
IMT Institute for Advanced Studies, Lucca

Lucca, Italy

Combining Peer-to-Peer and Cloud Computing
for Large Scale On-line Games

PhD Program in Computer Science and Engineering

XXIV Cycle

By

Emanuele Carlini

2012

http://www.imtlucca.it
mailto:emanuele.carlini@imtlucca.it

The dissertation of Emanuele Carlini is approved.

Program Coordinator: Prof. Ugo Montanari, University of Pisa

Supervisor: Prof. Laura Ricci, University of Pisa

Supervisor: Prof. Massimo Coppola, Istituto di Scienza e Tecnologie
della Informazione (ISTI), CNR, Pisa

Supervisor: Prof. Alberto Montresor, University of Trento

Tutor: Prof. Marzia Buscemi, IMT Institute for Advanced Studies Lucca

The dissertation of Emanuele Carlini has been reviewed by:

Prof. Paolo Costa, Imperial College London

Prof. Alexey Vinel, Tampere University of Technology

IMT Institute for Advanced Studies, Lucca

2012

http://www.imtlucca.it

Contents

List of Figures ix

List of Tables xi

Acknowledgements xii

Vita and Publications xiii

1 Introduction 1
1.1 Massive Multi-player On-line Games 4
1.2 On-demand Platforms . 5
1.3 Thesis Contribution . 7

2 Background 10
2.1 A model for MMOGs . 10
2.2 MMOGs: Challenges and Issues 13

2.2.1 The Consistency-Interactivity Tradeoff 13
2.2.2 Interest Management 16
2.2.3 Fault Tolerance . 19
2.2.4 Cheating . 21
2.2.5 Load Balancing . 23

2.3 Conclusion . 24

3 State Action Manager 25
3.1 SAM Architecture . 26

3.1.1 Replication and Fault Tolerance 29

vi

3.2 Virtual Server . 30
3.3 Problem Statement and System Model 38

3.3.1 Mixed-Integer Programming Modelling 40
3.4 The Manager . 41

3.4.1 Load prediction . 42
3.4.2 Virtual Servers Management 44
3.4.3 Migration . 46

3.5 Experimental Results . 47
3.5.1 Workload Definition 47
3.5.2 Simulation Environment and Metrics 51
3.5.3 Risk and Cost Trade-off 53
3.5.4 Scalability Cost on the Number of Players 54
3.5.5 Comparison with Optimum 55
3.5.6 Prediction Error . 56

3.6 Conclusion . 58

4 Positional Action Manager 59
4.1 PAM Server . 61
4.2 PAM Overlay . 62

4.2.1 Gossip-based Overlay Construction 63
4.2.2 Ranking Function . 65

4.3 Result . 73
4.3.1 Metrics . 73
4.3.2 Behaviour over Ts 74
4.3.3 Tiles Variation . 75
4.3.4 Number of Peers . 77

4.4 Conclusion . 77

5 Toward a Complete Architecture 80
5.1 Combining PAM and SAM 81

5.1.1 Client’s Perspective 81
5.2 Multi-Server PAM . 84

5.2.1 PAM Load Distribution 87
5.3 Cheating . 88

5.3.1 SAM . 88

vii

5.3.2 PAM . 89
5.4 Conclusion . 90

6 Related Work 91
6.1 Centralized Infrastructures 92

6.1.1 On-demand Platforms 94
6.2 User-assisted Infrastructures 95

6.2.1 Super-Peers Infrastructures 96
6.2.2 Peer-to-Peer Infrastructures 97
6.2.3 Anti-Cheating . 101

6.3 Hybrid . 101
6.4 Mobility Models in MMOGs 103
6.5 Case Studies . 105

6.5.1 SimMud . 105
6.5.2 Colyseus . 106
6.5.3 Voronoi Based Overlay Network 108
6.5.4 On-demand Provisioning 109

6.6 Conclusion . 109

7 Conclusion 111

References 113

viii

List of Figures

1 Simultaneous Runescape users, source: (MMD11) 6

2 The structure of an entity descriptor 11
3 Server model . 12
4 Pessimistic consistency management 14
5 Optimistic consistency management 14
6 The Interest Management tradeoff 18
7 Cheating by suppressed update 22

8 Black dots are the objects inside the virtual environment.
VS are the Virtual Servers. Node A manages 2 VSs, whereas
Node B manages 3 VSs. Client connects to the nodes to
modify and read the objects. The manager has a global
knowledge of the state of the node and the VSs. 27

9 Migration of a VS from the node A to node B 32
10 Probability density function of RTTs 35
11 Cumulative density function of migration time 36
12 Histogram of the client per minutes per entity plotted in

log-log . 37
13 95th percentile of MT with different amount of objects . . . 38
14 Manager time management 42
15 Workload characterization 52
16 Cost per minute with different maximum risk. Prediction

error 0.05, 100 virtual servers, 5000 maximum players . . . 53

ix

17 Average cost per minute, different number of maximum
players and risklimit, 100 virtual servers 54

18 Cost trend, different number of maximum players. risklimit =

0.1, 100 virtual servers . 55
19 Average cost per minute with different strategies in as-

signing virtual servers. no prediction error, 100 virtual
servers, 2000 maximum players, risklimit = 0.9 56

20 Cost per minute, different values for εest. 2000 maximum
players, 100 virtual servers 57

21 Percentage of penalties per minute, different allowed max-
imum error. 2000 players, 100 vs 58

22 PAM: Client Architecture . 60
23 Server outgoing bandwidth 62
24 Simple continuous c(P) with N = fA,Bg. 66
25 Continuous and approximate coverage with N = fA,Bg.

In this case the AOI coverage is approximated to 5/9 . . . 67
26 Graphical examples of the score-based heuristic 70
27 Greedy and Score Heuristic with N = A,B,C,D,E 72
28 Comparison between score-based heuristics and greedy-

based heuristics . 74
29 Score heuristics, comparison between considering or not

freshness of entries . 76
30 AC and JC with different number of tiles 77
31 JC with different values for network sizes 78
32 Impact on the heuristics with different tiles approximation 78

33 Client-centric view of the proposed architecture 82
34 The entity descriptor is split between PAM and SAM . . . 84
35 Original vs Enhanced CAN 86

36 Distribution strategies . 93

x

List of Tables

1 Workload’s table of parameters 51

2 Super Peer Approaches . 96
3 Flat approaches. Other works cited in the section, like

VON-Forwarding (CLCH07) and FiboCast (JHH09) are op-
timization of VON. 98

xi

Acknowledgements

Let me be clear from the beginning. This thesis wouldn’t
have been possible without all the people I have met along
the path. And the list is quite long. I would express my infi-
nite gratitude to Prof. Laura Ricci and Dr. Massimo Coppola
not only for their scientific guidance but also for continuous
support and encouragement. A special thank goes to Prof.
Alberto Montresor for all the accurate advices and the fruit-
ful discussions. I would like to thank Prof. Alexey Vinel and
Prof. Paolo Costa for their precise feedback and comments.
Many thanks to all the people at IMT Lucca, especially to col-
leagues of the XXIV cycle, with whom I shared most of my
time at IMT. I would like to thank Dr. Raffaele Perego, Ranieri
Baraglia and all the other friends and colleagues at HPC lab
at CNR-ISTI. It has been an immense privilege working with
you guys. I wish to thank in particular Dr. Patrizio Dazzi,
Stefania Lombardi and Matteo Mordacchini for their support
and for an infinite number of fruitful discussions. A partic-
ular thank goes also to my friends Beniamino, Daniele, Luca
and Iacopo. This thesis wouldn’t have been possible without
the continuous encouragement of my family, to whom I ex-
tend my most deep thanks. Last, but definitely not least, I
thank Anna for being on my side all the time and completing
my life with her love.

xii

Vita

August 13, 1981 Born, La Spezia, Italy

2004 Bachelor of Applied Science Degree
Final mark: 105/110
University of Pisa, Italy

2008 Master Degree
Final mark: 108/110
University of Pisa, Italy

2009 Graduate Fellow
Istituto di Scienza e Tecnologie dellInformazione (ISTI),
National Research Council
Pisa, Italy

2009 PhD Student in Computer Science and Engineering
IMT Institute for Advanced Studies Lucca
Lucca, Italy

xiii

Publications

1. Carlini, E., M. Coppola, P. Dazzi, D. Laforenza, S. Martinelli, and L. Ricci,
“Service and Resource Discovery Supports over P2P Overlays”, in Proceed-
ings of International Conference on Ultra Modern Telecommunications (ICUMT),
IEEE, pp.1-8, 2009.

2. Carlini, E., M. Coppola, and D. Laforenza, “XtreemOS, an Open-Source
Grid Operating System Targeting the Future Internet”, in III Conferenza
Italiana sul Software Libero, 2009.

3. Carlini, E., M. Coppola, D. Laforenza, and L. Ricci, “Reducing Traffic in
DHT-based Discovery Protocols for Dynamic Resources, in Grids, P2P and
Services Computing, Springer, pp.73-87, 2010.

4. Carlini, E., M. Coppola, and L. Ricci. “Integration of P2P and Clouds to
Support Massively Multiuser Virtual Environments”, in Proceedings of the
9th Annual Workshop on Network and Systems Support for Games (NetGames),
ACM/IEEE, pp.1-6, 2010.

5. Carlini, E., M. Coppola, P. Dazzi, L. Ricci, and G. Righetti, “Cloud Federa-
tions in Contrail. in Euro-Par 2011: Parallel Processing Workshops, Springer,
pp.159-168, 2011.

6. Carlini, E., M.Coppola, and L.Ricci,“ Evaluating compass routing based
AOI-cast by MOGs mobility models”, in Proceedings of the 4th International
Conference on Simulation Tools and Techniques, ICST, pp.328-335, 2011.

7. Carlini, E., M. Coppola, and L. Ricci, “Probabilistic Dropping in Push and
Pull Dissemination over Distributed Hash Tables”, in Proceedings of the 11th
International Conference on Computer and Information Technology (CIT), IEEE,
pp.47-52, 2011.

8. Ricci, L., E. Carlini, L. Genovali, and M. Coppola, “AOI-cast by Com-
pass Routing in Delaunay Based DVE Overlays”, in Proceedings of Inter-
national Conference on High Performance Computing and Simulation (HPCS),
IEEE, pp.135-142, 2011.

9. Ricci, L. and Carlini, “Distributed Virtual Environments: From Client Server
to P2P Architectures”, in In High Performance Computing and Simulation
(HPCS), 2012 International Conference on, pages 817. IEEE, 2012.

10. Carlini, E., L. Ricci, and M. Coppola. “Flexible load distribution for hybrid
distributed virtual environments”, in Future Generation Computer Systems,
Elsevier, http://dx.doi.org/10.1016/j.bbr.2011.03.031, 2012.

xiv

http://dx.doi.org/10.1016/j.bbr.2011.03.031

11. Ricci, L., L. Genovali, E. Carlini, and M. Coppola. “AOI-Cast in Distributed
Virtual Environments: an Approach Based on Delay Tolerant Reverse Com-
pass Routing, in Concurrency and Computation: Practice and Experience, to
appear.

12. E. Carlini, L. Ricci, and M. Coppola. “Reducing Server Load in MMOG via
P2P Gossip, Proceedings of the ACM Workshop on Network and System Support
for Games (NetGames 2012), Venice, Italy, to appear.

xv

Abstract

This thesis investigates the combination of Peer-to-Peer (P2P)
and Cloud Computing to support Massively Multiplayer On-
line Games (MMOGs). MMOGs are large-scale distributed
applications where a large number of users concurrently share
a real-time virtual environment. Commercial MMOG infras-
tructures are sized to support peak loads, incurring in high
economical cost. Cloud Computing represents an attractive
solution, as it lifts MMOG operators from the burden of buy-
ing and maintaining hardware, while offering the illusion of
infinite machines. However, it requires balancing the tradeoff
between resource provisioning and operational costs. P2P-
based solutions present several advantages, including the in-
herent scalability, self-repairing, and natural load distribu-
tion capabilities. They require additional mechanisms to suit
the requirements of a MMOG, such as backup solutions to
cope with peer unreliability and heterogeneity. We propose
mechanisms that integrate P2P and Cloud Computing com-
bining their advantages. Our techniques allow operators to
select the ideal tradeoff between performance and economi-
cal costs. Using realistic workloads, we show that hybrid in-
frastructures can reduce the economical effort of the operator,
while offering a level of service comparable with centralized
architectures.

xvi

Chapter 1

Introduction

On-line gaming entertainment has acquired lots of popularity in the last
years from both industry and research communities. This attention is
justified by the economic growth of the field, where Massively Multi-
player Online Games (MMOGs, (Ent12, Lab12)) represent a remarkable
member. The market size of MMOG has received a 5 billion $ evaluation
in 2010, while the number of total user have reached around 20 million
worldwide1.

MMOGs are large-scale distributed applications that allowing a huge
amount of users worldwide to share a real-time virtual environment.
MMOGs operators provide the necessary hardware infrastructure to sup-
port the high requirements of MMOGs. The profit of the operators comes
from the fee the users pay periodically to participate in the virtual envi-
ronment2. Regardless of their peculiar business model, operators’ profit
is directly linked with the number of users that participate to the MMOGs.
In fact, the more populated is a MMOG, the higher the probability to at-
tract new users. For this reason, offering an acceptable level of service
is a core necessity for operators. Hence, operators size the infrastructure
to room the peak number of users thus offering an acceptable level of
service.

1www.mmodata.net, August 2012
2Other profit sources are gaining attention nowadays. For instance, in the pay-for-win

model the access to the MMOG is free, but players pay to be competitive through the game.

1

Currently, most commercial MMOGs rely on a centralized architec-
ture. This architecture supports a straightforward management of the
main functionalities of the MMOG, such as user identification, virtual en-
vironment management, synchronization between players, and billing.
However, with higher and higher amounts of concurrent users, central-
ized architectures show their scalability limitations, especially in terms
of economical return for the operators.

Indeed, server clusters have to be bought and operated to withstand
service peaks, also balancing computational and electrical power con-
straints. A cluster-based centralized architecture concentrates all com-
munication bandwidth at one data centre, requiring the static provision-
ing of large bandwidth capability. Further, a large static provisioning
exposes the operators to over-provisioning, which leaves the MMOG op-
erators with unused resources when the load on the platform is not at
peak.

On-demand resources provisioning (where a notable example is Cloud
Computing (BYV+09)) may alleviate the aforementioned MMOGS scal-
ability and hardware ownership problems (NIP+08, NPIF11). The pos-
sibility of renting machines lifts the MMOGs operators from the burden
of buying and maintaining hardware, and offers the illusion of infinite
machines, with good effects on scalability. Also, the pay-per-use model
adheres with the seasonal access patterns to the MMOGs (e.g. more users
in weekends than in the middle of the week).

However, the exploitation of Cloud Computing presents several is-
sues. The recruiting and releasing of machines must be carefully orches-
trated in order to cope with start-up times of on-demand resources and
to avoid incurring on unnecessary expenses leaving the server unloaded.
Further, besides server time, bandwidth consumption may represents a
significant expense when operating a MMOG. Thus, even if an infras-
tructure based entirely on on-demand resources is feasible, still the profit
margin for the DVE operators may be higher. This can be achieved by al-
lowing user-provided resources to share part of the load of a MMOG.

These aspects have been deeply discussed in the research communi-
ties in the last decade. Mechanisms to integrate user-provided resources

2

in a MMOGs infrastructure naturally evolved from peer-to-peer (P2P)
classical approaches. While reducing the load on centralized servers,
P2P-based solutions present several attractive advantages. First, P2P
techniques are inherently scalable. When the amount of users grows,
more resources are added to the infrastructure. Second, in case of peer
failures, P2P networks are able to self-repair and reorganize, hence pro-
viding robustness to the infrastructure. Third, network traffic is dis-
tributed among the users involved, in principle avoiding the creation
of bottlenecks. Furthermore, all these properties pair with little costs for
the MMOG operators.

However, P2P-based infrastructures require additional mechanisms
to suit the requirements of a MMOG. When users leave the system some
data must be transferred elsewhere. In case of abrupt disconnection, a
backup mechanism must guarantee for data availability. The lack of a
central authority makes it complex to enforce security and soundness of
updates to virtual world at any time. Moreover, user machines typically
impose strict and heterogeneous constraints on computational power
and network capability, which makes them difficult to be exploited.

The high degree of complementarity between on-demand and user-
provided resources has been an incentive to combine the two appro-
aches. The integration of P2P and Cloud computing has recently emerged
has an active field of research for multiple applications, such as video
streaming (PKK+12), storage (XSL+12), replica management (KM12) and
content distribution (MA11). This thesis presents a set of mechanisms of
a MMOG architecture that seamlessly combines on-demand and user-
provided resources. As far as we know, we are the first that propose the
combination of P2P and Cloud computing to address MMOGs.

We presented an initial and partial discussion on the topic in (CCR10,
CRC12a). In the same work, we have also presented the initial design of
a hybrid and �exible architecture combining the advantages of the two
approaches.

Regardless the particular solution, the mechanisms proposed all share
the same core idea, that is to allow operators the possibility to choose the
tradeoff between the usage of on-demand and user-provided resources.

3

In our design, an operator can decide, is some cases even at runtime,
to have an infrastructure more reliable and responsive (for example for
particularly interactive MMOGs) or to reduce the economical effort and
provide a less powerful infrastructure, perhaps suitable for less interac-
tive MMOGs. In other words, the idea is to let the operator to decide
how to make profit, by deciding the ideal tradeoff between performance
and economical cost.

1.1 Massive Multi-player On-line Games

Massive Multi-player On-line Games (MMOGs) are a synchronous, per-
sistent and interactive virtual environment where players concur and co-
operate. The main distinguishing trait of MMOGs, the one that differ-
entiates them from other on-line games, is the number of players shar-
ing the same virtual environment, which can be in the order of thou-
sands. The core MMOG player’s experience is to take the identity of
an avatar, an alter-ego in the virtual word. The other entities present in
multi-player games include characters controlled by the system (usually
referred as non-player characters or NPCs) and objects. These aspects
and the terminology are detailed in the Chapter 2 of the thesis.

Avatars are associated with a position in the virtual world, and they
are represented by a state (e.g abilities and health). Avatars, controlled
by the players, travel across the virtual world to solve the so called quests,
missions which provide rewards upon completion. Usually this requires
to visit and explore the virtual world, interact with other avatars, find-
ing objects, earning money and so on. A reward can consist on different
prizes, such as increasing the power of avatar abilities, particular items,
or virtual currencies. In fact, the rewards largely depends on the genre of
the MMOG. Similarly to avatars, even NPCs may have a state that usu-
ally is less accurate, whose degree of persistence depends on the MMOG
genre. For instance, vendors NPCs (i.e. characters who sell goods to
avatars) may either trace or ignore transactions, according to the game
design. Objects may be classified as mutable (e.g. doors) that generally
include all the interactive objects and immutable such as the natural land-

4

scapes, buildings, vegetation (BPS06). In particular, immutable objects
correspond to graphic elements that are inserted as static elements in the
game client software. The update of these elements occur externally by
the game context, or even off-line, usually via patch. Immutable objects
do not require a real-time management, and for this reason in the follow-
ing we use the term object to implicitly indicate mutable objects.

The genre highly characterizes a MMOG. Massive Multi-player On-
line Role Playing Games (MMORPGs), such as Second Life (Lab12) and
World of Warcraft (Ent12), are the category most represented in the to-
day industry. They are characterized by large virtual environments and
relatively slow-paced game mechanics. By comparison, Massive Multi-
player On-line First Person Shooter (MMOFPS) provide an higher fre-
netic experience, at the expense of smaller number of concurrent play-
ers and less interactive capability of the environment. In this thesis we
mostly consider MMORPGs, as they represent both the most widespread
genre and the most challenging from a scientific point of view, consider-
ing the high number of concurrent players.

1.2 On-demand Platforms

MMOG operators are forced to over-provision the amount of resources
of their architecture to sustain game peak load. The work in (MMD11)
collects a set of traces from the RuneScape Fantasy MMOG and observes
that a daily period access pattern is clearly visible (see Figure 1). A daily
churn of about 100.000 users is detected between peak and non-peak
hours. The reservation of a relevant number of resources is mandatory
to face a users oscillation of this magnitude. However, over-provisioning
implies the under-utilization of some resources during non-peak peri-
ods.

Cloud computing is currently examined by the researchers as a suit-
able computing paradigm able to solve the over-provisioning problem
(CCR10, NIP11, MMD11). Cloud computing is a form of utility comput-
ing, considering computational resources as a service, rather than a com-
modity. Being a service, customers pay only the computational resources

5

Figure 1: Simultaneous Runescape users, source: (MMD11)

they use. MMOG operators may exploit clouds by requesting a large set
of resources during peak hour and by releasing them as long as they
are no longer needed. However, a deep investigation of several issues
is required to fully exploit the potentialities of this novel computational
paradigm. Here we identify and explain two of these issues, namely the
overhead of the virtualization and the need to properly orchestrate the
provisioning of the resources.

Normally, MMOG operators exploit the Cloud in the form of Infras-
tructure as a Service (IaaS) (BJJ10). The IaaS offers to the operator the
possibility to rent virtualized resources , running their favourite operat-
ing systems and services on top of them. In this case, the virtualization
introduces overhead mainly for the delays due to the resources instanti-
ation. This delay may depend on multiple factors, such as the particular
provider or resource chosen. Mechanisms that dynamically provision
cloud resources must consider this delay when exploiting Clouds.

In order to ensure an acceptable level of Quality of Service (QoS), the
customer and the Cloud provider sign a Service Level Agreement (SLA).
The SLA defines the guaranteed QoS and the corresponding economical
cost for the customer. In MMOGS, the QoS may be defined in multiple
forms. For instance, the response time of the MMOGs service should
never drop under a certain threshold. However, the QoS is normally
defined against the average behaviour of the resources. Hence, for some

6

time the performance may degrade when the load suddenly increases on
the platform. The infrastructure must define a provisioning mechanism
able to recruit the proper set of resources in such situations. On the other
hand, a similar mechanism has to release a set of machines in order to
reduce the service cost, when the infrastructure is under-loaded.

For these reasons, Cloud-based MMOGs infrastructures should in-
clude a set of additional components supporting the dynamic provision-
ing of the resources. As an example a possible component would be a
monitor to collect run time performance metrics. It could take into ac-
count different performance measures, for instance the response time of
the application, the average system throughput, the amount of band-
width consumed by the application and the utilization of the rented ma-
chines. Another example would be a provisioner that defines the optimal
number of resources and orchestrate their releasing and recruiting. The
provisioner could adopt a proactive behaviour by exploiting fast and ac-
curate analytical load models and fast prediction algorithms to foresee
load peaks and under-utilization of resources.

1.3 Thesis Contribution

This thesis covers, and in some cases extends, our work on MMOGs that
we have presented in the last few years. In a recent work (RC12) we have
presented an overview on the state of the art and the design issues for
MMOG architectures. In (CCR10) we have presented an initial design of
a virtual environment architecture combining the advantages of the on-
demand and user-provided resources, exploiting our prior experience
in designing Cloud Computing (CCD+11) and P2P-based architectures
(RCGC11, CCR11a).

In (CRC12a) we refined the initial design by supporting two core fea-
tures of the MMOGs with two distinct and independent distributed com-
ponents. In particular, we separate the management of the positional ac-
tions (i.e the actions that affects the position of the entities in the MMOG)
from the state actions (i.e. the actions that modify the state of the entities).
The definition of two distinct components allows for the minimization

7

and the control of the data transfers between the distributed servers due
to the movements of the users in the MMOG. Furthermore, the definition
of two independent components eases the design and the optimization
of both of them. This represents a firm swerve with the current state of
the art, where the common approach is to let a single distributed infras-
tructure manage both positional and state actions.

The Positional Action Manager (PAM, in short) is the component de-
voted to managing the positional actions. We have fully described PAM
in (CRC12b, CCR12). PAM combines a centralized server and a best-
effort mechanism providing support for interest management. Indeed,
PAM employs a combination of a centralized server and epidemic (or
gossip) protocols to acquire the position of relevant entities in proximity
of the users. PAM exploits two gossip protocols to build an overlay in
a completely distributed fashion. The first underlying protocol assures
the network to remain connected, and provides a bootstrap point for the
newly arrived users. The second protocol filters the user according their
position in the MMOG, by continuously choosing the best set of users to
connect with. This set can be chosen by mean of two different heuristics,
one faster and less accurate, and the other one slower but more accurate.
Then, following a wisdom of the crowd approach, each peer exploits each
other knowledge to acquire information about close entities. At fixed
intervals, the server provides fresh information to the users.

With the gossip protocols we are able to reduce consistently the load
on the central server. The MMOG operator can tune the PAM by defining
the refreshing rate of the server. High rates reduce the cost but also limit
the precision of the users’ view. On the other hand, low rates increase the
cost, and also raise the precision of the results. PAM has been evaluated
with realistic movement traces derived from Second Life (Lab12). The
results we have obtained are encouraging. On the average, the accuracy
of the players’ view in PAM is enough to support a MMOG, and, at the
same time, to reduce the load on the server.

The State Action Manager (or SAM is short) manages the state ac-
tions. The first version of SAM has been presented in (CRC12a) and
in the thesis we present an updated and refined version. SAM exploits

8

a Distributed Hash Table, equipped with Virtual Servers, to distribute
the effort on management of the entities to multiple resources, including
user-provided ones. In the design of SAM, we exploited the knowledge
from our prior works on data dissemination in DHTs (CCLR10, CCR11b).
SAM self-adapts to the load of the MMOG, by releasing resources when
the load is low and acquiring additional resources when the current in-
frastructure has not enough capacity to manage the load. Operators can
tune the SAM to decide the maximum amount of entities that can be
managed by the user-provided resources. SAM recruits on-demand or
user-assisted resources accordingly, always trying to minimize the cost
and to avoid resources to be overloaded. In order to efficiently provision
resources, SAM is designed to adopt prediction mechanisms, so to take
provisioning decision well in advance.

In the last part of the thesis we present a preliminary study on the
combination of SAM and PAM in a concrete architecture. In this con-
text, we focus on the design of a smart client, which allows the players to
exploits the advantages of SAM and PAM at the same time. We also pro-
pose an enhanced version of the PAM server, which aims to scale up to
ten thousands of players, while keeping the economical costs acceptable.

Thesis structure The thesis is structured as follows. Chapter 2 dis-
cusses the challenges and the design issues for modern MMOGs infras-
tructures. In particular we focus on aspects such as consistency, interac-
tivity, interest management, fault tolerance, load balancing, and security.
Chapter 3 presents a full description of the State Action Manager, includ-
ing a in-depth evaluation. Similarly, the Positional Action Manager and
its experimental evaluation are described in Chapter 4. In Chapter 5 we
provide an insight on the combination of SAM and PAM in a concrete
MMOG infrastructure. An overview and comparison of the approaches
in the state of the art is provided in Chapter 6, which also presents several
detailed case studies. Finally, Chapter 7 concludes the thesis, summariz-
ing the results of the thesis and providing references for future works.

9

Chapter 2

Background

The content of this chapter is divided in two parts. The first part intro-
duces the basic concepts and terminology that will be used in the rest
of the thesis. The second part provides an overview on the main issues
related to distributed architectures for MMOGs1.

2.1 A model for MMOGs

A MMOG is a virtual world represented by a collection of entities. Enti-
ties may be classified as follows. Avatars represent the users in the virtual
environment. Each user commands an avatar, that can travel across the
virtual environment and interact with other entities. Objects (e.g. a door)
are not directly controlled by the users, but Avatars can interact with
them. A third type of entities are the Non Playing Characters (NPCs).
These entities expose active behaviour controlled by the server. By com-
parison, objects have a passive behaviour, since they cannot decide to
change their state autonomously.

Each entity is represented by an entity descriptor (Figure 2), which con-
tains:

� an unique identifier (UID);

1In literature MMOGs are often referred to as Distributed Virtual Environments (DVEs)
or Massively Multi-User Virtual Environments (MMVEs).

10

ATTRIBUTESFUNCT IDPOSITIONUID

Figure 2: The structure of an entity descriptor

� a two-dimensional point, which represents the position of the en-
tity in the virtual environment;

� where needed, the indication of the procedure to execute for AI-
controlled entities (this procedure is sometimes referred to as think
function (BPS06));

� a collection of key-values pairs, which represents the attributes of
the entity.

In order to illustrate some background concepts, let us assume that a
central server stores all entity descriptors. In order to interact with the
virtual environment, users connect to the server via a software agent,
which we generally refer to as client. The client provides the representa-
tion of the virtual environment to the user. It also transforms the action
of the user in messages sent to the server and receives back the modifi-
cation of the virtual environment and updates. In other words, clients
maintain a replica of the descriptors in their local memory that are peri-
odically synchronized with the server.

From the point of view of the server, the virtual environment can be
modelled as a sequence of states changes over time, in reaction to events
issued by clients or NPCs’ think functions. This model is depicted in
Figure 3.

For the purpose of our work, here we underline a relevant difference
in the events (or actions) that server can manage:

� positional actions. These actions are single-writer/multiple-reader,
their effect is volatile and error tolerant. Since there is a single writer,
these actions generate no con�icts to be resolved. However, there is
an exception to this, which is the position of the objects. In fact, in

11

Time

Events from clients

Server

Updates to clients

STATE A STATE B STATE A STATE D

Figure 3: Server model

this case we have multiple writers and we consider the movement
of an object as a state-action. Positional action are also volatile,
meaning that on the exit of the avatar, the actions makes no sense.
Also they are error tolerant, in the sense that a small error in con-
sistency does not compromise the experience for the user.

� state actions. These actions are multiple-writers/multiple-readers, their
effect is persistent and are not error tolerant. Since these actions are
multiple writer, race conditions on entity descriptor may arise. In
this case it is a necessity for the server to resolve possible con�icts.
The effect of state actions is persistent, i.e. when the last writer
leaves the environment, the descriptor must still be available for
other possible writers. Since these actions operate on a discrete
space (e.g. a door can be opened or closed) there is no room for
errors.

Normally, the server handles the events in an infinite loop of itera-
tion. Every iteration has the same finite duration, and at each iteration,
the server manages the �ow of messages by resolving the possible con-
�icts on the entities descriptor and by broadcasting the new version of
the state. In this case, it is possible that some clients need to revert the de-
scriptors to a previous state, in order to be synchronized with the server.
We discuss more in detail these aspects later in the chapter.

12

2.2 MMOGs: Challenges and Issues

The definition of a scalable architecture for a MMOG is a complex task.
Due to the high number of users, there is the need to employ multiple
servers and to distribute the entities of the MMOGs. Apart from the
strategies for distribution (which we deeply review in the chapter de-
voted to the related work), a number of issues arises due to the MMOG
distribution on more servers.

The communication between clients and servers largely takes place
on the Internet. Being a best-effort network, the Internet suffers from
unpredictable jitters and delays, that complicates the management of the
consistency and interactivity in MMOGs. In order to have a resource-
wise platform for MMOGs, servers send to the user the minimal sub-
set of information necessary, which normally corresponds to the entities
users can interact with. However, this apparently easy task may be dif-
ficult when entities are spread on multiple servers, as the set of relevant
entities may reside on different servers. If the MMOG platform exploits
user-provided resources, backup replicas need to be provided and man-
aged in order to guarantee a certain degree of tolerance to faults. Further,
the load imposed on the platform by users, is not homogeneous. Some
servers may be stressed more than others, and in unfortunate situations,
an overloaded server may suffer from reduced performance. The ex-
ploitation of user-assisted resources amplifies this problem. Users that
participate to MMOGs are often in (real) competition to acquire certain
(virtual) privileges in the MMOG. If not properly addressed, this may
result in an unauthorized interaction with the system from certain users.
This action is typically referred to as cheating. All those issues are de-
scribed in the following sections.

2.2.1 The Consistency-Interactivity Tradeoff

Consistency can be defined as the degree of separation between the de-
scriptors of the users’ views in a virtual environment. In an ideal dis-
tributed virtual environments, participants share the same version of the
descriptors, resulting in perfect consistency. This would be possible only

13

by employing a network with a latency close to 0ms, like in case of LANs.
However, most of the MMOGs users are geographically widespread and
the messages travel on the Internet. Due to its best-effort nature, mes-
sages have delays which depend on multiple factors and are different
from user to user. On the other hand, Interactivity is a measure of the
responsiveness of the virtual consistency, i.e. how fast an action from an
avatar produces changes in the virtual environment. As for consistency,
interactivity is affected by network latency as well.

Time

Server

Player 2

Player 1

Action failed due high latency
Figure 4: Pessimistic consistency management

Time

Server

Player 2

Player 1

Inconsistent state
Figure 5: Optimistic consistency management

In a way, consistency and interactivity are two sides of the same coin,
as one can be traded to favour the other one. Approaches that trade
interactivity for consistency are referred to as pessimistic. In pessimistic
approaches, an action must be validated by the server before clients per-
ceive the results. Hence, a non-zero amount of time passes from the is-
suing of the action until the results are visible to the issuer. Normally, to
mask this problem an artificial delays are introduced in the MMOG. For

14

instance, for a player to open a door takes several seconds. With those
delays there is the time for the message to arrive to the server and for the
new state to come back to clients.

It may happen that a state of an entity is the subject of a race condi-
tion among multiple players. Let us consider Figure 4 as example. In
this case, player one and two issue a con�icting action at the same time
on their local machines. However, due to the network latency, the re-
quest of player one arrives first. Player one then would see the environ-
ment changing as expected, whereas player two would have his action
neglected. Hence, a straightforward application of this model disadvan-
tages client with slow connections, as they might regularly lost race con-
ditions.

On the other hand, optimistic approaches trade consistency for inter-
activity. When a user issues an action, its client immediately modifies the
local state to re�ect the actions results. By comparison with pessimistic
approaches, there is no detectable time between the issuing of an actions
and its results on the client. Just after having modified the local state, the
client sends the action to the server. The server computes the new state
and broadcast it to the other players. Note that, due to the latency of the
network, there is a non-zero amount of time during which the state of
the client is not synchronized with the server. In case of a race condition,
eventually one of the players would suffer from an inconsistent state (see
Figure 5). In this case, upon the communication of the correct state from
the server, she rollsx-back to a consistent state.

LocalLag (MVHE04) is a representative example of pessimistic con-
sistency management. LocalLag’s goal is to reduce the disadvantages of
clients having a slow connection toward the server. LocalLag delays ac-
tions for a certain amount of time before their execution. This additional
delay allows the distribution of events to the clients such that delay due
to latency is compensating by the local-lag.

Conversely, Dead Reckoning (DR, (PW02)) is an optimistic mecha-
nism. In DR, the server computes the direction and the speed of the enti-
ties according to their past movements. DR allows the server to feed the
clients with a stable rate of entities movements, that greatly increasing in-

15

teractivity. DR also reduces the bandwidth consumption of the clients, as
they communicate to the server only when a change in speed or direction
of their avatars occurs. However, DR may generate movements artefacts
on clients, in case the predicted positions diverge from the actual ones,
which triggers a server roll-back.

The most opportune tuning and combination of optimistic and pes-
simistic approaches depends on the MMOG particular genre. Fast-paced
MMOGs would favour an optimistic approach over a pessimistic one,
at the expense of occasional rollbacks. Slow-paced MMOGs would em-
ploy pessimistic approaches, masking with game mechanics the delay of
issuing actions. Apart from the genre, we argue that one or the other ap-
proach can be used on the same MMOG but applied to different kind of
actions. Optimistic approaches can deal with positional actions, because
of their tolerance to errors and they high frequency. On the other hand,
pessimistic action can manage state actions, for their lesser frequency
and no tolerance to errors.

2.2.2 Interest Management

A common optimization in MMOGs architecture is to communicate to
the clients only a minimal, but sufficient, set of relevant information.
This operation is called Interest Management (IM, (MBD00)). Exploiting
the concept of IM drastically reduces the size of messages sent by the
server to the client. From an abstract point of view, IM can be modelled
as a publish/subscribe service, in which users have role both of publisher
and subscribers. In fact, users: (i) publish new entity descriptors by in-
teracting with the virtual environment and (ii) subscribe to the relevant
entities and receive updates when their descriptors change.

One of the most effective and straightforward strategies to define the
set of a user’s relevant entities, is to consider the entities in the spatial
proximity of the avatar. This subset is generally modelled according to
the so called focus-nimbus model. In this model, the focus refers to the
area of visualization of an avatar, while the nimbus is the area where an
avatar can be seen. In other words, an avatar a is aware of an avatar b

16

when the nimbus of a intersects with the focus of b. The shape and the
size of the nimbus and focus are MMOG dependent. In the simplest (yet
effective) case, both nimbus and focus are represented by the same circle
whose center is the position of avatar in the virtual world. Generally, this
region is called Area-of-Interest (AOI, (ERMS06)).

IM is applied in centralized systems as well, but it acquires even more
importance in a case of a distributed MMOG infrastructure. Since rele-
vant entities may be spread in different nodes, subscribing to a reduced
set of entities also decreases the number of nodes to query when per-
forming IM. In order to clarify this point, let us consider an example. Let
us assume a virtual environment whose infrastructure is composed by
multiple servers, which we refer to as S1 S2 and S3. Each of the servers
manages a contiguous non-overlapping area of the MMOG, called region
(see zoning in Chapter 6 for a full description of this distribution schema).
Let us also consider a generic client C1, whose Avatar is in the region
managed by S1 but its AOI overlaps the additional two servers, S2 S3.
The first step in order to perform IM, is to find out what are the entities
inC1’s AOI. This step is commonly called as Neighbour Discovery (ND). In
order to optimize ND, servers are generally connected through spatial-
based overlay (e.g. Voronoi-based) so that servers managing close re-
gions in the MMOGs are connected to each others. Once ND is com-
pleted, C1 subscribes (or is subscribed by the servers) to the entities in its
AOI. We refer to this subscription as State Management (SM), since from
now on, C1 receives updates from the entities.

In a centralized architecture, the distinction between ND and SM is
blurry, as they are executed at the same time. When this model is imple-
mented in a classical distributed infrastructure, it presents several issues.
Since each server manages a region, whenever an entity moves from one
region to another, its descriptor must be transferred between the servers.
We refer to this as ownership changing. Ownership changing can create
some problems to the users, since a migrating entity cannot be accessed.
For that reason, it is important to design a MMOG infrastructure so to
limit the amount and the duration of ownership changing.

One way to control the amount of ownership changing is to prop-

17

static
non-local

dynamic
spatial

o
v
e

rh
e

a
d

SM

ND

Figure 6: The Interest Management tradeoff

erly tune the size of the regions. The bigger (smaller) a region is, the
less (more) is the probability to trigger an ownership changing. How-
ever, having the biggest region possible is not the solution. Dividing a
MMOG into regions helps with the scalability of managing many enti-
ties. Having too large regions may overload some servers, in fact mak-
ing the situation worse. Similar issues are in play also when considering
a live resizing of the regions. Indeed, resizing a region would implied
entities to move from one server to another.

To deal with the ownership changing, one can be tempted to assign
to a sever a bunch of entities not corresponding to a contiguous region of
the virtual world. In this case the problem is completely avoided, since
entities are statically assigned to the servers. However, the immediate
drawback would be the complexity of ND: an AOI can, in general, con-
tain entities in any server. Let us return back to our previous example. In
the worst case it would be necessary to contact all the servers to discover
that S1, S2 and S3 contain the entities in C1’s AOI. Clearly, a totally ran-
dom entities assignment would impose scalability limitations, basically
invalidating the benefits from the distribution of the virtual world.

18

In summary, a tradeoff between region-based and random-based is
necessary when dealing with ownership changing. From an abstract
point of view, this tradeoff can be represented as in Figure 6. As the
locality of the approach increases, the overhead for ND decreases but
the overhead for SM increases. On the contrary, with approaches based
on random assignment, the overhead for the ND increases whereas the
overhead for SM decreases. Typical solutions on the state of the art main-
tains a locality-based approach while trying to reduce the overhead of the
SM (e.g. by using some overlapping among regions to reduce the over-
head of ownership changing). However, this does not resolve totally the
problem of the ownership changing, and also the problem of determin-
ing the size of the regions remains.

2.2.3 Fault Tolerance

One of the main problems of distributed architecture for MMOGs is to
cope with unexpected departures of servers. This problem is of partic-
ular relevance when dealing with user-provided resources. The unex-
pected departure of nodes may compromise two important parts of a
MMOG infrastructure: (i) the servers overlay (i.e. the network between
the servers) and (ii) the management of the state of the objects.

Regarding the overlay, using approaches derived by structured P2P
networks is a great advantage with respect to use customs overlays. Nor-
mally, structured P2P-based overlays employ self-repairing mechanisms
that provide robustness even if an high fraction of nodes leave the net-
work. DHT-based overlays have been proved to be resilient to node fail-
ures even when a relatively large fraction of the nodes fail at the same
time (RD01, KSW05). In addition, DHT-based approaches often provide
stabilization mechanisms that helps in self-repairing the overlay. For ex-
ample, the Chord DHT (SMLn+03) employs a solution based on reverse
�nger tables (CYL08). A reverser finger table is an additional routing table
maintained by each node. It contains a reference to the nodes that con-
tain the table owner in their finger table. This table can be used to inform
all the nodes whenever a change happens in the overlay topology. An-

19

other example is represented by the Delaunay overlays built on the bases
of Voronoi tessellations (Aur91). When a peer crashes, the Voronoi tessel-
lation is recomputed and a different Dealunay overlay emerges. Several
works, for example (BDGR12), employ approaches that eventually lead
to a consistent overlay. In these approaches, upon peer failures, affected
nodes locally re-compute the overlay. These approaches are lightweight
in terms of the number of messages, at the cost of occasional inconsis-
tencies among nodes view. Other approaches, such as (LNS02), employ
an higher number of messages to reach a consensus on the tessellation
among the nodes involved. In conclusion, P2P-based failure tolerance
mechanisms provide the interesting propriety of the self-adaptation. In
addition, when a peer fails, the modification on the overlay are local to
the node involved, causing minimal disruption in the overlay.

Regarding the management of the objects, the problem is more com-
plex, as the mechanisms to assure the availability and the reliability of
the information are normally application dependent. In a MMOG infras-
tructure without any fault tolerance mechanism, if a node manages an
object and such node departs, the descriptor of such object is lost. The
mechanisms to assure failure tolerance are based on replication of the de-
scriptors in other nodes. These mechanisms can be classified according
to the destination of the replicas. In fact we can distinguish two different
cases: locality-based replicas and region-based replicas.

In locality-based replicas, a server maintains replicas in ”closer” servers.
Here the definition of closeness is the central point. Some approaches
considers overlay proximity, where the replicas are placed in the connected
nodes of the overlay. This is the typical case for DHT-based solution like
(KLXH04, HSW11), where the entities assigned to a server are replicated
in one or more successors of the server in the DHT ring. Other appro-
aches consider the virtual environment proximity, i.e. a server replicates
its entities in one or more servers which manage adjacent regions. This
approach is typical of solutions that divide the virtual environment in
regions, such as in (FRP+08). Locality-based replication schemas offer
a good degree fault tolerance, however the overhead of synchronize an
high number of replicas may be relevant in some situations.

20

Conversely, region-based replication schemas assign the replicas to a
single or multiple backup nodes. These backup nodes share no concept
of proximity with the primary server. Whenever a server fails, one of the
backup nodes is instructed to take the place of the failed server. This ap-
proach is largely used, such as in (HCJ08, CM06, KYL04), for essentially
two reasons. First, it is possible to decide a priori the number of replicas
to provide, in fact imposing an overhead for the management of replicas.
Second, it is possible to select cloud machine as backup nodes, and to use
them only when really necessary.

In conclusion, for the object management it is important to have a
replication system, which must be scalable and whose overhead is con-
trollable. Regarding the overlay, the failure tolerance mechanisms cho-
sen largely depends on the specific P2P system adopted. Without doubts,
choosing a well tested and studied P2P-based overlay may turn out to be
a great advantage. In any case, fault tolerance mechanisms are an essen-
tial component of infrastructures dealing with user-provided resources.

2.2.4 Cheating

In virtual environments, one of the most important aspect of security is
called cheating. Cheating is defined in (NPVS07) as ”an unauthorized in-
teraction with the system aimed at offering an advantage to the cheater”.
In a MMOG infrastructure, to provide a secure and fair environment is a
vital task. MMOGs gather together users from all over the world that are
potentially untrustworthy to each other. Since MMOGs businesses mo-
del is largely related to number of the users, failing to maintain a secure
and fair (thus enjoyable) environment is an unfortunate event. Note that
here we refer only to cheating. Principle like confidentiality, integrity and
authenticity are general security aspects that are outside of the scope of
this section. Webb et al. (WS07) classified cheating as follows:

� Game level cheating the cheater uses bugs or other game mechanics
not working as intended to gain an unfair advantage;

� Application level cheating the cheater modifies the client to access the
memory and/or sending invalid messages;

21

Updates

Action Action

Time
Cheater

Figure 7: Cheating by suppressed update

� Protocol level cheating the cheater interferes with message packets
and/or the network protocols;

� Infrastructure level cheating the cheater interferes with local software
library (e.g. display drivers) or the network infrastructure (e.g.
spoofing).

The most common cheating methods fall into the application and pro-
tocol levels. For example, one of the most common cheating method in
the protocol level is the so called suppressed update (WS07). Figure 7 gives
a visual representation of this method from the cheater’s point of view.

This cheating mechanism leans on the assumption that most servers
exploit Dead Reckoning or similar mechanisms to assure smooth move-
ments to the player, while reducing the load on the server (see previous
section for more details). These mechanisms allow the player to skip up
to m messages before considered as disconnected. To exploit this situ-
ation, cheaters avoid to send up to m � 1 messages in a row, but still
listen to the updates. At the mth update, cheaters send to the server the
best action according to the other player moves. This cheat is resolved
in (CFJ03) by making mandatory to the client use the state of the server.
Similar examples of cheating are to intentionally introducing delays to
the packets or to change the timestamps of the actions to fool the server.

The mechanisms to contrast the cheating are called Anti-Cheating
(AC). The related work (Chapter 6) provides a review of the state of the
art for AC mechanisms in distributed and P2P-based MMOG infrastruc-
tures.

22

2.2.5 Load Balancing

The management of avatars and objects constitutes the typical computa-
tional and bandwidth load of a MMOG. Avatars move across the virtual
environment and interact with each other. This interaction can be direct
or indirect. In the former case, an avatar directly modifies the state of an-
other one, while the latter case is that of an avatar modifying the state of
a passive object so affecting the behaviour or the state of other avatars.
Both direct and indirect interactions consume resources on the nodes, in
terms of bandwidth and computational power. Such load is assumed to
grow exponentially with the number of avatars, with a quadratic or cubic
trend according to the game genre (NIP+08).

Currently, there is no an uniform view on how to measure the load
on a MMOG. Several approaches (BG09, RWF+08, AS08), including our
work (CRC12a), consider the bandwidth consumption (or equivalently,
the message rate) of the server as the measure for the load. The works
(LL08, CF06) consider the number of connected players as representative
for the load. Other works, such as (DL10), consider the number of enti-
ties managed the server. Even though the way of measure the load are
different, all these approaches strive to avoid overloaded servers.

An overloaded server may deliver with delay the events to the play-
ers. This situation creates visual artefacts and slowdowns on the players,
in fact compromising players experience. An infrastructure where the
load is balanced among the servers reduces the possibility of overloaded
servers. However, in a distributed MMOG the load is normally not bal-
anced. Each server manages a region of the virtual environment, which
contains a certain number of entities. These entities (avatars and objects)
are not uniformly distributed. Several areas of the MMOGs, in particular
the ones corresponding to places of interest, may present a higher den-
sity of entities. These areas, called hotspots, are the principal reason of the
load unbalancing in virtual environment.

The distribution of the load in a MMOG architecture offers unques-
tionable advantages and remains an important research issue in these
architectures.

23

2.3 Conclusion

The content of this chapter represents a reference point for the other
chapters of the thesis. We have presented an overview on the basic con-
cepts and issues in the design of distributed infrastructures for MMOGs.
These concepts and issues will be elaborated in the remaining of the the-
sis according to the particular contexts.

24

Chapter 3

State Action Manager

This chapter describes in detail the State Action Manager (SAM, in short),
a component for MMOG infrastructures that is devoted to the manage-
ment of the state actions. This chapter is a revised and extended version
of the work we have presented in (CRC12a). In the design of SAM, we
exploited the knowledge from our prior works on data dissemination
in distributed peer-to-peer architectures (CCR11b, CCLR10). The main
goal of SAM is to manage the state actions by orchestrating a seamless
combination of user-provided and on-demand resources. The SAM re-
alizes this task by considering the differences between the two kind of
resources. On one hand we have the reliable, powerful and costly on-
demand resources, on the other the unreliable, heterogeneous and free
user-provided resources. This creates a tradeoff between the cost and the
reliability of the platform. The SAM gives the operator the possibility of
tuning the platform, in order to control this tradeoff.

From an architectural stand point, in SAM there are four distinct soft-
ware modules. Each of these modules computes a logical function in the
platform.

� Client; This component manages the connections with the servers
and visualize them to the player. It is executed by the user-provided
resources only;

25

� Server; This component connects to the SAM DHT. It manages the
state actions coming from clients. It resolves possible con�icts and
broadcasts the updates to the interested clients. It can be executed
both on on-demand and user-provided resources;

� Backup server; The component handles the entities that belong to
a failed server. The actions are essentially the same of a normal
server. It can be executed only by on-demand resources;

� Manager; This is the central component of the SAM. It orchestrates
the combination of user-provided and on-demand resources. In
particular, it decides whether and when a particular resource should
cover the role of the server. It can be executed by a trusted on-
demand resource or can be distributed among multiple on-demand
resources.

The rest of the chapter is organized as follows. Section 3.1 presents an
overview on the SAM architecture, including the fault tolerance mecha-
nism. Section 3.2 provides a detailed description and analysis of the enti-
ties migration between servers. We provide a formalization of the entities
assignment in Section 3.3. Section 3.4 focuses on the balancer, which is
the component that actively performs the management of the resources.
Section 3.5 presents an experimental evaluation of the balancer under
different scenarios. Finally, section 3.6 concludes the chapter.

3.1 SAM Architecture

Our proposed architecture (see Figure 8), exploits the underlying mech-
anisms of Distributed Hash Tables (DHTs, (SMLn+03, SW05)) in order to
build and maintain an overlay for the management of the entities state
in the VE.

A typical DHT considers a ring-shaped logical address space (e.g.
Chord (SMLn+03) considers a space of 2160). Such space is divided among
the nodes participating to the DHT. In fact, each node receives an ID in
the logical address space through the application of an hash function.

26

VS

VS
VS

VSVS

NODE ANODE B

SAM
Architecutre

CLIENT

CLIENT

DHT RING

CLIENT

object

Manager

Figure 8: Black dots are the objects inside the virtual environment. VS are
the Virtual Servers. Node A manages 2 VSs, whereas Node B manages 3
VSs. Client connects to the nodes to modify and read the objects. The man-
ager has a global knowledge of the state of the node and the VSs.

The nodes are so placed on the DHT, and a generic node manages the
address space ”close” to itself. The definition of closeness varies from
DHT to DHT. For example, in Chord a node manages the address space
that goes from its predecessor to itself. Nodes of the DHT are connected
in an overlay, which permits the routing of the messages among the DHT
nodes. The overlay is build to guaranteeO(logN) bounds, whereN is the
number of nodes of the DHT, both on the routing hops to deliver mes-
sages and on the size of the routing tables.

In the proposed architecture, the entity descriptors that compose the
virtual environment are placed in the DHT. Each descriptor receives an
ID in the DHT address space through the application of a hash function
(i.e. SHA-1) on its initial content. The application of the SHA1 guaran-
tees IDs to be evenly distributed across the space. In addition to the typ-
ical DHT mechanisms, we exploit a Virtual Servers (VSs) (GLS+04) layer
over the DHT. The Virtual Server approach introduces a clear separation
between the logical and the physical nodes.

Each VS is in charge of an address range of the DHT. However, VSs

27

are not permanently paired with the same physical node, and each phys-
ical node can host several VSs. Even if this approach presents higher
implementation complexity as nodes need to manage multiple VSs, the
VSs approach has some evident advantages: (i) more powerful nodes
may receive an higher number of VSs than less powerful ones, (ii) heavy
loaded nodes may trade VSs with unloaded ones, (iii) in case of a phys-
ical node failure, its VSs are possibly transferred/reassigned to differ-
ent, unloaded, physical nodes, so reducing the risk of overloaded nodes.
Even if the association entities-to-VS remain fixed during the system life-
time, the mapping of VS to physical nodes may change over time. For
instance, all VSs may be mapped to cloud nodes at bootstrap time and
then transferred to peer nodes afterwards. In SAM, migrating VS is easy
and light. Their migration does not affect the organization of the address
space at the DHT level. It only requires the exchange of data managed by
the VS as well as the update of the mapping between the logical identifier
of the VS and the physical address of the node hosting it.

From a client perspective, virtual servers act as state servers for a set
of entities. Since the relevant entities for a client may be managed in
principle by different VSs, each client may have multiple simultaneous
connection to different nodes. For instance, in Figure 8, a client is con-
nected with node A and B at the same time. As a limit situation, each
player can connect to a different node per each object, so that the num-
ber of connections for each player is bounded by the amount of entities
in its AOI.

In our architecture, we consider the load of a VS as the upload band-
width consumed to broadcast entities state to the clients. The load de-
pends on the amount of entities that correspond to the VS and the amount
of client accessing to them. The load is changing over time, according on
the interaction pattern of the avatars. The load may be unbalanced due
to the presence of more popular entities. For instance, objects belonging
to an hotspot may receive an higher amount of updates.

SAM relies on the manager to coordinate the transfer of VSs among
the nodes of the DHT. An important issue is the choice of the nodes actu-
ally playing the role of the manager. The simplest solution is to define a

28

centralized manager executed by a cloud node which may be either ded-
icated to this task or share server tasks. Nodes of the DHT periodically
notifies the central distributor. The manager periodically computes new
assignments node-VSs based on the received information and, if neces-
sary, the enrolment or the disposal of nodes from the DHT.

However, a distributed solution is feasible as well. For instance, it is
possible to adopt a mechanism similar to the one presented in (RLS+03).
A number d of DHT addresses are chosen and the nodes handling one
of these addresses play the role of sub-managers. Each SAM node then
chooses randomly, but once for all, one of the d sub-manager. Each sub-
manager operates like the centralized manager, but on a reduced number
of VSs. Although this mechanism distributes the burden of the manager
among multiple nodes, it might also impair the result of the assignments.
We leave the analysis of the distributed manager as a future work.

3.1.1 Replication and Fault Tolerance

In a distributed system, the need of replication comes from the intrin-
sic unreliability of nodes. Since we target an heterogeneous system in-
cluding both peer and cloud nodes, a fair orchestration of replication
is a relevant issue. Our approach is based on the reasonable assump-
tion that, in general, cloud nodes can be considered reliable whereas peer
nodes are unreliable, due to the high degree of churn which characterizes
P2P systems. This difference is mainly due to the lack of control over
peers, which are prone to unexpected failures, and may leave the system
abruptly. On the other hand, cloud nodes generally belong to a stable
infrastructure based on virtualization, and this greatly increases their ro-
bustness and �exibility. In order to cope with the unreliability of peers,
we propose that every VS assigned to a peer is always specially repli-
cated. The replica, called backup Virtual Server (bVS), is then assigned
to a trusted resource, i.e. a cloud node. To keep the state of the bVS
up-to-date with the original, peers send periodic updates to the cloud
nodes. This periodic updates adds a further bandwidth requirements.
However, the synchronizing is done with long period (e.g. 30 seconds)

29

so to reduce the bandwidth requirement. The replica schema adopted is
optimistic (SS05), i.e. players can access to entities without a priori syn-
chronization between the regular VS and the relative bVS. This schema
leads to eventual consistency, favoring availability over consistency of the
entities.

The presence of bVSs guarantees a certain degree of availability in
case of peer failures. Let us assume the peer P to manage a single VS
and that the respective bVS is managed by the cloud node C. Let us also
assume that P departs, either abruptly or gracefully, from the system. In
this case, C becomes the manager of the primary replica, in place of P .
As consequence, users connected to P must then connect toC. In the case
of a gracefully departure of P , P itself may inform all the users about the
new role of C. On the other hand, in case of unexpected departure, the
involuntary departure of P can be detected either by C, since it receives
no more updates from P , or from the DHT neighbours of P , due to the
repairing mechanism of DHTs. These nodes are able to notify the clients
to send their notification to C.

3.2 Virtual Server

One of the main advantages on having a virtual server enabled DHT
is the possibility to easily move entities across the nodes of the DHTs.
This ability is a fundamental requisite for enabling pro-active load distri-
bution mechanisms. To better understand the advantages on exploiting
virtual servers, let us spend a few words on the load distribution in clas-
sical DHTs (i.e. that does not employ virtual servers). In classical DHTs
there are essentially two ways to dynamically distribute the load:

1. Move nodes. An unloaded node (i.e. A) joins a precise address of
the DHT, so to unload a heavy loaded node (i.e. B). This opera-
tion requires A to leave the DHT and rejoin in a position so that
part of the load form B is transferred to A. Even if this approach
may work in a general situation, it is too time consuming and cre-
ates too overhead for a live application as a virtual environment.

30

To fully understand the process, let us consider C as the succes-
sor of A (i.e. the node that is after A in the ring-shaped space of
the DHT)1. When A leaves, C becomes responsible of the address
space left free by A. This information must be spread in the DHT,
so that the routing for the former A address space points correctly
to C. In addition, before leaving, A must transmit the descriptors
to C. When A joins the DHT and becomes the predecessor of B,
this information must be spread to the DHT to adjust routing path.
B also must send to A the entity descriptors that are in the new
address space of A. In addition, A must build its routing table, in
order to be part of the overlay. In summary, this process requires
two entities transferring (from A to C and from B to A), to spread
new information about 3 nodes and to build a new routing table.
All these operation take time, and, mostly important, imply a large
number of transferring during which the entities are not reachable
from clients.

2. Move descriptors. This technique requires moving the entity descrip-
tors among node to distribute the load. Practically, a moved entity
descriptor changes its ID in the ring-shaped address of the DHT.
During the transfer of the descriptor, the entity is not accessible by
clients. However, the most relevant drawback of such approach is
that any time a client accesses to a new entity, it must query the
DHT for its position. This requires to wait up to logN steps, which
may be too long with an high number of nodes.

With the virtual server, load distribution is lighter and more �exible
with respect to a classical DHT. Nodes directly exchange virtual servers
(we refer to this action as virtual server migration), which offers the fol-
lowing advantages:

� the ID of the entity does not change during time;

� It is possible to transfer load without nodes leaving the DHT;

1We consider Chord in this example, but with small differences the following consider-
ations are valid for all DHTs.

31

� A moved virtual server does not have to rebuilt its entire routing
table. In fact, moving a virtual server requires only to stabilize few
routing paths, which is less clumsy than in a classical DHT system;

� It is possible to partially increase or decrease the load of a node.

During a VS migration, entities of the VS cannot be accessed. In other
words, players cannot interact with the object inside the VS that is mi-
grating. Also, it can be the case of a player modifying the state of the
object locally, just to see it reverted back when the migration of the VS is
completed. To this end, it is important to keep the transition time as short
as possible, in order to provide an acceptable level of interactivity for the
MMOG clients. In the next sections we describe in detail the process of
virtual server migration and we empirically evaluate the size of a virtual
server and the time for the migration.

Virtual Server Migration In order to clearly present the migration pro-
cedure, let us consider the following example. Let us suppose that a
virtual server V migrates from a source node A to a destination node B.
The actions involved (presented in the sequential diagram in Figure 9)
are the following:

M
I
G

Manager Node A Node B Players

1. initTransfer
2. startTransfer

state action
state-action

3a. endTransfer

Migration
Time

3b. changeServer
L
E
A
V
E

J
O
I
N

DHT STABLIZATION

Figure 9: Migration of a VS from the node A to node B

32

1. The manager notifies to node A a reference to V and the address of
recipient node B.

2. A sends V to B, together with the list of users connected to V . In
the transient time that is needed to complete the transfer, players
still send entity update messages toA, which in turn forwards them
to B. Note that in this transient period, objects may go out-of-sync
and, as a consequence, players may perceive some visual inconsis-
tencies.

3. Once received the message, node B notifies the players it has be-
came the manager of V . From this point on, players are able to
modify V ’s objects state. However, the routing tables of the DHT
have to be updated to assure correct routing resolutions.

4. To this end, V executes a join operation having B as target in or-
der to update its references in the DHT. This operation updates the
routing table of the node that are in the path from V to B, still leav-
ing dangling references to A as the manager of V . To make consis-
tent all references, the stabilization process of the DHT is executed.

5. Finally, a leave operation is executed by V onA in order to complete
the process.

To understand the impact of the VS migration, we have to consider
it from a user’s perspective. From a user point of view, when a VS is
migrating the entities in the VS are not accessible. Longer the time a
migration takes, the more the time an user perceive the state of the objects
as frozen. Hence, it is important to measure and evaluate the migration
time (MT). The MT goes from the moment in which the server A begins
the migration, until the virtual server has been fully copied in B.

Migration Time The Migration Time (MT) is the time interval a virtual
server takes to migrate from one node to another. In order to model MT
we have exploited (with some minor modifications) the model for TCP
latency presented in (CSA00). The MT depends on:

33

� Transport protocol. We assume nodes to communicate over the In-
ternet using TCP. Note that this is a worst-case assumption, as a
migration between two cloud nodes of the same provider occur in
a network that is considerably faster and more reliable than the In-
ternet. In these cases, it would be possible to use UDP to reduce
the MT. Regarding the TCP, we assume that nodes do not maintain
active TCP connections with all the other nodes, so the MT should
consider the delay necessary for the TCP 3-way handshake. Also,
we assume that a whole virtual server would be sent during the
TCP slow start (i.e. the sender does not trigger the TCP congestion
management at the receiver).

� RTT. We model RTT delays according to the traces of the king dataset
(GSG02). The probability density function (PDF) of the RTTs is
shown in Figure 10.

� Message loss probability. As it is in (CSA00), we consider a network
loss probability of 0.001.

� Virtual Server Size. The size of the virtual server depends on several
factors, such as the size of the routing table, the number of entities
managed and the clients accessing the virtual server just before the
migration.

Figure 11 shows the cumulative distribution function of the MT con-
sidering payloads of different sizes, i.e. 2KB, 4KB, 8KB and 16KB. For
each size, we have conducted 10K migrations. With a VS size of 2KB the
98% for migration take less than 1 second, with 4KB the 97%, with 8KB
the 95% and with 16K the 88%.

Tuning Virtual Servers Dimension In the previous section, we have
seen how to compute a migration time of virtual servers with several
fixed dimensions. Instead, in this section we want to compute how large
can be a virtual server, so that its MT does not affect the user.

The user is affected when there is a delay between an issued com-
mand and the reply from the server. The degree of interactivity expected

34

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 100 200 300 400 500 600 700 800

p
ro

b
a

b
ili

ty

Latency (ms)

Figure 10: Probability density function of RTTs

by the user depends on the kind of the virtual environment she partic-
ipates. In other words, the amount of latency users may tolerate in re-
sponse of their action depends on the virtual environment genre. This
latency span from few hundreds of milliseconds in fast-paced MMOGs
up to two second in slow-pace MMOGs (CC06). In this analysis we sit
in the middle and consider as tolerable latency a delay under 1 second,
which fits medium-paced game genre.

We are interested in finding how many entities can fit into a virtual
server so that on the 95% of the cases the MT takes less than 1 second.
First of all, we need to compute the size of a migrating virtual server,
which is composed by:

� Entity descriptor. The content of the entity is composed by: a UID
(32 bits), a DHT-ID (160 bits), a point representing the two-dimension
position of the entity (32+32 bits), and a list of attributes (integer, 32
bits) with the respective values (double, 64 bits). Let us assume that
the dimension of this list is fixed for every entity to 10 elements. We
argue that this value is a good average estimate to contain enough
information for a general MMOG. Summing up, each entity de-

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F

MT - milliseconds

2KB

4KB

8KB

16KB

Figure 11: Cumulative density function of migration time

scriptor has a size of about 140 bytes.

� Access list. The list of clients accessing to the virtual server. The
node that receives a migrating virtual server uses this list to com-
municate with the client. Each entry of this list contains a UID (32
bits), a IP (32 bits) and a port (32 bits). In order to estimate the num-
ber of connected client for an entity, we conducted an empirical
analysis. We counted the clients per entity per minute (hence, we
consider a quite large timespan) in a simulation with synthetic gen-
erated avatars movements. The movements and the placement of
the objects in the virtual environment were generated as described
in Section 3.5.1. Figure 12 shows the clients (in percentage) plotted
in a log-log scale. The trend of the plot resembles a power law, i.e.
a function of the form y(x) = Kx−α. By fitting the data, we derived
K = 0.5 and α = 1.4 (the corresponding function is also plotted in
the figure). A number generator based on this function was used
to estimate the number of connected clients.

� Routing table. The routing table of the virtual server, which contains

36

the references to other DHT nodes. In a typical DHT this table con-
tains logN entries. Each entry of the table is composed by: a DHT-
ID (160 bits) and a IP (32 bits). By considering a DHT with 10K
virtual server, this list contains 14 entries, for a total of 336 bytes.

The size of the virtual servers largely depends on the number of en-
tities. To see the relation between the number of objects and the MT, we
conducted experiments considering virtual servers with different amount
of entities. For each amount, we considered the 95th percentile of 10K
runs. Figure 13 shows the result. Virtual servers managing less than
about 15 entities have an MT less than one second. This result may be
used in two ways. Given a virtual environment with a predictable num-
ber of entities, it is possible to define the minimum number of virtual
servers to employ. On the other side, if it is a necessity to have a specific
number of virtual servers, it is possible to know the maximum number
of entities the system can support.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

data

k=0.5 α=1.4

Figure 12: Histogram of the client per minutes per entity plotted in log-log

37

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0 5 10 15 20 25 30 35 40 45 50

m
ill

is
e

c
o

n
d

s

number of objects

MT 95th

Figure 13: 95th percentile of MT with different amount of objects

3.3 Problem Statement and System Model

The manager has the task to orchestrate the assignment of the entities
to the virtual servers. The assignment is done according to these three
principles: (i) the fraction of the entities assigned to user-provided nodes
should be below the threshold set by the operator, (ii) no overloaded
nodes should be kept in the system, and (iii) the economical cost should
be the lowest that satisfies the last two points. Note that the point (ii)
would be possible only if the manager had a complete and precise knowl-
edge of the state of the servers. However, how we will see later, the man-
ager exploits a prediction function to estimate the load of the servers.
Hence, due to the error in the load estimation and the �uctuation of
the load, some occasional overloading may happen. In other world, if
the manager would have a perfect load prediction, no overloaded nodes
would be kept in the system.

In order to define the risk and the other parameters that the manager
uses for the orchestration, here we give a description of the system mo-
del. We indicate as V S the set of virtual servers in the system. Each

38

virtual server has a bandwidth requirement that depends on the amount
of requests that are issued to the virtual server. This requirement changes
over time, according on the interaction pattern of the avatars. More for-
mally, 8v 2 V S we define vload(t) as the bandwidth requirement of the
virtual server v from t � 1 to t, with vload(0) = 0. Similarly, 8v 2 V S

we define vobj(t) as the number of entities managed by v at time t, with
vobj(0) = 0. All the virtual servers in V S must be assigned to a node. The
set N(t) contains the nodes that are in the system at the time t. An arbi-
trary node n 2 N is characterized by the following properties: (i) band-
width capacity ncap, (ii) bandwidth cost nbcost, (iii) renting cost nrcost,
and (iv) failure probability nfprob.

We consider two different kinds of nodes, cloud on-demand and user-
provided nodes. The two kind of nodes have different characteristics.
User-provided resources have no cost for band and renting, while cloud
nodes are assigned with the cost from a real price model. On the other
hand, we assume cloud nodes to have no failure probability, whereas
user-provided resources have non-zero failure probability. Regarding the
nodes we do two relevant assumptions: (i) the value of their properties
does not change during time (i.e. the bandwidth cost remains constant)
and (ii) we can exploit a price model where cloud nodes are charged per
∆t.

The system risk γ(t) is defined as the number of objects managed by
user-provided resources at time t, multiplied by nodes failure probabil-
ity. Risk is computed as follows:

γ(t) =
∑

n∈N,v∈V S
vobj(t) � nfprob (3.1)

In order to provide a simpler way to quantify the risk, we mostly con-
sider the relative risk factor γR of the system, rather the absolute risk com-
puted above. To compute the relative risk factor, we correlate the abso-
lute risk with the maximum risk, γMAX . The maximum risk is computed
as if all the objects were assigned to user-provided resource. Therefore,
the relative risk factor is simply computed as the ratio between absolute
and maximum risk:

39

γR(t) =
γ(t)

γMAX
(3.2)

One of the principle of our mechanism is to keep the number of over-
loaded nodes as low as possible, and to intervene when a node is over-
loaded. The definition of an overloaded node goes through the concept
of load factor. The load factor of a node is defined as the ratio between the
bandwidth requirement demanded to the node and its capacity. Given
an arbitrary node n and a set Vn that contains all the virtual servers as-
signed to n, the load factor of n is computed as:

lfn(t) =

∑
v∈Vn

vload(t)

ncap
(3.3)

A node n is considered overloaded when lfn(t) >= 1.

The last objective of our proposal is to minimize the cost of the in-
frastructure. It is possible to compute the cost per interval of time as the
sum of the bandwidth cost and the renting cost of the nodes, according
on the bandwidth requirements at time t. The total system cost β(t) is
computed as follows:

β(t) =
∑

n∈N,v∈Vn

vload(t) � nbcost +
∑
n∈N

nrcost (3.4)

3.3.1 Mixed-Integer Programming Modelling

The problem of assigning virtual server to node can be modelled as a
Mixed-Integer Programming (MIP) problem. We define xn,v as binary
variable, which value is 1 if v 2 Vn, 0 otherwise. We also define another
binary variable un, whose value is 1 if jVnj � 1, 0 otherwise. The problem
formulation is the following:

40

minimize : β(t) (3.5)

γ(t) � maxrisk (3.6)∑
v∈Vn

vload(t) � ncap � un 8n 2 N (3.7)

∑
n∈N

xn,v = 1 8v 2 V S (3.8)∑
n∈N,vinV S

xn,v = card(V S) (3.9)

where (3.5) is the objective function, which minimizes the cost. The
constraint (3.6) forces the solution to not overcome the maximum risk
defined by the operator. The constraint (3.7) assures that no nodes are
overloaded and, at the same time, force un to take the value according
the definition. The constraints (3.8) and (3.9) assure respectively that a
virtual server is assigned only once and all virtual server must be as-
signed.

Due to the quasi real-time constraint of the infrastructure, resolving
a MIP every ∆t to compute the assignment of virtual servers to node is
infeasible. However, the MIP formulation has been revealed useful to
compare what would it be an optimal solution with the performance of
the (faster) heuristics executed by the manager.

3.4 The Manager

The manager is the component entitled to move virtual servers between
nodes, as well as adding or removing nodes from the system. The man-
ager’s goal is to control the system nodes overload and to prevent the risk
factor of the system to overtake the maximum risklimit that is predefined
by system operator. Moreover, the manager is also responsible for the
economical efficiency of the system. In other words, while shuf�ing vir-
tual servers, the manager takes into account the cost of used resources
and chooses the less costly solutions.

41

Nodes

Manager

Epoch

prediction function updates

Time

Time

Compute
AssignmentInstancing + Migration Compute

AssignmentInstancing + Migration

prediction
Δt

Figure 14: Manager time management

The work of the manager is divided into time intervals, which we
refer to as epochs. Figure 14 shows the management of two consecutive
epochs. During an epoch, the manager executes the following: (i) instan-
tiates (or release) any on-demand node, (ii) migrates the virtual servers
according to the plan done in the prior epoch, and (iii) computes the
new assignment plan for the next epoch. The assignment is computed
according to load prediction functions, one for each virtual servers and
by exploiting an heuristics that considers load predictions in ∆t time.
Over time, the manager receives from the nodes the updated coefficient
of the prediction functions. If an update arrives when the new assign-
ment computation is already started, it will be considered in the next
epoch.

The duration of an epoch (which we refer to as τepoch) must be tuned
to accommodate the maximum instancing time possible. This time de-
pends on the particular on-demand platform chosen, and normally it is
in the order of few minutes (MCK+09). Due to the fact that we use an
heuristics to compute the assignments, τepoch is largely occupied by the
instancing time. As a consequence, we assume ∆t � τepoch.

3.4.1 Load prediction

The manager computes the load of the virtual servers by using a predic-
tion function for each virtual server. This means that rather than storing
a mere number, the manager stores a set of functions (and their coeffi-
cients) defining the load of the virtual servers an arbitrary time. In par-

42

ticular, for each virtual server v, the manager stores a pair (v, Lv), where
Lv represents the prediction function.

The coefficients of these functions are computed locally by each node,
and then sent to the manager. Each node executes Algorithm 1 in order
to compute the load function Lv for each of its VSs v. In case the differ-
ence between the actual measured load and the load estimation provided
by the function is larger than ξest the node: (1) recomputes the load func-
tion coefficients for Lv according to the load of the virtual server, and
(2) sends the renewed function Lv to the manager at the end of the cycle
execution.

Algorithm 1: Server’s load estimation
Data: Lv , the load approximation function for the virtual server v
Data: managerAddress, the IP of the manager

1 repeat
2 foreach VS v 2 vs pool do
3 load getLoad ();
4 if jLv � loadj � ξest then
5 Lv updateFunction(load) ;
6 msg add(v, Lv) ;
7 end
8 end
9 if msg.size 6= 0 then

10 send(msg, managerAddress) ;
11 end
12 wait ∆t ;
13 until;

As in Figure 14, ∆t indicates the ahead time of two successive assign-
ment phase predictions. By waiting this period of time, the servers are
loosely synchronized with the predictions cycles. Over time, the manager
receives renewed load estimation functions from system servers (Algo-
rithm 2). Upon reception of a set of pairs (v, Lv), the manager renews the
function Lv for the corresponding v inside its storage.

The described approach in principle allows us to apply a wide range
of statistical models for the load estimation, as for example classical meth-

43

Algorithm 2: Load function renewal in manager

1 on receive message Set< v,Lv >
2 foreach (v, Lv) 2message do
3 updateFunction(v, Lv);
4 end
5

ods for data prediction such as ARMA or ARIMA (MJK11) models. The
choice of the model depends on the expected data �uctuations and the
desired accuracy of the prediction ξest, which represents the acceptable
error of the load estimation of the prediction model. High accuracy es-
timation models allow the manager to predict the load trend for large
times interval ∆t ahead.

In our implementation we use a simple exponential smoothing (Gar06)
as the mean to predict load trends. As we will see later in the experimen-
tal evaluation, this models assures a good prediction power in spite of its
simplicity.

3.4.2 Virtual Servers Management

The manager employs an heuristics approach to decide what load to move
and where to move it. The manager re-distributes the load in the system
based on the current and future system states (predicted load and risk
factors), according to the maximum allowed risk and cost balance. The
task of the manager can be considered as the sum of two sub-tasks, virtual
server selection, and destination selection.

Virtual Server Selection In this phase, the manager chooses which vir-
tual servers are good candidates to be moved. The pseudo-code of this
phase is in Algorithm 3. Firstly, the manager computes the predicted
load factor (PLF) of the nodes in the system, both on-demand and user-
provided nodes. The predicted load factor is the ratio between the pre-
dicted load at the next time epoch (computed by using the load pre-
diction function) and the node capacity. The balancer removes virtual

44

Algorithm 3: Balancer: Virtual Server Selection
input : LFup, upper load factor threshold
input : LFbot, bottom load factor threshold
input : Psize, the min amount of VSs to consider per epoch
output: vspool, the list of virtual server to migrate

// 1. Take the VSs in nodes whose load is too
high

1 foreach Node N 2 POOL do
2 while predictedLoadFactor(N) > LFup do
3 vspool maxDerivative(allVS(N)) ;
4 end
5 end
// 2. Take the virtual server that are backed up

6 vspool vspool [backUp();
// 3. Take from nodes that are under-loaded

7 if size(vspool) < Psize then
8 foreach Node N 2 POOL do
9 if currentLoadFactor(N) < LFbot then

10 vspool allVS(N);
11 end
12 end
13 end
// 4. Take some random VS

14 if size(vspool) < Psize then
15 vspool getRandomVS();
16 end

servers for each node whose PLF overtakes LFup until the PLF drops be-
low the threshold. The removal order of the virtual servers considers the
derivative of the load prediction functions; the virtual server with the
highest derivative is removed as first. The reason behind is that a virtual
server with a high derivative would probably have a burst in the load
soon, and to reassign it may avoid future overloaded nodes in the sys-
tem. The removed nodes are added to a data structure (called vspool in
the algorithm), which keeps track of the virtual server to reassign. Note
that the removal is virtual in the sense that the manager works on a copy

45

of the real system to obtain the list of migrations to execute. Further,
vspool receives the nodes that are currently managed by a backup server.
These VS have been moved to the back up cloud server due to their reg-
ular holder to have crashed or left (see Section 3.1.1).

If after these first two steps the amount of virtual server in the vspool
is below of the Psize threshold, the manager considers virtual servers
from under-loaded nodes. A node is under-loaded when its PLF is below
the LFbot threshold. If even after considering under-loaded nodes the
vspool still contains less than Psize items, some random virtual servers
are inserted in the vspool.

Destination Selection In this step the manager executes re-assignment
of the virtual servers from the vspool to available nodes with respect to the
system risk and cost. The system works with heuristics that considering
the predefined maximum risk to select an assignment for virtual servers
with minimum cost. For each virtual server v in vspool, the manager
executes the following. At first, the manager selects the node candidates
such that, if assigned v their PLF is less than LFup. Note that in the code
we use the notation� to indicate that we consider the load as if the node
would manage v. If no node can satisfy this requirement, the system
recruits a new cloud node and v is assigned to it, and the manager starts
with the next virtual server. Otherwise, the nodes go through another
selection round. In this round, the manager discards all the nodes that
would increase the risk of the platform over the threshold risklimit. As
before, if no candidate remains after this further selection, a new cloud
node is recruited. Otherwise, the candidate that provides the less cost is
chosen.

3.4.3 Migration

At the start of the epoch, the manager executes the migrations that comes
as output from the assignment computation of the previous epoch. All
the migrations are executed in accordance with the virtual server mi-
gration algorithm, which is described is Section 3.2. In this phase the

46

Algorithm 4: Balancer: Destination Selection
input : vspool, the list of virtual server to migrate
input : risk limit, upper load factor threshold
input : LFup, upper load factor threshold
output: Actions, the list of migrations to execute

1 foreach VS v 2 vspool do
2 Chosen = nil;
3 nodepool (N 2 allNodes: predictedLoadFactor(N � v)

< LFup);
4 if nodepool is ; then
5 Chosen chooseCloud();
6 end
7 else
8 nodepool (N 2 nodepool: riskFactor(N � v) <

risk limit);
9 if nodepool is ; then

10 Chosen chooseCloud();
11 end
12 else
13 Sort nodepool ascending according the cost;
14 Chosen nodepool.getFirst();
15 end
16 end
17 Actions move v to Chosen;
18 end

manager also manages the on-demand resources, by actually contacting
the on-demand platform for new instances, or by releasing not used in-
stances.

3.5 Experimental Results

3.5.1 Workload De�nition

The management of a MMOG infrastructure generates a certain amount
of load on the server, in terms of computational and bandwidth require-

47

ments. A realistic simulation of the load is central to properly evaluate
a MMOG infrastructure. This thesis focuses on one type on load, which
is bandwidth. In particular, the outgoing bandwidth is considered. This
is done for the following reasons. First, besides machine time, a typical
on-demand computing platform charges outgoing bandwidth. Hence,
with the reduction of the outgoing bandwidth it is possible to reduce the
operational costs of the infrastructure. Second, user-provided resources
usually have asymmetric connections to the public network. This im-
plies that the outgoing bandwidth is the resource to optimize, due to the
smaller availability compared to the ingoing bandwidth. In addition, our
workload considers the load related to the management of the users. It
does not take into account the bandwidth consumed for other tasks, like
backup management, intra-server communications, and other services at
application level (e.g. voice over IP). In the rest of the chapter the generic
term load is used to indicate the outgoing bandwidth load.

Mostly, the load depends on the number of concurrent players con-
nected to the infrastructure. For instance, (NIP+08) noticed that the load
varies from O(n) to O(n3) according to the pace of interaction provided
by the particular MMOG (where n is the number of players). However,
a wide analysis is necessary to reproduce the peculiarities of a proper
MMOG load. At this regard, we have considered the following aspects
when building a synthetic workload for MMOGs: (i) the variation in the
number players over time, (ii) the players mobility patterns, (iii) the ob-
jects distribution, and (iv) the interaction model.

Interaction model In our model bandwidth is sampled according to a
discrete time step model. We define each step t to have a duration of
∆t. During the step duration, for each generic entity e the server gathers
all the state actions regarding e. Then, a new state is computed and it is
broadcast to the interested players, i.e. the players that have the e in their
AOI. This broadcasting is the action that consumes outgoing bandwidth.
Hence, the bandwidth requirement at a generic time t is computed with
the formula:

48

∑
e∈E

eAOI(t)�Mlen (3.10)

where E is the set of all entities. Mlen is the length of the broadcast
message, which we assume to be the same for any entity. eAOI(t) is the
number of AOI’s in which the entity e is at time t. This value has been
defined experimentally, through the simulation of players movements
and objects placement in the virtual world.

Number of Players The number of concurrent players connected to a
MMOG infrastructure presents seasonal trends. These trends can regard
period of the week (i.e. more players in the weekend rather than in
the middle of the week) and period of the day (i.e. more player in the
evening rather than in the morning). In any case, it is a central point to
evaluate how a MMOG infrastructure adapts itself to these variations.
In particular, since the load is in a direct correspondence with the num-
ber of players, we are interested in the impact of a variable number of
players on the infrastructure.

In order to simulate a seasonal trend in our workload, we vary the
number of players over the time. To compute the number of players at a
given time t we use the following formula:

sin(
πt

λ
)� Pmax (3.11)

where the variation is controlled by two parameters: (i) the maximum
number of player Pmax and (ii) the length λ, which represents the num-
ber of iteration that are needed to perform a season cycle.

Players Mobility Model Avatars move on the map according to realis-
tic mobility traces that have been computed according the mobility mo-
del presented by Legtchenko et al. (LMT10), which simulates avatars
movement in a commercial MMOG, Second Life (Lab12). We have pre-
sented this implementation in (CCR11a), as well as a comparison with
other mobility models. In the model, players gather around a set of
hotspots, which usually correspond to towns, or in general to points of

49

interest of the virtual world. A circular area characterized by a center
and by a radius defines each hotspot. Traces generation goes through
two phases: initialization and running.

In the initialization phases, the area of the of the virtual environment
is divided in hotspot area and outland area. The percentage of the hotspot
area is defined by phot and, consequently 1� phot represents the outland
area. The hotspots are placed randomly in the virtual environment. The
number of hotspot is defined by the parameter Hnum. Their radius is
computed such that the total area covered by the hotspots is in accor-
dance to phot. The parameter pden defines the probability that a player
would be initially placed in an hotspot, whereas 1 � pden defines the
probability for a player to be initially placed in outland. If the player is
placed in the outland, its position is chosen uniformly at random on the
whole map. Otherwise, an hotspot for the player is randomly selected
and the player is positioned inside the hotspot. The position inside the
hotspot is chosen by considering a Zipfian2 distribution (New05), so to
ensure an higher density of players near the center of the hotspot.

The running phase moves the players across the virtual environment.
The movements are driven by a Markov chain, whose transition proba-
bilities are taken from the original paper (LMT10). The possible states for
the players are the following:

� Halt(H): the player remains in place.

� Exploration(E): the player explores a specific area. If the player is
moving inside an hotspot, the new position is chosen according to
a power law distribution. Otherwise, the new position is chosen at
random.

� Travelling(T): the player moves straight toward another point in the
virtual environment. The new point is chosen in accordance with
pdens.

2The Zipfian distribution was originally studied to show the relation of inverse propor-
tionality between the frequency of words in a text and their rank in the frequency table.
Nowadays, it used in many field of computer science, like graph theory (BKM+00), to
model similar concepts. In our work we use this distribution to model the fact that the fre-
quency of entities is inversely proportional to their distance from the center of the hotspot.

50

Mlen 100 bytes λ 200
Pmax 1000 Onum 1000
Pobj 0.7 Hnum 5
pden 0.8 phot 0.3
size 5000x5000 ∆t 0.2s

Table 1: Workload’s table of parameters

Initially every player is in state H. At each step t, the model decides
the new state according to the probability of moving between states. This
mobility model exposes a fair balance between the time spent by avatars
in hotspots and outland. Furthermore, the path followed by avatars
when moving between hotspots is not static, i.e. no predefined path con-
nects two hotspots.

Objects distribution Like players movement, the distribution of the
objects exploits the concept of hotspots. The idea is to have more objects
in the hotspots, which represent a place of interest in the virtual world.
To place objects over the virtual environment, we use the same space
characterization in desert and hotspot areas used by the mobility mo-
del. The total number of objects is defined as Onum. A fraction of these
objects is placed inside hotspot areas, whereas the rest is placed in the
desert area. The percentage of objects that are placed inside the hotspot
area is controlled by the parameter pobj . Objects in an hotspot area are
placed so that their concentration follows a Zipfian distribution (New05),
with a peak in the hotspot center. Conversely, objects in the desert area
are placed randomly.

Figure 15b shows the placement of 5000 objects in a virtual environ-
ment characterized by the parameters in Table 1.

3.5.2 Simulation Environment and Metrics

The experimental evaluation was carried out by means of simulations
exploiting the workload described above. In the simulation, time is con-

51

 0

 200

 400

 600

 800

 1000
N

u
m

b
e
r

o
f
p
la

y
e
rs

 0

 2

 4

 0 50 100 150 200

L
o
a
d
 (

M
B

/s
)

Ticks

(a) Load variation with number of
player over time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(b) Objects placement in the virtual
environment area

Figure 15: Workload characterization

sidered as a series of discrete steps. At each time step, the simulation: (i)
computes the metrics on the previous iteration and (ii) computes the new
assignment plan for the virtual servers. As a reference, here we sum-
marize the parameter that we will use in the rest of the chapter. Pmax
represent the maximum number of players. risklimit represents the max-
imum fraction of objects that can be assigned to user-provided resources;
if not stated differently, its value is 0.1. εest is the error threshold for the
prediction function. If the difference between the predicted value and
the measured value is above εest, the coefficient of the function must be
recomputed. If not stated differently, its value is 0.05.

The metrics used to evaluate the proposed approach are the follow-
ing:

� cost per minute. It represents the amount of US dollars that the plat-
form consume per minute to sustain the MMOG3. In the aggregate
form we consider the average.

� availability. It is intended as the fraction of requests from the client
that are not replied or that are replied in delay. A server has a delay
when the required bandwidth is higher than its capacity (i.e. it is
overloaded).

3Prices are taken from Amazon Elastic Cloud 2, Standard Large instances
(http://aws.amazon.com/ec2/pricing/), September 2012.

52

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300 350 400

c
o

s
t

p
e

r
m

in
u

te

time (minute)

0.1
0.5
0.9

Figure 16: Cost per minute with different maximum risk. Prediction error
0.05, 100 virtual servers, 5000 maximum players

3.5.3 Risk and Cost Trade-off

One of the strength of our approach is that it leaves to the MMOG op-
erators the ability to set the desired fraction of objects assigned to the
user-provided resources. In order to do that, the operator acts on the
maximum allowed risk. To show the effect this setting has on the plat-
form, we have experimented with various risklimit, from 0.1 to 0.9.

Figure 16 shows the cost per minute with three different risk set-
tings, 100 virtual servers, εest = 0.05 and 2000 maximum players. In
general, the data shows that with less risk the cost is higher. This hap-
pens in particular in correspondence of the peak load. As expected, with
risklimit = 0.5 and 0.9 the extra load on the peak is managed by the
peers, rather with risk 0.1 the peak load is managed by the cloud nodes.

Figure 17 shows the average cost per minute with three different risk
settings, i.e. 0.1, 0.5 and 0.9. The intermediate values of risklimit offer
results in between the extremes. The configuration of the experiment
considers from 1000 to 10000 maximum concurrent players, 100 virtual
server and εest = 0.05. As it can be seen from the figure, the average cost

53

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

A
v
e

ra
g

e
 c

o
s
t

p
e

r
m

in
u

te

Max number of players

risk 0.1
risk 0.5
risk 0.9

Figure 17: Average cost per minute, different number of maximum players
and risklimit, 100 virtual servers

per minute grows accordingly with the number of players. Moreover,
the gap between average costs for different risk factors increases with
the number of players. For instance, considering 10K players, there is a
difference in the cost around 20% between the maximum allowed risk of
0.1 and 0.9. Hence, the approach allows the operator to reduce the service
cost for large-scale systems. Nevertheless, even in a case of risklimit =

0.9, the system costs remains significant. When the load of the virtual
servers grows over time, user-provided resources cannot support some
of the because of their limited upload bandwidth capabilities.

3.5.4 Scalability Cost on the Number of Players

In order to show how our architecture behaves with different number of
players, we have conducted several experiments. Figure 18 shows the
cost of the system considering 2000, 5000 and 10000 players. The exper-
iment was conducted with a risklimit = 0.1, εest = 0.05 and a system
with 100 virtual servers. From the figure we can see that our approach
presents good scalability results. The cost is scaled according to the num-

54

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200 250 300 350 400

c
o

s
t

a
t

m
in

u
te

time (minute)

10k
5k
2k

Figure 18: Cost trend, different number of maximum players. risklimit =
0.1, 100 virtual servers

ber of players (i.e. VS load) and the system effectively adds cloud re-
sources on demand as well as removing them when the system load is
decreasing.

3.5.5 Comparison with Optimum

Figure 19 shows the cost trend of the heuristic allocation compared with
the optimum allocation computed by the MIP-solver4 and the fully cloud
utilization (which we take as the worst case in term of cost). The max-
imum number of players is 2000, the error prediction is εest = 0.05. As
it can be seen from the figure, the proposed heuristics allocation signif-
icantly reduces the service cost. The obtained results are far from the
optimum resource allocation since the optimum solver works in much
better condition than the heuristics. First, the number of migration per
epoch can be as many as the number of virtual servers, which is not the
case in the heuristics. Second, the execution time per epoch of the heuris-

4The MIP problem was solved using the GNU Linear Programming Kit (GLPK) pack-
age, www.gnu.org/software/GLPK

55

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300 350 400

c
o

s
t

a
t

m
in

u
te

time (minute)

max
heuristics
optimum

Figure 19: Average cost per minute with different strategies in assigning vir-
tual servers. no prediction error, 100 virtual servers, 2000 maximum play-
ers, risklimit = 0.9

tics is around few hundreds of milliseconds, compared with the minutes
of the MIP solver.

3.5.6 Prediction Error

The maximum allowed prediction error (εest) regulates the frequency of
the recalculation of the prediction function from the servers. In other
words, if the difference between the predicted load and the actual mea-
sured load is higher than εest, the server must compute the new coeffi-
cients for the prediction function. This operation requires computational
time, hence a high value for εest would imply a lower recalculation fre-
quency, saving precious CPU time that can be used for other tasks. On
the other hand, a lower prediction error would improve the prediction
precision, which in turn impact positively on the overall performances.
In particular, we expect the level of availability to be affected by propor-
tional the value of εest.

Figure 20 shows the cost per minute with εest values of 0.05, 0.5 and

56

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300 350 400

c
o

s
t

p
e

r
m

in
u

te

time (minutes)

0.05
0.5

1

Figure 20: Cost per minute, different values for εest. 2000 maximum play-
ers, 100 virtual servers

1.0 (2000 maximum players and 100 virtual servers). As it can be seen
from the figure, εest = 1.0 greatly affects the algorithm behaviour. Let us
analyse this case more in detail. On the peak loads (around the 100th and
300th iterations) the prediction underestimates the load, and the man-
ager assigns load to the peers. However, the actual load is higher, and
it should results in a decreasing of availability (we will see this in the
next picture). During low load phases (around the 200th iteration) the
prediction overestimates the load, assigning more resources to the cloud,
which results in a higher cost than necessary. On the other hand, the
picture shows a less significant impact of εest = 0.5. This is due to the
fact that the upper load factor threshold value (LFup = 0.8) is enough to
prevent nodes to reach an overloaded state even with a consistent error.

Figure 21 shows the availability with the same values for εest. As said
above, the availability in case of εest = 1.0 is worse than with the other
values. During the peak load the availability drops down of 5 percentage
points. It is interesting to note that εest = 1.0 leads to an availability
dropping in case of a load under estimation (around iterations 100 and

57

300) and to a cost increasing in case of load over estimation (Figure 20,
around the 200th iteration).

 0.81

 0.84

 0.87

 0.9

 0.93

 0.96

 0.99

 0 50 100 150 200 250 300 350 400

a
v
a

ila
b

ili
ty

time (minute)

0.05
0.5

1

Figure 21: Percentage of penalties per minute, different allowed maximum
error. 2000 players, 100 vs

3.6 Conclusion

In this chapter we have proposed an MMOG infrastructure that com-
bines the advantages of P2P computing and on-demand resources. The
embedded �exibility of the proposed architectures is a valuable charac-
teristic for MMOG operators, which are able to decide which nodes of the
platform to exploit. Efficient and effective provision and load distribu-
tion algorithms are mandatory to realize MMOGs that may scale to larger
and larger communities of users. We have proposed a load distribution
and provisioning strategy taking into account a number of relevant is-
sues, such as balancing the infrastructure availability and reducing the
economic cost. We have designed and a greedy heuristic policy char-
acterized by low computational requirements. The experimental results
show the effectiveness of our approach.

58

Chapter 4

Positional Action Manager

As emerges from the background chapter, Neighbours Discovery (ND)
is a fundamental issue in MMOGs infrastructures. In this chapter we
present PAM, a stand-alone component to resolve ND. The main goal of
PAM is to assure a cost-effective tunable and up-to-date ND. To be up-
to-date is a strict requirement for ND. Stale information on neighbours
does not value anything in a complex and evolving system like a MMOG.
On the other hand, cost effectiveness is a requirement necessary to make
the component appealing to MMOG operators. The ability of tuning the
trade-off between performance and economical cost can make the differ-
ence in a competitive market. To fulfil both these requirements, PAM is
composed by two combined services:

� a backbone server which we refer to as PAM server, or only in this
chapter, generically as server

� a fully decentralized network, which we refer to as PAM overlay, or
only in this chapter with the generic term overlay.

Figure 22a shows the logical architecture of a PAM client. PAM clients
maintain connections to both these services in order to receive informa-
tion about their neighbours. Periodically, clients communicate their po-
sition to the server. On the other hand, periodically the server commu-
nicates to clients the list of their neighbours. The rate of the these com-

59

PAM CLIENT

Local State Replica

PAM
Server

PAM
Overlay

(a) PAM Client

PAM OVERLAY

Coverage Peer
Sampling

Random Peer
Sampling

List of
Neighbours

(b) PAM Overlay

Figure 22: PAM: Client Architecture

munications depends on the particular genre of the MMOG. Fast pace
MMOGs require these communication to be less than 100 ms, whereas
slow pace MMOGs may employ larger interval on the order of 500 ms
(CC06). In this context we are interested in the rate of the communica-
tion server-to-client (which we refer to as Ts), since it represents the ma-
jor source of cost of the infrastructure. Indeed, this value can be tuned
for more precise ND with higher costs, or, on the other hand, less precise
ND but lower costs. Besides the server, clients also communicate with
a custom overlay. The overlay is build such that to exploit the ”wisdom
of the crowd” principle. Indeed, if a client maintains connections with
other clients whose avatars are close in the virtual environment, there is
a chance that they know about entities in the client AOI. The overlay is
built such that when a node n has another node m in its view, a connec-
tion between n andm exists in the overlay. However, this does not imply
that the reverse connection exists. Nodes periodically query the overlay
to learn about the entities in their AOI. In this context the overlay plays
a fundamental role. If the overlay is effective, the MMOG operator can
increase the Ts, so to reduce the economical cost, without sacrificing a
precise ND.

60

4.1 PAM Server

Logically, the server is composed by two asynchronous computation �ows:

� a passive thread that receives and stores the positions from the clients;

� an active thread that periodically informs clients about the content
of their AOI.

These operations generate two different kinds of load on the server.
First, they generate a computational load, as the server must maintain the
connections, store the positions and resolve spatial queries. Second, they
generate bandwidth load, as the communications to the clients consume
outgoing bandwidth. This second kind of load, besides saturating the
bandwidth capabilities, also increases the operational cost of the server,
especially if the server is hosted by an on-demand platform.

In order to measure this load, we have conducted an experiment with
an average size desktop machine working as a sever. According to our
empirical experience, a medium-sized server can manage around 1000
clients before slowing down.

However, reducing the frequency of client updates causes the server
to suffer less load. To measure the reduction of outgoing bandwidth at
the server, we have performed several tests by varying TS , which is the
distance in time between two consecutive client updates from the server.
We have considered networks with 200, 500, and 1000 peers. Results are
presented in Figure 23.

As expected, the amount of outgoing data transfer is greatly reduced
by increasing Ts. With this reduction, the virtual environment operator
is able to evaluate alternative choices regarding the deployment of the
IM server. For instance, let us consider an operator willing to deploy the
IM server on a on-demand platform. With 1000 nodes, and Ts = 0.25 the
bandwidth requirement is 3MB/s. Using the prices of a current commer-
cial on-demand platform 1, the deployment would cost 30$ per day only
considering bandwidth. With Ts = 1 the cost would be reduced to 10$

10.12$ per GB, Amazon EC2 prices, July 2012

61

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

A
v
e

ra
g

e
 M

B
/s

TS (seconds)

1000 nodes
500 nodes
200 nodes

Figure 23: Server outgoing bandwidth

per day. This simple experiment shows how even a little reduction on the
Ts can result in a relevant saving for the virtual environment operator.

4.2 PAM Overlay

The construction of the PAM overlay has been driven by protocols based
on epidemic diffusion of information. These protocols (also known as
as gossip protocols) are the current reference point to build overlays in a
pure distributed fashion. Gossip-based protocols provide seamless tech-
niques for the initial bootstrap of the overlay and recovery node failures,
as well as other interesting properties.

Our proposed overlay has been build with a mechanism inspired by
T-Man (JMO09). T-Man has been one of the first approaches to fully de-
scribe the potential of gossip-based protocols in building overlays. Here
we describe what are the main principles behind the creation of an over-
lay with gossip protocols, using T-Man as the main reference.

T-Man proposes a gossip-based probabilistic approach whose goal is
to build, starting from an arbitrary initial peer configuration, a target

62

overlay characterized by a set of well defined properties. These may be
inferred by the profiles of the peers or directly characterize the topology
of the target overlay. In the former case, for instance, a metrics based on
the geographical location or on the semantic profile of the peer may be
considered to define a proximity-aware target overlay. An example of
the latter scenario is a topology where the nodes are organized in a ring
in increasing order with respect to their identifier.

The definition of a proper ranking function is a core element to build
the target overlay. Each peer maintains a local view storing the descrip-
tors of its neighbours. At each gossip cycle each peer exchanges a subset
of its view with a subset of its neighbours. The ranking function is ex-
ploited to select the ”best neighbours” according to the properties of the
target topology. Hence, using only local gossip messages, the current
topology gradually evolves towards the desired target structure with the
help of the ranking function.

In large diameter topologies, an underlying random peer sampling
protocol should be exploited in order to speed up the convergence to-
ward the target topology. The random peer sampling serves also in
the initial gossip cycles, when the local view of the peer is empty and
a peer needs to know a random sample of peers to bootstrap on the
network. Finally, a gossip-based approach for overlay construction is
light-weighted, scalable and, when paired with a peer sampling service,
it exhibits good convergence speed.

4.2.1 Gossip-based Overlay Construction

The effectiveness of our approach depends on the definition of a proper
ranking function. In our case, it should favour neighbours which may
offer a larger number of entities in the interest set of a peer. To this end,
we will consider the spatial coverage of the AOIs of a peer’s neighbours.
Unlike most existing T-Man-like approaches, our goal is to build a con-
tinuing evolving overlay rather than predefined one. The view of a peer
changes continuously in order to re�ect the position updates of the peers
in the virtual space. In our case, instead of evolving toward a predefined

63

target topology, peer continuously gossip to each other to support the
retrieval of new avatars and objects in their AOI.

Our technique to build an overlay supporting IM is based on the fol-
lowing reasoning. Let us consider a given peer P . At an arbitrary point
in time it has in its local representation of the environment the replicas
of the entities that belong to its AOI. When P moves, its AOI changes ac-
cordingly. Hence, to maintain its local representation up-to-date, P must
discover the new entities belonging to the new AOI. In order to dynam-
ically acquire this information, P builds an overlay by considering a set
relevant neighbours.

The creation of the overlay poses two issues. First, P needs to know
the identifier of its candidate neighbours; second, P needs a mechanism
to discriminate among peers, in order to choose the more promising
neighbours from the set of candidates.

The first issue is resolved by continuously refreshing candidate knowl-
edge. This is obtained with a two-layer gossiping architecture, where
each layer runs a gossip protocol (the structure of these layers is shown
in Figure 22b). In the underlying layer, called random peer sampling, each
client runs a random peer sampling protocol, which provide a subset of
all the nodes in the system. This layer enables each peer to maintain a
set of long range links that guarantees the connectivity of the overlay.
In the second layer, called coverage peer sampling, a gossip protocol con-
nects peers by exploiting a ranking function based on spatial AOI cov-
erage. Since the selection of the neighbours is done according the prox-
imity, entities are progressively discarded by the second layer gossip if
they disappear from its AOI. The two gossip layers are independent, in
the sense that layers execute their gossip cycle at their own rate. The
random peer sampling layer communicates newly entered peers to the
proximity layer. These communications are exploited in situation where
a client has few knowledge about its nearby candidate neighbours and
must incrementally acquire new information. These situations include
the bootstrap phase and avatars teleportation, i.e. an avatar ”jumping”
from one place to another of the virtual environment.

The second issue is related to the AOI coverage offered by the neigh-

64

bours of a peer. Each peer should choose the best configuration of its
neighbours in order to optimize the number of entities which may be
retrieved from them. At each iteration the peer adapts its overlay neigh-
bours set by providing a partial order from multiple configurations of
neighbour sets. Since avatars are continuously moving, a large part of
the IM performances depends on the freshness of peers knowledge. In
order to maintain the selection of the neighbours as fresh as possible,
each entry in the view of the peers is marked with a time-stamp. Time-
stamps provide an estimation on the freshness of the entry. Our mech-
anism considers the age of the entries in two situations. First, before to
rank the neighbour candidates, all the candidates whose age is greater
than a certain threshold are not considered. Second, during the rank-
ing, fresh configurations are favoured with respects to the stale ones. In
principle, the internal clock of the peers can be used as the source for the
time stamp. However, for simulation purposes, we model the time as a
discrete successions of iterations. The simulation starts at iteration zero
for all the nodes, and for each gossip-cycle the count is increased by one.
When an entry is created, the iteration count is used as time-stamp for
such entry.

4.2.2 Ranking Function

In this section we explore in details the principles behind the ranking
functions. The definition of our ranking function posed two distinct chal-
lenges: (i) to measure the amount of area covered by neighbours peers
and (ii) to determine the best subset of neighbour peers that maximize
the area coverage. In the rest of this section we formalize these two prob-
lems and we provide a description of the adopted solutions.

Measuring Coverage

De�nition 1 (AOI coverage). Given a set of AOIs N = fN1...Nng and an
AOI P such that P /2 N we de�ne as the coverage of P given N , c(P,N), as
the area of P that is overlapped by the AOIs contained in N .

Computing c(P,N) requires to compute all the unique intersections

65

of AOIs in N with P ’s AOI and to evaluate their area. In trivial situa-
tions this is easy to compute. For example, Figure 24 depicts a simple
scenario where N = fA,Bg. In this case the coverage is just the sum
of the intersections of A and B with P, i.e. c(P,N) = B \ P + A \ P .
However, in real situations, computing the AOI coverage is far from a
trivial problem. For instance, in the case depicted by Figure 25 we have
that c(P,N) = (P \B�P \B \A) + (P \B \A) + (P \A�P \B \A).

PB AB ∩ P A ∩ P

Figure 24: Simple continuous c(P) with N = {A,B}.

When many peers are close to each other, to compute the effective
coverage may be prohibitively expensive in terms of computational ef-
fort. Practically, this happens for two reasons. First, the number of the
intersections grows quadratically with the number of peers. Second, it
might be computationally costly to evaluate the area of an intersection
resulting from many AOIs. For this reasons, we approach this issue con-
sidering an approximation. The idea is to approximate the continuous
surface of the AOI as a grid of disjoint tiles. In this way, instead of deal-
ing with custom-shaped areas, we consider the tiles as the units to com-
pute the coverage. This approximation reduces the complexity of the
problem, since it makes easy to compute the area of each tile. Moreover,
the amount of tiles is a parametric value and does not depends on the
number of peers. Figure 25 shows an example on how to compute the
coverage of a given AOI (P in the figure) considering a 3x3 approxima-
tion. The number of tiles varies proportionally with the degree of the
approximation. A high number of tiles leads to higher precision, in prin-
ciple increasing the performance of our mechanism. Besides, since the
AOI to approximate is a circle, tiles at the corners of the approximation
square might be out of the actual AOI area. In this case we do not con-

66

P

B

A

P

A

B

P∩B-
P∩B∩A

P∩B
∩A

P∩A-
P∩B∩A

Figure 25: Continuous and approximate coverage with N = {A,B}. In
this case the AOI coverage is approximated to 5/9

sider such tiles for the coverage area estimation.
The pseudo code of the function coverage() that realizes the tile-based

coverage approximation is presented in Algorithm 5. For each AOI 2
N and for each tile, we check whether the AOI intersects with the tile.
If it is, we check the counter associated to the tile. If the tile counter
is zero, it means the tile is overlapped for the first time so we increase
the covered tiles counter. If the tile counter is greater than zero, we just
increment it. Besides the number of the tiles covered, this function also
counts the number of AOIs that cover each tile. It is easy to show that
the complexity of the function is O(n � t), where n is the cardinality of
N and t is the number of tiles.

Maximizing AOI Coverage The aim of the network is to discover the
larger amount of objects in the AOI of the peer (possibly all of them).
The straightforward solution is to to keep links with the neighbours that
maximizes the coverage. This indeed requires peers to make a choice,
due to the bound imposed by the gossip view size. Hence, very often a
peer needs to choose what is the best subset of peers to keep in its view.
This subset is defined as follows:

De�nition 2 (Maximum AOI coverage). Given a set N of AOIs, N =
N1...Nn and a natural number d � n and an AOI P /2 N , we de�ne Sd =

67

Algorithm 5: Coverage(P, N)
Input : P, the considered peer
Input : N , the set of neighbours AOIs
Output: the approximated coverage given N and P

Data: covered tiles 0
1 foreach AOI 2N do
2 foreach tile 2 getTiles(P) do
3 if intersect(AOI, tile) then
4 if tile.count = 0 then
5 covered tiles covered tiles + 1;
6 end
7 tile.count tile.count + 1;
8 end
9 end

10 end
11 return covered tiles;

fX 2 P(N) : jXj = dg, �nd the set M 2 Sd that maximizes the coverage of
P .

This problem is NP-complete. To prove that, we show how it corre-
sponds to an instance of the set cover problem. The set cover problem has
been proved to be NP-complete by Karp in 1972 (Kar72) and it is defined
as follows.

De�nition 3 (Set cover problem). Given a set U of elements (called the uni-
verse) and n sets of elements whose union comprises the universe, identify the
smallest number of sets whose union contains all elements in U .

The correspondence with the Maximum AOI coverage problem is re-
solved by considering: (i) n as N , (ii) elements as the tiles, and (iii) U as
the tiles covered by the AOIs in the optimal solution.

A naive solution to this problem would be to enumerate the possible
combinations of peers and for each of them compute the coverage. Un-
fortunately, this is highly impracticable since the combinatorial nature of
the problem. Hence we propose two heuristics algorithms with different
characteristics, a score-based and a greedy one.

68

Score-based Heuristics The rationale behind this heuristics algorithm
is to assign a score to each tile. The tiles that intersect with few peers will
receive a higher score than tiles intersected by a larger amount of peers.
The idea is then to favour such peers that overlap high score tiles. The
heuristics works as in the pseudo code in Algorithm 6.

First, it computes the coverage of the AOI by considering all the peers
in N . Each tile has a score that is the reciprocal of the number of inter-
sected AOIs. Second, it computes the score for each AOI as the sum of
the scores of each intersected tiles. Finally, it sorts the AOIs in descend-
ing order according to their score, and it chooses the first d entries.

Algorithm 6: Score-based Heuristics
Input : P, the considered peer
Input : N , the set of neighbours AOIs
Input : d, the size of the returned set
Output: a subset of N with cardinality d

1 coverage(P, N);
2 foreach AOI 2N do
3 foreach tile 2 getTiles(P) do
4 if intersect(AOI, tile) then
5 AOI.score AOI.score + 1

tile.count ;
6 end
7 end
8 end
9 sort AOIs in descending order according to score;

10 return the first d AOIs;

The complexity analysis of the score-based algorithm heuristics goes
as following: (i) the coverage procedure, which we have already seen
to be O(nt), (ii) the computation of the score, that can be considered as
O(n), and (iii) the sorting, which is O(n log n).

Figure 26 shows a graphical execution of the score-based heuristic al-
gorithm. For example, the central tile has a score of 0.3 since A and B and
C intersect with it. If we consider d = 2, the heuristics chooses the combi-
nation fA,Cg, which is also the best combination possible. However, the

69

1 0.5 1

1 0.3 0.5

0 1 1

A B

C

3

2.8

2.3

C

A

B

Figure 26: Graphical examples of the score-based heuristic

heuristics not always finds the optimum. Let us consider the example in
Figure 27. In this case the score-based heuristic algorithm chooses as the
best combination fAEg that covers 4 tiles instead of fACg or fECg that
cover 5 tiles each.

Greedy Heuristics The idea behind the greedy heuristics is simple: at
each step to choose the peer that yields the higher increment on the num-
ber of unique tiles covered. The pseudo-code of the greedy heuristic
algorithm is represented at Algorithm 7. For each peer in the view, it
is selected the AOI that maximizes the number of further covered tiles
considering the already chosen AOIs. Note that: (i) an AOI can be se-
lected only once as, upon selection, it is removed from the list of candi-
dates, and (ii) to evaluate the number of tiles covered we use the function
coverage() described and evaluated in the previous section.

The complexity analysis of the greedy heuristic algorithm goes as fol-
lowing. The outer cycle (line 1) is repeated d times. The inner cycle (line
4) is repeated at maximum jN j = n times. The function coverage() has
a complexity of O(nt). Hence, the total complexity in time is O(td� n2).

Figure 27 shows a graphical execution of the greedy heuristic algo-
rithm. At the first step, the heuristics chooses C, as it is the AOI that
covers the most tiles. At the second step, A is chosen so that the current

70

Algorithm 7: Greedy Heuristics
Input : P, the considered peer
Input : N , the set of neighbour peers
Input : d, the size of the returned set
Output: a subset of N with cardinality d
Data: C ;

1 while jCj < d do
2 chosen ;;
3 max score 0;
4 foreach AOI 2N do
5 score coverage(P, C [AOI);
6 if score > max score then
7 max score score;
8 chosen AOI;
9 end

10 end
11 remove chosen from N ;
12 add chosen to C;
13 end
14 return C;

combination becomes fCAg. At the third step E is chosen, and the fi-
nal combination is fCAEg. Note that at the second step, the heuristics
could have chosen E. In such case the second combination was fCEg
that would have lead to the same results (i.e fCAEg).

To prove approximation guarantees of the greedy heuristics, first we
have to introduce submodular function (NWF78). Consider Ω to be a finite
set and an arbitrary function f : 2Ω ! R, we can say f is submodular if it
satisfies the following property: the marginal gain of adding an element
to a set S is at least as high as the marginal gain from adding the same
element to a superset of S. More formally a submodular function must
satisfy

f(X [x)� f(X) � f(Y [x)� f(Y) (4.1)

for all elements x 2 Ω and for all pairs X � Y . Now, suppose f to be

71

1 1 0.5

0 0 0.5

1 1 0.5

A B

C

D
E

Greedy Heuristic with d=3

2

1

C

B

2

3

D

A

E 2

CB

3

5CE

CA 5

3

CD 7CAE

5CAD

5CAB

Step 1 Step 2 Step 2

Score Heuristic with d = 2

12 0.51.52

DB ECA

Figure 27: Greedy and Score Heuristic with N = A,B,C,D,E

submodular, non-negative (i.e. takes only positive values) and monotone
(i.e. adding an element to a set cannot cause f to decrease). Let also
suppose that our aim is to find a set S of cardinality k such that f(S)

is maximized. It has been proved in (NWF78) that a greedy algorithm
resolves this problem with a worst-case approximation of (1−1/e), where
e is the base of the natural logarithm. In other words, if the optimum
value is 100, the greedy algorithm is guaranteed to find a solution with a
value of at least 63.

In order to apply this result to our greedy algorithm, c(P,N) must be
submodular, non-negative and monotone. Non-negativity is immediate,
since we measure an (approximation of). Monotonicity is also imme-
diate, since adding an AOI to a set cannot change the number of tiles
already counted. To prove submodularity, we show how it satisfies (4.1).
Let us consider what happens when we add an arbitrary AOI x to a setX
whose Y is a superset of: (i) x neither intersects with AOIs in X or AOIs
in Y . In this case the equality holds since the marginal gain for both sides
of the equation is zero; (ii) x intersects only with AOI’s in X . In this case
we possibly have an increment on the left side, so the equality holds; (iii)
x intersects only with AOI’s in Y . In this case the left part of the equa-
tion is greater, since it considers all the area covered by x, whereas the
right part is incremented only of the part that is non overlapping, so the
equation holds; (iv) x intersects with both X and Y . The equation holds

72

since for the left side it counts also the intersection of the AOI’s with the
elements in Y , that it would not count for the right side. Finally, since we
have proved that our greedy algorithm is submodular, non-negative and
monotone we can assert that in the worst case we obtain an approxima-
tion of (1� 1/e).

4.3 Result

This section presents the description of the metrics and a selection of
experimental results evaluating the key performances of the approach.

4.3.1 Metrics

To evaluate our approach we considered two different metrics. The first
metric evaluates the coverage of peers AOI. We refer to this metric as AC.
AC is a value in the interval (0, 1) and, given a peer at an arbitrary iter-
ation, is defined as the ratio between the AOI coverage obtained by the
P’s view and the best AOI coverage defined by considering all the peers
in the virtual environment. The second metrics measures the difference
between the local replica of the peer’ state against the server state. To
measure this difference, we exploit a slightly modified version of the Jac-
card similarity coef�cient (Lee99). Let us consider C as the local replica of
a peer and S as the remote replica of the server. The original Jaccard co-
efficient is computed as S \ C/S [C. However, this formulation either
does not take in account the difference of the positions of the entities,
or considers entities with different positions as distinct. In order to take
into account at the same time the difference in position and the presence
of the entities we exploit the following formula to compute the Jaccard
coefficient (in short JC):

JC =

∑
xS ,xC∈S∩C 1� jdist(xS ,xC)

dMAX
j

S [C
(4.2)

where dMAX is the diameter of the peer’s AOI. A peer with JC = 1 has
its local replica perfectly synchronized with the state of the server while

73

JC = 0 implies that the replica is completely out-of-sync with that of the
server. Any value in between 0 and 1 gives a quantitative evaluation on
the quality of the synchronization.

While AC measures how good the heuristics performs in a dynamic
environment, JC measures the quality of the approach in terms of the
quality of the application. A direct correlation between AC and JC would
be desirable. The experimental results supports the existence of this cor-
relation.

4.3.2 Behaviour over Ts

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.5 1 1.5 2 2.5

J
a

c
c
a

rd
 C

o
e

ff
ic

ie
n

t

Ts

greedy
score

only server

Figure 28: Comparison between score-based heuristics and greedy-based
heuristics

In this section we discuss the result of several simulation runs by
varying the interval of time (Ts) between two consecutive communica-
tions to the central server. A gossip cycle and a query to the overlay are
executed every 0.25 seconds. For instance, with Ts = 1 there is a server
communication followed by three requests to overlay in row and then
another server communication. Where it is not indicated differently, the
simulations consider: 500 nodes with a cache of 10 elements each, 1000

74

objects, and an AOI approximation of 32x32 tiles. Figure 28 shows the
comparison of the JC between the greedy heuristic and the score heuris-
tic algorithms. In general, we can observe how the reduction in the JC
is limited even with high values of Ts. For instance, with Ts = 1 the av-
erage JC value for both the heuristic algorithms is around 0.9. From an
application point of view, this means that the mechanism is able to fully
support IM. As expected, further increments of Ts imply a JC reduction.
Note however, that even with the Ts = 2.5 and the support of the PAM-
overlay, the JC is still around 0.8. The effectiveness of the mechanism is
further supported by the values of the JC when using only the server. In
other words, increasing Ts would be problematic if not supported by the
PAM-overlay. For example, with Ts = 1.5, the JC with the support of the
overlay is around 0.9, whereas is 0.65 using only the server.

As regards the comparison between heuristic algorithms, the greedy
slightly outperforms the score heuristics. With these simulation param-
eters, the AC, which is independent from Ts, is 0.8 and 0.85 respectively
for the greedy and the score heuristics. This suggests a correlation be-
tween AC and the JC.

Figure 29 shows the JC when selecting the more fresh entries during
a gossip iteration. The ranking algorithm considered is the score, but
similar results have been obtained with the the greedy heuristics. The
results are evident and not surprising: to prefer fresh entries gives a neat
increment on the performance. As the previous, even this result indicates
a correlation between AC and JC as the score’s AC = 0.80 with stale
control and AC = 0.70 without.

4.3.3 Tiles Variation

Figure 30 shows the JC and the AC of the greedy and score heuristics
with various degree of AOI approximation (from 16 to 1024 tiles). The
data in the plot have been obtained by averaging the outcome of 20 in-
dependent simulation runs with a Ts = 1. The results show that the
score-based heuristics is basically agnostic to the approximation whereas
the increment in the number of tiles implies an increment of the perfor-

75

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.5 1 1.5 2 2.5

J
a

c
c
a

rd
 C

o
e

ff
ic

ie
n

t

Ts

stale control

no stale control

Figure 29: Score heuristics, comparison between considering or not fresh-
ness of entries

mance of the greedy-based heuristics. From the graph it is clear how
with approximations larger than 400 tiles for AC and 600 for JC, the
greedy-based heuristics outperforms the score-based. The reason why
it happens lies on the order used by the greedy heuristics for choosing
the areas. Indeed, with higher approximation, the greedy has greater
chance to choose a worse area. When the approximation is reduced, the
greedy heuristics performance increases.

The reason of this can be explained clearly with a simple example,
depicted in Figure 32. Let us consider the same case with two different
AOI approximation degrees, and also consider the maximize coverage
problem with d = 2 and N = fA,B,Cg. In the first case (4 tiles) the
greedy heuristic would choose either AB, AC or CB. This is because at
the first greedy step, either C or B would be selected, even if C has a
better coverage thenB. In the case with a better approximation (16 tiles),
the greedy-heuristic would choose C, which leads to CA or CB that are
both optimal solutions. When the approximation is further reduced, then
the greedy-based heuristic works better than the score-base one, due to

76

 0.82

 0.84

 0.86

 0.88

A
re

a
C

o
v
e

ra
g

e

greedy
score

 0.84

 0.85

 0.86

 200 400 600 800 1000

J
a

c
c
a

rd
C

o
e

ff
ic

ie
n

t

Tiles

greedy
score

Figure 30: AC and JC with different number of tiles

the better performance with respect to the optimum.

4.3.4 Number of Peers

Figure 31 shows how the amount of peers affects the JC of greedy and
score heuristics. Each point in the plot is the average of the outcome of
20 independent runs. The simulations have been run with a 32x32 AOI
approximation, a fixed cache size of 10 elements, and a TS = 1.

As expected, the greedy overcomes the score, but they show a sim-
ilar behaviour. Their performance are essentially independent from the
number of nodes, even with a fixed-size cache. In fact, there is a slight
increment on the JC as the number of peers increases, due to the higher
changes of crowded zones with more nodes. This situation allows the
node to exploit the knowledge of the neighbours more often.

4.4 Conclusion

In this chapter we described a gossip-based mechanism to build over-
lay for best-effort Neighbours Discovery in MMOGs. Conversely to the

77

 0.85

 0.9

 0.95

 1

 100 150 200 250 300 350 400 450 500

J
a

c
c
a

rd
 C

o
e

ff
ic

ie
n

t

Nodes

greedy
score

Figure 31: JC with different values for network sizes

other approach in the field, we trade some precision in the result to
keep the mechanism fast, simple and lightweight. The simulations have
shown encouraging results: even when the delay between two consec-
utive communications with the server is very large the PAM overlay is
able to obtain good results. Further, an increasing in the number of nodes
increases the performance of the overlay.

Our proposal can be further extended and studied. To this end, we
plan to improve the precision of the result by considering additional in-

A

B

C

case two

A

B

C

score: {BC}
greedy: {AB},{AC},{CB}

case one

score: {BC}
greedy: {AC},{CB}

Figure 32: Impact on the heuristics with different tiles approximation

78

formation when ranking peers, such as movement forecasts and different
neighbours selection functions. As to further validate our solution, we
intend to test it with movement traces from different mobility models
and to compare it with the non best-effort work presents in literature.
Part of these lines have been further studied, and they are explained in
Chapter 5. In any case, we expect that other solutions will be proposed
following this line. Indeed, techniques and mechanisms to combine Peer-
to-Peer approaches (including best-effort ones) and centralized solutions
(like on-demand computing) are one of the research topics for the next-
generation MMOG infrastructures.

79

Chapter 5

Toward a Complete
Architecture

MMOG architectures must support a number of features whose require-
ments are often in contrast with each other. A single MMOG can be
accessed by multiple user concurrently, therefore the architecture must
account for maintaining consistency. To scale up to thousands of users,
interest management and load balancing schemas are a necessity. Since
the nodes of the network can potentially be untrustworthy and unreli-
able, security and fault tolerance mechanisms must be considered. As
we have described in detail these aspects in Chapter 2, here we focus on
the design of a full, concrete architecture for MMOGs.

The State Action Manager (SAM) and the Positional Action Manager
(PAM) were presented through this work as two stand-alone compo-
nents. The SAM (see Chapter 3) manages the state actions, by exploiting
a Distributed Hash Table to distribute the effort on management of the
entities to multiple resources, including user-provided and on-demand
resources. The PAM (see Chapter 4) is the component devoted to the
management of the positional actions. It employs a combination of a
centralized server and gossip protocols to acquire the position of rele-
vant entities in the proximity of the users.

This chapter presents a preliminary study on the combination of SAM

80

and PAM in a concrete architecture. This combination is described more
in detail in the next section, where we consider a client-centric perspec-
tive. A seamless integration of PAM and SAM also requires that they
share the same mechanisms to recruit and release on-demand comput-
ing resources. The PAM-server presented in Chapter 4 is described as a
single server architecture. Section 5.2 presents a multi-server version of
the PAM, with an insight of possible mechanisms for load distribution in
PAM.

5.1 Combining PAM and SAM

The combination of PAM and SAM in a seamless architecture exposes
two main issues. First, it is mandatory the definition of a client capable
of correctly exploiting SAM and PAM, in order to be able to participate to
a virtual environment. Second, a common infrastructural platform that
comprehend SAM and PAM must be defined. For example, the same
instance of an on-demand resource may run the SAM or the PAM com-
ponent in different moments. Before entering in the details of the this
second issue, we provide the description of the PAM that includes the
multi server support.

5.1.1 Client's Perspective

From a client perspective, PAM and SAM should be used together to
provide a MMOG. In this section we describe the interaction that a client
has with the two components to reach this goal. The interactions are
presented as messages, which are depicted in Figure 33.

Positional actions Clients periodically send its current position to the
PAM server. The frequency rate of the positional action depends on the
particular virtual environment. It is expectable that fast-paced MMOGs
have an higher frequency with respect to slow-paced MMOGs. In any
case, the PAM-server can employ an optimistic approach to compute the
position of the avatar between two positional actions. This kind of ap-

81

Servers Infrastructure

state
modification

movements
state

updates

PAM SAM

CLIENT

postion
updates subscribe

Figure 33: Client-centric view of the proposed architecture

proaches, of which the most popular is Dead Reckoning (PW02), are ex-
plained in Chapter 2.

Positions updates The client receives from the PAM the positions of the
entities in its AOI. This information can be provided either by the PAM-
server or by the PAM-overlay, as described in Chapter 4. The frequency
whereby the PAM server sends position updates to the clients is defined
by the game operator. Either way, the client considers a larger sized AOI
with respect to the one actually visualized by the players. This allows the
client to perform a sort of pre-fetching for possible interesting entities for
the player. With this optimization, the client can visualize it immediately
to the player, as soon as the entity enters in the player’s real AOI. How-
ever, the size of the pre-fetching AOI must be correctly chosen. It must
be defined a trade-off between the increment in performances and the
overhead due to the maintaining of a larger AOI.

Subscription In order to receive state updates from the SAM, clients
must subscribe to the entities contained in their AOI. From a client’s per-
spective, the subscription process consists of: (i) providing the client’s IP
to the servers that manages the entities, so it can receive state updates
and (ii) store the IP of the server, to send possible modifications of the
state of the entity. To explain the subscription process, let us proceed
with an example. Let us assume that a generic client needs to subscribe

82

for the entity e. To do so, the client can contact an arbitrary node in
SAM. This is possible since internally the SAM is organized like a Dis-
tributed Hash Table (see Chapter 3). In a DHT overlay, each node of the
DHT is able to find the node that manages any entity in O(log n) steps,
where n is the number of nodes. However, even few hops may result
in a high latency delay. Fortunately, the client already considers a larger
pre-fetching AOI, which can also be used to mask (part of) this latency.
Another issue is the definition of the node to contact for subscribing. It
could be either a specific node, or a server currently serving the client.
Further, it can stay the same or change over time. All these matters must
be verified with additional simulations. When an entity leaves the (pre-
fetching) AOI of a player, the client must unsubscribe from the server.
Compared with the subscription, this action is rather simple. The client
sends the proper message to server, of which it knows the IP already, and
the server removes the client from the list of the subscribers.

State modi�cation The client sends state actions (Chapter 2) to the PAM-
server. Upon the reception of the state actions, the SAM server resolve
possible con�icts and computes the authoritative version of the state of
the entities.

State updates Periodically, the SAM server sends state updates to the
clients. Note that the updates are sent for the entities in the larger pre-
fetching AOI, so to have them available as soon as they are needed. Upon
reception of this message, the client updates the internal state of the local
entities.

The combination of PAM and SAM implies the entities descriptor (as
defined in Chapter 2) to be split between the two components. Figure
34 graphically compares the two descriptors. In particular, the PAM de-
scriptor considers the position of the entity, whereas the SAM descriptor
stores the list of the attributes.

Another important step in the combination of PAM and SAM is to
employ a common provisioner for the on-demand resources. The idea is

83

POSITIONDHT-IDUID

(a) PAM descriptor

UID ATTRIBUTESFUNCT ID

(b) SAM descriptor

Figure 34: The entity descriptor is split between PAM and SAM

to extend the SAM’s manager with the capability to provision also for the
PAM. The definition of a cost model for the PAM is a fundamental requi-
site for this task. This model must represent and, if possible predict, the
amount of bandwidth necessary to satisfy the players requests. Also, by
employing a prediction mechanism similar to the one in SAM, it would
be possible to pro-actively provision on-demand resources.

5.2 Multi-Server PAM

In Chapter 4 we described PAM by considering an infrastructure com-
posed by a single server. However, even if PAM’s scalability is increased
by the gossip network, a single server may be a bottleneck when the
number of players overtakes certain limit. Here we propose the design
of a multi-server architecture for PAM. The management of the MMOG
among multiple server requires a strategy to distribute the virtual envi-
ronment. Since PAM manages only the positional actions, it makes sense
to employ a spatial distribution of the area.

We enable this distribution by employing the CAN DHT (RFH+01).
CAN considers a bi-dimensional address space, which is divided into
squared areas, called regions. Each regions is associated to a node. Ev-
ery data is represented by a 2-dimensional point. Each node handles
all the data whose point lies in the managed region. CAN handles the
joining and the leaving of a node by recursively merging (when joining)
or splitting (when leaving) the regions. In our context, we exploit CAN
by creating a correspondence between the CAN and the virtual envi-
ronment regions. Any entity of the MMOG is managed according to its
virtual position, as it was data in the original CAN. Figure 35a shows an
example of space in CAN.

84

In order to fully exploit the CAN DHT for our purposes, we extends
some of its basic behaviour. First, we have made possible for a node
to manage more regions (Figure 35b). There is no limit on the number
of region a node can manage, and it can manage regions that are non-
adjacent. The mechanism is similar to the virtual server in SAM (Chapter
3), and so are the benefits. However, here we apply the concept in a
spatial address space, rather that the �at one considered in SAM. The
immediate advantage of this design is the possibility for the server to
migrate regions between themselves. This allows the infrastructure a
mean to orchestrate the load, so to optimize the performances.

Second, we have provided CAN nodes with the ability of resolving
spatial range queries. Conversely to a basic single item query, a spatial
range query requires to find all items in an area. Spatial range queries
are periodically resolved to provide the with the entities in their AOIs.
In the single server PAM this operation is straightforward as the server
has knowledge of all the positions of the entities. However, in the multi-
server PAM an avatar’s AOI can overlap one or more servers.

In the original CAN overlay each node has a link with the servers that
manage the adjacent neighbour regions. (Figure 35a). To support spatial
range queries we have improved the base CAN overlay, by adding also
links with the diagonal regions (Figure 35b). This simple addition greatly
improves the efficiencies of spatial queries. To clarify this point, let us
consider a player whose avatar is in the region managed by S3 in Figure
35. Let us also consider that the player’s AOI overlap with the server S7.
In the original CAN, S3 would have contacted S1, which in turn would
have contacted S7. Conversely, in the improved CAN S1 can directly
contact S7.

To be sure that every spatial query is resolved within a single hop,
we put a limit on the dimension of a region, so that it cannot be smaller
than the AOI of a player. In this way, by imposing the minimum size of
regions as the AOI size, and being the regions squared, an arbitrary AOI
can overlap at maximum four regions.

85

S7S6 S1

S5

S4

S3

S2

(a) Original CAN. Servers can man-
age only a single region, and have
link with side neighbours

S1S3 S1

S2

S4

S3

S2

(b) Enhanced CAN. Servers can
manage more regions, and have link
with side and diagonal neighbours

Figure 35: Original vs Enhanced CAN

Avatar Movement As soon as a client connects to the PAM, it contacts a
bootstrap node (which can be any node arbitrary node of the CAN DHT)
to know the server to connect. The client maintains a direct connection
with this server for two purposes. The client pushes the position of the
avatar, and the server informs the clients with the entity in the avatar’s
AOI. However, when an avatars move to another region, it has to switch
the connection to the new server. This change is fully handled server-
side.

When the server receives a position update, it checks if the avatar is
still in the same region. If it is the case, then it just updates the new po-
sition of the client. Otherwise, the server identifies the neighbour server
that is the new server for the avatar. If we assume that the player cannot
move larger that the size of a region in a single step, all this information
is enough to find the new server. Now the server sends an hand-off mes-
sage to the new server, by communicating the new incoming avatar and
its position. Afterwards, it removes the avatar from its own list. The new
server adds the client to its list, and notifies to the client the successful
operation. It can be the case that the new zone belongs to the same server.

86

In this case the operation is completely transparent to the client.

5.2.1 PAM Load Distribution

In this section we analyse a load balancing mechanism for the multi
servers PAM. How we have seen during the whole thesis, the load in a
MMOG follows seasonal patters. Hence, here we consider not only load
balancing, but also the orchestration of the on-demand resources for the
multi-server PAM.

As we have seen in Chapter 4, an average server can manage few
thousands players concurrently. Even if the gossip-based interest man-
agement of PAM help increasing this limit, it eventually comes the time
when a server is overloaded. Here we consider a single node, let us call
it orchestrator managing the load balancing and the recruit/releases of
the on-demand resources. Here, we do not specifically address how the
node for the orchestrator is selected. Consider for example that the first
server to participate to PAM takes the role of orchestrator.

The initial consideration is on the definition of load. For a PAM
server, the load mostly originates from the resolution of the range queries.
Hence we measure the load as the average number of range query re-
solved per period of time. This number should also include the requests
that come from neighbours regions. Also, we argue that the orchestrator
should control the load per region, rather than per server. This would
give the possibility to have a finer control on the load distribution.

By considering the load of the region, and the assignment regions to
servers, the orchestrator performs the following actions:

� In case of unbalanced load, the orchestrator either migrates a region
from a heavy loaded server to an unloaded server, or splits up the
region and migrates only part of it.

� In case the number of servers was not enough to support the load,
the orchestrator would recruit a new on-demand resource. The
new server can be assigned with a newly created region (by split-
ting a overloaded region) or by migrating an existing region from

87

a heavy loaded server. In the situation where the capacity of the
servers is too high (over-provisioning), the orchestrator can release
a server by assigning its regions to under-loaded servers.

Whatever the decision of the orchestrator, an important factor is the
migration of servers. In particular, it is important to consider and mask
the migration time as much as possible. In this case, it comes in help the
design of the PAM. The servers inform the players periodically, with a
period defined as Ts in Chapter 4. If we were able to keep the migration
time shorter than Ts, than the migration would be completely hidden
from the user.

5.3 Cheating

As we pointed out in Chapter 2, cheating is defined in (NPVS07) as ”an
unauthorized interaction with the system aimed at offering an advan-
tage to the cheater”. In this section we provide an overview on possible
cheating exploitation in SAM and PAM, as long as possible solutions to
mitigate the issue. As in general in security, the following ideas are based
on the principle of making the cheating hard to exploit, rather than pro-
viding bulletproof data protection.

5.3.1 SAM

A malicious player can exploit two possibilities to cheat in SAM:

� By taking advantage of her role as a client, and exploiting well-
known cheating techniques used for centralized MMOGs, such as
the suppressed update (see Chapter 2). We will refer to this kind of
cheating as client-cheating.

� By taking advantage of her role as the server, in case virtual servers
are assigned to her machine. For instance, it would be possible to
favour updates of an ally player against updates from an enemy
player. We will refer to this kind of cheating as server-cheating

88

As discussed in (WSL07), employing a referee-based schema provides
a good level of protection against client-cheating. In a referee-based
mechanism, entity updates must pass through a special node called ref-
eree, whose task is to validate those updates. In case of invalid updates,
these are discarded. This schema fits the SAM architecture, as every
server can play the role of referee. In case of cheating evidence, the
cheater can be reported or disconnected.

Allowing user-provided server to play the referee role exposes the ar-
chitecture to server-cheating. For instance, a malicious server can mark
as invalid the updates of a player, just to force her disconnection or re-
porting. In this case, further measures should be taken into considera-
tion. For instance, backup nodes might perform checks on a sample of
the updates, in place of the user-provided servers. However, informa-
tion exposure on the state of the other players can still provide an unfair
advantage to players running a server. A possible solution in this case
would be to encrypt the entity values, so that only the backup server and
the clients can decrypt the content. Due to the rapid staleness of entities’
information, the encryption/decryption algorithm can be relatively sim-
ple, provided that the encryption key is refreshed often. Also, we would
a user-provided server to not manage an entity if the respective client is
currently accessing it. These ideas can also be integrated with rewarding
mechanisms for virtuous user-provided servers, so to diminishing the
value of the cheating.

5.3.2 PAM

As in the SAM, a referee-based approach is useful to mitigate the client
cheating, with the servers playing the role of the referees. However, dif-
ferently from the SAM, players’ nodes of the PAM communicate directly
with each other. In this scenario, it would be important to provide the au-
thenticity of the sender and the integrity of the information. A possible
solution would be to use signed certificates to guarantee the provenance
of data. However, even if this mechanism is robust, it may be too clumsy
for fast-paced applications like MMOGs.

89

A more �exible approach would be to apply a distributed reputation-
based mechanism. In this case, a node has the ability to report a mali-
cious node to the nodes in its proximity. In order to mark an arbitrary
node P as malicious, nodes check P ’s information against the authori-
tative version of information coming by the server. If the difference be-
tween the two is suspicious (e.g. the information provided by P is not
compatible with the information from the server) then a report about P
is spread in the network. When nodes receive enough reports about P
they could ignore the information coming from P , and, possibly, remove
P from the peer sampling, in fact isolating it from the network.

5.4 Conclusion

In perspective, our independent analysis of PAM and SAM have ob-
tained encouraging results. In this Chapter we have provided ideas to
combine PAM and SAM in a complete architecture for MMOGs. How-
ever, to fully validate this approach several pieces are still absent. First,
a unifying cost model for PAM and SAM must be designed to properly
orchestrate the resource between the two components. Further, an exten-
sive evaluation must be performed to fully validate the solution.

90

Chapter 6

Related Work

This thesis considers the integration of pure distributed and on-demand
computing models to effectively support MMOGs. The application of
these two aspects has requested a wide and detailed study of the related
work on the field. In this chapter we discuss and, when possible, com-
pare the approaches that, to the best of our knowledge, are more relevant
with respect to our work.

Due to the inherent heterogeneity of the aspects discussed, this chap-
ter has been divided in several sections to ease its fruition. Section 6.1 of-
fers an overview on the design of centralized infrastructures for MMOGs.
In particular, we discuss the emerging research issues of the last few
years, that is the application of on-demand platform to MMOG infras-
tructures. Section 6.2 collects a summary of work tackling the problem of
building MMOG infrastructures in a pure distributed fashion. Section 6.3
concludes the part dedicated to the infrastructure design, by describing
the approaches that employ a combination of centralized and distributed
computing models for MMOGs. Section 6.4 shows an overview on the
mobility models for virtual environments. Section 6.5 selects several in-
teresting case studies, which enclose most of the problematic discussed
in the Chapter. Finally, Section 6.6 concludes the chapter.

91

6.1 Centralized Infrastructures

One of the main design choice for a MMOG is related to the distribution
of the virtual environment. On one hand, centralized infrastructures rely
a server or a cluster of servers to manage the system. On the other hand,
user-assisted systems exploit the resource provided by the users, mostly
using P2P technologies. In this section we provide an overview of the
characteristics of centralized infrastructures MMOGs.

Centralized infrastructures rely on a cluster of servers, typically lo-
cated in a single data center, to manage the virtual environment. In such
systems a set of client machines, paired with the users, share the game
state by connecting directly to the cluster, which acts as a point of cen-
tralization. Whenever a client issues an action, this is sent to the server
that updates the state of the world accordingly, and notifies the new state
to the interested set of clients.

In a centralized infrastructure, clients merely work as interfaces to
present the virtual world to the users. Differently from user-assisted in-
frastructures (which we discuss in the following) clients of a centralized
infrastructure do not manage any part of the state that is not related di-
rectly with their user. Also, in centralized infrastructure there are no
direct connections among the users.

The first proposals for centralized multi-user virtual environment go
back to the middle nineties. Most of such works, have focused on how
to overcome the lack of scalability of a single server machine. One of the
principal method, which is still used nowadays, is to limit the commu-
nications between the server and user by sending only the necessary set
of entities. For example, (Fun95) presents detailed algorithms to com-
pute users visibility in the virtual environment, and avoids to broadcast
updates to the user that are not in their proximity.

Centralized architectures exploit multiple servers, often organized in
clusters, to manage the virtual environment. When considering multiple
severs, the first issue is to properly distribute the virtual environment
among the servers and to setup a pattern of communication among the
servers. Multiple distribution schemas have been proposed in the last

92

decade. A common classification (PN09, GPMlG07) considers these as
the most frequently used models: Instancing, Mirroring and Zoning.

S1

VE1

C1

AoI(C1)

C4

AoI(C4)

C3

AoI(C3)

C2

AoI(C2)

S2

VE2

(a) Instancing

S1

VE

C1

AoI(C1)

C4

AoI(C4)

C3

AoI(C3)

C2

AoI(C2)

S2

VE

(b) Mirroring

S1

VE

C1

AoI(C1)

C4

AoI(C4)

C3

AoI(C3)

C2

AoI(C2)

S2

VE

(c) Zoning

Figure 36: Distribution strategies

Instancing In this solution, the issues in managing the concurrency be-
tween multiple servers is avoided. In practice, a portion of the virtual
environment is replicated on multiple servers, each one maintaining an
independent version of the state. Each client is connected to a single
server, and share the virtual environment only with the client connected
to the same server. For instance, in Figure 36a the clients C1 and C3 share
a copy of the virtual environment on the server S1, whileC2 andC4 share
another copy of the virtual environment on S2. In other words this solu-
tion basically replicate the centralized solution on more instances. This
solution is used in commercial applications as well as in several research
work, such as in (BGR11).

Mirroring In mirroring, as in instancing, the state of the VE is repli-
cated in multiple servers. However, unlike instancing, multiple servers
can manage the same portion of the virtual environment. Also, the servers

93

are connected to each other in order to synchronize the state. Each client
connects to one server, but multiple clients in the same region can be con-
nected to different servers. Figure 36b shows an example of mirroring.
In this case, all the clients share the same virtual environment using two
servers. Clients C1 and C3 are connected to the server S1, while C2 and
C4 are connected to S2. In case C1 modifies the state of S1, S1 will syn-
chronize with S2 in order to share the same modification also with C3

and C4. This technique has been explored in different research works,
such as (CKFJ04, MFW02).

Zoning In zoning, the virtual environment is divided into a set of re-
gions, normally contiguous and non overlapping. The shape of the re-
gions is generally squared or hexagonal. One or more regions are as-
signed to a server, but the same region is assigned only to a single server.
Clients connect to one or more servers according to their position. In
fact, if the area of interest of a user overlap multiple regions, the client
must connect to the corresponding servers. Zoning is depicted in Fig-
ure 36c, where C2 and C3 are connected to S1 and S2 at the same time.
This techniques has been studied in various research works, such as
(CCR10, KYL04, GB95, LLH02).

These techniques are not exclusive to each other, rather a combina-
tion of them is possible. For instance, it is possible to divide the virtual
environment into regions and for each regions apply mirroring. In fact,
several proposal employ mixed approach to distribute the state of the
virtual environment.

6.1.1 On-demand Platforms

Exploiting on-demand resources for MMOGs is a relatively young but
very active line of resources. Here we present two of the most relevant
paper regarding this field.

To exploit the potential of on-demand provisioning, (MMD11) pro-
poses a multi-tier cloud architecture. The first layer of the architecture

94

contains a set of gateways, responsible for handling basic gaming proto-
col checking and verification. The second level exploits Zone Partition-
ing by defining a set of cell servers each one controlling a small area
of the virtual environment. Finally, the database servers manage the
persistent game state information. Each layer of the architecture con-
tains a set of parallel servers whose number is elastically defined at run
time. To this end, a monitor periodically collects several system statis-
tics, and triggers the provisioner when the system response time devi-
ates from a given threshold. A Queueing Network performance mo-
del is exploited where each server is modelled with exponentially dis-
tributed inter-arrival times, exponentially distributed service times and
FIFO service discipline. Finally, a greedy algorithm computes the num-
ber of servers in each level required for maintaining the response time
under a given threshold and reserves the corresponding resources on the
cloud.

In the same context, (NIP11) proposes an analytical load model for
MMOGs taking into account the main resources used by MMOGs: CPU,
memory, and network. The model describes the machine load that has
to consider the computation of the interaction between pairs of entities,
the reception of event messages from each client, and the update of en-
tity states received from/sent to another machine. (NIP11) also shows
that, even if simple prediction algorithms are computationally inexpen-
sive, they exhibit a low predictive power. More elaborated prediction al-
gorithms like autoregressive (AR), integrated (I), moving average (MA)
models, and combinations of these are time consuming and resource in-
tensive, so that they are not suitable for highly dynamic MMOGs. (NIP11)
proposes an alternative approach, based on low complexity neural net-
works and shows that this approach enables precise resource provision-
ing.

6.2 User-assisted Infrastructures

In user-assisted infrastructures, clients actively participate at the man-
agement of the virtual environment. In other words, clients manage a

95

part of the virtual environment, in fact by assuming the role of the server
for that part. User-assisted infrastructures are characterized by a pat-
tern of communication between client nodes, which we generally refer
to as overlay. The nature and type of the overlay change according to the
kind of infrastructure considered; in fact, user-assisted infrastructures
can be classified in two ways, according to the clients that cover the role
of server.

In hierarchical infrastructures a set of (super) clients, also called Su-
per Peers (SP), have enhanced knowledge with respect to regular clients.
Normally SPs are connected by means of a dedicated overlay. In �at ap-
proaches, there is no neat distinction between super and regular clients.
These approaches typically employ an overlay that is common to all the
clients in the network.

6.2.1 Super-Peers Infrastructures

Name SP
overlay

Non-
local
SPs

Event
notification

Space
Partitioning

HYMS (KYL04) none no unicast SP Square
VSM (HCJ08) Voronoi yes unicast SP dynamic

P2P-Arch (HBH06) DHT yes unicast SP hexagonal
MOPAR (YV05) DHT yes unicast P2P hexagonal

Table 2: Super Peer Approaches

In Super-Peer infrastructures, a selection of clients actively participate
to the management of the virtual environment. In the last years, sev-
eral SP-based approaches have been proposed (KYL04, HCJ08, HBH06,
YV05). These works perform a partitioning of the virtual world into re-
gions. Each region is managed by a super peer (sometimes called region
controller (HBH06) or arbitrator (HCJ08)) along with a set of backup SPs in
order to increase robustness in case of failure of the main super peer. To
be considered as a super peer, a regular peer must satisfy particular re-
quirements in term of hardware capability (bandwidth, CPU, RAM) and

96

in term of stability. Regular peers receive state updates from the SP that
manages their regions.

In (KYL04) the world is divided into square regions that, at the begin-
ning, are assigned to a central server. The first peer with enough compu-
tational and bandwidth capabilities to enter a region manages the region.
No overlay is provided between super peers, i.e. super peers do not have
the possibility to communicate. This represents a limit of the approach,
as the view of a user is limited to a single region. Also, this work per-
forms local SP assignment, i.e. a peer can become a Super Peer for an
arbitrary region R only if the correspondent avatar is in R. This can in-
crease the probability of cheating. Conversely, In (HBH06) and (YV05)
hexagonal regions are assigned to Super Peers in a random fashion, by
exploiting a DHT. Because of the random mapping, it is unlikely that a
Super Peer manages a region where the correspondent user in playing.
This non-local SP assignment helps to reduce the possibility of cheating.

Voronoi State Management (HCJ08) partitions the virtual environ-
ment with a Voronoi tessellation. Given a number N of points on a
two-dimensional plane, a Voronoi diagram partitions the space into N

non-overlapping regions and each region contains all the points closer
to the region site. In a Voronoi overlay network each site corresponds
to a peer in the network. Each peer p maintains a Voronoi diagram of a
subset of the space and connections with its Voronoi neighbours in the
two-dimensional space. The result is an unstructured overlay where each
peer manages the space correspondent to its Voronoi region. Each Super
Peer manages a Voronoi cell, by receiving and communicating the up-
dates to the clients in the cell. A big advantage of the Voronoi partition-
ing is the possibility to resize the region managed by super peers, which
helps to balance and distribute the load.

6.2.2 Peer-to-Peer Infrastructures

In this kind of solutions, neither supernodes or servers are considered.
All users participating to the virtual environment manage a portion of
it. These infrastructures are typically structured considering the position

97

Name Space
Part.

P2P
Overlay

Event
Notification

Objects
Mngmt.

SOLIPSIS
(FRP+08)

Voronoi Delauney P2P unicast yes

VON
(HCC06)

none unstructured P2P unicast no

Colyseus
(BPS06)

– DHT pubsub over
DHT

yes

SimMud
(KLXH04)

regions
(static)

DHT Positions:
P2P multicast

yes

APOLO
(LLI+06)

none unstructured
(quadrant)

Controlled
Flooding

no

Compass
(RCGC11)

voronoi delauney P2P multicast
trees

no

Peer Cluster-
ing (CM06)

regions
(static)

DHT region man-
ager unicast

yes

Table 3: Flat approaches. Other works cited in the section, like VON-
Forwarding (CLCH07) and FiboCast (JHH09) are optimization of VON.

of the user in the virtual environment. Flat approaches can be classified
according to the degree of structuredness of the overlay between nodes.

Several works exploits Distributed Hash Tables (DHTs) as the main
server overlay (CM06, BPS06, KLXH04). For instance, (CM06) exploits
the randomness of DHT objects placement in order to assign regions to
their controller. Each controller receives the notification of updates and
forward them to the interested node. Similarly, SimMud (KLXH04) di-
vides the virtual world into regions, and each region has assigned a co-
ordinator. The coordinator serves two tasks. First, it permits the creation
of a full connected overlay between nodes. This overlay is then used by
the node to notify each other their movements. Second, the coordinator
works as the root of a multicast tree for the region. To create the multicast
paths, SimMud exploits Scribe (CDaMKaR02), a well know approach to
build multicast infrastructures over structured P2P networks. Peers gen-
erate events and notify them to their region coordinator, which in turn
forward them along the multicast tree. Even if from a structural point of

98

view Scribe is able to manage dynamic membership and large groups,
a potential problem is the latency of messages. In fact, the number of
hops and the length of the paths may dramatically increase the latency.
Also, it has been pointed out in (BRP+05) that application-level multicast
may saturate the bandwidth of nodes in presence of heterogeneous band-
width capability, which is the case in wide distributed MMOGs. This
strategy assures low values for messages latency, since each recipient is
always one or two hops away from the source. However, as the number
of recipient nodes grows, this method may oversaturate the bandwidth
capability of the source.

Another kind of solutions consider a dynamic partitioning of the vir-
tual environments. These solutions are based on the Voronoi tessellation.
They employ an event forwarding schema, in order to deliver events to
other possible interested recipients. These solutions have usually high
scalability, since the necessary bandwidth to deliver events is split among
a number of nodes. On the other hand, forwarding-based solutions may
increase latency since event source and recipient may be separated by
multiple hops. Compared with DHT-based approach, these mechanisms
yield two relevant advantages. First, they have no overhead for peer
churn, since they work without any long term and synchronized struc-
ture. Second, only local peer information is exploited to forward mes-
sages.

One of the first solutions based on unstructured overlay is APOLO
(LLI+06). Each peer divides its space of interest into quadrants and
maintains a link to the closest neighbour in each quadrant. In order to no-
tify an event, a peer sends the message to these four neighbours, which in
turn recursively forward the message until it reaches all the possible in-
terested peers. This solution strictly bounds the number of outgoing con-
nections per peer, nevertheless, it may dramatically increase the number
of hop and the bandwidth consumption in case of crowded situations.

A later approach, VON-forwarding (CLCH07), divides the space ac-
cording to a Voronoi diagram. Each peer broadcasts a message to all
its Voronoi neighbours in order to notify the peer in its AOI. This so-
lution exploits that, on average, a peer in a Voronoi diagram has six

99

neighbours. Compared with the direct link approach, VON-forwarding
helps reduce the number of messages per event sent by peers. Compared
with APOLO, the number of hops decreases due to the wider degree
of the AOI-cast tree. In spite of that, the bandwidth usage is not effi-
cient due the elevated number of messages replication in the network.
This model has been subsequently refined with VoroCast and FiboCast
(JHH09). VoroCast builds a multicast spanning tree using the underlying
Delauney network and sends the notifications of events along the edges
of this tree. FiboCast is a further optimization of VoroCast. It models
messages frequency rates using the Fibonacci sequence, in a way that far-
thest nodes from the source receive updates less frequently than nearby
nodes. The main disadvantage of these systems is the fact that they re-
quire non-local information to correctly forward messages. In particular
they need to know the neighbours of the neighbour of a node, and since
it depends on the position of the peers, this information has to be up-
dated frequently. This may cause an increasing of bandwidth consump-
tion, especially in crowded situation, where the Voronoi diagram change
rapidly. Another aspect to consider is that VoroCast and FiboCast do not
take into account the effects of the latency when considering the posi-
tion of the peers (i.e. the positional drift). Due to this reasons, delivered
messages may be duplicated and travel along path that are longer than
necessary.

Ricci et al (RCGC11) propose a Delauney-based AOI-cast that copes
with these two drawbacks. First, they employ a forwarding schema
based on compass routing that exploits only information local to peers,
i.e. theirs one-hop neighbours. This avoids the extra-usage of bandwidth
for maintaining n-hop neighbours, which happens in approaches like
VoroCast. Second, their solution takes into account the latency in infor-
mation diffusion, by considering the possible positional drift occurred to
the peer when computing AOI-cast paths. This reduces messages redun-
dancy and decreases the probability of message losses.

100

6.2.3 Anti-Cheating

The mechanisms to contrast cheating are called Anti-Cheating (AC). One
of the first AC solutions, Lockstep (BLL07), divides the time into rounds
and requires every player to submit its moves for that round before the
next round is allowed to begin. Unfortunately this approach slows down
the experience and it is not applicable for fast-paced virtual environ-
ment. Asynchronous Synchronization (BLL07) (AS) and Sliding Pipeline
(CFJ03) (SP) strive to improve the performance of Lockstep. AS relaxes
the constraints of Lockstep by requiring only players in a region to work
as Lockstep. SP permits the updates to be pipelined and the use of dead
reckoning in order to improve the smoothness of the simulation. How-
ever, both these approaches suffer of the same problem of Lockstep, i.e.
they force a user to wait until the duration of a round before validate its
state. New Event Ordering (NEO, (GZLM04)) aims to reach a distributed
consensus among a set of distributed clients. NEO explicitly bounds the
round duration, and each round is divided into two halves. Clients must
send the actions to half of a group within the half of a round duration, in
order to consider the update committed. In the other half of the round,
players send their key for security checks. In (WSL07), authors propose
the Referee Anti-Cheat Schema (RACS), an anti-cheating schema suit-
able for centralized and hybrid approaches. RACS uses a central server,
called referee, to receive, simulate and validate the events.

6.3 Hybrid

Hybrid architectures aim for the combination of user-assisted and cen-
tralized infrastructures. A wide-used method divides the Virtual Envi-
ronment (VE) into regions or cells, whose dimension can be either fixed or
variable. These regions are in turn assigned to a peer or a server, which
becomes the manager of the entities in that region. Region assignment in
hybrid architecture mostly follows two different approaches: (i) a region
can be assigned to either a peer or to a server without any restriction, or
(ii) only a subset of cells can be assigned to peers.

101

The work proposed in (KYL04) belongs to the first category. The
authors consider square cells, which are initially managed by a central
server. The first peer with enough computational and bandwidth ca-
pabilities to enter a cell becomes the cell manager. Afterwards, a fixed
number of peers that enters the same cell act as backup managers in or-
der to increase failure robustness. Similarly, (BGR10) proposes an hybrid
system, including a central server and a pool of peers. The central server
runs the MMOG and, as soon as it reaches the maximum of its capacity,
delegates part of the load to the peers.

The same authors of (BGR10) propose in (BGR11) an approach be-
longing to the second category. A central server executes the main game
whereas the peer run auxiliary games which are typical of certain games
genres, such as Massively Multiplayer Online Role-Playing Games (com-
monly called MMORPGs). Auxiliary games are separated instance of the
MMOG, shared only by a fixed (and usually not high) number of play-
ers. In a similar way, (CM06) proposes a functional partition of the DVE
tasks. Central servers operate user authentication, game persistence and
manage regions characterized by high-density user interactions, whereas
peer support only low-density interaction regions. Authors of (JZ08)
provide an interesting distinction between positional and state-changing
actions. They propose an hybrid architecture where peers manage po-
sitional actions, which are more frequent and prone to be maintained
locally. Central servers handle state-changing actions, that are not tran-
sitory and require a larger amount computational power.

The idea of distinguishing positional and state-changing actions is in
fact an interesting idea which we have exploited in the design of our
architecture. However, rather than assigning different actions to differ-
ent type of nodes, we define two different and independent distributed
structures that manage, respectively, positional and state-changing ac-
tions. The management of the nodes can be assigned to a peer or to a
cloud node.

In other words, we exploit an intermediate approach. On one hand,
some functionalities, like authentication, must be handled by centralized
and full controllable servers. On the other hand, other functionalities

102

may be mapped to central servers or to peers. This requires a complete
dynamic strategy allowing for more �exibility in load distribution, which
requests a fine-grained management of the resources by the MMOG op-
erator. Resources control is very important for our approach, since the
seamless combination of Cloud and P2P requires to keep under control
the cost and to effectively deal with the implicit uncertainty related to
peers. Therefore, a basic issue for the exploitation of hybrid architectures
is the definition of effective load distribution mechanisms.

6.4 Mobility Models in MMOGs

The evaluation of the fist generation of MMOG architectures was gen-
erally performed by exploiting mobility models originally designed to
reproduce the movements of human beings, such as those exploited to
evaluate ad-hoc wireless networks.

The Random Way Point model RWPM (HGPC99) was one of the most
widely exploited mobility model. In RWPM a set of way points are placed
uniformly at random locations in the virtual environment. Each entity
independently moves toward them. As soon as an entity reaches a way
point, it stops there for a time interval. Afterwards, it chooses another
way point, and so on. RWPM has been adapted to describe different
kind of scenarios in a MMOG by tuning the spatial distribution and the
number of the waypoints, the speed of the entities and the criteria to
select the waypoints at each step. While most mobility models for ad-hoc
wireless mobile networks focus on the motion behaviour of each entity
separately, mobility models taking into account the behaviour of group
of entities have been proposed. The Reference Point Group Mobility model
(RPGM) (HGPC99) has been proposed as an extension of the RWPM,
by introducing in the model the concept of group. The model can be
exploited to simulate the behaviour of teams of players.

Although very simple to generate, the mobility patterns created with
RWPM-based mobility models are not precise enough to represent the
characteristics of nowadays MMOGs. Indeed, since players participat-
ing to large scale MMOGs usually have the possibility to move freely

103

around the virtual world, the distribution of the players in MMOGs is
usually not uniform (LM08). Players tend to gather in well determined
positions of the virtual environments, creating the so called hotspots.
Furthermore, players behaviour inside hotspots results to be highly non-
uniform: players move slowly and chaotically within the hotspots, while
the movement between hotspots is straight and fast (LTNO08).

These considerations lead to the design of mobility models specifi-
cally developed for MMOGs. For example, (TLL05) provides a design
and evaluation of a mobility model based on a popular on-line game1.
The model is based on a RWPM whose parameters are evaluated by
using model fitting techniques on traces. These traces have been used
also in (BPS06) in order to evaluate their solution. They propose a mo-
del based on real traces where players tend to move between popular
regions of the map and the popularity distribution of these regions fol-
lows a well specific trend. Blue Banana (LMT10) provides the design of a
mobility model based on Second Life (Lab12). This model characterizes
the virtual environment between desert areas and hotspots. The mo-
del assumes the movement of the avatars to be slow and chaotic in the
hotspots, while fast and predictable in the desert areas of the MMOG.
The model exploits an automaton defined by three states, the halted state,
where the avatar does not move, the exploring state where the avatar
moves within a hotspot and the travelling state where the avatar moves
from one hotspot toward another one. The definition of hotspot as an
invariant for a MMOG mobility model is also one of main finding of the
work of Miller and Crowcroft (MC09). They measure and analyse play-
ers movements in a World of Warcraft (WOW, (Ent12)) scenario, which
is representative of the team-oriented interaction that modern MMOGs
encourage into the game. However, (MC09) does not define any mobil-
ity model. The main findings of their work state that a way point-based
model is not enough to describe complex movements of MMOGs, that
the level of gathering of players in groups is less than expected and that
hotspots based mobility is a realistic pattern of movement in MMOGs.

1Quake II, http://www.idsoftware.com/games/quake/quake2

104

6.5 Case Studies

In this section we describe several core proposal in the field of the dis-
tributed virtual environment. We chose three different and heteroge-
neous approach that, in our opinion, best represent the issues in design-
ing a distributed virtual environment.

6.5.1 SimMud

SimMud (KLXH04) is a support for Massively Multiplayer Games built
on top of the Pastry DHT (RD01). SimMud uses Scribe (CDaMKaR02),
an application-layer multicast built on top of Pastry, as the main com-
munication pattern to disseminate game state. The design of SimMud is
based upon the limited movement speed and sensing capabilities of the
avatars, so that the locality of interest can be exploited. SimMud maps
both the participating peers and the MMOG’s objects onto uniformly dis-
tributed IDs in the circular 128-bit namespace of the DHT. Object inser-
tions and lookup are done by exploiting the classical DHT primitives.
Objects are managed by nodes whose ID is numerically closest to the ob-
ject ID. In SimMud, ”closeness” it is related to the numerical ID and no
geographical or topological optimizations are considered.

Scribe is a scalable multicast infrastructure that maps the information
about multicast groups to the Pastry DHT. A multicast tree associated
with the group is built by merging the Pastry routes from each group
member to the group ID’s root, which also acts as the root of the mul-
ticast tree. A multicast message from the root reaches the members by
following the reverse paths of the multicast tree.

The world is statically partitioned into rectangular regions and the
nodes in the same region form an interest group for that portion of the
map. The region updates are sent within the group only. Whenever a
player goes from a region to another, the group membership changes
accordingly. A node whose ID is the closest to the region ID serves as
the coordinator for that region. The coordinator manages all the objects
in its region and also acts as the root of the multicast tree. The load can
be distributed by creating a different ID for each type of objects in the

105

region, thus mapping them on to different peers.
SimMud defines different classes of game state and pairs different

consistency maintenance strategies with each class.

� The player state is accessed according to a single-writer multiple-
reader pattern. Each player updates its own location as it moves
around. Player-player interactions, such as fighting and trading,
only affect the states (e.g. the life points) of the players involved.
Since position change is the most common event in a game, the po-
sition of each player is disseminated through multicast messages at
fixed intervals to all other players in the same region. The interval
is determined during game design, according to the requirements
of the game.

� The object state is managed by a coordinator-based mechanism to
keep shared objects consistent. A certain degree of replication is
provided. Each object is assigned to a coordinator that manages its
updates. A replica is maintained by a node close to the coordinator
in the DHT space. The coordinator both resolves con�icting up-
dates, and stores the current object value. Successful updates are
multicasted to the region to update each player’s local copy.

SimMud exploits shared state replication to manage peer failures.
The copies are kept consistent, in spite of node and network failures,
through a lightweight primary-backup mechanism that tolerates failures
of the network and nodes. These failures are detected by exploiting mes-
sages of regular game events (i.e. peer movements), without any addi-
tional network traffic.

6.5.2 Colyseus

The main focus of Colyseus (BPS06) is the management of the game state.
The world is seen as a collection of objects, both mutable (e.g. items, char-
acters) and immutable (e.g. map geometry, graphics). Colyseus manages
the collection of mutable objects through a component called global object

106

store. Each mutable object is associated with a think function that deter-
mines the behaviour of the object. The architecture of a generic peer is
composed by the following modules:

� a local object store i.e. the collection of primary objects and replicas

� a replica manager that manages the synchronization of primary and
replicas

� a object placer that decides where to place and migrate primary
replicas

� a object locator that connects to a DHT overlay indexing all the ob-
jects in the game.

Each object in the global object store has one primary copy that re-
sides onto one node. Updates to an object are sent to the primary node,
which takes care of the ordering of updates. A node executes only the
think function associated with primary objects in its local store. The exe-
cution of such functions may require access to objects that a node is not
the primary owner of. In order to facilitate the execution of this code, a
node create a secondary replica. The node periodically registers an inter-
est with the node hosting the primary object. Replicas are weakly con-
sistent and are synchronized with the primary copy. In detail, at each
frame, whenever the primary object is modified, an update is sent to all
the replicas. Similarly, whenever a secondary replica is modified, an up-
date is shipped to the primary owner.

The replicas are fetched using a multi-attribute range query DHT.
Colyseus proposes two approaches in order to guarantee low latency on
lookup queries. First, it exploits spatial and temporal locality in object
movements in order to obtain prediction of subscriptions. This allow the
DHT to execute speculative pre-fetching of replicas. Second, it enables
soft caching of both publications of the objects and subscriptions. By
storing publications, a subscription can immediately match with a recent
publication.

107

6.5.3 Voronoi Based Overlay Network

Voronoi based Overlay Network (VON) (HCC06) is a P2P overlay net-
work based on Voronoi Diagrams which preserves high consistency of
the overlay topology. The initial proposal of VON defines a direct con-
nection model, where each node of the virtual environment is directly
connected to all the nodes located in its AOI. Due to the limited band-
width of each node, this model may constrain the number of neigh-
bours that may appear within the area of interest of a given node. VON
defines different kinds of neighbours of a node. The enclosing neigh-
bours of a node n are the nodes whose regions immediately surround
the Voronoi region defined by n. The boundary neighbours are the nodes
whose Voronoi regions intersect the border of AOI(n). Finally, the AOI
neighbours are all further nodes belonging to AOI(n). Each node keeps
a Voronoi Diagram including its enclosing, boundary and AOI neigh-
bours. In VON, each node acts as a ”watchman” for another one in dis-
covering approaching neighbours. When an entity moves, it sends its
new position to all the neighbours belonging to its Voronoi Diagram. If
the receiver is a boundary neighbour, it performs an overlap-check, i.e.
checks whether the Voronoi region of one of its enclosing neighbours
overlaps the AOI of the mover. The receiver notifies the mover if a new
overlap occurs, i.e. previously disjoint regions currently overlap. In this
case the boundary neighbour explicitly notifies the mover about the new
neighbours. The moving entity becomes aware of neighbours outside its
AOI with minimal network overhead, since position notification may be
exploited to discover new neighbours. Whenever a node leaves the vir-
tual environment or fails, its neighbours update their Voronoi Diagram
by removing that node. The direct connection model may require a large
amount of bandwidth, especially when crowding occurs. Event notifica-
tions are propagated to each AOI neighbour by forwarding notification
through neighbour nodes.

108

6.5.4 On-demand Provisioning

The work in (PN09) has been one of the fist proposal for dynamic pro-
visioning of on-demand resources for MMOGs applications. Its archi-
tecture is composed by two core services: a load prediction service, and a
resource allocation service.

The load prediction service has the task of predicting the future dis-
tribution of avatars in an area of the MMOG. The load prediction service
exploits a neural network to estimate the numbers of avatars in an arbi-
trary region. The number of avatars is then used to compute the CPU
time requirements for the region. The neural network is trained with a
series of traces that are implemented by the authors. The traces consider
different avatar’s profile, such as aggressive (frequently interact with op-
ponents), team player (mostly acts in groups), scout (mostly acts alone)
and camper (hides and waits for opponents). Their result shows that
the neural network over-performs other prediction mechanisms, such as
Moving average and Exponential smoothing.

The resource allocation service (presented in (NIP+08)) exploits the
prediction results to drive the on-demand allocation of resources. The
resource allocation service executes two main tasks. First, it recruits
more servers to accommodate more players during peak hours. The new
servers are recruited considered the prediction on the CPU load made
by the neural network. Second, the resources allocation service releases
under-utilized servers to optimize the resource utilization.

6.6 Conclusion

This chapter has provided an analysis of the state of the art in several re-
search fields on MMOGs. A clear trend of the research related to MMOGs
emerges from this analysis. The first pioneering works in late ’90 have
considered centralized approaches. At the time, issues on interest man-
agement and on consistency-interactivity tradeoff have emerged. In the
early 2000, MMOGs research turned on widely distributed infrastruc-
ture, together with the concurrent explosion of the P2P computing. P2P

109

and widely distributed infrastructures have posed new challenged that
had not been considered before. Extensive load distribution, overlay
maintenance and fault tolerance are few examples of the issues faced in
that period.

Nowadays, the next-generation MMOG platforms definitely leads for-
ward to on-demand computing models. This trend is evident since most
of the recent works on MMOGs architectures strive with this thematic.
However, we believe that a decade of research in P2P-based MMOGS ar-
chitecture have still its role to play. For this reason, this thesis treats the
combination of P2P and on-demand computing models, and, as far as
we know, we are the first in this direction.

110

Chapter 7

Conclusion

This thesis has presented two different and independent components for
a MMOGs architecture that integrates the illusion of infinite resources
provided by the Cloud, with the few cost associated to the exploitation of
user-provided resources. We designed the two components by allowing
the MMOG operator to control the trade-off between performance and
economical cost.

The idea of combining these two different computing models came
from some work we carried out in the field of cloud computing (CCD+11)
and P2P architecture for on-line gaming infrastructures (RCGC11). We
first proposed the general concepts in (CCR10), along with several pre-
liminary ideas. In (RC12) we presented a comprehensive state of the art
on on-line games infrastructures, also considering emerging computing
models as the Cloud. However, at the best of our knowledge, we are
among the first that have proposed the combination of Cloud and P2P for
large scale MMOGs infrastructures.

The Positional Action Manager (PAM) is based on a combination of
a cloud server and a best-effort P2P overlay providing support for inter-
est management in large scale online games. To build the P2P overlay,
PAM employs a two-layer gossip-based protocol. PAM is fully described in
(CRC12b, CCR12). As far as we know, this is the first time a gossip proto-
col is used as an active mean to resolve interest management. Besides its

111

originality, the PAM-overlay has provided encouraging results. Experi-
mental results show that PAM is able to obtain performance comparable
to a server solution, while reducing the expenses for the game operator.
In accordance with our view, the operator can further tune the tradeoff
between performances and economical cost, by trading some precision
in the result for a more economic infrastructure.

The State Action Manager (SAM) exploits a Distributed Hash Table,
equipped with Virtual Servers to distribute the effort on management of
the entities to multiple resources, including user-provided ones. We pre-
sented an initial version of the SAM (CRC12a), where we exploited the
knowledge acquired with our prior work on the distributed hash tables
(CCLR10, CCR11b). In the thesis, we have presented a refined and en-
hanced version of the SAM. In order to pro-actively distribute the entities
of a MMOG among the nodes of the SAM, we employed a greedy heuris-
tics that minimizes the operational costs while keeping the availability
and the fraction of non overloaded nodes above the given threshold.

In order to test and evaluate the two components, we built a realistic
bandwidth consumption workload. We considered both the load from di-
rect players interactions and the load from the interactions of the players
with the objects of the virtual environment. This represents a difference
with work in literature, that tends to considers these approaches sepa-
rately. The movement traces of the avatars were obtained by exploiting
a Second Life mobility model. We have observed in (CCR11a) that this
model assures a fair balancing in players movements.

Finally, we proposed some future work, having the common goal
to unify the two aforementioned components in a full infrastructure for
MMOGs. The design of a smart client would allow the players to exploit
the advantages of SAM and PAM at the same time. A multi server PAM
would be able to scale up to ten thousands of players, while keeping the
economical costs acceptable. We strongly believe that the combination
of Cloud Computing and Peer-to-Peer is the next milestone for MMOGs
architectures.

112

References

[AS08] D.T. Ahmed and Shervin Shirmohammadi. A microcell oriented
load balancing model for collaborative virtual environments. In
Virtual Environments, Human-Computer Interfaces and Measurement
Systems, 2008. VECIMS 2008. IEEE Conference on, pages 86–91.
IEEE, 2008. 23

[Aur91] F. Aurenhammer. Voronoi diagramsa survey of a fundamen-
tal geometric data structure. ACM Computing Surveys (CSUR),
23(3):345–405, 1991. 20

[BDGR12] R. Baraglia, P. Dazzi, B. Guidi, and L. Ricci. GoDel: Delaunay
Overlays in P2P Networks via Gossip. In Peer-to-Peer Computing
(P2P), 2012 IEEE International Conference on. IEEE, 2012. 20

[BG09] C.E.B. Bezerra and C.F.R. Geyer. A load balancing scheme for
massively multiplayer online games. Multimedia Tools and Appli-
cations, 45(1):263–289, 2009. 23

[BGR10] Ignasi Barri, Francesc Giné, and Concepció Roig. A Scalable Hy-
brid P2P System for MMOFPS. 2010 18th Euromicro Conference on
Parallel, Distributed and Network-based Processing, pages 341–347,
February 2010. 102

[BGR11] Ignasi Barri, Francesc Gine, and Concepcio Roig. A Hybrid P2P
System to Support MMORPG Playability. 2011 IEEE International
Conference on High Performance Computing and Communications,
pages 569–574, September 2011. 93, 102

[BJJ10] S. Bhardwaj, L. Jain, and S. Jain. Cloud computing: A study of in-
frastructure as a service (iaas). International Journal of engineering
and information Technology, 2(1):60–63, 2010. 6

113

[BKM+00] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener. Graph structure in the web.
Computer networks, 33(1):309–320, 2000. 50

[BLL07] Nathaniel E. Baughman, Marc Liberatore, and Brian Neil Levine.
Cheat-Proof Playout for Centralized and Peer-to-Peer Gaming.
IEEE/ACM Transactions on Networking, 15(1):1–13, 2007. 101

[BPS06] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A distributed
architecture for online multiplayer games. In NSDI '06: 3rd Sym-
posium on Networked Systems Design & Implementation, pages 155–
168, 2006. 5, 11, 98, 104, 106

[BRP+05] A.R. Bharambe, S.G. Rao, V.N. Padmanabhan, S. Seshan, and
H. Zhang. The impact of heterogeneous bandwidth constraints
on DHT-based multicast protocols. Lecture notes in computer sci-
ence, 3640:115, 2005. 99

[BYV+09] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic.
Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Genera-
tion computer systems, 25(6):599–616, 2009. 2

[CC06] M. Claypool and K. Claypool. Latency and player actions in on-
line games. Communications of the ACM, 49(11):40–45, 2006. 35,
60

[CCD+11] E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G. Righetti. Cloud
federations in contrail. In Euro-Par 2011: Parallel Processing Work-
shops, pages 159–168. Springer, 2011. 7, 111

[CCLR10] E. Carlini, M. Coppola, D. Laforenza, and L. Ricci. Reducing Traf-
fic in DHT-based Discovery Protocols for Dynamic Resources. In
Grids, P2P and Services Computing, pages 73–87. Springer, 2010. 9,
25, 112

[CCR10] E. Carlini, M. Coppola, and L. Ricci. Integration of P2P and
Clouds to Support Massively Multiuser Virtual Environments.
In Proceedings of the 9th Annual Workshop on Network and Systems
Support for Games (NetGames), pages 1–6. ACM/IEEE, 2010. 3, 5,
7, 94, 111

[CCR11a] E. Carlini, M. Coppola, and L. Ricci. Evaluating compass routing
based aoi-cast by mogs mobility models. In Proceedings of the 4th
International Conference on Simulation Tools and Techniques, pages
328–335. ICST, 2011. 7, 49, 112

114

[CCR11b] E. Carlini, M. Coppola, and L. Ricci. Probabilistic Dropping in
Push and Pull Dissemination over Distributed Hash Tables. In
Proceedings of the 11th International Conference on Computer and In-
formation Technology (CIT), pages 47–52. IEEE, 2011. 9, 25, 112

[CCR12] E. Carlini, M. Coppola, and L. Ricci. Reducing Server Load in
MMOG via P2P Gossip. In Proceedings of the 11th Annual Work-
shop on Network and Systems Support for Games (NetGames), 2012.
8, 111

[CDaMKaR02] M. Castro, P. Druschel, a. M. Kermarrec, and a.I.T. Rowstron.
Scribe: a large-scale and decentralized application-level multi-
cast infrastructure. IEEE J. on Selected Areas in Communications,
20(8):1489–1499, 2002. 98, 105

[CF06] Roman Chertov and Sonia Fahmy. Optimistic load balancing in
a distributed virtual environment. In Proceedings of the 2006 in-
ternational workshop on Network and operating systems support for
digital audio and video, pages 1–6. ACM, 2006. 23

[CFJ03] E. Cronin, B. Filstrup, and S. Jamin. Cheat-proofing dead reck-
oned multiplayer games. In International Conference on Application
and Development of Computer Games, 2003. 22, 101

[CKFJ04] E. Cronin, A.R. Kurc, B. Filstrup, and S. Jamin. An efficient syn-
chronization mechanism for mirrored game architectures. Multi-
media Tools and Applications, 23(1):7–30, 2004. 94

[CLCH07] J.F. Chen, W.C. Lin, T.H. Chen, and S.Y. Hu. A forwarding model
for voronoi-based overlay network. In Parallel and Distributed
Systems, 2007 International Conference on, volume 2, pages 1–7.
IEEE, 2007. xi, 98, 99

[CM06] A. Chen and R.R. Muntz. Peer clustering: a hybrid approach to
distributed virtual environments. In Proc. of 5th ACM SIGCOMM
workshop on Network and system support for games, page 11. ACM,
2006. 21, 98, 102

[CRC12a] E. Carlini, L. Ricci, and M. Coppola. Flexible load distribution
for hybrid distributed virtual environments. Future Generation
Computer Systems, 2012. 3, 7, 8, 23, 25, 112

[CRC12b] E. Carlini, L. Ricci, and M. Coppola. Integrating centralized and
P2P architectures to support interest management in distributed
virtual environments. Technical report, Istituto di Scienza e
Tecnologie dell’Informazione (ISTI), Consiglio Nazionale delle
Ricerche, Pisa, Italy, 2012. 8, 111

115

[CSA00] N. Cardwell, S. Savage, and T. Anderson. Modeling tcp la-
tency. In INFOCOM 2000. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 3, pages 1742–1751. IEEE, 2000. 33, 34

[CYL08] C. Chen, C.B. Yao, and S.M. Liang. Towards Practical Virtual
Server-based Load Balancing for Distributed Hash Tables. In
Parallel and Distributed Processing with Applications, 2008. ISPA'08.
International Symposium on, pages 35–42. IEEE, 2008. 19

[DL10] Yunhua Deng and R.W.H. Lau. Heat diffusion based dynamic
load balancing for distributed virtual environments. In Proceed-
ings of the 17th ACM Symposium on Virtual Reality Software and
Technology, pages 203–210. ACM, 2010. 23

[Ent12] Blizzard Entertainment. World of warcraft website. http://
us.blizzard.com/en-us/games/wow/, 2012. 1, 5, 104

[ERMS06] A. El Rhalibi, M. Merabti, and Y. Shen. Aoim in peer-to-peer mul-
tiplayer online games. In Proceedings of the 2006 ACM SIGCHI
international conference on Advances in computer entertainment tech-
nology, page 71. ACM, 2006. 17

[FRP+08] D. Frey, J. Royan, R. Piegay, A.M. Kermarrec, E. Anceaume, and
F. Le Fessant. Solipsis: A decentralized architecture for virtual
environments. Proceeding of 1st International Workshop on Mas-
sively Multiuser Virtual Environments (MMVE'08), pages 29–33,
2008. 20, 98

[Fun95] T.A. Funkhouser. Ring: a client-server system for multi-user vir-
tual environments. In Proceedings of the 1995 symposium on Inter-
active 3D graphics, pages 85–ff. ACM, 1995. 92

[Gar06] E.S. Gardner. Exponential smoothing: The state of the art – Part
II. International Journal of Forecasting, 22(4):637–666, 2006. 44

[GB95] C. Greenhalgh and S. Benford. Massive: a distributed virtual re-
ality system incorporating spatial trading. In Distributed Comput-
ing Systems, 1995., Proceedings of the 15th International Conference
on, pages 27–34. IEEE, 1995. 94

[GLS+04] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Sto-
ica. Load balancing in dynamic structured P2P systems. In INFO-
COM 2004. Twenty-third AnnualJoint Conference of the IEEE Com-
puter and Communications Societies, volume 4, pages 2253–2262.
IEEE, 2004. 27

116

http://us.blizzard.com/en-us/games/wow/
http://us.blizzard.com/en-us/games/wow/

[GPMlG07] F. Glinka, A. Ploß, J. Müller-lden, and S. Gorlatch. Rtf: a real-time
framework for developing scalable multiplayer online games. In
Proceedings of the 6th ACM SIGCOMM workshop on Network and
system support for games, pages 81–86. ACM, 2007. 93

[GSG02] K.P. Gummadi, S. Saroiu, and S.D. Gribble. King: Estimating
latency between arbitrary internet end hosts. In Proceedings of
the 2nd ACM SIGCOMM Workshop on Internet measurment, pages
5–18. ACM, 2002. 34

[GZLM04] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr. Low latency
and cheat-proof event ordering for peer-to-peer games. In Pro-
ceedings of the 14th international workshop on Network and operating
systems support for digital audio and video, pages 134–139. ACM
New York, NY, USA, 2004. 101

[HBH06] T Hampel, T Bopp, and R Hinn. A peer-to-peer architecture for
massive multiplayer online games. workshop on Network and sys-
tem support for games, pages 1–4, 2006. 96, 97

[HCC06] S.Y. Hu, J.F. Chen, and T.H. Chen. VON: a scalable peer-to-peer
network for virtual environments. IEEE Network, 20(4):22–31,
2006. 98, 108

[HCJ08] S.Y. Hu, S.C. Chang, and J.R. Jiang. Voronoi state management
for peer-to-peer massively multiplayer online games. In Con-
sumer Communications and Networking Conference, 2008. CCNC
2008. 5th IEEE, pages 1134–1138. IEEE, 2008. 21, 96, 97

[HGPC99] X. Hong, M. Gerla, G. Pei, and C.C. Chiang. A group mobility
model for ad hoc wireless networks. In Proceedings of the 2nd
ACM international workshop on Modeling, analysis and simulation of
wireless and mobile systems, pages 53–60. ACM, 1999. 103

[HSW11] S. Holzapfel, S. Schuster, and T. Weis. Vorostore–a secure and
reliable data storage for peer-to-peer-based mmves. In Computer
and Information Technology (CIT), 2011 IEEE 11th International Con-
ference on, pages 35–40. IEEE, 2011. 20

[JHH09] J.R. Jiang, Y.L. Huang, and S.Y. Hu. Scalable AOI-cast for peer-
to-peer networked virtual environments. Journal of Internet Tech-
nology, 10(2):119126, 2009. xi, 98, 100

[JMO09] M. Jelasity, A. Montresor, and Bababoglu O. T-Man: Gossip-
based fast overlay topology construction. Journal Computer Net-
works: The International Journal of Computer and Telecommunica-
tions Networking, 53(13), 2009. 62

117

[JZ08] Jared Jardine and Daniel Zappala. A hybrid architecture for mas-
sively multiplayer online games. In Proceedings of the 7th ACM
SIGCOMM Workshop on Network and System Support for Games,
page 60. ACM, 2008. 102

[Kar72] RM Karp. Reducibility among combinatorial problems. Complex-
ity of Computer Computations, 1972. 68

[KLXH04] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer sup-
port for massively multiplayer games. IEEE INFOCOM, 1:96–
107, 2004. 20, 98, 105

[KM12] H. Kavalionak and A. Montresor. P2p and cloud: A marriage
of convenience for replica management. Self-Organizing Systems,
pages 60–71, 2012. 3

[KSW05] F. Kuhn, S. Schmid, and R. Wattenhofer. A self-repairing peer-to-
peer system resilient to dynamic adversarial churn. Peer-to-Peer
Systems IV, pages 13–23, 2005. 19

[KYL04] K.C. Kim, I. Yeom, and J. Lee. HYMS: A hybrid mmog server
architecture. IEICE Transactions on Information and Systems,
E87:2706–2713, 2004. 21, 94, 96, 97, 102

[Lab12] Linden Lab. Second life website. http://secondlife.com/,
2012. 1, 5, 8, 49, 104

[Lee99] L. Lee. Measures of distributional similarity. In Proceedings of the
37th annual meeting of the Association for Computational Linguistics
on Computational Linguistics, pages 25–32. Association for Com-
putational Linguistics, 1999. 73

[LL08] D.Y. Lee and S.S. Lam. Efficient and accurate protocols for dis-
tributed delaunay triangulation under churn. In Network Proto-
cols International Conference on (ICNP), pages 124–136. IEEE, 2008.
23

[LLH02] D. Lee, M. Lim, and S. Han. Atlas: a scalable network framework
for distributed virtual environments. In Proceedings of the 4th in-
ternational conference on Collaborative virtual environments, pages
47–54. ACM, 2002. 94

[LLI+06] J. Lee, H. Lee, S. Ihm, T. Gim, and J. Song. Apolo: Ad-hoc peer-to-
peer overlay network for massively multi-player online games.
Technical report, Technical report, KAIST Technical Report, CS-
TR-2005-248 (December 2005), 2006. 98, 99

118

http://secondlife.com/

[LM08] Chi-Anh La and Pietro Michiardi. Characterizing user mobility
in second life. Proc. of the �rst Workshop on Online social networks -
WOSP '08, page 79, 2008. 104

[LMT10] S. Legtchenko, S. Monnet, and G. Thomas. Blue Banana: re-
silience to avatar mobility in distributed MMOGs. In Dependable
Systems and Networks (DSN), 2010 IEEE/IFIP International Confer-
ence on, pages 171–180. IEEE, 2010. 49, 50, 104

[LNS02] J. Liebeherr, M. Nahas, and W. Si. Application-layer multicasting
with delaunay triangulation overlays. Selected Areas in Commu-
nications, IEEE Journal on, 20(8):1472–1488, 2002. 20

[LTNO08] Huiguang Liang, Ian Tay, MF Neo, and WT Ooi. Avatar mobil-
ity in networked virtual environments: measurements, analysis,
and implications. CoRR abs/0807.2328, 2008. 104

[MA11] A. Montresor and L. Abeni. Cloudy weather for p2p, with a
chance of gossip. In Peer-to-Peer Computing (P2P), 2011 IEEE In-
ternational Conference on, pages 250–259. IEEE, 2011. 3

[MBD00] K.L. Morse, L. Bic, and M. Dillencourt. Interest management in
large-scale virtual environments. Presence: Teleoperators & Virtual
Environments, 9(1):52–68, 2000. 16

[MC09] John L. Miller and Jon Crowcroft. Avatar movement in World
of Warcraft battlegrounds. 2009 8th Annual Workshop on Network
and Systems Support for Games (NetGames), pages 1–6, November
2009. 104

[MCK+09] N. Markatchev, R. Curry, C. Kiddle, A. Mirtchovski, R. Sim-
monds, and T. Tan. A cloud-based interactive application service.
In e-Science, 2009. e-Science'09. Fifth IEEE International Conference
on, pages 102–109. IEEE, 2009. 42

[MFW02] M. Mauve, S. Fischer, and J. Widmer. A generic proxy system for
networked computer games. In Proceedings of the 1st workshop on
Network and system support for games, pages 25–28. ACM, 2002. 94

[MJK11] D.C. Montgomery, C.L. Jennings, and M. Kulahci. Introduction to
time series analysis and forecasting, volume 526. Wiley, 2011. 44

[MMD11] S. Ferretti M. Marzolla and G. D’Angelo. Dynamic resource pro-
visioning for cloud-based gaming infrastructures. ACM Comput-
ers in Entertainment, 2011. ix, 5, 6, 94

119

[MVHE04] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag and
timewarp: Providing consistency for replicated continuous ap-
plications. IEEE Transactions on Multimedia, 6(1):47–57, 2004. 15

[New05] M.E.J. Newman. Power laws, pareto distributions and zipf’s law.
Contemporary physics, 46(5):323–351, 2005. 50, 51

[NIP+08] Vlad Nae, Alexandru Iosup, Stefan Podlipnig, Radu Prodan,
Dick Epema, and Thomas Fahringer. Efficient management of
data center resources for Massively Multiplayer Online Games.
2008 SC - International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12, 2008. 2, 23, 48, 109

[NIP11] Vlad Nae, Alexandru Iosup, and Radu Prodan. Dynamic re-
source provisioning in massively multiplayer online games.
IEEE Trans. Parallel Distrib. Syst., 22(3):380–395, 2011. 5, 95

[NPIF11] Vlad Nae, Radu Prodan, A. Iosup, and T. Fahringer. A new busi-
ness model for massively multiplayer online games. In Proceed-
ing of the second joint WOSP/SIPEW international conference on Per-
formance engineering, pages 271–282. ACM, 2011. 2

[NPVS07] C Neumann, N Prigent, M Varvello, and K Suh. Challenges in
peer-to-peer gaming. ACM SIGCOMM Computer Communication
Review., 371:79–82, 2007. 21, 88

[NWF78] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of ap-
proximations for maximizing submodular set functionsi. Mathe-
matical Programming, 14(1):265–294, 1978. 71, 72

[PKK+12] A.H. Payberah, H. Kavalionak, V. Kumaresan, A. Montresor, and
S. Haridi. Clive: Cloud-assisted p2p live streaming. In Proc. of
the 12th IEEE P2P Conference on Peer-to-Peer Computing (P2P12).
IEEE, Tarragona, Spain, 2012. 3

[PN09] R. Prodan and V. Nae. Prediction-based real-time resource pro-
visioning for massively multiplayer online games. Future Gener-
ation Computer Systems, 25(7):785–793, 2009. 93, 109

[PW02] L. Pantel and L.C. Wolf. On the suitability of dead reckoning
schemes for games. In Proceedings of the 1st workshop on Network
and system support for games, pages 79–84. ACM, 2002. 15, 82

[RC12] L. Ricci and E. Carlini. Distributed Virtual Environments: From
client server to cloud and P2P architectures. In High Performance
Computing and Simulation (HPCS), 2012 International Conference
on, pages 8–17. IEEE, 2012. 7, 111

120

[RCGC11] L. Ricci, E. Carlini, L. Genovali, and M. Coppola. AOI-cast by
Compass Routing in Delaunay Based DVE Overlays. In Inter-
national Conference on High Performance Computing and Simulation
(HPCS), pages 135–142. IEEE, 2011. 7, 98, 100, 111

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, de-
centralized object location, and routing for large-scale peer-to-
peer systems. In Proceedings of the IFIP/ACM International Confer-
ence on Distributed Systems Platforms Heidelberg, Middleware ’01,
pages 329–350. Springer-Verlag, 2001. 19, 105

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker. A scalable content-addressable network. SIG-
COMM Comput. Commun. Rev., 31(4):161–172, 2001. 84

[RLS+03] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana,
Richard Karp, and Ion Stoica. Load balancing in structured P2P
systems. Peer-to-Peer Systems II, pages 68–79, 2003. 29

[RWF+08] S. Rieche, K. Wehrle, M. Fouquet, H. Niedermayer, T. Teifel,
and G. Carle. Clustering players for load balancing in virtual
worlds. International Journal of Advanced Media and Communica-
tion, 2(4):351363, 2008. 23

[SMLn+03] Ion Stoica, Robert Morris, David Liben-nowell, David R Karger,
M Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Protocol for Internet Applica-
tions. IEEE/ACM Transactions on Networking (TON), 11(1):17–32,
2003. 19, 26

[SS05] Y. Saito and M. Shapiro. Optimistic replication. ACM Computing
Surveys (CSUR), 37(1):42–81, 2005. 30

[SW05] R. Steinmetz and K. Wehrle. Peer-to-Peer Systems and Applications,
volume 3485. Lecture Notes in Computer Science, 2005. 26

[TLL05] S.A. Tan, W. Lau, and A. Loh. Networked game mobility model
for first-person-shooter games. In Proceedings of 4th ACM SIG-
COMM workshop on Network and system support for games, pages
1–9. ACM, 2005. 104

[WS07] S.D. Webb and S. Soh. Cheating in networked computer games: a
review. In Proceedings of the 2nd international conference on Digital
interactive media in entertainment and arts, page 112. ACM, 2007.
21, 22

121

[WSL07] S.D. Webb, S. Soh, and W. Lau. Racs: a referee anti-cheat scheme
for p2p gaming. In Proceedings of Network and Operating System
Support for Digital Audio and Video, volume 7, pages 34–42, 2007.
89, 101

[XSL+12] H.M. Xu, Y.J. Shi, Y.L. Liu, F.B. Gao, and T. Wan. Integration
of cloud computing and p2p: A future storage infrastructure.
In Quality, Reliability, Risk, Maintenance, and Safety Engineering
(ICQR2MSE), 2012 International Conference on, pages 1489–1492.
IEEE, 2012. 3

[YV05] A.P. Yu and S.T. Vuong. Mopar: a mobile peer-to-peer overlay
architecture for interest management of massively multiplayer
online games. In Proceedings of the international workshop on Net-
work and operating systems support for digital audio and video, pages
99–104. ACM, 2005. 96, 97

122

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	1 Introduction
	1.1 Massive Multi-player On-line Games
	1.2 On-demand Platforms
	1.3 Thesis Contribution

	2 Background
	2.1 A model for MMOGs
	2.2 MMOGs: Challenges and Issues
	2.2.1 The Consistency-Interactivity Tradeoff
	2.2.2 Interest Management
	2.2.3 Fault Tolerance
	2.2.4 Cheating
	2.2.5 Load Balancing

	2.3 Conclusion

	3 State Action Manager
	3.1 SAM Architecture
	3.1.1 Replication and Fault Tolerance

	3.2 Virtual Server
	3.3 Problem Statement and System Model
	3.3.1 Mixed-Integer Programming Modelling

	3.4 The Manager
	3.4.1 Load prediction
	3.4.2 Virtual Servers Management
	3.4.3 Migration

	3.5 Experimental Results
	3.5.1 Workload Definition
	3.5.2 Simulation Environment and Metrics
	3.5.3 Risk and Cost Trade-off
	3.5.4 Scalability Cost on the Number of Players
	3.5.5 Comparison with Optimum
	3.5.6 Prediction Error

	3.6 Conclusion

	4 Positional Action Manager
	4.1 PAM Server
	4.2 PAM Overlay
	4.2.1 Gossip-based Overlay Construction
	4.2.2 Ranking Function

	4.3 Result
	4.3.1 Metrics
	4.3.2 Behaviour over Ts
	4.3.3 Tiles Variation
	4.3.4 Number of Peers

	4.4 Conclusion

	5 Toward a Complete Architecture
	5.1 Combining PAM and SAM
	5.1.1 Client's Perspective

	5.2 Multi-Server PAM
	5.2.1 PAM Load Distribution

	5.3 Cheating
	5.3.1 SAM
	5.3.2 PAM

	5.4 Conclusion

	6 Related Work
	6.1 Centralized Infrastructures
	6.1.1 On-demand Platforms

	6.2 User-assisted Infrastructures
	6.2.1 Super-Peers Infrastructures
	6.2.2 Peer-to-Peer Infrastructures
	6.2.3 Anti-Cheating

	6.3 Hybrid
	6.4 Mobility Models in MMOGs
	6.5 Case Studies
	6.5.1 SimMud
	6.5.2 Colyseus
	6.5.3 Voronoi Based Overlay Network
	6.5.4 On-demand Provisioning

	6.6 Conclusion

	7 Conclusion
	References

