getProperties(conf.entityType)
4 Emit(row.mergedIn, prop)
5 Reduce(row.mergedIn, Iterator<Properties> values)
6 rep←− Merge(values, conf)
7 Emit(row.mergedIn, rep)

The other aspect involved in the graph disambiguation process is related to the re-
lationship distribution strategy. As the disambiguation process takes actions that alter
the graph structure (i.e. introduction of new representative objects and virtual deletion
of merged objects), it is important to consider the effect of such actions on the existing
edges, i.e. how the graph disambiguation will affect the relationships between the entit-
ies in the graph, and in general its semantic expressivity. To implement the relationship
distribution in Map Reduce, we can extend the simple algorithm 4 that merges the object
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properties. We can therefore introduce a second version of the algorithm, illustrated in 5,
where the map phase emits the object properties and all the relationships belonging to
the configured types towards the representative row key identifier. On the reduce phase
the properties gets merged according to the configured strategy, while the relationships
properly inherited by the new representative object.

Algorithm 5: Property merge and relationship distribution on Map Reduce
input : Graph composed of a set of star-like sub-graphs Gcc.
output: A representative object for each sub-graph that inherits the relationships of

the objects it merges.

1 Setup(conf)

2 Map(row)
3 Emit(row.mergedIn, row.properties)
4 for relType ∈ conf.relTypes do
5 relFamily←− row.getRels(relType)
6 for rel ∈relFamily do
7 Emit(row.isMergedIn, rel)
8 end
9 end

10 Reduce(row.mergedIn, Iterator<Object> values)
11 rep←− ∅
12 for o ∈values do
13 if o.isProperty then
14 rep←− rep ∪ Merge(o.getProperties(), conf)
15 else
16 r ←− o.getRel()

/* emit relation from the representative to the related
entity */

17 Write(row.mergedIn, r.getTarget(), r)
/* emit relation from the related entity to the

representative */
18 Write(row.mergedIn, r.getSource(), r)

/* mark relation from the related entity to the duplicate
as deleted */

19 Write(r.getSource(), r.relTarget(), markDeleted(r))
/* mark relation from the duplicate to the related entity

as deleted */
20 Write(r.relTarget(), r.getSource(), markDeleted(r))
21 end
22 end
23 Emit(row.mergedIn, rep)
24 Write(source, targetId, rel)
25 target←− rel.getType()′ :′ targetId
26 Emit(source, target, rel)
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6.3.3 Data curators feedback

Identify and correct the possible mistakes produced by a given deduplication score is an
important aspect that BGEDS must support. In order to support data curators in their
activity GDup provides user interfaces that allows to explore the results of the graph
disambiguation process. The final step on the graph disambiguation workflow assumes
that the collection of objects belonging to the type defined in a deduplication score gets
indexed to enable search operations over the whole collection of results.
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Fig. 6.7: D-NET Deduplication indexing workflow
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The indexing process is supported by the D-NET framework, where the Manager Ser-
vice coordinates the workflow execution illustrated in Figure 6.7. The indexing workflow
is composed by a Map Only job tailored to:

• read all the objects of a given type from HBase.
• transform the objects into index-able documents according to an user defined config-

uration that specifies the relevant objects properties that should be searchable;
• send the document to the index server.

The index contains all the objects in the graph of a given type. More specifically it
contains the objects there were not identified as duplicates and the representative ob-
jects (enriched with the duplicates they merge), while the duplicates are not indexed as
individual entities, but will appear as part of a representative object. An example of a
representative object in the index is illustrated in listing 6.2.

1 " entity ": {
2 "type": " result ",
3 " id ": "50|dedup_wf_001::4104a7740a16a2239e3871a13c6e5d1c",
4 " dateofcollection ": "2015−02−06T13:25:33.854Z",
5 " result ": {
6 "metadata": {
7 " title ": "Analysis and Report on Original Documentary Evidence Concerning the Use of

Opium in India: [Furnished to the "British Medical Journal" by upwards of 100 Indian
Medical Officers.]",

8 "dateofacceptance": "1894−02−17"
9 "language": "eng",

10 "collectedfrom": "Europe PubMed Central"
11 },
12 "instance": [{
13 "licence ": "OPEN", "instancetype": "Article ", "hostedby": "Europe PubMed Central"
14 " url ": "http :// europepmc.org/articles/PMC2403858"
15 },
16 {
17 "licence ": "OPEN", "instancetype": "Article ", "hostedby": "Europe PubMed Central"
18 " url ": "http :// europepmc.org/articles/PMC2403577"
19 }]
20 },
21 " originalId ": [ "oai:europepmc.org:993792", "oai:europepmc.org:993837" ],
22 "pid ": [{ "value": "PMC2403342", "type": "pmc" },{ "value": "PMC2403793", "type": "pmc" }],
23 "merged": [
24 {
25 "type": " result ",
26 " dateofcollection ": "2015−02−06T13:24:43.355Z",
27 " id ": "50|od_______908::94111cc8a5601838d924551feeb12894",
28 " result ": {
29 "metadata": {
30 " title ": "Analysis and Report on Original Documentary Evidence Concerning the Use of

Opium in India: [Furnished to the "British Medical Journal" by upwards of 100 Indian
Medical Officers.]",

31 "dateofacceptance": "1894−02−03",
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32 "language": "eng"
33 },
34 "instance": [{
35 "licence ": "OPEN", "instancetype": "Article ", "hostedby": "Europe PubMed Central",
36 " url ": "http :// europepmc.org/articles/PMC2403858"
37 }],
38 },
39 " originalId ": "oai:europepmc.org:993837",
40 "collectedfrom": "Europe PubMed Central"
41 "pid ": [{ "value": "PMC2403858", "type": "pmc" }],
42 {
43 "type": " result ",
44 " dateofcollection ": "2015−02−06T13:20:22.788Z",
45 " id ": "50|od_______908::ba4f88f028b9bd3aec61f764fd5080d3",
46 " result ": {
47 "metadata": {
48 " title ": "Analysis and Report on Original Documentary Evidence Concerning the Use of

Opium in India: [Furnished to the "British Medical Journal" by upwards of 100 Indian
Medical Officers.]",

49 "dateofacceptance": "1894−02−10"
50 "language": "eng",
51 },
52 "instance": [{
53 "licence ": "OPEN", "instancetype": "Article ", "hostedby": "Europe PubMed Central"
54 " url ": "http :// europepmc.org/articles/PMC2403577"
55 }],
56 },
57 " originalId ": "oai:europepmc.org:993629"
58 "collectedfrom": "Europe PubMed Central"
59 "pid ": [{ "value": "PMC2403577", "type": "pmc" }],
60 }
61 }

Listing 6.2: GDup index document model

Data curators can explore the deduplication results produced by a given configuration
via a dedicated user interface that enables them to spot errors of two different kinds:

• False positives: In this category data curators find objects that were mistakenly
merged by a given configuration as they are in fact distinct real world objects. Cor-
rective actions can include (i) a revision of deduplication score, e.g. changing the
similarity function used to match a certain field, or (ii) introduce an assertion to state
that two objects are not the same, or that an object should not be part of a given
group. The assertion is persisted on a dedicated database, and can be applied imme-
diately in order to alter the search results on the index, as well as on the graph stored
on HBase.

• False negatives: A given configuration might underestimate the relevance of a given
object property. Data curators exploring the deduplication results can highlight new
cases of duplication that were not considered in the first place, or identify side cases
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that requires individual corrections. Corrective actions can therefore include (i) a revi-
sion of the deduplication score, e.g. adjusting the weights associated to the similarity
functions, or (ii) introduce an assertion to state that two objects are duplicates.

Fig. 6.8: GDup Data Curator user interface

Figure 6.8 illustrates the User Interface where Data Curators can:

1. Select the configuration score. This implicitly selects also the entity type referred by
the selected configuration;

2. Queries will be run against the deduplication results produced by the selected config-
uration. Objects representing groups of duplicates will contain both the representative
set of properties, as well as the properties of the individual duplicates;

3. The query results shows which objects were merged into a representative (groupSize >
1) or are distinct objects, i.e. objects representing a duplicate will appear within the
group they were merged with;

4. Objects (or groups of objects) can be added to a basket-like staging area, in which
they can check if the group needs to be extended including any of the other query
results, or shrunk by removing any of its members;

5. Finally, the group menu allows to inspect the current “basket”, to reset it, or commit
the changes.
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GDup in a real-case scenario

In this chapter we describe the specific usage of GDup in the context of the OpenAIRE
technological infrastructure and report on the results of its operation after three years
since its launch. More specifically we describe how the OpenAIRE infrastructure imple-
ments the end-to-end graph deduplication workflow depicted in Chapter 5, we provide a
comment on the results and the execution time of the different workflow sub parts, high-
lighting benefits and drawbacks of the actual execution environment and implementation.

7.1 Data import

Although BGEDSs are conceived to acquire graphs via explicit mappings between JSON-
LD and RDF to the Structured Property Graph Model, objects and relationships in the
OpenAIRE graph are extracted from information packages, i.e. metadata records rep-
resented in various formats, collected from internet/web accessible sources described
in 3.1. In order to avoid introducing major overhead in data transformations, in GDup the
mapping to the SPGM was realised by implementing an ETL (Extract Transform Load)
pipeline conceived to load the graph onto HBase. In this process a Dublin Core [87]
bibliographic metadata record describing a scientific article will yield one OpenAIRE pub-
lication object and a set of OpenAIRE person objects (one per author) with semantically
typed relationships between them. Publications compliant with the OpenAIRE guidelines1

might optionally provide a reference to a research project. Publications exposing project
references conforming the syntax illustrated in listing 7.1, when processed by the map-
pings used in the Data Import procedures, will yield a semantically typed relationship
between the OpenAIRE publication and the OpenAIRE project objects. Research pro-
jects, just like publications and datasets, are part of the OpenAIRE information space, as
they are aggregated to build an authoritative database of cross funder research projects.

1 OpenAIRE Guidelines - https://guidelines.readthedocs.org

https://guidelines.readthedocs.org
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1 info :eu−repo/grantAgreement/ F / FP / PID / [J] / [PN] / [PA]
2

3 Where
4

5 F := Funder
6 FP := FundingProgram
7 PID := ProjectID
8 J := Jurisdiction (optional )
9 PN := Project Name (optional)

10 PA := Project Acronym (optional)
11

12 Example of a dublin core element embedding a relationship to a project
13

14 <dc:relation>
15 info :eu−repo/grantAgreement/EC/FP7/244909/EU/Making Capabilities Work/WorkAble
16 </dc: relation >

Listing 7.1: OpenAIRE guideline: Project references

Starting from the information packages collected and harmonized by the aggreg-
ation system, the Data Import procedure depicted in figure 7.1 includes all the pro-
cesses needed to populate the Information Space. All the information needed to build the
OpenAIRE objects and relationships is extracted from different services used to persist
the aggregation status, transformed according to the dedicated mappings, and loaded to
the HBase table dedicated to hold the adjacency list representing the OpenAIRE graph.
Such ETL (Extract Transform Load) procedure is run according to a defined schedule and
recreates from scratch the information graph. The D-Net orchestration layer executes the
workflow that defines the individual steps required by the procedure:

• Connect to the database used by the aggregation system to store Datasources, Or-
ganizations and Projects, in order to extract the information needed to construct the
relative OpenAIRE objects; The number of objects involved in this part of the process
does not pose scalability issues, thus the mapping can be applied sequentially as it
does not require a parallel approach.

• Connect to the Metadata Store services used to persist publication and dataset re-
cords, copy the content to the hadoop distributed filesystem (HDFS) in dedicated
Sequence Files2, and thanks to the MapReduce framework, apply the transformation
provided in the dedicated mapping by parallel tasks, allowing to load on HBase arbit-
rary large sets of publication and dataset records;

• Apply the Actions stored in a given Ground Truth onto the HBase table. Such inform-
ation is stored in a dedicated HBase table, thus the MapReduce framework allows to
efficiently move its content from one table to another.

2 Sequence Files - https://wiki.apache.org/hadoop/SequenceFile

https://wiki.apache.org/hadoop/SequenceFile
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Fig. 7.1: GDup : data import ETL

7.2 The OpenAIRE production environment

The OpenAIRE production environment is composed by a set of virtual machines oper-
ated by ICM in Warsaw3. It includes nodes to host all the different services depicted in the
OpenAIRE Specification and Release Plan4. Among such services, the deduplication sub-
system architecture depicted in figure 7.2 refers to the BGEDSs presented in chapter 5
and illustrates the technologies used to realize the deduplication workflow phases. The
data storage and processing layer is based on a CDH 4.3 Hadoop Cluster5composed of
8 worker nodes. Each worker node has 8 cpu cores, 24Gb of RAM, and the total HDFS
capacity is about 14.5Tb. The aggregation system runs on dedicated virtual machines, in
particular the D-Net Manager Service (MS) introduced in 6.2 coordinates and supervises
the activities on the Hadoop cluster.

3 Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego (ICM) - http:
//www.icm.edu.pl

4 https://issue.openaire.research-infrastructures.eu/projects/
openaire2020-wiki/wiki/D61_OpenAIRE_Specification_and_Release_Plan

5 http://www.cloudera.com/documentation/archive/cdh/4-x/4-3-0.html

http://www.icm.edu.pl
http://www.icm.edu.pl
https://issue.openaire.research-infrastructures.eu/projects/openaire2020-wiki/wiki/D61_OpenAIRE_Specification_and_Release_Plan
https://issue.openaire.research-infrastructures.eu/projects/openaire2020-wiki/wiki/D61_OpenAIRE_Specification_and_Release_Plan
http://www.cloudera.com/documentation/archive/cdh/4-x/4-3-0.html
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Fig. 7.2: GDup: Technological Architecture

7.3 Graph deduplication: publication entity

The OpenAIRE information space in February 2016 counts more than 16 million public-
ations. These objects are collected from a multitude of data providers of different typolo-
gies:

Institutional or thematic repositories Information systems where scientists upload the
bibliographic metadata and PDFs of their articles, due to obligations from their organ-
ization or due to community practices (e.g. ArXiv, EuropePMC);

Open Access Publishers Information system of open access publishers or relative
journals, which offer bibliographic metadata and PDFs of their published articles;

Aggregator services Information systems that, like OpenAIRE, collect descriptive metadata
about publications or datasets from multiple sources in order to enable cross-data
source discovery of given research products; aggregators tend to be driven by re-
search community needs or to target the larger audience of researchers across sev-
eral disciplines; examples are DataCite for all research data with DOIs as persistent
identifiers, BASE for scientific publications, DOAJ for Open Access journals publica-
tions.

As OpenAIRE aims to realize a pan-European network of interoperable publication
(any beyond) repositories, by promoting the Open Science policies, it also contributes



7.3 Graph deduplication: publication entity 97

to give visibility to the participating repositories. The presence of thematic, Institutional
repositories, OA Publishers and aggregators causes a significant overlap in the set of
publications that OpenAIRE collects. The presence of duplicates (estimated in the range
of 10-15% at the beginning of the project) causes a substantial skew in the aggregated
statistics describing the information space, introduces ambiguity to both third party ser-
vices that need to perform further processing on the OpenAIRE data and, due to the
different completeness of the metadata records provided by different data sources, to the
users that search for publications on the OpenAIRE portal6.

To illustrate the benefits of identifying and resolving the duplicates in the OpenAIRE
information space, we provide an example of two statistics that represent an important ad-
ded value for decision makers. The statistic illustrated in figure 7.3 describes the number
of publications linked to FP7 projects in the 2007-2015 time frame, while figure 7.4 de-
scribes the distribution of the same publications among the different funding programmes.
The presence of duplicates would have caused a considerable skew: in the first case the
distribution would have had an higher mean, with a trend that would have depended
on the duplicates distribution over the years. In the second case the percentage of FP7
publications in each funding programme would have depended on the duplicates distri-
bution, causing an unpredictable and unrealistic relationship between the funding areas.
The deduplication process was therefore necessary to cope with the issues mentioned
above.

6 https://www.openaire.eu

https://www.openaire.eu
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Fig. 7.3: FP7 Publications through the years.

Fig. 7.4: FP7 Publications per programme.
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On the bright side the different level of completeness and compliance with the
OpenAIRE guidelines of the metadata record enables the object merge procedure to
build a richer object, that maintains the original characteristics of the duplicate records,
but provides a more complete set of information to the end users. For example in fig-
ure 7.5 shows a publication whose Open Access fulltext can be found in three different
repositories, meaning that the same metdata record was collected by OpenAIRE from
three distinct data sources.

Fig. 7.5: Publication duplicates on the OpenAIRE portal.

The deduplication process run on the 16 million publications aggregated on the pro-
duction system is summarized in table 7.1. The execution times refer to the processes
run on the Hadoop cluster described in section 7.2.
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Phase Execution time Output

Candidate identification ∼ 45′
2.6M clusters

1.5M clusters (size > 1)

Candidate matching 2h
2.1B comparisons

7M equalsTo relationships

Connected components ∼ 45′ 1.8M connected components

Root construction &
Relationships redirection ∼ 1h15′ 4.2M pubs marked as duplicates

Table 7.1: Publications, deduplication statistics (update to date 2015-12)

Fig. 7.6: Publication candidates clustering distribution.

Figure 7.6 reports the distribution of the cluster sizes of publications candidates, pro-
duced by the clustering functions defined in the configuration used in the production
system. Highly frequent clusters typically include few records, with 2.4 million groups of
two, while larger groups occur less frequently.
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Fig. 7.7: Publication groups distribution

The results of the deduplication workflow is depicted in figure 7.7, which shows the
duplicates group distribution. It produces 1.8 million representative publications, grouping
4.2 million duplicates, and the average number of duplicates per group is 2.4. Overall the
total execution time for the deduplication workflow on the publication entities makes it
possible to execute it on a regular basis (typically once a month), allowing also the pos-
sibility to perform extra executions in response to large changes in the aggregation status
(typically the addition of a large repository). Therefore it didn’t require the introduction of
a dedicated Ground Truth.

7.4 Graph deduplication: organization entity

Organizations aggregated in OpenAIRE include companies, institutions or research cen-
ters involved as project partners or that are responsible for operating data sources.
In February 2016 OpenAIRE counts 68,488 organizations, generally collected from
CRIS7 systems and entity registries. Their duplication is mainly due to intra-data source
logics, since they are collected from a few data sources where they typically appear as
a secondary entity, not subject to disambiguation, and in some cases they totally lack of
any kind of local identifier.

Organization objects identifiers are obtained in a stateless way, when organizations
are first-level objects in the original data source (i.e. they are assigned a local original
identifier) or second-level object data sources (i.e. they are extracted from the metadata

7 Current research information system - https://en.wikipedia.org/wiki/Current_
research_information_system

https://en.wikipedia.org/wiki/Current_research_information_system
https://en.wikipedia.org/wiki/Current_research_information_system
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information of a first-level object in the data source). As a consequence, all objects have
a unique identifier in the system, even if they represent the same organization.

For example the organizations participating to the research projects that OpenAIRE
collects from the CORDIS8have a local identifier:

1 <Project xsi :noNamespaceSchemaLocation="XSD_OpenAire.xsd">
2 <ProjectId>322699</ProjectId>
3 <ProjectCallWebpageUrl>http://cordis.europa.eu/fp7/home_en.html</

ProjectCallWebpageUrl>
4 < ProjectCallIdentifier >ERC−2012−ADG_20120314</ProjectCallIdentifier>
5 <ProjectAcronym>THE FUSION MACHINE</ProjectAcronym>
6 <ProjectTitle>The nanomechanical mechanism of exocytotic fusion pore formation</

ProjectTitle>
7 <ProjectStartDate>01APR2013:00:00:00</ProjectStartDate>
8 <ProjectFundingScheme>ERC</ProjectFundingScheme>
9 <ProjectFundingSchemeDescr>Support for frontier research (ERC)</

ProjectFundingSchemeDescr>
10 <ProjectSubFundingScheme>ERC−AG</ProjectSubFundingScheme>
11 <ProjectSubFundingSchemeDescr>ERC Advanced Grant</

ProjectSubFundingSchemeDescr>
12 <ProjectEndDate>31MAR2018:00:00:00</ProjectEndDate>
13 <SpecialClause39>N</SpecialClause39>
14 <ProjectFramework>FP7</ProjectFramework>
15 <ProjectSpecificProgram>SP2</ProjectSpecificProgram>
16 <ProjectSpecificProgramDescr>SP2−Ideas</ProjectSpecificProgramDescr>
17 <ProjectProgram>ERC</ProjectProgram>
18 <ProjectProgramDescr>ERC</ProjectProgramDescr>
19 <CoordinatorContactPerson>
20 <PersonRole>Contact Person</PersonRole>
21 <PersonLastName>Messerschmidt</PersonLastName>
22 <PersonFirstName>Manfred</PersonFirstName>
23 <ContactEmail>eu−goe@gwdg.de</ContactEmail>
24 <ContactFunction>Head Of Administration</ContactFunction>
25 <ContactPhone>+49 551 2011221</ContactPhone>
26 </CoordinatorContactPerson>
27 <OrganisationParticipant>
28 <OrganisationPIC>999990267</OrganisationPIC>
29 <ParticipantOrder>1</ParticipantOrder>
30 <OrganisationShortName>MPG</OrganisationShortName>
31 <OrganisationLegalName>MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER

WISSENSCHAFTEN E.V.</OrganisationLegalName>
32 <OrganisationWebPage>www.mpg.de</OrganisationWebPage>
33 <OrganisationCountry>DE</OrganisationCountry>
34 [...]

Listing 7.2: Organizations from CORDIS

8 CORDIS - http://cordis.europa.eu

http://cordis.europa.eu
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On the other hand, the Directory of Open Access Repositories (OpenDOAR9) con-
tributes to OpenAIRE by providing metadata about institutional repositories. In such
metadata records, the organization responsible to operate a given repository is provided
as a secondary entity, and does not have any identifier associated:

1 <repository rID="610">
2 <rName>Fraunhofer−ePrints</rName>
3 <rAcronym/>
4 <rNamePreferred>Y</rNamePreferred>
5 <rUrl>http :// eprints .fraunhofer.de/</rUrl>
6 <rOaiBaseUrl>http://publica.fraunhofer.de/jsp/PublicaHarvester</rOaiBaseUrl>
7 <uName>Forderung der angewandten Forschung e.V.</uName>
8 <uAcronym/>
9 <uNamePreferred>Y</uNamePreferred>

10 <uUrl/>
11 <oName>Fraunhofer−Gesellschaft</oName>
12 <oAcronym>FHG</oAcronym>
13 <oNamePreferred>Y</oNamePreferred>
14 <oUrl>http :// www.fraunhofer.de/</oUrl>
15 [...]

Listing 7.3: Organizations from OpenDOAR

Reliable deduplication results for the organizations are important in OpenAIRE be-
cause of the features provided by the portal to end users. Specifically the portal allows
researchers to deposit their works (publications and datasets) in OpenAIRE by guiding
them with a dedicated procedure. As depicted in figure 7.8 users are asked to identify
their repository of reference by searching the institution they are affiliated with. Identify-
ing the repository associated with an organization that was aggregated by OpenDOAR it’s
a trivial task because the relationship between the two entities existed in the information
package from which the OpenAIRE entities were extracted. On the contrary, identifying
the repository associated with an organization that exists in OpenAIRE because it was
collected from an entity registry that provides projects is a much more challenging task.
Originally such organizations does not provide any relationship that links them to a repos-
itory, however when the deduplication system identifies two organizations as duplicates,
the merge process enriches the representative record with the attributes and relationship
of all the contributing records. In this way, users queries matching an organization collec-
ted from CORDIS that was merged with the corresponding organization collected from
OpenDOAR, are more likely to produce a result that allows users to locate their repository
of reference.

9 The Directory of Open Access Repositories - http://www.opendoar.org

http://www.opendoar.org
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Fig. 7.8: OpenAIRE deposition functionality

The deduplication process run on the 68 thousands organizations aggregated on the
production system is summarized in table 7.2. The execution times refer to the processes
run on the Hadoop cluster described in section 7.2.

Phase Execution time Output

Candidate identification ∼ 1′
134K clusters

26K clusters (size > 1)

Candidate matching ∼ 45′′
393K comparisons

23K equalsTo relationships

Connected components ∼ 45′′ 5K connected components

Root construction &
Relationships redirection ∼ 2′30′′ 13K orgs marked as duplicates

Table 7.2: Organizations, deduplication statistics (update to date 2015-12)
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Fig. 7.9: Organization candidates clustering distribution.

Figure 7.9 reports the distribution of the cluster sizes of organizations candidates,
produced by the clustering functions defined in the configuration used in the production
system. Highly frequent clusters typically include few records, with 672 groups of six
records, while larger groups occur less frequently.

Fig. 7.10: Organization groups distribution
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The results of the deduplication workflow is depicted in figure 7.10, which shows
the duplicates group distribution. It produces 4989 representative organizations, grouping
10654 duplicates, and the average number of duplicates per group is 2.13. The number of
organization entities is considerably lower than publications, which translates in low exe-
cution times for deduplication workflow, that makes it possible to execute in response to
every change in the aggregation status of the organization entities (typically the addition
of a new entity registry, or the update of an existing registry). Therefore it didn’t require
the introduction of a dedicated Ground Truth.

7.5 Graph deduplication: person entity

Persons in OpenAIRE are individuals that have one (or more) role(s) in the research do-
main, such as authors of publications or project coordinators. Duplicated person objects
in OpenAIRE are mostly caused by two factors:

• the lack of a global persistent identifier provided within the publication metadata re-
cords. As for today, only a few repositories include author PIDs;

• the absence of a standard model to represent structured metadata for publication
authors in the OpenAIRE guidelines.

As consequence, each authors is associated with a unique local identifier generated
by the OpenAIRE aggregation system.

This causes intra data source duplicates for authors to be very common, in fact all
publications of the same author in a repository will generate a new author object in the
graph, potentially different from the others. On the other hand, cross-data source duplic-
ates are mainly due to the fact that co-authors are depositing in their institutional repos-
itories or in thematic repositories (e.g. ArXiv, EuropePMC), or again, as in the previous
case, their publications have been collected by an aggregator data source harvested in
OpenAIRE. As result, the set of raw persons can be estimated in 56 million objects by
considering∼ 3.5 average authors per publication10and the 16 million publications aggreg-
ated in OpenAIRE.

Differently from publications, where the average number of duplicates is between 2

and 3, in case of persons the average number of duplicates is not a representative stat-
istic, as it may vary considerably, depending on the specific research field or the repos-
itory of reference of a given author. Moreover, in general it is common for an author to
have a number of papers in his curriculum as a multiple of 10, therefore the groups of
duplicates in the set of raw author objects can easily tend to be large, introducing major
overhead in the graph disambiguation phase. For this purpose, it was decided to handle
the deduplication for person entities by making use of a Ground Truth approach. By in-
troducing a Ground Truth we have two types of persons, anchor and raw persons, whose
importance is different in terms of selection criteria.

10 https://www.nlm.nih.gov/bsd/authors1.html
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As specified when introducing the Ground Truth, the relative methodology envisages
that part of deduplication is resolved while creating the graph, by using the Ground Truth
as a map between raw objects and the corresponding anchor objects, if any. This ap-
proach changes the perspective of the deduplication process, since part of the deduplic-
ation can be made available before candidate identification by mapping raw objects onto
anchor objects at graph import time. Such pre-processing can considerably reduce the
time to process the whole collection of person objects, limiting the identification of duplic-
ates to the objects that are not yet part of the Ground Truth.

1 EntityType = Person,
2

3 clusteringFunction[
4 name = personClustering
5 params = [max=5]
6 fields = [fullname]
7 ]
8

9 similarityFunction [
10 name = anchorsInCommon
11 weight = 0.6
12 fields = [anchors]
13 params = [n=1]
14 ]
15 similarityFunction [
16 name = coauthorsInCommon
17 weight = 0.4
18 fields = [coauthors]
19 params = [n=2]
20 ]

Listing 7.4: Person match configuration

Listing 7.4 summarizes the idea behind the incremental approach used for person
deduplication. Person objects are first matched against the hash values produced by the
function personClustering, which tries to define a structure for person names by sep-
arating first name and surname. In case the heuristic is satisfied, it emits hash values in
the form of first character of the firs name, followed by the surname. Otherwise it generate
an hash value for each word identified in the first name. Candidates are then matched by
evaluating the intersection between the of sets coauthors identified as anchors, and the
surnames of the raw coauthors, whose size must match a minimum value.

A key player in this process was identified as the initial Ground Truth, i.e. the first
set of anchor person objects considered as valid. In order to build such set, we used
the results of publication deduplication, considering the assumption that the authors of
two publications identified to be same, are as well the same authors. In order to extend



108 7. GDup in a real-case scenario

such set we matched it against selected ORCID11 profiles, obtained by processing the
ORCID Public Data file12, counting more than 1.6 million researcher profiles, each of
them associated with a persistent identifier. Although promising, as for today, it contains
only 160.000 profiles providing a list of works, together with the relative coauthors. We
believe in the next years researchers will continue to curate their profiles by adding their
works, as researchers today are facing the need to distinguish their research activities
from those of others with similar names.

11 ”ORCID is an open, non-profit, community-driven effort to create and maintain a registry of
unique researcher identifiers and a transparent method of linking research activities and outputs
to these identifiers” - http://orcid.org/about/what-is-orcid

12 https://orcid.org/content/download-file

http://orcid.org/about/what-is-orcid
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Conclusions

In this chapter we summarize the main contributions of this thesis and we outline the
future directions.

8.1 Summary

The amount of data produced today calls for innovative technologies and solutions to
tackle the multitude of challenges arising in several research fields of data management.
Among others, also entity deduplication is living a period of Big Data renaissance and
extending this problem to large graphs of interlinked objects becomes an interesting and
challenging problem. Orthogonally, accurate resolution is important for a variety of reas-
ons ranging from accurate analysis for critical applications and cost-effectiveness, to re-
duction in data volume.

Semi-automatic approaches are needed to reduce as much as possible the manual
effort and to assist data curators in solving the domain specific disambiguation issues.
This thesis represents an advancement in the state of the art in deduplication systems
by proposing new solutions to address the deduplication issue on large graphs of inter-
connected entities.

The main contributions can be summarized as follows.

• Survey of deduplication tools We provided a survey of the existing tools that sup-
port end users facing the deduplication problem, classifying the solutions based on
the fact they address or not address the non-functional requirement of scalability
posed by large data collections.

• Big Graph Entity Deduplication Systems The main contribution is having provided
a reference architecture for Big Graph Entity Deduplication Systems, integrated, scal-
able, general-purpose systems for entity deduplication over Big Graphs. BGEDSs are
intended to support data curators with the end-user functionalities they need to real-
ize all workflow phases of duplicates identification and graph disambiguation over Big
Graphs. BGEDSs propose a novel workflow to cover all the phases involved in the
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graph disambiguation task, from the graph acquisition, through the duplicates identi-
fication and matching, to the graph disambiguation and finally to the materialization
of the disambiguated graph. The overall process can be supervised by data curators
that can configure, evaluate, and refine the results.

• GDup We presented an implementation of the BGEDS reference architecture, called
GDup. It is based on Apache HBase and Hadoop Map Reduce paradigm, today in-
stantiated to operate as part of the production environment of the OpenAIRE infra-
structure to support data curators.

8.2 Future work

Although this work provides a contribution to improve the state of the art in the deduplic-
ation field, it also raises several opportunities for improvement and further challenges to
be addressed in future work.

We outline some of them in the following.

• Parallel entity resolution & graph disambiguation The wide adoption of distributed
and parallel processing technologies and techniques has significantly influenced the
research of efficient deduplication methods capable to process large collections. The
literature shows a spreading interest for such techniques, ranging from the exploitation
of multiple cpu cores of a single node [15, 45, 7], to the distribution of the process to
multiple nodes [46].
The the Hadoop Map Reduce framework has proven to be a key enabler for research
in object matching, counting a considerable number of contributions [83, 49, 48, 47,
50, 51], moreover the Hadoop ecosystem has grown substantially in recent years,
providing powerful tools to support different kinds of data intensive tasks. For ex-
ample, Apache Hama1 provides Big Data analytics based on the Bulk Synchronous
Parallel (BSP) computing model, or Apache GraphX2provides an API for graphs and
graph parallel computation. The availability of powerful tools supporting different kinds
of data intensive tasks can help to further improve techniques such as collective entity
resolution in relational data [8].

• Linked Open Data & Entity Resolution Among the major challenges involved in the
entity resolution is the need to cope with low quality data, often not expressive enough
to be disambiguated effectively. The growing adoption of Linked Open Data, and the
consequent development of methods and tools to support the automatic link discov-
ery [33, 68, 84, 19, 67] can contribute to reduce significantly the manual effort needed
to enrich incomplete data. Linked Open Data can therefore support the introduction
of additional sources of information in the graph disambiguation workflow proposed
in this thesis.

1 http://hama.apache.org
2 https://spark.apache.org/graphx

http://hama.apache.org
https://spark.apache.org/graphx
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• Generic framework for graph link discovery The workflow proposed in this thesis
is meant to identify and resolve duplicates objects in a graph, however depending on
the configuration, the process could identify other kind of links between the objects in
the graph. For example multiple versions of an article (pre-print and post-print), the
structure of an organization (laboratory, department, university).
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