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Abstract—Attributed graphs model real networks by
enriching their nodes with attributes accounting for
properties. Several techniques have been proposed for
partitioning these graphs into clusters that are homo-
geneous with respect to both semantic attributes and
to the structure of the graph. However, time and space
complexities of state of the art algorithms limit their
scalability to medium-sized graphs. We propose SToC
(for Semantic-Topological C lustering), a fast and scal-
able algorithm for partitioning large attributed graphs.
The approach is robust, being compatible both with
categorical and with quantitative attributes, and it is
tailorable, allowing the user to weight the semantic and
topological components. Further, the approach does
not require the user to guess in advance the number
of clusters. SToC relies on well known approxima-
tion techniques such as bottom-k sketches, traditional
graph-theoretic concepts, and a new perspective on
the composition of heterogeneous distance measures.
Experimental results demonstrate its ability to effi-
ciently compute high-quality partitions of large scale
attributed graphs.

I. Introduction

Several approaches in the literature aim at partition-
ing a graph into communities that share some sets of
properties (see [14] for a survey). Most criteria for defin-
ing communities in networks are based on topology and
focus on specific features of the network structure, such
as the presence of dense subgraphs or other edge-driven
characteristics. However, real world graphs such as the
World Wide Web and Social Networks are more than just
their topology. A formal representation that is gaining
popularity for describing such networks is the attributed
graph [6], [16], [19], [38].

An attributed graph is a graph where each node is
assigned values on a specified set of attributes. Attribute
domains may be either categorical (e.g., sex) or quan-
titative (e.g., age). Clustering attributed graphs consists
in partitioning them into disjoint communities of nodes
that are both well connected and similar with respect to
their attributes. State of the art algorithms for clustering
attributed graphs have several limitations [38]:

they are too slow to be compatible with big-data
scenarios, both in terms of asymptotic time complexity and
in terms of running times; they use data-structures that
need to be completely rebuilt if the input graph changes;

This work has been published in ASONAM 2017 [3]. This version
includes an appendix with validation of our attribute model and
distance function, omitted in [3] for lack of space. Please refer to
the published version.

and they ask the user to specify the number of clusters to
be produced. Moreover, they only work with categorical
attributes, forcing the user to discretize the domains of
quantitative attributes, leading to a loss of information in
distance measures.

We offer a new perspective on the composition of het-
erogeneous distance measures. Based on this, we present a
distance-based clustering algorithm for attributed graphs
that allows the user to tune the relative importance of the
semantic and structural information of the input data and
only requires to specify as input qualitative parameters of
the desired partition rather than quantitative ones (such as
the number of clusters). This approach is so effective that
can be used to directly produce a set of similar nodes that
form a community with a specified input node without hav-
ing to cluster the whole graph first. We rely on state-of-the-
art approximation techniques, such as bottom-k sketches
for approximating similarity between sets [10] and the
Hoeffding bound (see [15]) to maintain high performance
while keeping the precision under control. Regarding ef-
ficiency, our approach has an expected time complexity
of O(m logn), where n and m are the number of nodes
and edges in the graph, respectively. This performance is
achieved via the adoption of a distance function that can
be efficiently computed in sublinear time. Experimental
results demonstrate the ability of our algorithm to produce
high-quality partitions of large attributed graphs.

The paper is structured as follows. Section II describes
related work. Section III summarizes our contributions.
Section IV formally states the addressed problem. Sec-
tion V introduces the notion of distance, essential for clus-
ter definition. The algorithm and its data structures are
described in Section VI. Section VII describes the tuning
phase which selects suitable parameter values for the input
graph according to the user’s needs. The results of our
experimentation are discussed in Section VIII. Finally,
Appendix A and B contain a validation of our attribute
model and combined distance function.

II. Related work

Graph clustering, also known as community discovery,
is an active research area (see e.g., the survey [14]).
While the overwhelming majority of the approaches assign
nodes to clusters based on topological information only,
recent works address the problem of clustering graphs
with semantic information attached to nodes or edges (in
this paper, we restrict to node-attributed graphs). In fact,
topological-only or semantic-only clustering approaches
are not as effective as approaches that exploit both sources
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of information [17]. A survey of the area [6] categorizes
the following classes for node-attributed graphs (here we
recall only key references and uncovered recent papers).
Reduction-based approaches translate the semantic infor-
mation into the structure of the graph (for example adding
weights to its edges) or vice versa (for example encoding
topological information into new attributes), then perform
a traditional clustering on the obtained data. They are
efficient, but the quality of the clustering is poor. Walk-
based algorithms augment the graph with dummy nodes
representing categorical only attribute values and estimate
node distance through a neighborhood random walk [38].
The more attributes two nodes shares the more paths
connect them the more the nodes are considered close. A
traditional clustering algorithm based on these distances
produces the output. Model-based approaches statistically
infer a model of the clustered attributed graphs, assuming
they are generated accordingly to some parametric dis-
tribution. The BAGC algorithm [35] adopts a Bayesian
approach to infer the parameters that best fit the input
graph, but requires the number of clusters to be known
in advance and does not handle quantitative attributes.
The approach has been recently generalized to weighted
attributed graphs in [36]. The resulting GBAGC algo-
rithm is the best performing of the state-of-the-art (in
Section VIII we will mainly compare to this work). A
further model-based algorithm is CESNA [37], which
addresses the different problem of discovering overlapping
communities. Projection-based approaches focus on the
reduction of the attribute set, omitting attributes are
irrelevant for some clusters. A recent work along this line
is [30]. Finally, there are some approaches devoted to
variants of attributed graph clustering, such as: I-Louvain
[12], which extends topological clustering to maximize
both modularity and a newly introduced measure called
‘inertia’; PICS [1], which addresses a form of co-clustering
for attributed graphs by using a matrix compression-
approach; FocusCO [28] and CGMA [8], which start
from user-preferred clusters; M-CRAG [20], which gen-
erates multiple non-redundant clustering for exploratory
analysis; CAMIR [27], which considers multi-graphs.

Overall, state-of-the-art approaches to partition at-
tributed graphs are affected by several limitations, the first
of which is efficiency. Although, the algorithm in [38] does
not provide exact bounds, our analysis assessed an Ω(n2)
time and space complexity, which restricts its usability to
networks with thousands of nodes. The algorithm in [36]
aims at overcoming these performance issues, and does
actually run faster in practice. However, as we show in
Section VIII, its time and space performances heavily rely
on assuming a small number of clusters. Second, similarity
between elements is usually defined with exact matches on
categorical attributes, so that similarity among quantita-
tive attributes is not preserved. Further, data-structures
are not maintainable, so that after a change in the input
graph they will have to be fully recomputed. Finally, most
of the approaches require as input the number of clusters
that have to be generated [22], [33], [38], [36]. In many
applications it is unclear how to choose this value or how
to evaluate the correctness of the choice, so that the user
is often forced to repeatedly launching the algorithm with

tentative values.

III. Contributions
We propose an approach to partition attributed graphs

that aims at overcoming the limitations of the state of the
art discussed in Section II. Namely: (i) We propose a flex-
ible concept of distance that can be efficiently computed
and that is both tailorable (allowing the user to tune the
relative importance of the semantic and structural infor-
mation) and robust (accounting for both categorical and
quantitative attributes). Further, our structures can be
maintained when entities are added or removed without re-
indexing the whole dataset. (ii) We present the SToC algo-
rithm to compute non-overlapping communities. SToC al-
lows for a declarative specification of the desired clustering,
i.e., the user has to provide the sensitivity with which two
nodes are considered close rather than forecast the number
of clusters in the output. (iii) We describe an experimental
comparison with state-of-the-art approaches showing that
SToC uses less time/space resources and produces better
quality partitions. In particular, in addition to good qual-
ity metrics for the obtained clusters, we observe that SToC
tends to generate clusters of homogeneous size, while most
partitioning algorithms tend to produce a giant cluster and
some smaller ones.

IV. Problem statement
Intuitively, attributed graphs are an extension of the

structural notion of graphs to include attribute values
for every node. Formally, an attributed graph G(V,E, F )
consists of a set V = {v1, . . . , vn} of nodes, a set E =
{e1, . . . , em} ⊆ V × V of edges, and a set of mappings
F = {f1, . . . , fA} such that, for i ∈ [1..A], fi : V →
dom(ai) assigns to a node v the value fi(v) of attribute
ai, where dom(ai) is the domain of attribute ai. Notice
that the definition is stated for directed graphs, but it
readily applies to undirected ones as well. A distance
function d : V × V → R≥0 quantifies the dissimilarity
between two nodes through a non-negative real value,
where d(v1, v2) = d(v2, v1), and d(v1, v2) = 0 iff v1 = v2.
Given a threshold τ , the ball centered at node v, denoted
Bd(v, τ), consists of all nodes at distance at most τ :
Bd(v, τ) = {v′ ∈ V | d(v, v′) ≤ τ}. We distinguish between
topological distances, that are only based on structural
properties of the graph G(V,E), semantic distances, that
are only based on node attribute values F , and multi-
objective distances, that are based on both [25]. Using on
distance functions, a cluster can be defined by considering
nodes that are within a maximum distance τ from a given
node. Namely, for a distance function d() and a threshold
τ , a τ -close cluster C is a subset of the nodes in V such
that there exists a node v ∈ C such that for all v′ ∈ C,
d(v, v′) ≤ τ . The node v is called a centroid. Observe that
C ⊆ Bd(v, τ) is required but the inclusion may be strict. In
fact, a node v′ ∈ Bd(v, τ) could belong to another τ -close
cluster C ′ due to a lower distance from the centroid of C ′.

A τ -close clustering of an attributed graph is a parti-
tion of its nodes into τ -close clusters C1, . . . , Ck. Notice
that this definition requires that clusters are disjoint,
i.e., non-overlapping.
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ID sex x y
0 1 0 0.1
1 1 0 0
2 1 0.1 0.1
3 0 0.2 0
4 0 0.4 0
5 0 0.55 0.1
6 0 0.6 0
7 1 0.7 0.09

dS(v0, vi) dT (v0, vi)
0 0
0.00471 0.4
0.0066 0.25
0.3427 0.6
0.3521 0.86
0.3596 1
0.3616 1
0.3327 0.86

Fig. 1. A sample attributed graph. Attributes include: sex (categorical) and spatial coordinate x, y (quantitative). Edges are colored by
topological distance between the connected nodes. Topological distance dT () considers 1-neighborhoods.

V. A multi-objective distance

In this section we introduce a multi-objective distance
function that will be computable in sublinear time (Sec-
tion VI-A) and that allows for tuning the semantic and
topological components (Section VII). Regarding semantic
distance, we assume that attributes can be either categor-
ical or quantitative. For clarity, we assume that attributes
1, . . . , Q are quantitative, and attributes Q+ 1, . . . , A are
categorical. Thus, the attribute values (f1(v), . . . , fA(v)) of
a node v, boil down to a relational tuple, which we denote
by tv. Semantic distance dS() can then be defined as:

dS(v1, v2) = f(tv1 , tv2) (1)

where f() is any distance function over relational tuples
(see e.g., [21]). In our implementation and in experiments,
we first normalize quantitative attributes in the [0, 1]
interval using min-max normalization [26]. Then, we adopt
the following distance:

ds(v1, v2) =

√∑Q

i=1
((fi(v1) − fi(v2))2 ·

√
Q +
∑A

i=Q+1
J(fi(v1), fi(v2))

A
(2)

Quantitative attributes are compared using Euclidean
distance, and categorical attributes are compared using
Jaccard distance (J(X,Y ) = 1 − |X∩Y |

|X∪Y | ). The scaling
factor

√
Q balances the contribution of every quantitative

attribute in the range [0, 1]. The overall distance function
ranges in [0, 1].

Regarding topological distance, we assume it is defined
as a distance of the node neighborhoods. Let us recall
the notion of l-neighborhood from [19]: the l-neighborhood
Nl(v) of v is the set of nodes reachable from v with a path
of length at most l. N(v) is a shorthand for N1(v), namely
the nodes linked by v.

Topological distance dT () can then be defined as:

dT (v1, v2) = g(Nl(v1), Nl(v2)) (3)

where g() is any distance function over sets of nodes,
e.g., Dice, Jaccard, Tanimoto [25]. In particular, we adopt
the Jaccard distance. Fig. 1 shows an example on dis-
tances. Fix node v0, and consider distances (semantic
and topological) between v0 and the other nodes in the
graph. For topological distance (with l = 1), e.g., we
have dT (v0, v2) = J({v0, v1, v2, v7}, {v0, v1, v2}) = 1 −
|{v0,v1,v2}|
|{v0,v1,v2,v7}| = 0.25. Thus, v0 is closer to v2 than to v1,

since dT (v0, v1) = 0.4. For semantic distance (Equ. 2),
instead, it turns out that v0 is closer to v1 than to v2.
In fact, all three of them have the same sex attribute, but
v1 is spatially closer to v0 than to v2.

Finally, semantic and topological distance can be com-
bined into a multi-objective distance dST () as follows [6]:

dST (v1, v2) = h(dS(v1, v2), dT (v1, v2)) (4)

where h : R≥0×R≥0 → R≥0 is such that h(x, y) = 0 iff
x = y = 0. This and the assumptions that dS() and dT ()
are distances imply that dST () is a distance. [11], [32], [38]
set h(x, y) = x+ y as the sum of semantic and topological
distances. If x� y then h(x, y) ≈ x, so the largest distance
weights more. However, if x ≈ y then h(x, y) ≈ 2x,
which doubles the contribution of the equal semantic and
topological distances. In this paper, we consider instead
h(x, y) = max(x, y). If x � y then h(x, y) ≈ x ≈ y, as
before. However, when x ≈ y then h(x, y) ≈ x, which
agrees with the distance of each component.

VI. The SToC Algorithm

For a given distance threshold τ , SToC iteratively
extracts τ -close clusters from the attributed graph starting
from random seeds. This is a common approach in many
clustering algorithms [6], [14]. Nodes assigned to a cluster
are not considered in the subsequent iterations, thus the
clusters in output are not overlapping. The algorithm
proceeds until all nodes have been assigned to a cluster.
This section details the SToC algorithm. We will proceed
bottom-up, first describing the STo-Query procedure
which computes a τ -close cluster with respect to a given
seed s, and the data structures that make its computation
efficient. Then, we will present the main SToC procedure.

A. The STo-Query Procedure

The STo-Query procedure computes a connected τ -
close cluster C for a given seed s and threshold τ . With
our definition of dST (), it turns out that C ⊆ BdST

(s, τ) =
BdS

(s, τ) ∩ BdT
(s, τ). We define C as the set of nodes in

BdST
(s, τ) that are connected to s. Computing C is then

possible through a partial traversal of the graph starting
from s. This is the approach of the STo-Query procedure
detailed in Algorithm 1.



Algorithm 1: STo-Query algorithm.
Input : G, τ , s
Output: C, a τ -close connected cluster
Global : S and T data structures (described in

Section VI-A, used to compute dST )
1 Q← empty queue
2 C ← {s}
3 enqueue(Q, s)
4 while Q 6= ∅ do
5 v ← dequeue(Q)
6 foreach x ∈ N(v) do
7 if x 6∈ C and dST (s, x) ≤ τ then
8 C ← C ∪ {x}
9 enqueue(Q, x)

10 end
11 end
12 end
13 return C;

The efficiency of STo-Query relies on two data struc-
tures, S and T , that we adopt for computing semantic
and topological distances respectively and, a fortiori, for
the test dST (s, x) ≤ τ at line 7. Recall that dST (s, x) =
max(dS(s, x), dT (s, x)). Semantic distance is computed by
directly applying (Equ. 2). We store in a dictionary S the
mapping of nodes to attribute values. Thus, computing
dS(s, x) requires O(A) time, where A is the number of
attributes. For topological distance, instead, a näıve us-
age of (Equ. 3) would require to compute online the l-
neighborhood of nodes. This takes O(n) time for medium-
to-large values of l, e.g., for small-world networks. We
overcome this issue by approximating the topological dis-
tance with a bounded error, by using bottom-k sketch
vectors [10]. A sketch vector is a compressed representation
of a set, in our case an l-neighborhood, that allows the
estimation of functions, in our case topological distance,
with bounded error. The bottom-k sketch S(X) consists
in the first k elements of a set X with respect to a given
permutation of the domain of elements in X. The Jaccard
distance between Nl(v1) and Nl(v2) can be approximated
using S(Nl(v1)) and S(Nl(v2)) in their place, with a
precision ε by choosing k = logn

ε2 (see [15]). We store in a
dictionary T the mappings of nodes v to the sketch vector
of Nl(v). T allows for computing dT (s, x) in O(logn) time.

B. The SToC Procedure
The algorithm consists of repeated calls to the STo-

Query function on selected seeds. τ -close clusters returned
by STo-Query are added to output and removed from
the set of active nodes V ′ in Algorithm 2 (lines 7–9). We
denote by G[V ′] the subgraph of G with only the nodes
in V ′. Seeds are chosen randomly among the active nodes
through the select node function (line 6). This philoso-
phy can be effective in real-world networks (see, e.g., [13]),
and is inherently different from selecting a set of random
seeds in the beginning (as in k-means), since it guarantees
that each new seed will be at a significant distance from
previously chosen ones. Calls to STo-Query return non-
overlapping clusters, and the algorithm terminates when

Algorithm 2: SToC algorithm.
Input : G(V, E, F) attributed graph, τ distance

threshold
Output: R, a τ -close clustering of G

1 S ← global dictionary of the semantic vectors
2 T ← global topological similarity table of G
3 R ← ∅
4 V ′ ← V
5 while V ′ 6= ∅ do
6 s ← select node(G)
7 C ← STo-Query(G, τ , s)
8 V ′ ← V ′ \ C
9 G← G[V ′]

10 R← R ∪ {C}
11 end
12 return R

all nodes have been assigned to some cluster, i.e., V ′ = ∅.

C. Time and space complexity
Let us consider time complexity first. For a seed s, STo-

Query iterates over nodes in C ⊆ Nl(s) through queue Q.
For each node v ∈ C, the distance dST (v, x) is calculated
for all neighborhoods x of v. Using the data structures S
and T , this takes O(logn + A). SToC iterates over seeds
s by removing from the graph nodes that appear in the
cluster C returned by STo-Query. This implies that a
node is enqued in Q exactly once. In summary, worst-
case complexity of SToC is O(

∑
x∈V |N(x)|(logn+A)) =

O(m(logn + A)). According to related work, we consider
A to be constant in real world datasets. This leads to an
overall time complexity of O(m logn). The initialization
of the data structures S and T has the same cost. In fact,
S can be filled in linear time O(n) through a scan of the
input attributed graph. Moreover, bottom-k sketches can
be computed in O(mk) time [5], hence, for k ∈ O(logn),
building T requires O(m logn).

Regarding space usage, the dictionary S requires
O(nA) = O(n) space, assuming A constant. Moreover,
since each sketch vector in T has size O(logn), T requires
O(n logn) space. Thus, SToC requires O(n logn) space,
in addition to the one for storing the input graph.

VII. Auto-tuning of parameters
The SToC algorithm assumes two user parameters1

in input: the value l to be used in topological distance
(Equ. 3), and the distance threshold τ tested at line 7
of STo-Query. The correct choice of such parameters
can be critical and non-trivial. For example, consider the
cumulative distributions of dS() and dT () shown in Fig. 2
for the datasets that will be considered in the experiments.
Small values of l make most of the pairs very distant,
and, conversely, high values of l make most of the pairs
close w.r.t. topological distance. Analogously, high values
of threshold τ may lead to cluster together all nodes, which

1The error threshold ε is more related to implementation perfor-
mance issues rather than to user settings.



Fig. 2. Cumulative distributions of dT (), for varying l-neighborhoods, and of dS() for datasets DIRECTORS (left) and DBLP (right).

have semantic and topological distance both lower than τ .
E.g., almost every pair of nodes has a semantic distance
lower than 0.4 for the DIRECTORS dataset in Fig. 2.

Another issue with parameters l and τ is that they
are operational notions, with no clear intuition on how
they impact on the results of the clustering problem. In
this section, we introduce a declarative notion, with a
clear intuitive meaning for the user, and that allows to
derive optimal values for l and τ . We define the attraction
ratio α as a value between 0 and 1, as a specification
of the expected fraction of nodes similar to a given one.
Extreme values α = 1 or α = 0 mean that all nodes
are similar to each other and all nodes are different from
each other respectively. In order to let the user weight
separately the semantic and the topological components,
we actually assume that a semantic attraction ratio αS
and a topological attraction ratio αT are provided by the
user. We describe next how the operational parameters l
and τ are computed from the declarative ones αS and αT .

Computing τ . We approximate the cumulative distri-
bution of dS() among all the n2 pairs of nodes by looking
at a sample of 2 logn

ε2 pairs. By the Hoeffding bound [15],
this guarantees error ε of the approximation. Then, we set
τ = τ̂ as the αS-quantile of the approximated distribution.
By definition, dS() will be lower or equal than τ̂ for the
fraction αS of pairs of nodes. Fig. 2 (second and fourth
plots) show the approximated distributions of dS() for
the DIRECTORS and DBLP datasets. E.g., an attraction
ratio αS = 0.4 can be reached by choosing τ = 0.2 for
DIRECTORS and τ = 0.45 for DBLP.

Computing l. In the previous step, we fixed τ = τ̂
using the semantic distance distribution. We now fix l
using the topological distance distribution. The approach
consists in approximating the cumulative distribution of
dT (), as done before, for increasing values of l starting
from l = 1. For each value of l, we look at the quantile
of τ̂ , namely the fraction αl = Pr(dT ≤ τ̂) of pairs of
nodes having topological distance at most τ̂ . We choose
the value l for which |αl − αT | is minimal, namely for
which αl is the closest one to the attraction ratio αT .
Since αl is monotonically decreasing with l, we stop when
|αl+1 − αT | > |αl − αT |. Fig. 3 shows an example for
αT = 0.3 and τ̂ = 0.6. The value l = 6 yields the quantile
αl closest to the expected attraction ratio αT = 0.3.

We now show that the cost of the auto-tuning phase
is bounded by O(m logn), under the assumptions that
both ε−1 and l are O(1). Such assumption are realis-
tic. In fact, values for ε cannot be too small, otherwise

Fig. 3. Computing the l value for αT = 0.3 and τ = 0.6 on the
DBLP dataset.

the performance improvement of using bottom-k sketches
would be lost [10]. Regarding l, it is bounded by the graph
diameter, which for real-world networks, can be considered
bounded by a constant [2], [31]. Let us consider then the
computational cost of auto-tuning. Computing τ requires
calculating semantic distance among 2 logn

ε2 pairs of nodes,
which requires O(log2 n), and in sorting the pairs accord-
ingly, which requires O((logn)(log logn)). Overall, the cost
is O(log2 n). Computing l requires a constant-bounded
loop. In each iteration, we need to build an approximate
cumulative distribution of the topological distance dT (),
which, as shown before, is O(log2 n). In order to compute
dT () we also have to construct the data structure T for
the value l at each iteration, which requires O(m logn). In
summary, computing l has a computational cost that is in
the same order of the SToC algorithm.

VIII. Experiments

We first present the evaluation metrics and the ex-
perimental datasets, and then show the results of our
experiments, which aim at showing the effectiveness of the
approach and at comparing it with the state of the art.

A. Evaluation metrics

According to existing approaches [18], [36], [38]we
adopt both a semantic and a topological metric. The
semantic metric is the Within-Cluster Sum of Squares
(WCSS) also called Sum of Squared Error (SSE), widely



Topology Attributes
DBLP

Nodes Edges Categorical Quantitative
60,977 774,162 topic prolific

DIRECTORS
Nodes Edges Categorical Quantitative

3,609,806 12,651,511 sectors, sex age, birthplace, residence
DIRECTORS-gcc

Nodes Edges Categorical Quantitative
1,390,625 10,524,042 sectors, sex age, birthplace, residence

TABLE I. Summary of experimental datasets.

used by widespread approaches such as the k-means [23]:

WCSS =
k∑
i=1

∑
v∈Ci

‖v − µi‖2 (5)

where C1, . . . , Ck is the clustering of the graph, and, for
i ∈ [1, k], µi is the centroid of nodes in Ci w.r.t. the se-
mantics distance dS() [29]. WCSS ranges over non-negative
numbers, with lower values denoting better clusterings.
Alternative semantic metrics, such as entropy [36], [38],
are suitable for categorical/discretized attributes only.

The topological metric is the modularity [9], a de-facto
standard for graph clustering evaluation [36], [38]:

Q = 1
2m

∑
v,w∈V

[
Avw −

kvkw
2m

]
δ(cv, cw) (6)

where A is the adjacent matrix of the graph, kv is the
degree of node v, cv is the cluster ID of node v, and δ is
the identity function (δ(i, j) = 1 if i = j and 0 otherwise).
Q is defined in [− 1

2 , 1], with a random clustering expected
to have Q = 0, and a good clustering Q > 0 [9].

B. Experimental datasets

We will run experiments on two datasets, whose sum-
maries are shown in Table I.

DIRECTORS: A social network of directors. A director
is a person appointed to serve on the board of a company.
We had a unique access to a snapshot of all Italian boards
of directors stored in the official Italian Business Register.
The attributed graph is build as follows: nodes are distinct
directors, and there is an (undirected) edge between two
directors if they both seat in a same board. In other
words, the graph is a bipartite projection of a bipartite
graph directors-companies. In the following we distinguish
the whole graph (DIRECTORS) from its giant connected
component (DIRECTORS-gcc). Node attributes include
quantitative characteristics of directors (age, geographic
coordinates of birth place and residence place) and cat-
egorical characteristics of them (sex, and the set of in-
dustry sectors of companies they seats in the boards of
– e.g., such as IT, Bank, etc.). Clustering this network
means finding communities of people tied by business
relationships. A combined semantic-topological approach
may reveal patterns of structural aggregation as well as
social segregation [4]. For example, clusters may reveal

communities of youngster/elderly directors in a specific
sub-graph.

DBLP: Scientific coauthor network. This dataset con-
sists of the DBLP bibliography database restricted to
four research areas: databases, data mining, information
retrieval, and artificial intelligence. The dataset was kindly
provided by the authors of [38], where it is used for eval-
uation of their algorithm. Nodes are authors of scientific
publications. An edge connect two authors that have co-
authored at least one paper. Each node has two attributes:
prolific (quantitative), counting the number of papers of
the author, and primary topic (categorical), reporting the
most frequent keyword in the author’s papers.

Fig. 2 shows the cumulative distributions of semantic
and topological distances for the datasets. In particular,
the 1st and 3rd plots show the impact of the l parameter
on the topological distance. The smaller (resp. larger) l,
the more distant (resp. close) are nodes. This is in line
with the small-world phenomenon in networks [34, Fig.2].

C. Experimental results
We will compare the following algorithms:

• Inc-C: the Inc-Clustering algorithm by Zhou et
al. [38]. It requires in input the number k of
clusters to produce. Implementation provided by
the authors.

• GBAGC: the General Bayesian framework for
Attributed Graph Clustering algorithm by Xu et
al. [36], which is the best performing approach
in the literature. It also takes k as an input.
Implementation provided by the authors.

• SToC: our proposed algorithm, which takes in
input the attraction ratios αS and αT , and the
error threshold ε.

• ToC: a variant of SToC which only considers
topological information (nodes and edges). It takes
in input αT and the error threshold ε (τ and l are
computed as for SToC, with a dummy αS = αT ).

• SC: a variant of SToC which only considers se-
mantic information (attributes). It takes in input
αS and the error threshold ε.

All tests were performed on a machine with two Intel
Xeon Processors E5-2695 v3 (35M Cache, 2.30 GHz) and
64 GB of main memory running Ubuntu 14.04.4 LTS.
SToC, ToC and SC are implemented in Java 1.8, Inc-
C and GBAGC are developed in MatLab.

Table V shows the results of SToC for αS = αT = α
varying from 0.1 to 0.9, and a fixed ε = 0.9. For every
dataset and α, we report the number of clusters found (k),
the evaluation metrics Q and WCSS, the running time,
and the main memory usage. As general comments, we can
observe that k and WCSS are inversely proportional to
α, Q is always non-negative and in good ranges, memory
usage is limited, and running times are negligible for DBLP
and moderate for DIRECTORS and DIRECTORS-gcc.
For every α, we executed 10 runs of the algorithm, which



α k Q WCSS Time
(s)

Space
(GB)

DBLP

0.1
25,598
(1,279)

0.269
(0.014)

5,428
(520)

0.627
(0.21)

0.65

0.2
26,724
(1,160)

0.270
(0.015)

5,367
(534)

0.616
(0.214)

0.64

0.4
6,634
(5,564)

0.189
(0.12)

23,477
(3,998)

0.272
(0.151)

0.67

0.6
9,041
(7,144)

0.153
(0.08)

21,337
(5,839)

0.281
(0.1)

0.7

0.8
11,050
(4,331)

0.238
(0.1)

20,669
(3,102)

0.267
(0.11)

0.69

0.9
15,041
(5,415)

0.188
(0.045)

16,688
(4,986)

0.28
(0.05)

0.64

DIRECTORS
0.1 2,591,184

(311,927)
0.1347
(0.0237)

7,198
(5,382)

3,698
(485)

9

0.2 2,345,680
(162,444)

0.1530
(0.0084)

9,793
(1,977)

3,213
(167.3)

8.2

0.4 1,891,075
(34,276)

0.22
(0.023)

26,093
(1,829)

2,629
(178.6)

8.6

0.6 1,212,440
(442,011)

0.28
(0.068)

72,769
(4,129)

17,443
(2,093)

8.7

0.8 682,800
(485,472)

0.1769
(0.066)

49,879
(8,581)

8,209
(12,822)

9.5

DIRECTORS-gcc
0.1 886,427

(123,420)
0.102
(0.016)

6158
(2886)

278.4
(44.7)

10

0.2
901,306
(47,486)

0.103
(0.02)

4773
(2450)

274
(14.1)

10.4

0.4
811,152
(28,276)

0.1257
(0.0164)

8,050
(1450)

239.1
(11.6)

4.3

0.6
664,882
(63,334)

0.248
(0.0578)

13,555
(3,786)

181.6
(24.4)

4.2

0.8
584,739
(408,725)

0.189
(0.0711)

49,603
(9,743)

5,979
(10,518)

8.8

TABLE II. SToC results (mean values over 10 runs,
StDev in brackets).

k Q WCSS Time (s) Space (GB)
15 -0.499 38,009 870 31.0

100 -0.496 37,939 1,112 31.0
1,000 -0.413 37,051 1305 31.1
5,000 -0.136 32,905 1,273 32.1

15,000 0.083 13,521 1,450 32.2
TABLE III. Inc-C results for the DBLP dataset.

uses random seeds, and reported mean value and standard
deviation. The low values of the standard deviations of Q
and WCSS show that the random choice of the seeds does
not impact the stability of the results. The results of ToC
and SC can be found in in Appendix B: in summary, the
exploitation of both semantic and topological information
leads to a superior performance of SToC w.r.t. both Q
and WCSS.

Tables III and IV report the results for Inc-C and
GBAGC respectively. Due to the different input param-
eters of such algorithms, we can compare the results of
SToC only by looking at rows with similar k. Let us
consider Inc-C first. Running times are extremely high,

k (actual) Q WCSS Time (s) Space (GB)
DBLP

10 (10) 0.0382 27,041 17 0.5
50 (14) 0.0183 27,231 25 0.6

100 (2) 1 · 10−7 27,516 13 0.7
1,000 (3) 6 · 10−4 27,465 37 3
5,000 (2) 2 · 10−5 27,498 222 14.2

15,000 (1) 0 27,509 663 50.182
DIRECTORS

10 (8) 0.0305 198797 18 4.3
50 (10) 0.0599 198792 63 12.4

100 (8) 0.1020 198791 120 22.4
500 (5) 0.0921 198790 8,129 64.3

1000 (–) - - - out of mem
DIRECTORS-gcc

10 (8) 0.1095 75103 94 3.02
50 (14) 0.0563 75101 161 5.47

100 (15) 0.0534 75101 234 9.34
500 (5) 0.0502 75101 1,238 40.3

1000 (7) 0.0569 75101 3,309 59
1500 (–) – – – out of mem

TABLE IV. GBAGC results.

even for the moderate size dataset DBLP. It was unfeasible
to obtain results for DIRECTORS. Space usage is also
high, since the algorithm is in O(n2). Values of Q are
considerably worse than SToC. WCSS tends to generally
high. Consider now GBAGC. Quality of the results is
considerably lower than SToC both w.r.t. Q and WCSS.
The space usage and elapsed time increase dramatically
with k, which is non-ideal for large graphs, where a high
number of cluster is typically expected. On our experimen-
tal machine, GBAGC reaches a limit with k = 500 for the
DIRECTORS dataset by requiring 65GB of main memory.
Even more critical is the fact that the number of clusters
actually returned by GBAGC is only a fraction of the
input k, e.g., it is 1 for k = 15, 000 for the DBLP dataset.
The user is not actually controlling the algorithm results
through the required input.

Figure 4 clarifies the main limitation of Inc-C and
GBAGC over SToC. It reports for some of the executions
the size distributions of clusters found. Inc-C (bottom
plot) tends to produce a single giant cluster including
most of the nodes. GBAGC (middle plots) produces a
small number of clusters regardless of the input parame-
ters. Instead, SToC (top plots) produces more balanced
results, typically expected in sociology [7], [24], with a size
distribution in line with common power-laws found in real-
world network and with the input graphs in particular (see
[4] for the DIRECTORS graph).

IX. Conclusions

We proposed SToC, a clustering algorithm for large at-
tributed graphs. It extracts non-overlapping clusters using
a combined distance that accounts for network topology
and semantic features, based on declarative parameters
(attraction ratios) rather than on operational ones (num-
ber of clusters) typically required by other approaches.
Experimental results showed that SToC outperforms the



Fig. 4. Size distribution of clusters found by SToC, GBAGC and
Inc-C for some of the tests in Tables V, III, IV.

state of the art algorithms in both time/space usage and
in quality of the clustering found.
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Appendix
Appendix A

Validation of the Attribute Model
One of the main differences of the proposed approach

with respect to the state-of-the-art is that quantitative
attributes do not need to be discretized. We validate the
effectiveness of this choice by showing the loss of quality
induced by the discretization. Namely, we run the SToC
algorithm on the DBLP dataset, where the quantitative
attribute represent how prolific an author is, treating the
attribute as a categorical one. Table VI shows the results
of this process, which can be compared to the results
obtained when the quantitative attribute is addressed
properly, shown in Table V. We can see not only how
both metrics (Q and WCSS) are significantly better when
categorical attributes are considered as such, but that
ignoring the similarity between similar attributes may lead
to an insignificant result, likely due to the flattening of the
distances between nodes. This suggests that approaches
that handle quantitative attributes may have an inherent
advantage with respect to those that need to discretize
them.

α k Q WCSS Time
(s)

Space
(GB)

0.1
25,598
(1,279)

0.269
(0.014)

5,428
(520)

0.627
(0.21)

0.65

0.2
26,724
(1,160)

0.270
(0.015)

5,367
(534)

0.616
(0.214)

0.64

0.4
6,634
(5,564)

0.189
(0.12)

23,477
(3,998)

0.272
(0.151)

0.67

0.6
9,041
(7,144)

0.153
(0.08)

21,337
(5,839)

0.281
(0.1)

0.7

0.8
11,050
(4,331)

0.238
(0.1)

20,669
(3,102)

0.267
(0.11)

0.69

0.9
15,041
(5,415)

0.188
(0.045)

16,688
(4,986)

0.28
(0.05)

0.64

TABLE V. SToC on the DBLP dataset (average of 10
runs, StDev in brackets).

Appendix B
SC and ToC compared to SToC

Table VII shows, for varying α, the number of clusters k
produced, and the modularity and WCSS of the clustering
found by the three variations of our algorithm. The best
values for modularity and WCSS are marked in bold. As
one could expect, topological-only algorithm ToC performs

α k Q WCSS

0.1
25,358
(900)

0.278
(0.004)

5,221 (202)

0.2
26,340
(1,492)

0.279
(0.01)

5,941 (572)

0.4
2 (0) 0.0004 (0) 60,970

(2.98)

0.6
2 (0) 0.0004 (0) 60,973

(1.73)

0.8
2 (0) 0.0004 (0) 60,972

(2.95)

0.9
2 (0) 0.0004 (0) 60,974

(0.93)
TABLE VI. A variant of SToC that treats all attributes

as categorical on the DBLP dataset (averages of 10 runs,
StDev in brackets).

poorly w.r.t. semantic metrics compared to SC and SToC,
although semantic-only algorithm SC is competitive with
ToC on topology. The clear winner among the three
is SToC, which gives a superior performance compared
to ToC and SC for most values of α. This shows how
SToC can effectively combine semantic and topological
information to provide a better clustering. Table VII also
shows that the number k of clusters in output is inversely
proportional to α when topology plays a role, i.e., for ToC
and SToC. While it is not clear why SC does not seem to
follow this behaviour, we suspect it may be due to a small
amount of possible dS values in the DBLP dataset (see
Figure 2 in the paper, right). It is worth noting that the
WCSS metric degenerates for high values of α; this might
be due to α · n approaching the size of the graph, making
any given pair of nodes be considered similar. SC seems
more resistant to this degeneration.



k Q WCSS

α SToC SC ToC SToC SC ToC SToC SC ToC
0.1 25,598 15 1430 0.269 0.0116 0.0457 5,428 14,699 19,723

0.2 26,724 18 7574 0.270 0.01554 -0.03373 5,367 14,891 16,634
0.4 6,634 15 1420 0.189 -0.00256 0.04555 23,477 14,453 19,377
0.6 9.041 17 1174 0.153 0.01248 -0.1582 21,337 14,944 20,713
0.8 11,050 16 314 0.238 -0.00356 -0.3733 20,669 15,077 26,342
0.9 15,041 16 1 0.188 0.00378 -0.4831 16,688 15,073 27,505

TABLE VII. SToC, SC and ToC on the DBLP dataset
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