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Abstract

Modeling the properties of individual human mobility is a challenging task that has received increasing attention in the last decade.

Since mobility is a complex system, when modeling individual human mobility one should take into account that human movements

at a collective level influence, and are influenced by, human movement at an individual level. In this paper we propose the d-EPR

model, which exploits collective information and the gravity model to drive the movements of an individual and the exploration

of new places on the mobility space. We implement our model to simulate the mobility of thousands synthetic individuals, and

compare the synthetic movements with real trajectories of mobile phone users and synthetic trajectories produced by a prominent

individual mobility model. We show that the distributions of global mobility measures computed on the trajectories produced

by the d-EPR model are much closer to empirical data, highlighting the importance of considering collective information when

simulating individual human mobility.
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1. Introduction

The analysis of the patterns of human mobility has received increasing attention in the last decade, given the

availability of massive digital traces of human movements and its importance in domains such as urban planning,

sustainability, transportation engineering, public health, and economic forecasting. Particular interest has been put

on modeling the properties of individual human mobility, with the purpose of reproducing the movements of an

individual in a realistic manner1. For example in the prominent Exploration and Preferential Return (EPR) model an

individual can choose either to return to previously visited locations (preferential return) or to explore new locations

at a given distance from the current location (exploration), according to well-known distributions of standard mobility

measures such as the waiting time and the jump length2. In the EPR model and its recent improvements3,4 no
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collective information about the movements of other moving individuals is taken into account when deciding the

new location an individual explores. Notwithstanding, human mobility is a complex system and the movements of an

individual influence, and are influenced by, the collective mobility behavior of other individuals on the mobility space.

Omitting this information can produce simulations that are unable to capture accurately human mobility patterns at a

global level, e.g., the distribution of the radius of gyration, the distribution of location relevance, or the distribution of

population density on the space5,6. Here, we advocate that the movements of individuals on a space are also driven by

a preferential exploration force, which depends on the collective relevance of locations on the mobility space.

In this paper, we propose the d-EPR model, which improves the EPR model by using collective information and

the gravity model to drive the movements of a synthetic individual. In particular, the model exploits information about

the relevance of locations on the space: when an individual explores a new location, she is attracted to new places with

a force that depends on the relevance of such places at a collective level (preferential exploration). We implement the

d-EPR model to simulate the mobility of 50,000 synthetic individuals and compare the synthetic movements with real

trajectories of mobile phone users and synthetic trajectories produced by a spatial version of the EPR model where

individuals are constrained to move in a confined geographical space. We observe that the distributions of global

mobility measures computed on the trajectories produced by the d-EPR model are much closer to empirical data

than those produced by the EPR model. Our results highlight the importance of considering collective information

when simulating individual mobility, enforcing the intuition that individual movements are strongly influenced by the

collective mobility behavior of other people. In other words, individuals express individual preference when returning

the previously visited places and collective preference when exploring new places on the mobility space.

The paper is organized as follows. Section 2 introduces the EPR model which is the base of our model. Section 3

describes in detail the d-EPR model and introduces the algorithm to reproduce it. In Section 4 we compare the results

of our model with real trajectories of mobile phone users and the synthetic trajectories produced by the EPR model.

Finally, Section 5 concludes the paper and discuss some possible extensions and improvements of the proposed model.

2. Related Work

All the main studies in human mobility document a stunning heterogeneity of human travel patterns that coexists

with a high degree of predictability: individuals exhibit a broad spectrum of mobility ranges while repeating daily

schedules dictated by routine5,7. How to combine such ingredients to create a realistic model which captures the

salient aspects of individual human mobility is a challenging task. Many individual human mobility models have been

proposed so far, the majority of which do not use spatio-temporal realism about population densities thus producing

unrealistic mobility patterns1. The model proposed by Isaacman et al. 8, for example, exploits several distributions

sampled from mobile phone data or census data to simulate the movements of individuals between a predefined

number of locations on a given territory. Although this model produces realistic population density distributions, it is

not able to produce realistic distributions of standard mobility measures, such as the radius of gyration.

Among the many proposed models, the Exploration and Preferential Return (EPR) model is one of the most used

ones, especially because it does not fix in advance the number of visited locations but let them emerge spontaneously2.

The model exploits two basic mechanisms that together describe human mobility: exploration and preferential return.

Exploration is a random walk process with a truncated power-law jump size distribution2. Preferential return repro-

duces the propensity of humans to return to the locations they visited frequently before5. An agent in the model

selects between these two mechanisms: with a given probability the individual returns to one of the S previously

visited places, with the preference for a location proportional to the frequency of the individual’s previous visits. With

complementary probability the individual moves to a new location, whose distance from the current one is chosen

from the truncated power-law distribution of displacements as measured on empirical data5. The probability to ex-

plore decreases as the number of visited locations S increases and, as a result, the model has a warmup period of

greedy exploration, while in the long run individuals mainly move around a set of previously visited places. Recently

the EPR model has been improved in different directions, such as by adding information about the recency of loca-

tion visits during the preferential return step3 or adding information about moving from home or other places4. It is

worth noting that in the EPR model both exploration and preferential return mechanisms depend on individual forces.

During a preferential return the individual returns to one of her previously visited locations, during an exploration

the individual explores a new location randomly chosen at a given distance: none of the two mechanisms take into
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account the relevance of locations on the space or its population density. In this paper, we advocate the need of con-

sidering such information during the exploration phase, relying on the intuition that individuals move preferably to

dense places, where the variety and the number of locations available are large. For this reason we propose the d-EPR

model, which improves the EPR model in two directions: first, it works on a finite mobility space using a predefined

tessellation of the space into locations; second, it considers the relevance of locations on the space when choosing a

new location to explore, hence defining a preferential exploration step.

3. The d-EPR model

The d-EPR model incorporates two competing mechanisms, one driven by an individual force (preferential return)

and the other driven by a collective force (preferential exploration). The intuition underlying the model can be easily

understood: when an individual returns, she is attracted to previously visited places with a force that depends on the

relevance of such places at an individual level. In contrast, when an individual explores she is attracted to new places

with a force that depends on the relevance of such places at a collective level. In the preferential exploration phase,

an individual selects a new location to visit depending on both its distance from the current position, as well as its

relevance measured as the total number of visits of all users. In the model, hence, the synthetic individual follows

a personal preference when returning and a collective preference when exploring new locations. We use the gravity

model9,10 to assign the probability of a trip between any two locations, which automatically constrains individuals

within a territory’s boundaries. The usage of the gravity model is justified by the accuracy of the gravity model to

estimate origin-destination matrices even at the country level11,12,13,14.

Algorithm 1 describes the d-EPR model in detail. The model takes in input several variables: (i) a list L of

tuples each representing a location on the space; (ii) an integer MaxTime, the length (in hours) of the time period

during which the individual moves on the space; (iii) the parameters of the waiting time distribution β and τ; (iv)

the parameters for defining the probability of returning ρ and γ. Every tuple in L contains information about the

geographical coordinates of the location and its relevance.

Given the input list, the algorithm computes for every pair of locations i, j the probability of moving from i to j
(Algorithm 1, line 2). Every probability is computed as pi j =

1
N

did j

r2
i j

, where di( j) is the relevance of location i( j), ri j

is the geographic distance between i and j, and N =
∑

i, j�i pi j is a normalisation constant (see Algorithm 1, function

computeProbabilityMatrix). Starting from a location chosen randomly according to its relevance (Algorithm 1,

line 3), until time < MaxTime the algorithm iterates four basic steps: (i) waiting time choice, (ii) action selection,

(iii) movement, (iv) variable updates.

In the waiting time choice step, the model extracts a waiting time Δt from the distribution P(Δt) ∼ Δt−1−β exp(−Δt/τ)

(Algorithm 1, line 7)2. In the action selection phase, with probability Pnew = ρS −γ where S is the number of dis-

tinct locations previously visited2, the individual chooses to explore a new location (Algorithm 1, line 10), oth-

erwise she returns to a previously visited location (Algorithm 1, line 16). If the individual explores and is in lo-

cation i, the new location j � i is selected according to the precomputed probability pi j (Algorithm 1, function

PreferentialExploration) and the number of distinct locations visited, S , is increased by one. If the individual

returns to a previously visited location, it is chosen with probability proportional to the number of her previous visits

to that location (Algorithm 1, function preferentialReturn). After the movement step, the time elapsed (Algo-

rithm 1, line 20) and the current location (line 21) are updated. When the maximum time expires (time ≥ MaxTime),

the algorithm terminates and returns in output the sequence V of locations visited by the individual.

For a comparison with the EPR model we design the s-EPR model, a spatial version of the original EPR model

where individuals are constrained to move in a confined geographical space. The s-EPR model differs from the

original EPR model in the exploration phase: when an individual explores a new location a distance Δr is extracted

from the distribution P(Δr) = Δr−(1+α), and an angle θ between 0 and 2π is extracted with uniform probability; if the

location at distance Δr and angle θ from the current location is not in space’s boundaries a new distance and a new

angle are extracted until this condition is satisfied. It is worth highlighting an important difference between the s-EPR

model and the d-EPR model. In the former, the exploration phase depends on the individual, i.e., when exploring

the individual does not take into account the location relevance on the mobility space. In contrast, in the d-EPR the

individual does take into account location relevance and is more likely to explore relevant locations.
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input : MaxTime: the period of time the individual moves on the space

L: a list of tuples [t1, t2, . . . , tn] where ti = (xi, yi, di) describes a location

β, τ, ρ, γ: parameters of distributions

output: V: the sequence of locations visited by the synthetic individual

1 S = 1, time = 0 // S is the number of visited locations

2 M = computeProbabilityMatrix (L) // computes for every pair i, j the probability of moving from i to j

3 i = weightedRandom (L) // choose randomly a location according to its relevance

4 vi = (xi, yi, 1)

5 V.append(vi)

6 while time ≤ MaxTime do
7 Δt = getWaitingTime () // Extract a waiting time from the distribution P(Δt) ∼ Δt−1−β exp(−Δt/τ)

8 Pnew = getReturnProbability () // Choose a probability to return or to explore Pnew = ρS −γ

9 if Pnew ≤ ρS −γ then
10 j = PreferentialExploration (i,M) // Explore a new location

11 v j = (x j, y j, 1)

12 V.append(v j)

13 S = S + 1

14 end
15 else
16 j = PreferentialReturn () // Return to a previously visited location

17 v j = (x j, y j, count j + 1)

18 V.update(v j)

19 end
20 time = time + Δt
21 i = j
22 end

1 Function computeProbabilityMatrix(L)
2 foreach ti ∈ L do
3 foreach t j ∈ L, j � i do
4 pi j =

di∗d j

dist(i, j)2 // compute probability according to locations’ density and gravity model

5 M[i, j] = pi j

6 end
7 end
8 N =

∑
i, j�i M[i, j] // N is a normalization factor to ensure pi j ∈ [0, 1]

9 foreach ti ∈ L do
10 foreach t j ∈ L, j � i do
11 M[i, j] = M[i, j]/N
12 end
13 end
1515 return M

1 Function PreferentialExploration(i)
2 j = weightedRandom (M[i]) // choose randomly a location j according to its probability in list M[i]

44 return j

1 Function PreferentialReturn()

2 j = weightedRandom (V) // choose randomly a location j according to counti in list V

44 return
Algorithm 1: The algorithm describing how the d-EPR model works.
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4. Model validation

We implement the d-EPR model to simulate the mobility of 50, 000 synthetic individuals. Each individual moves

for a period of three months (2, 160 hours) between a set L of locations consisting in GSM towers dislocated on a

European country. We estimate the relevance of each location in L as the number of calls from that location made

during three months by 50, 000 anonymized mobile phone users. We set the input parameters to β = 0.8, τ = 17

hours, ρ = 0.6 and γ = 0.21, which are the parameters’ values for the waiting time distribution and the probability of

returning estimated by Song et al. on GSM data2.

We compare the results of the d-EPR model with two other mobility datasets. The first one is an anonymized

GSM dataset collected by a European carrier for billing and operational purposes5,2,6. The dataset consists of Call

Detail Records (CDR) describing each phone call performed by 50, 000 users in a period of three months. Each call is

characterized by timestamp, caller and callee identifiers, duration of the call and the geographical coordinates of the

tower serving the call. The time ordered list of towers from which a user made her calls forms a trajectory, capturing

her movements during the period of observation. The other dataset consists of the mobility trajectories produced by

50, 000 synthetic individuals obtained by running the s-EPR model6, where agents are constrained within a country

boundary (the same country as GSM data and d-EPR model)∗. We set the exponent for the distribution of distance

lengths to α = 0.55, as estimated by Gonzalez et al. on GSM data5.

(a) (b) (c)

Fig. 1. A comparison of d-EPR model, s-EPR model and empirical GSM data. (a) The distribution of the radius of gyration rg of individuals

computed on the three datasets. We observe that rg for d-EPR and GSM data (blue and black solid curves) are similar and well approximated by a

power-law with exponential cut-off, while for s-EPR model (dashed curve) we observe a peaked distribution. (b) The distribution of overall number

of visits per location for the three datasets. Also in this case the distribution for the s-EPR model differs from the other two distributions. (c) The

distribution of nL1
, the number of individuals for which a location is the most frequent location. We observe that nL1

for d-EPR is more similar to

GSM data than the distribution for s-EPR.

Figure 1 compares the three datasets on: (i) the distribution of radius of gyration rg, a measure of the characteristic

distance traveled by a given individual during the period of observation defined as rg =

√
1
N
∑

i∈L di(ri − rcm)2 where

N is the total number of visits to any location by the individual, L is the set of locations visited, di is the relevance of

location i, ri are the coordinates of location i, rcm the coordinates of the center of mass of the individual5,15; (ii) the

distribution of overall visits per location, i.e., the total number of visits by all the individuals in that location during

the period of observation; (iii) the distribution of nL1
per location, where nL1

is the number of individuals for which

that location is the most frequent location L1, i.e. the phone tower where the user performs the highest number of calls

during the period of observation. We observe that the distribution of the radius of gyration for GSM data and d-EPR

data are similar (a power-law distribution with exponential cutoff), while for s-EPR data it is a peaked distribution

(Figure 1(a), green dashed curve). Similarly, the distribution of the number of visits per location of s-EPR data differs

from the other two distributions, which are similar to each other (Figure 1(b)). In Figure 1(c) we plot the distributions

of nL1
, the number of individuals for whom a given location is the most frequent locations (L1), an estimate of the

number of individuals living in a given location. We observe that all the three distributions are heavy-tailed, reflecting

an uneven distribution of population density on the space. However the curves for GSM data and d-EPR data are more

∗ The original EPR model works in an infinite mobility space, we implement the s-EPR model (which works on a finite mobility space) to make

the results of the model comparable with the GSM and the d-EPR datasets.
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similar to each other than the curve for s-EPR data, which starts to differ from the others for low values of nL1
≈ 10

(Figure 1(c)). These results show that the s-EPR model fails in capturing some global human mobility patterns, and

that we can overcome this shortcoming by implementing a preferential exploration phase.

5. Conclusion

In this paper we proposed the d-EPR, a generative model to simulate individual human mobility. In contrast with

the EPR, our model exploits collective information about location relevance and implements a preferential exploration

phase, producing results that are much in better agreement with empirical data. Our results show that the patterns of

individual mobility are driven by two competing forces: an individual force during the preferential return phase, and

a collective force during the exploration phase where the movements of an individual are influenced by the relevance

of locations on the mobility space. In the approach we proposed, the distribution of visitation relevance of locations is

given as input variable to the d-EPR model. Although such a distribution can be easily computed from mobile phone

data or census data, information about location relevance on a space are not always available. As future work, we

plan to turn the individual model into a collective model, making the relevance of locations to emerge naturally during

the running of the model: in the preferential exploration phase the probability of an individual to visit a new location

will be proportional to the number of visits to that location made by other synthetic agents moving at the same time

on the space. It will be interesting to investigate whether the empirical distribution of visitation relevance emerges

spontaneously from the collective model.
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