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Abstract9

Approximate Nearest Neighbor (ANN) search is a prevalent paradigm for10

searching intrinsically high dimensional objects in large-scale data sets. Re-11

cently, the permutation-based approach for ANN has attracted a lot of interest12

due to its versatility in being used in the more general class of metric spaces.13

In this approach, the entire database is ranked by permutation distance to the14

query and revised in that order, and even if some clever tricks can be used to15

avoid a sequential scan of the database for this ranking, a sizeable percentage16

of the database should be reviewed, using the original metric, to achieving high17

recall.18

To reduce the number of metric computations and the number of database19

elements accessed, we propose, in this paper, a re-ranking based on a local20

embedding using the nSimplex projection. The nSimplex projection produces21

euclidean vectors from objects in metric spaces obeying the n-point property.22

The mapping is obtained from the distances to a set of references, and the23

original metric can be lower bounded and upper bounded by the euclidean24

distance of objects sharing the same set of references.25

Our approach is particularly advantageous for extensive databases or expen-26

sive metric function. We reuse the distances computed in the permutations in27

the first stage, and hence the memory footprint of the index is not increased.28

An extensive experimental evaluation of our approach is presented, demon-29

strating excellent results even on a set of hundreds of millions of objects.30

Keywords: metric search, permutation-based indexing, n-point property,31

nSimplex projection, metric local embeddings, distance bounds32

∗Corresponding author
Email addresses: lucia.vadicamo@isti.cnr.it (Lucia Vadicamo ),

claudio.gennaro@isti.cnr.it (Claudio Gennaro), fabrizio.falchi@isti.cnr.it (Fabrizio
Falchi), elchavez@cicese.mx (Edgar Chávez), richard.connor@stir.ac.uk (Richard
Connor), giuseppe.amato@isti.cnr.it (Giuseppe Amato)

Preprint submitted to Information Systems August 6, 2019



1. Introduction33

Proximity search is successfully used to retrieve data objects that are close34

to a given query object under some metric function. It has a vast number of35

applications in many branches of computer science, including pattern recogni-36

tion, computational biology, and multimedia information retrieval, to name but37

a few. This search paradigm, referred to as metric search, is based on the as-38

sumption that data objects are represented as elements of a metric space (D, d)39

where the metric1 function d : D×D → R+ provides a measure of the closeness40

of the data objects.41

In metric search, the main concern is processing and structuring a finite set42

of data X ⊂ D so that proximity queries can be answered quickly and with a low43

computational cost. A proximity query is defined by a query object q ∈ D and44

a proximity condition, such as “find all the objects within a threshold distance45

of q” (range query) or “finding the k closest objects to q” (k-nearest neighbour46

query). The response to a query is the set of all the objects o ∈ X that satisfy47

the considered proximity condition. In this work, we focus on the k-nearest48

neighbour (k-NN) search since, as also highlighted in [2, 3], (i) it allows us to49

control the size of the results set, and (ii) it is simpler to use in high-dimensional50

space where it is not obvious to define a meaningful distance value to be used51

with other search paradigms, like the range query. However, providing an exact52

response to a k-NN query is not feasible if the search space is very large or it53

has a high intrinsic dimensionality since it would be necessary to inspect a large54

fraction of the data to process the query. In such cases, the exact search rarely55

outperforms a sequential scan [4, 5]. To overcome this phenomenon, known56

as curse of dimensionality [6], researchers proposed several approximate search57

methods that are less (but still) affected by it. The main idea of approximate58

methods is to efficiently find a set of results that is likely to contain most of the59

objects that satisfy the query proximity condition. However, the efficiency of60

these methods comes at the expense of a certain reduction of the accuracy (e.g.61

false hits or missing results). A limited imprecision in the response to the query,62

however, is totally tolerated in many applications, such as multimedia retrieval63

where the concept of “(di)similarity” may differ on the user’ expectations, and64

close approximations may be good enough for human perception [7].65

Many Approximate Nearest Neighbor (ANN) methods are based on the idea66

of mapping the data objects into a more tractable space in which we can ef-67

ficiently perform the search. Successful examples are the Permutation-Based68

Indexing (PBI) approaches that represent data objects as a sequence of iden-69

tifiers (permutation). Typically, the permutation for an object o is computed70

as a ranking list of some preselected reference points (pivots) according to their71

distance to o. The main rationale behind this approach is that if two objects are72

very close one to the other they will sort the set of pivots in a very similar way,73

1Throughout this paper, we use the terms “metric” and “distance” interchangeably to
indicate a function satisfying the metric postulates of non-negativity, identity, symmetry, and
triangle inequality [1].
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and thus the corresponding permutation representations will be close as well.74

The search in the permutation space is used to select a candidate result set that75

is then typically refined by comparing each candidate object to the query one76

(according to the actual metric governing the data space). This refinement step,77

therefore, requires access to the original data, which is likely to be too large to78

fit into the main memory. However, some kind of refinement step is likely to79

be necessary as the search in the permutation space usually has relatively low80

precision.81

In this paper, we focus on permutation-based k-NN search and we inves-82

tigate several approaches to perform the refining step without access to the83

original data. Our techniques approximate the actual distance between a query84

and the candidate objects by exploiting the distances between the objects and85

the pivots (calculated at indexing time and stored within the permutations)86

and the distances between the query and the pivots (evaluated when computing87

the query permutation). In particular, for a large class of metric spaces that88

meet the so-called “n-point property” [8, 9] we propose the use of the nSimplex89

projection [10] that allows mapping metric objects into a finite-dimensional Eu-90

clidean space where upper- and lower- bounds for the original distances can be91

calculated. We show how these distance bounds can be used to improve the92

permutation-based results without accessing to the original data set.93

A preliminary version of this work appeared in [11]. The present contri-94

bution gives, also, a more detailed description of the proposed approaches and95

an extensive experimental evaluation. In particular, it includes new results on96

large scale and investigates the use of compressed versions of the inverted files97

to index the data. The rest of the paper is structured as follows. Section 298

reviews related work. Section 3 provides basic concepts of the metric space99

transformations used in our work (namely, permutation-based representations,100

Pivoted embedding, and nSimplex projection). In Section 4 we describe several101

pivot-based approaches to refine a permutation-based candidate set. A detailed102

experimental evaluation and analysis of those approaches is presented in Section103

5. Finally, the conclusion is drawn in the last section.104

Table 1 summarises the notation used in this paper.105

2. Related Work106

The idea of approximating the distance between any two metric objects by107

comparing their permutation-based representations was originally proposed in108

[12, 13]. Several techniques for indexing and searching permutations were con-109

sidered in literature, including indexes based on inverted files, like the Metric110

Inverted File (MI-File) [14] and its variants [15], or using prefix trees, like the111

Permutation Prefix Index (PP-Index) [2] and the Pivot Permutation Prefix In-112

dex (PPP-Index) [16]. In [17], the metric objects in the inverted index are113

represented by a signature built from the l nearest references to them. How-114

ever, in all above approaches, the candidate result set identified by performing115

the search in the permutation space should be refined to achieve high effective-116

ness. Typically the results are refining by directly comparing the query object117
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Table 1: Notation used throughout this paper

Symbol Definition

(D, d) metric space

X finite search space, X ⊆ D
Pn = {p1, . . . , pn} set of pivots, pi ∈ D
n number of pivots

o, s data objects, o, s ∈ X
q query, q ∈ D
k, k′ number of results of a nearest neighbour search

amp amplification factor

Πo pivot permutation

Π−1
o inverted permutation

l permutation prefix length (location parameter)

Πo,l permutation prefix of length l (truncated permutation)

Π−1
o,l inverted truncated permutation

PivotSet(Πo,l) the pivots whose identifiers appear in Πo,l

Γo,q pivots in the intersection PivotSet(Πq,l) ∩
PivotSet(Πo,l)

Sρ,l Spearman’s rho with location parameter l

`2 Euclidean distance

`∞ Chebyshev distance

fPn : (D, d)→ (Rn, `∞) Pivoted embedding

φPn
: (D, d)→ (Rn, `2) nSimplex projection

| · | size of a set
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with the obtained candidate results according to the original distance and data118

representation.119

The common approach to generate a permutation-based representation of120

a data object is ordering the identifiers of a set of pivots according to their121

distances to the object [18]. However, the computation of these distances is just122

one, yet effective, approach to associate a permutation to each data object. For123

example, the Deep Permutations [19] have been recently proposed as an efficient124

and effective alternative for generating permutations of emerging deep features.125

However, this approach is suitable only for specific data domains while the126

traditional approach is generally applicable since it requires only the existence127

of a distance function to compare data objects.128

In [20], Figueroa et al. have tried different distances between permutations129

instead of the canonical Spearman Footrule or Spearman Rho metrics. The aim130

of this work, however, was to reduce the number of distance computations and131

the size of the index.132

The distances between the data objects and a set of pivots can be used also133

to embed the data into another metric space where it is possible to deduce134

upper- and lower- bounds on the actual distance of any pair of objects. In this135

context, one of the very first embeddings proposed in a metric search scenario136

was the one representing each data object with a vector of its distances to the137

pivots. The LAESA [21] is a notable example of indexing technique using this138

approach. Connor et al. [10, 9, 22] observed that for a large class of metric139

spaces it is possible to use the distances to a set of n pivots to project the data140

objects into a n-dimensional Euclidean space such that in the projected space141

1) the distances object-pivots are preserved, 2) the Euclidean distance between142

any two points is a lower-bound of the actual distance, 3) also an upper-bound143

can be easily computed. They called this approach nSimplex projection and144

they proved that it can be used in all the metric spaces meeting the n-point145

property [23]. As also pointed out in [8], many common metric spaces meet the146

desired property, like Cartesian spaces of any dimension with the Euclidean,147

cosine or quadratic form distances, probability spaces with the Jensen-Shannon148

or the Triangular distance, and more generally any Hilbert-embeddable space149

[23, 24].150

Recently, The nSimplex projection has been exploited to generate a novel151

permutation-based representation for metric objects, called SPLX-Perm [? ]. It152

is based on the idea of mapping the data object to Euclidean vectors, which are153

in turn transformed into permutations using an approach similar to that used154

in the Deep Permutations [19].155

3. Background156

This section summarises key concepts of some metric space transformations157

based on the use of distances between data objects and a set of pivots. The158

rationale behind these approaches is to project the original data into a space that159

has better indexing properties than the original one, or where the function used160

to compare the objects is less expensive than the original distance. In particular,161
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we review data transformations into permutation spaces (where objects can be162

efficiently indexed using PBI methods) and two pivot-based embeddings that163

allow computing upper- and lower- bounds of the actual distance.164

3.1. Permutation-Based Representations165

Let D a data domain and d : D × D → R+ a metric function on it2. A166

permutation-based representation Πo (briefly permutation) of an object o ∈ D167

with respect to a fixed set of pivots, {p1, . . . , pn} ⊂ D, is the sequence of pivots168

identifiers ordered by their distance to o.169

Formally, the permutation Πo = [Πo(1),Πo(2), ...,Πo(n)] lists the pivot iden-
tifiers {1, . . . , n} in an order such that ∀ i ∈ {1, . . . , n− 1},

d(o, pΠo(i)) < d(o, pΠo(i+1)) (1)

or [
d(o, pΠo(i)) = d(o, pΠo(i+1))

]
∧ [Πo(i) < Πo(i+ 1)] . (2)

An equivalent permutation-based representation is the inverted permutation,170

defined as Π−1
o = [Π−1

o (1),Π−1
o (2), . . . ,Π−1

o (n)], where Π−1
o (i) denotes the posi-171

tion of a pivot pi in the permutation Πo. The inverted permutation is such that172

Πo(Π
−1
o (i)) = i. Note that the value at the coordinate i in the permutation173

Πo is the identifier of the pivot at i-th position in the ranked list of the nearest174

pivots to o; the value at the coordinate i in the inverted representation Π−1
o is175

the rank of the pivot pi in the list of the nearest pivots to o.176

The inverted permutation representation is often used in practice since it177

allows us to represent permutations in a Cartesian coordinate system and easily178

compute most of the commonly-used distances between permutations as dis-179

tances between Cartesian points. Several metric functions have been used in180

literature to compare permutations, notably including Kendall’s tau, Spear-181

man’s Rho and the Spearman’s Footrule distances. In this paper, we use the182

Spearman’s Rho. It is defined as Sρ(Πo,Πs) = `2(Π−1
o ,Π−1

s ) for any two per-183

mutations Πo, Πs.184

Most of the PBI methods, e.g. [14, 2, 16], use only a fixed-length prefix of
the permutations to represent and compare objects. This choice is based on the
intuition that the most relevant information in the permutation is present in
its very first elements, i.e. the identifiers of the closest pivots. Moreover, using
the positions of the nearest l out of n pivots often leads to obtaining better or
similar effectiveness then using the full-length permutation [14, 18], resulting
also in a more compact data encoding. The permutation prefixes are compared
using top-l distances [25]. An example is given by the Spearman’s Rho with
location parameter l, which is defined as Sρ,l, (Πo,Πs) = `2(Π−1

o,l ,Π
−1
s,l ), where

2In this work, we focus on metric search. The requirement that the function d satisfies the
metric postulates is sufficient, but not necessary, to produce a permutation-based representa-
tion. For example, d may be a dissimilarity function.
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Π−1
o,l is the inverted truncated permutation:

Π−1
o,l (i) =

{
Π−1
o (i) if Π−1

o (i) ≤ l
l + 1 otherwise

(3)

3.2. Pivoted embedding185

The distances between the metric objects and a set of pivots Pn = {p1, . . . , pn}
can be used to embed a metric space into (Rn, `∞) by using the following trans-
formation:

fPn : (D, d)→ (Rn, `∞)

o→ [d(o, p1), . . . , d(o, pn)]

The triangle inequality of the metric governing the space guarantees that

max
i=1,...,n

|d(o, pi)− d(s, pi)| ≤ d(o, s) ≤ min
i=1,...,n

|d(o, pi) + d(s, pi)| (4)

which it means that `∞(fPn
(o), fPn

(s)) is a lower-bound of d(o, s) and that also186

an upper-bound can be defined using the projected objects fPn
(o), fPn

(s) (see187

[1, pp.28]). Please note that if we use just a subset Pl of size l of the pivots188

{p1, . . . , pn}, the corresponding mapping fPl
provides upper- and lower- bounds189

that are less tight than that obtained using fPn
.190

This family of embeddings, referred to as Pivoted embedding in the following,191

are typically used in indexing tables like LAESA [21] or for space pruning [1].192

However, as further described in Section 4, in this work we used them not193

for indexing purpose, but rather as techniques to approximate the distances194

between a query and data objects already indexed using a permutation-based195

approach.196

3.3. nSimplex projection197

The nSimplex projection [10] is a space transformation of the form

φPn
: (D, d)→ (Rn, `2)

that uses the distances to a set of pivots Pn = {p1, . . . , pn} for embedding198

metric objects into a finite-dimensional Euclidean space. It can be applied to199

any metric space that meets the so called n-point property [23], which provides200

geometric guarantees stronger than triangle inequality. In particular, a metric201

space has the n-point property if, and only if, any set of n points of the space202

can be isometrically embedded into a (n− 1)-dimensional Euclidean space, i.e.203

there exist a mapping of those points to n Euclidean vectors that preserves all204

the
(
n
2

)
inter-points distances. In other words, the n points can be isometrically205

mapped to the vertices of a (n− 1)-dimensional simplex3.206

3A simplex is a generalisation of a triangle (2-dimensional simplex) or a tetrahedron (3-
dimensional simplex) in arbitrary dimensions. Specifically, the (n − 1)-dimensional simplex
generated by the vertices v1, . . . , vn equals the union of all the line segments joining vn to the
points of the (n− 2)-dimensional simplex of vertices v1, . . . , vn−1.
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The n-point property guarantees that given the set of pivots Pn, we can
determine the vectors vp1 , . . . , vpn such that

∀ i, j ∈ {1, . . . , n} : `2(vpi , vpj ) = d(pi, pj).

We refer the (n − 1)-dimensional simplex generated by those vectors to as the
simplex base. Then, for any further object o ∈ D the (n + 1)-point property
guarantees that there exists a vertex vo ∈ Rn such that

∀ i ∈ {1, . . . , n} : `2(vpi , vo) = d(pi, o),

i.e., the vector vo is the apex of a n-dimensional simplex built upon the simplex207

base where the length of the i-th edge connecting vo to the simplex base equals208

the actual distance d(pi, o). The nSimplex projection φPn
is the transformation209

that maps an object o ∈ D to the apex vo ∈ Rn built upon the simplex base.210

Connor et al. [10] provided an iterative algorithm to compute the coordinates211

of the vertices vpi of the simplex base as well as the coordinates of the apex212

vo associated to a metric object o. Remark that this algorithm determines213

those coordinates by only exploiting the distances d(pi, pj) and d(pi, o), for214

i, j ∈ {1, . . . , n}. Moreover, the simplex base is computed once and is reused for215

projecting every data object. Given the distances d(pi, o), the cost for computing216

vo is O(n) Euclidean distance between vectors having less than n dimensions.217

One of the main outcomes of this embedding is that it allows us to determine
upper- and lower-bounds of the actual distance by computing the Euclidean
distance between two vectors. In facts, given the apexes

φPn
(o) = [x1, x2, . . . , xn−1, xn]

φPn
(s) = [y1, y2, . . . , yn−1, yn]

it holds√√√√ n∑
i=1

(xi − yi)2 ≤ d(o, s) ≤

√√√√n−1∑
i=1

(xi − yi)2 + (xn + yn)2 (5)

for any two objects o, s ∈ D. Therefore given the vector

φ−Pn
(s) = [y1, y2, . . . , yn−1,−yn]

we have that `2(φPn
(o), φPn

(s)) and `2(φPn
(o), φ−Pn

(s)) are respectively a lower-218

and and upper-bound for d(o, s). Moreover, these bounds become tighter with219

increasing number of pivots n [26, 10]. Recently,220

Note that, as observed in [8, 10], there exist a large class of metric spaces221

that satisfy the n-point property and therefore can be transformed by the nSim-222

plex projection. Examples are given by the Euclidean spaces of any dimension,223

spaces with the Triangular or Jensen-Shannon distances, and, more generally,224

any Hilbert-embeddable spaces. Moreover, if a metric space does not meet the225

n-point property, (e.g. Hamming or Chebyshev metrics), there always exists a226

proximity preserving mapping of this space into a metric space with this prop-227

erty [27].228
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П𝑙,𝑞
−1

𝑘′-NN search 
(𝑘′ ≥ 𝑘)

𝑪𝒂𝒏𝒅𝑺𝒆𝒕 𝒒 = 𝒐𝟏, …… , 𝒐𝒌′ 𝒐𝒊𝟏 , …… , 𝒐𝒊𝒌′
Re-ranking

(𝑃𝑒𝑟𝑚𝑠, 𝑆𝜌,𝑙)

top-𝑘 objects 
selection𝑨𝒑𝒑𝒓𝒐𝒙𝑹𝒆𝒔𝒖𝒍𝒕𝒔 𝒒 = 𝒐𝒊𝟏 , . . , 𝒐𝒊𝒌

Figure 1: Illustration of the pipeline adopted in this work to compute the ap-
proximate k-NN results to a query by re-ranking a permutation-based candidate
result set.

4. Re-ranking Permutation-Based Candidate Set229

The permutation-based methods for approximate search are filter-and-refine230

approaches that map original data (D, d) into a permutation space. The per-231

mutation representations are used to identify a set of candidate results for a232

given query q ∈ D. The candidate results are then refined, typically by compar-233

ing the candidate objects with the query one according to the actual distance234

d. This refining approach based on the actual distance, however, requires to235

store the original data set and access to it at query time. In the following,236

we investigate the use of other refining approaches. The aim is improving the237

permutation-based results while getting rid of the original data set.238

We focus on the k-NN search and we assume that the data objects are239

represented and indexed using permutation prefixes instead of the full-length240

permutations (as done in many PBI approach [2, 14, 16]). Let CandSet(q),241

with |CandSet(q)| = k′ > k, the set of candidate results selected using the242

permutation-based encoding. The candidate result set can be built, for example,243

by performing a k′-NN search in the permutation space (e.g. using the MI-File244

[14]) or by finding objects with a common permutation prefix (e.g. using the245

PP-codes [2]). The candidate result set is then refined by selecting the top-k246

candidate objects ranked according to a dissimilarity function (Figure 1). To247

use a dissimilarity function that does not require to access to the original data,248

we propose to re-rank the objects based of their distances to a set of pivots.249

In facts, the distances between the objects and the pivots are calculated when250

computing the permutation-based representation and therefore can be easily251

reused at query time.252

Let PivotSet(Πo,l) the set of the l closest pivots to the object o, i.e. the253

pivots whose identifiers appear in the prefix permutation Πo,l. We assume that254

the distances between each object and its l closest pivots are stored and indexed255

within the object permutation prefix. This can be done with a slight modifi-256

cation of the used permutation-based index. Figure 2 shows a naive example257

for integrating the object-pivot distances into the posting lists, such as the ones258

used in the MI-file [14]. In the following, we assume that the objects are indexed259
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Figure 2: Example of traditional posting lists and posting lists with distances
generated to index three objects using five pivots and a prefix lenght l = 3

using this modified version of inverted files, however, the approaches presented260

in this paper can be extended to cope with different permutation-based indexes.261

262

We propose to refine the candidate result set according to a dissimilarity263

function derived from the distance bounds provided either by the Pivoted embed-264

ding (Sec. 3.2) and the nSimplex projection (Sec. 3.3), since these metric map-265

pings rely only on the object-pivot distances. Specifically, at query time, for each266

object o ∈ CandSet(q) we approximate the actual distance d(o, q) on the basis267

of the distances d(q, pj), d(o, pj) for pj ∈ Γo,q = PivotSet(Πq,l)∩PivotSet(Πo,l)268

as follows:269

Pivoted embedding - As a consequence of Equation 4 we have

max
pj∈Γo,q

|d(o, pj)− d(q, pj)| ≤ d(o, q) ≤ min
pj∈Γo,q

|d(o, pi) + d(q, pi)| (6)

so we consider three possible re-rankings of the candidate objects, based
on the following dissimilarity measures

Plwb(o, q) = max
pj∈Γo,q

|d(o, pj)− d(q, pj)| lower-bound

Pupb(o, q) = min
pj∈Γo,q

(d(o, pj) + d(q, pj)) upper-bound

Pmean(o, q) = (Pupb(o, q) + Plwb(o, q))/2 mean

Simplex projection - For each candidate object o, the pivots in Γo,q are used
to build the simplex base. The simplex base and the distances d(o, pj),

10



d(q, pj) with pj ∈ Γo,q are used to compute the apexes φΓo,q (o), φΓo,q (q), φ−Γo,q
(q) ∈

Rh, where h = |Γo,q| ≤ l. We consider the re-rankings of the candidate
objects based on the following dissimilarity measures:

Slwb(o, q) = `2(φh(o), φh(q)) lower-bound

Supb(o, q) = `2(φh(o), φ−h (q)) upper-bound

Smean(o, q) = (Supb(o, q) + Slwb(o, q))/2 mean

Other dissimilarity functions over the apex vectors may be considered as
well, in particular, any function that is always between the lower-bound
and the upper-bound could be a good option since both the Simplex
bounds asymptotically approach the true distance when increasing the
number of pivots. In this work, we also consider the Zenith function,
which was recently proposed in [28], that equals the quadratic mean of
the lower- and upper-bounds

Szenith(o, q) =
√

(Supb(o, q)2 + Slwb(o, q)2) /2 zenith

The main difference between the mean and zenith distance is that the270

latter has a geometrical interpretation as the Euclidean distance between271

two vertex in Rh+1 (see [28] for futher details).272

Note that the Simplex bounds are highly affected by the number h of piv-
ots used to build the simplex base (the higher h, the tighter the bounds),
moreover the number h and the used simplex base change when changing
the candidate object o. This means that the quality of the simplex-based
approximation of the distance d(o, q) may vary significantly when changing
the considered candidate object. To overcome this issue, we also consid-
ered the re-ranking according to

Snorm.mean(o, q) = Smean(o, q)/g(h) normalized mean

Snorm.zenith(o, q) = Szenith(o, q)/g(h) normalized zenith

where g(h) is a normalization factor, further discussed in Section 5.3.273

The lower-bounds Slwb and Plwb are metrics, while the other considered mea-274

sures are dissimilarity functions. Finally, we remark that for all these approaches275

no new object-pivot distance is evaluated at either indexing or query time, since276

the used distances are already computed for building the permutation-based rep-277

resentations of the objects/query. Moreover, the distances d(o, pj) with pj ∈ Γo,q278

are retrieved while scanning the posting list to build the candidate result set,279

therefore the considered re-ranking approaches do not require further disk ac-280

cesses in addition to the index accesses already made to find the candidate281

results.282
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5. Experiments283

In this section, we experimentally evaluate the quality of the re-ranking284

approaches discussed above. We first describe the employed data sets (Section285

5.1) and other experimental settings (Section 5.2). Then, we report results and286

their analysis for several case studies (Sections 5.3-5.5)287

5.1. Test Data288

The experiments were conducted on three publicly available data sets, namely289

YFCC100M [29], Twitter-Glove [30], and SISAP Colors [31]. To test our tech-290

niques on a variety of metric spaces, we selected a different type of data descrip-291

tor and metric for each data set:292

YFCC100M is a collection that contains about 96M images, all uploaded to293

Flickr between 2004 and 2014 and published under a CC commercial or294

non-commercial license. As image descriptors we used deep Convolutional295

Neural Network features obtained from the activations of the fc6 layer296

of the HybridNet [32] after the ReLu and the `2 normalization stages.297

The resulting features are 4,096-dimensional vectors. These feature were298

originally extracted by Amato et al. [33] and are available at http://299

www.deepfeatures.org/. We followed the common choice of using the300

Euclidean distance for comparing this kind of features.301

Twitter-GloVe is a collection of 1.2M GloVe [30] features (word embeddings)302

trained on tweets. We used the 100-dimensional pre-trained word vectors303

available at https://nlp.stanford.edu/projects/glove/. These word304

vectors are often used as vocabulary terms to embed a document into a305

vector representation, for example by averaging the vectors of the terms306

contained in the text. In such cases, the space of the vocabulary terms is307

representative of the space of the document embeddings. The Euclidean308

distance or the Cosine similarity are typically used to compare two GloVe309

vectors since they provide an effective method for measuring the linguistic310

or semantic similarity of the corresponding words. In our experiments we311

used the Cosine distance, defined as dCos(x, y) =
√

1− x·y
‖x‖2‖y‖2

, which312

is equivalent to the Cosine similarity (i.e., the closest object to a query313

according to dCos are the most similar objects to the query according to314

the Cosine similarity).315

SISAP Colors is a commonly used benchmark for metric indexing approaches.
It contains about 113K feature vectors of dimensions 112, representing
color histograms of medical images. We compare the feature vectors using
the Jensen-Shannon distance, which is defined as the square root of the
Jensen-Shannon divergence (JSDiv), i.e. dJS(x, y) =

√
JSDiv(x, y). The

term Jensen-Shannon divergence is used variously with slightly different
meanings in literature; to avoid ambiguity, we follow the definition used

12
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Figure 3: Probability density function estimated on a sample of 500,000 dis-
tances.

in [8]:

JSDiv(x, y) = 1− 1

2

∑
i

h(xi) + h(yi)− h(xi + yi),

where h(z) = −z log2 z.316

The distance distributions of the three considered data sets are depicted317

in Figure 3. In the figure captions we also report the Intrinsic Dimentionality318

(IDim) of the data that was estimated as in [34], i.e. IDim=
µ2

σ2
, where µ is the319

mean and σ is the standard deviation of the distances between the data objects.320

5.2. Experimental setup321

For each data set we build a ground-truth for the exact k-NN search related322

to 1,000 randomly-selected queries.4 The ground-truths are used to evaluate the323

quality of the approximate results obtained by re-ranking a permutation-based324

result set of size k′ ≥ k. Specifically, for each query object we select a candidate325

result set by performing a k′-NN search in the permutation space. Then we re-326

rank the candidate results and we select the top-k objects as the approximate327

answer to the k-NN query.328

The quality of the approximate results was evaluated using the recall@k,329

defined as |R ∩ RA|/k, where R is the result set of the exact k-NN search in the330

original metric space and RA is the approximate result set. We set k = 10 and331

k′ = 100, thus the candidate result set is computed by performing a 100-NN332

search in the permutation space.333

The permutation-based representations of the data objects were generated334

using a total of n = 4, 000 pivots for YFCC100M and Twitter-GloVe data, and335

4The query objects were removed from the ground-truths of Twitter GloVe and SISAP
Color data sets. For the YFCC100M we keep the query objects in the ground-truth to have
results comparable with other research papers that used the same ground-truth (e.g. [19, 11]).
Please also note that many re-ranking measures tested in this paper are not metrics, thus there
are no guarantees that the less similar object to a query will be the query itself.
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n = 1, 000 pivots for the smaller SISAP Colors data set. In our tests, we used336

fixed-length permutation prefixes to represent the data objects. The permu-337

tation prefixes were compared using Spearman’s rho with location parameter338

metric, where the location parameter is the length l of the permutation pre-339

fixes. Note that the case l = n simply corresponds to use of the full-length340

permutations with the traditional Spearman’s rho metric. In the experiments,341

we evaluate the performance for various permutation prefix lengths.342

5.3. Results343

This section presents comparative results for all the approaches described344

in Sec. 4 to re-rank a permutation-based candidate results set. We remind the345

reader that the considered techniques are based on various Pivoted embedding346

and Simplex projection dissimilarity measures (namely, lower-bound, upper-347

bound, and mean), as well as the Simplex zenith function. We compared these348

approaches also with two baselines: 1) the permutation-based results before any349

re-ranking, 2) the re-ranking based on the actual distance. The permutation-350

based results before any re-ranking are simply the first k candidate objects351

ordered according to their permutation-based distance to the query (i.e. the k-352

NN results in the permutation space). A good re-ranking technique in terms of353

effectiveness should at least improve the recall of the permutation-based results,354

and ideally achieves a performance close to that obtained using the re-ranking355

based on the actual distance. In fact, the latter one is the approach that provides356

the maximum possible recall for the given candidate result set, but it requires357

to access the original metric object o to compute the distance d(q, o) between358

the query q and every candidate object o.359

Figure 4 illustrates the results on Twitter-GloVe and SISAP Colors data sets.360

Figures 5a and 5b show the results on two subsets of YFCC100M that contain361

1M and 10M images, respectively. We used the term “Perms”to indicate the362

permutation-based results before any re-ranking, and “Perms, re-rank(f)” for363

the re-ranking based on the measure f , where f may be either the364

• actual distance d,365

• Pivoted embedding measures (Plwb, Pupb, Pmean),366

• Simplex measures (Slwb, Supb, Smean, Szenith, Snorm.mean, Snorm. zenith).367

In each graph, we report the recall@10 varying the length l of the permutation368

prefixes used to represent the data objects (the number n of pivots is fixed).369

Please note that the prefix length l influences the quality of the candidate set370

to be re-ranked, as well as the quality of the Pivoted embedding and Simplex371

projection distance approximations. In fact, for a fixed value l and for a can-372

didate object o, the number h of pivots used to compute the distance approxi-373

mations is less than l; moreover, it varies and depends on the candidate object374

o as it is equal to the cardinality of Γo,q (i.e. the intersection between the query375

permutation prefix and the object permutation prefix). Typically h is greater376

for objects in top positions in the permutation-based result list and decrease for377
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Figure 4: Recall@10 of several re-ranking approaches varying the permutation
prefix length l. The candidate set to be reordered is selected with a 100-NN
search in the permutation space using the Spearman’s rho with location param-
eter l.
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Figure 5: YFCC100M, Euclidean distance: Recall@10 varying the permuta-
tion prefix length l on subsets of 1M images (5a) and 10M images (5b). The
number of pivots is fixed to n = 4, 000. The candidate set to be reordered is
selected with a 100-NN search in the permutation space using the Spearman’s
rho with location parameter l.

16



0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 8 64 512 4096

A
ve

ra
ge

 R
e

la
ti

ve
 E

rr
o

r

h

 Pivoted emb. lwb

 Pivoted emb. upb

(a) Pivoted embedding

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 8 64 512 4096

A
ve

ra
ge

 R
e

la
ti

ve
 E

rr
o

r

h

Simplex lwb

Simplex upb

1-log(h)/log(4096)

(b) Simplex projection

Figure 6: YFCC100M, Euclidean Distance - Average relative error of the
Pivoted embedding and Simplex embedding bounds with respect to the ac-
tual distance varying the number of h of pivots used to compute the bounds.
Similar trends are obtained on Twitter-GloVe and SISAP colors data sets.

objects that are far according to the permutation-based distance. Moreover, the378

greater the l, the greater the h and so the better the approximation bounds.379

Surprisingly, we observed that in almost all the tested cases the Pivoted380

embedding approach greatly degrades the quality of the permutation-based re-381

sults. Moreover, on YFCC100M and Twitter-GloVe it never reaches a recall@10382

greater than 0.3. Hence, the Pivoted distance approximations resulted to be383

not adequate for the considered re-ranking purpose. One of the reasons for its384

poor performance is that the Pivoted lower-bound approximates well the actual385

distance d(o, q) only if o and q are very close to each other in the original metric386

space, or if Γo,q contains at least one pivot that is very close to q and far to o (or387

vice versa). However, for randomly selected pivots in high dimensional space388

this is unlikely to happen: for a random pivot p and for an object o not so close389

to q, we often have that the distances d(o, p) and d(q, p) are both close to the390

mean value in the distribution of the data distances, and so the lower-bound391

results to be close to zero. This means that when we use the Pivoted lower-392

bound for re-ranking purpose, it may happen that many objects are incorrectly393

swapped and far objects can be assigned in top-positions. In addiction, we ob-394

served that the Pivoted distance bounds have high relative errors with respect395

to the actual distance and that these errors slightly decrease when increasing396

the number h of pivots used to compute the bounds (Figure 6a).397

The Simplex distance bounds showed similar drawbacks when using rela-398

tively small prefix lengths. In particular, they are mostly influenced by the399

fact that the Simplex bounds asymptotically approach the true distances when400

increasing the number h of pivots used to build the simplex base and that the401

tightness of the bounds highly depends on h. In fact, in all the tested cases, we402

observed that there exists a value h̃ for which the full convergence is achieved.403

This value is 4,096 for YFCC100M, and about 100 for Twitter-GloVe/SISAP404

Colors. The effect of the convergence of the Simplex bounds is evident in both405
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the Twitter-GloVe (Figure 4a) and the SISAP Colors (Figure 4b) data: for406

l > 300 we observed that the number of pivots in the intersection Γo,q starts407

to exceed h̃ = 100 for most of the candidate objects o, and so all the Simplex408

bounds provide an exact or almost exact approximation of the actual distances.409

As a consequence, for l > 300 all the recall curves of the Simplex-based re-410

ranking approaches coincide with the recall curve obtained using the re-ranking411

based on the actual distance. For the YFC100M data set, instead, the Simplex412

bounds recall curves do not reach the values obtained by using the actual dis-413

tance because we are considering prefix lengths smaller than the number h̃ of414

pivots needed to have the convergence.415

We remark that the performance of the Simplex bounds are poor for small416

prefix lengths mainly because417

• for two objects o, s ∈ CandSet(q) such that |Γo,q| < |Γs,q| << h̃ we may418

have Slwb(o, q) < Slwb(s, q) even if d(o, q) > d(s, q);419

• the upper-bound, which is not a metric, particularly fails in approximate420

small distances and Supb(o, o) may be much greater than 0.421

This behaviour of the Supb is somehow observable in the recall values obtained422

on the YFFCC100 data: for small l the results of the re-ranking based on the423

Supb are better than that of Slwb on the 1M images subset (Fig. 5a), but on 10M424

images (Fig. 5b) the curve of Supb never exceeds that of Slwb. The reason is425

that the actual distances between the query and the candidate objects are likely426

to be smaller when performing the nearest neighbour search on a lager subset427

of data. Thus, given that for small l the Supb does not approximate well tiny428

distances, the performance of the re-ranking based on the upper-bound drops429

when the candidate objects are selected by searching 10M images.430

It is worth noting that, accordingly to our experimental observations, if we431

use the same simplex base (e.g. the one formed by the pivots in the query432

permutation prefix) to project all the candidate objects, we achieve re-ranking433

scores better than that showed in the Figures above, especially for relatively434

small prefix lengths. However, this approach is not directly applicable in the435

analysed scenario. In fact, we used inverted files to index the permutations436

and store the distances object-pivots. This implies that at query time, for each437

candidate object o we had access only to the distances d(o, p) with p appearing438

in both the object and query permutation prefixes. Therefore, the set of pivots439

employed to build the simplex base changes when considering different candi-440

date objects. This means that the “quality” (tightness) of the Simplex-based441

approximations of the query-object distances is not uniform within the set of442

the candidate objects. To overcome this issue, we tested normalised versions of443

all the Simplex distance bounds by taking into account the number h of pivots444

used for projecting the data. In the graphs reported in this paper, we show445

only the normalised version of the mean and zenith distance since they were the446

ones obtaining the best results. As normalisation factor we used g(h) = log(h)447

since we experimentally observed that the relative errors of the Simplex bounds448

decrease logarithmically with h (e.g. Figure 6b).449

18



The re-rankings based on the normalised versions of the Simplex mean and450

zenith have practically the same performance on Twitter Glove and SISAP Col-451

ors data sets, while on YFCC100M data the Snorm.mean shows slightly better452

recall values. Moreover, in all the tested cases, the re-rankings using those453

Simplex measures always improved the permutation-based results (i.e. the454

Perms baseline). For example, for n = 4, 000 pivots and l = 800, the recall@10455

is improved from 0.37 to 0.64 on YFCC100M (10M subset). For n = 4, 000 and456

l = 300, the recall increases form 0.43 to 0.76 on Twitter-GloVe, while for l = 80457

and n = 1, 000 it raises from 0.43 to 0.80 on SISAP Colors. We provided exam-458

ples with l < n instead of considering the full-length permutation since when459

using inverted files the number of index blocks accessed is proportional to l2/n460

and does not depend on the number of retrieved objects. Moreover, it is worth461

to note that the quality of permutation-based results it is not always improved462

by considering large prefix lengths. In fact, it often happens that there exists463

an optimal prefix length for which we achieve a recall that is better or very464

similar to that obtained using the full-length permutations. This phenomenon465

is observable in the YFCC100M and the SISAP Colors data set (see Fig. 5466

and 4b), where the Perms recall line has a plateau or decreases after achieving467

a maximum value. Other examples of this phenomenon can be found e.g. in468

[18] where it was observed the existence of an optimal prefix length l < n for469

some synthetic and real-word data sets. The intuition is that in those cases the470

intrinsic complexity of the data set is already well described when permutation471

prefixes with length equal to the optimal value are used, therefore increasing472

the length of the prefixes may add noisy information instead of improving the473

data representation. This phenomenon is not yet completely investigated in474

literature, however, we mentioned to clarify why in the SISAP Colors case the475

performance is affected by using a large l parameter.476

Finally, we observe that the cost of the considered re-ranking approaches477

depends on the query object since it changes according to the numbers of piv-478

ots in the intersections of permutation prefixes of the query and the candidate479

objects. If using the algorithm proposed in [10], the cost for building a simplex480

base using h pivots is O(h3) floating point operations (flops), while the cost481

for projecting an object is O(h2) flops. Thus, for k′ candidate objects whose482

permutation prefixes have on average hl pivots in common with the query per-483

mutation we have a cost of O(k′(h3
l + h2

l ) + h2
l ) flops to compute the Simplex484

bounds. However, the k′ simplex bases can be computed in parallel since they485

referred to different sets of pivots. Just to provide an example, for l = 300 the486

time cost for computing all the simplex bases and projecting both the query487

and the candidate objects is about 300ms on an Intel i7 3.5 GHz. We also ob-488

serve that this cost may be greatly reduced if some of these simplex bases are489

pre-computed or partially computed. In facts, if we have a simplex base built490

upon the pivot set {pi1 , . . . , pih} and we extend it by adding a further pivot the491

cost is O(h2) flops instead of O(h3) flops needed to build it from scratch. Thus492

implementations that exploit hashmaps or prefix trees to dynamically cash the493

computed simplex bases would accelerate the response at query time.494
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Figure 7: YFCC100M, Euclidean distance, n = 4000, l = 800

5.4. Results on large scale495

To evaluate our techniques on large scale, we perform the k-NN search on496

various subsets of YFCC100M. Figure 7a shows the recall@10 varying the data497

set size from 1 to 96 million images. The candidate results to be re-ranked were498

selected by using permutation prefixes of length l = 800. We observe that the499

performance of our techniques with respect to the Perms and re-rank(actual500

distance) baselines is stable when increasing the size of the data set. In par-501

ticular, the relative improvement in the recall obtained by the Simplex mean502

and zenith re-rankings with respect to Perms results ranges between 70% (at503

96M) and 78% (at 8M). Moreover, for large sizes of the data set the relative gap504

between our techniques and the re-ranking based on the actual distance slightly505

decreases.506

We also investigate the performance varying the size k′ of the candidate set507

to be re-ranked (Figure 7b). In this case, the candidate set was selected by508

performing a k′-NN search in the permutation space using the Spearman’s rho509

with location parameter l = 800. As expected, the gap between our approaches510

and the re-ranking based on the actual distance increases for large sizes of the511

candidate set due to the errors in approximating the actual distance by the512

Simplex measures. In facts, for the considered parameter l = 800, on average513

we have about 550 pivots in the intersection between the query and the object514

permutation prefixes, but for the YFCC100M data set the convergence of the515

Simplex bounds is achieved using 4,096 pivots. Thus, the effects of distance516

approximation errors becomes more evident when we re-rank larger set of data.517

Nevertheless, even when considering k′ = 1, 000 as candidate set size, the im-518

provements in the recall of our approach with respect to the Perms baseline is519

considerable (from 0.35 to 0.59)520
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(a)

(b)

Figure 8: Examples of 10-NN search results obtained using the permutations
without any re-ranking, our Simplex re-ranking technique, and the sequential
scan (ground-truth).
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Table 2: Examples of disk space in Gigabytes needed by various approaches to
index and search the YFCC100M data set using inverted files. The re-ranking
based on the Simplex measures requires to store the object-pivot distances
within the permutation prefixes. The re-ranking based on the actual distance
needs to store the permutation prefixes as well as the original data.

Approach

Disk space (GB)

1M deep features 100M deep features

l = 300 l = 800 l = 300 l = 800

Perms 0.7 1.9 94.3 251.5

Perms,re-rank(actual dist.) 16.0 17.1 1620.5 1777.7

Perms,re-rank(Simplex) 1.8 4.8 206.1 549.5

Perms,re-rank(Simplex) with
distances quantized to 8 bits

1.0 2.6 122.2 326.0

Finally, in Figure 8, we report some examples of 10-NN results obtained on521

10M images of YFCC100M using 1) the permutations without any re-ranking,522

2) our re-ranking approach 3) brute-force (exact search via sequential scan). We523

considered the case l = 800 and we selected examples for which our technique524

achieved the worse and the best recall@10 over all the 1, 000 tested queries,525

which are 0.1 (Fig. 8a) and 1 (Fig. 8b) respectively. In the first example,526

it is interesting to note that even if the recall of our technique is very low,527

from a visual similarity point of view our results are not so worse than the528

ground-truth images. The second example shows a case in which we achieved529

the maximum recall (1.0), allowing us to highly improve the recall obtained by530

the permutation-based search (0.3). Note that in this case, even though the set531

of our results coincides with the ground-truth set, the ordering of the results is532

different because for l = 800 the Simplex bounds are not converged yet to the533

actual distance.534

A demo of the K-NN search results on YFCC100M for various data set535

sizes (from 1 to 96M) and various re-ranking approaches is available at the link536

http://cloudone.isti.cnr.it/rerankingPerms/.537

5.5. Results using quantized distances538

In the experiments analyzed so far, the object-pivot distances used to per-539

form the re-rankings were indexed within the object permutation prefixes by540

using inverted files (as discussed in Section 4. The disk space needed by the541

inverted index can be estimated in general assuming to encode each entry of542

the posting lists with dlog2|X|e + 32 bits, where |X| is the size of the data543

set. This space is largely sufficient to encode both the ID of the object and544

its distance from the pivot corresponding to the list to which the entry be-545

longs to. As observed in [14], the positions of the objects can be neglected546

by ordering the entries of the posting list according to the position of the ob-547

jects. Therefore, for a fixed l, the size of the inverted index used by our ap-548

22



proaches is l|X|(dlog2|X|e + 32) bits. For reference we also observe that 1)549

the size of the inverted index of the Perms approach (i.e. the one that does550

not store the distances) is l|X|(dlog2|X|e) bits; 2) the search approach relied551

on the re-ranking of the permutation-based results according to the actual dis-552

tance requires to store both the Perms index and the original data set, thus553

it needs l|X|(dlog2|X|e) + |X|(dlog2|X|e + D ∗ 32) bits, if the data objects are554

D-dimensional real-valued vectors.555

For example, the disk space required to index and search 1M deep fearures556

(D = 4, 096) of YFCC100M using permutation prefixes of length l = 300 are557

about 1.8 GB for our techniques, 0.7 GB for the Perms approach, and 16 GB558

for the Perms, re-rank(actual distance) technique (see also Table 2).559

To reduce the size of our inverted index, we investigated the idea of com-560

pressing the posting lists by storing quantized distances. Since the quantized561

distances are then used to compute the Simplex projection of the data objects,562

the performance of our re-ranking techniques may degrade due to the quantiza-563

tion errors. We investigated this aspect by testing several floating-point quanti-564

zation approaches in conjunction with our Simplex-based re-ranking technique.565

Specifically, for a value x in a finite range (xmin, xmax) we tested the following566

scalar quantizers.5567

Uniform quantizer is probably the simplest type of quantizer. It divides the
interval (xmin, xmax) into L interval of the same length Q = (xmax −
xmin)/L. Each value x is then mapped to the middle value of the interval
it belong to, i.e.,

qunif (x) = xmin +Q/2 +Qb(x− xmin)/Qc (7)

Nonuniform quantizer are typically modeled as a cascade of a non-linear568

mapping (compressor) followed by a uniform quantizer followed by an in-569

verse non-linear mapping (expander). The non-linear mapping before the570

uniform quantization allows us to keep the number of quantization inter-571

val constant while differentiating the size of those intervals to approximate572

the input better in certain regions (e.g. regions that have more probability573

mass). We considered the following nonuniform quantizers:574

µ-law quantizer uses the µ-law mapping as compressor function, which
is defined as

Fµ(x) = V
log (1 + µ

|x|
V

)

log (1 + µ)
sign(x) (8)

where V = max{|xmin|, |xmax|}, and µ is a compression parameter575

(e.g. µ = 255 is used in the North American and Japanese standards576

for digital telecommunication signals). The transformed values are577

5Note that in our case xmin = 0 since we are considering distance values.
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then quantized using a uniform quantizer for the trasformed interval.578

Thus, the final quantized value associated to x is qunif (Fµ(x)).579

To transform a quantized value y back, we use the inverse µ-law:

F−1
µ (y) =

V

µ

(
(1 + µ)|y|/V − 1

)
sign(y). (9)

Since the values close to zero are less compressed than values with580

greater absolute values (the quantization intervals increase logarith-581

mically), usually the values are mean-centered before the quantiza-582

tion.583

A-law quantizer uses the A-law compressor, which is defined as

FA(x) = V sign(x)


A|x|/V

1 + ln(A)
|x| < V/A

1 + ln(A|x|/V )

1 + ln(A)
V/A ≤ |x| ≤ V

(10)

where A is a compression parameter and V = max{|xmin|, |xmax|}.
The compressed values are then quantized using an uniform quatizer.
The mapping used as expander is the inverse A-law:

F−1
A (y) =

V sign(y)

A


|y|
V

(1 + ln(A)) |y| < V

1 + ln(A)

exp(
|y|
V

(1 + ln(A))− 1)
V

1 + ln(A)
≤ |y| < V

(11)
Also in this case the data are centered before the quantization.584

The number L of interval we used for each quantizer is L = 2nBits, where585

nBits are the number of bits used to store each distance. For each approach, we586

computed the Mean Squared Error (MSE) on a sample set of data. The MSE is587

a frequently used to evaluate how close are the (reconstructed) quantized values588

x′ to the original values x, and it is defined as
1

m

∑m
i=1(xi − x′i)2, where m is589

the number of samples.590

For the µ-law and A-law quantizer, we select the optimal µ and A parame-591

ters as the ones providing us the lowest MSE over a sample set of object-pivots592

distances. We then evaluate the recall obtained by re-ranking the permutation-593

based candidate set according to the Simplex bounds computed using the quan-594

tized distances. Table 3 shows comparative results on 1M subset of YFCC100M595

using a prefix length of l = 800 and nBits = 8.596

As expected the uniform quantizer has really poor results since the distri-597

bution of the distances is not uniform. The tested nonuniform quantizers have598

results similar to each other. We decided to use the µ-law quantizer since it599

showed slightly better results.600

We then thoroughly tested the performance of our technique by varying601

the data set, the permutation prefix length l, and the number of bits used to602
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Table 3: Results of various quantization approaches (YFCC100M data set).
The quantizers are applied to the distances of the data objects to their l nearest
pivots, i.e. the distances store in the posting lists. The reported results were
obtained using the Perms,re-rank(Snorm.mean) approach, distance quantized
to 8 bits, and permutation prefixes of length l = 800.

Quantizer Compressor parameter MSE recall@10

Uniform 3.24E-03 0.228

µ-law µ = 48 2.64E-07 0.698

A-law A = 3 1.04E-06 0.696

No quantization 0 0.698

store each object-pivot distance. Figures 9, 10, and 11 illustrate the results on603

YFCCC100M, SISAP Colors, and Twitter GloVe, respectively. For the sake604

of simplicity, we show results obtained using a fixed parameter µ for all tested605

permutation prefix lengths. This parameter was selected as the one minimising606

the MSE error in approximating the distances of the objects to all the n pivots.607

In facts, we observe that results obtained in this way are practically equivalent608

to that obtained by estimating an optimal parameter µ for each different choice609

of the parameter l.610

On YFCC100M (Euclidean distance) and SISAP Colors (Jensen-Shannon611

distance), we were able to satisfactorily preserve the quality of the re-ranked612

results when using at least 8 bits to store each distance. However, we observed613

a huge degradation when using fewer bits. For example, the re-ranked results614

became worse than the permutation-results when we use less than 5 bits. The615

problem is that the quantized object-pivot distances are then used to compute616

the Simplex projection of the object, so the quantization errors propagate in the617

Simplex-based estimation of the query-object distance. The effect of this error618

propagation is more evident in Twitter Glove data (cosine distance), where the619

results obtained for l ≥ 300 is highly degraded using quantized distances. On620

this data set, we needed about 14 bits to preserve the quality of the re-ranked621

results even though the MSE errors related to distances quantized using fewer622

bits were in line with that obtained in the other tested data sets.623

6. Conclusions624

In this article, we presented an approach that exploit a pivot-based local em-625

bedding to refine a set of candidate results of a similarity query. The analysed626

case is refining of a set of approximate nearest neighbour results retrieved using627

a permutation-based search system. However, our approach can be generalized628

to other types of approximate search provided that they are based on the use of629

anchor objects (pivots) from which we pre-calculate the distances for other pur-630

poses. For example, some data structures use inverted indices, as the inverted631

multi-index [35], in which objects belonging to a Voronoi cell are inserted in a632
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Figure 9: YFCC100M (1M), Euclidean distance, n = 4, 000 pivots
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posting list associated with the centroid of the cell from which we calculated633

the distance. Other indexes that can benefit from our approach are those based634

on permutation prefix trees, like PP-Index [2] and PPP-Index [16].635

The core idea of the proposed technique is using the distances between an636

object and a set of pivots (pre-computed at indexing time) to embed the data ob-637

jects in a metric space where it is possible to compute upper- and lower-bounds638

for the actual distance. Dissimilarity functions defined upon those bounds are639

then adopted for re-ranking the candidate objects. The main advantage is that640

the proposed approach do not need to access the original data as done, instead,641

by the most commonly used refining technique that relies on computing the642

actual distances between the query and each candidate object.643

We analysed the refining based on two data embeddings, namely the Piv-644

oted embedding and the nSimplex projection, and several dissimilarity func-645

tions derived by these space transformations. The refining approaches us-646

ing the nSimplex projection resulted to be particularly effective for refining647

permutation-based results. For example, using the refining according to the648

nSimplex normalised mean function we were able to almost double the preci-649

sion the permutation-based results even on a data set of about 100 million of650

objects.651
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