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Abstract

To date, current investigations on Semi-Structured Data (SSD) have focused on
query languages that operate directly on graph-based data by matching flexible
path expressions against the graph-database topology. The problem with this ap-
proach is that it renounces in principle the benefits typically associated with typing
information. In particular, storage and query optimisation techniques, representa-
tion of user-knowledge of the data, and validation of computations cannot be based
upon static typing information. On the other hand, the various attempts to reintro-
duce types for SSD, while effectively returning some of the benefits of static typing,
compromise the irregular nature of SSD databases, by allowing just for mild forms
of irregularities.

Our investigation is motivated by the observation that, despite the inherent
irregularity of the structure, many or indeed most SSD databases contain one or more
subsets that present a high degree of regularity and could therefore be treated as
typed values of a programming language. In this thesis we lay the formal foundations
underlying a novel query methodology based on an eztraction system that, given an
SSD database and a type of a target language, results in: () a subset of the database
that is semantically equivalent to a value of the given type; (ii) a measure that
informs the user about the quality of his type with respect to the original database.
The extracted subset can then be converted into a value of that type and injected
into the language environment, where it can be computed over with all the benefits
of static typing.
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Mountains should be climbed with as little effort as possible
and without desire. The reality of your own nature should
determine the speed. If you become restless, speed up. If you
become winded, slow down. You climb the mountain

in an equilibrium between restlessness and exhaustion. Then,
when you’re no longer thinking ahead, each footstep isn’t
just a means to an end but a unique event in itself.
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Chapter 1

Introduction

Database Management Systems (DBMSSs) have proven to be extremely effective tools
for the automatic management of information sources. Their efficacy and effective-
ness relies on a number of fundamental assumptions, whose adequacy ultimately
depends on specific features of the information source involved. However, when
such features do not show, designers and users spend their time and energy building
and using inevitably inadequate database systems. As an example of this, consider
information sources with frequently changing structure. Schemas of DBMSs han-
dling such sources should mirror these structural changes, and users should recast
old data and applications to fit the new schemas.

Over the past few years, there has been an increasing interest in information
sources that are too structurally irregular to be effectively handled by traditional
DBMSs. This inadequacy has called for novel data models and query languages,
and has led to the realisation of Semi-Structured Database Management Systems
(SSDBMSs).

In SSDBMSs, semistructured databases (SSDBs) represent information sources
as rooted, labelled graphs. The main characteristic of these semistructured data
models is the integration of the traditionally separate concepts of schema and data
into a single, flexible data structure. This way users can insert arbitrarily structured
data into the database, with no concerns about a separate, pre-defined schema. In
addition, data can be successively retrieved by referring to the meta-information
provided by the labels.

We shall collectively refer to SSDBs as semi-structured data (SSD) or self-
describing data, for meta-information is intermixed with data and does not appear
as a separate entity.

The query methodology underlying most SSDBMSs relies on SQL-like query
languages. Informally, a query specifies a set of path erpressions, which are a set
of labelled paths to be matched against the graph topology of an SSDB. It then
returns the subset of the SSDB which reflects the structure identified by the path
expressions.
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The major drawback of these navigational approaches is that SSDBMSs intrinsi-
cally disown the general benefits typically associated with static typing in DBMSs.
Indeed, due to the absence of a pre-defined schema, data access and query opti-
misation techniques cannot be supported, user knowledge of the data is harder to
acquire, and query correctness cannot be guaranteed. In addition, programmers are
forced to write applications in the low-level algebra of labelled graphs.

Attempts to recover some of the advantages of static typing by reintroducing the
concept of schema for SSD have limited applicability. The efficacy of these tech-
niques degrades in the presence of information sources with a considerable amount
of irregularities, where the only reasonable solution seems to be the navigational
approach.

Our investigation is motivated by the observation that, due to the flexibility of
labelled graphs, SSDBs may also represent regular information sources, such as those
typically represented by the values of a typed language. Intuitively, as illustrated in
Figure 1.1, regular SSDBs could be thus conveniently converted into the equivalent
typed values and computed over under the governance of the language’s static typing
regime.

Language values

regular
SSDB

Regular
Information
Source

Figure 1.1: Equivalence of expressiveness between values of a typed language and
SSDBs.

As SSDBs are usually adopted to represent irregular information sources, this
observation is apparently of no practical value. Despite the irregularity of the struc-
ture, however, many or indeed most SSDBs “contain” one or more regular SSDBs.
We are specifically interested in identifying the regular subsets of an SSDB that are
equivalent to language values of a given type. When these subsets can be identi-
fied, we can generate the corresponding values and operate over them in a typed
language.

Our approach is independent from the amount of irregularity of an SSDB, and
aims at recovering all benefits of static typing whenever this may be convenient.
Due to their complementary focus, in particular, we believe that our approach can
be combined with the navigational ones in a system that offers complete support
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for the management of SSDBs. Consider, for example, the management of irregu-
lar information sources with a large, structurally regular core. In our system, such
sources would be represented by SSDBs to be indifferently computed over by naviga-
tional queries, for operations potentially involving data irregularities, and by typed
applications, for operations regarding the regular core of the SSDB.

In its complete version, the system could be used with the further purpose of
enabling typed applications to safely update SSDBs. The problem, not investigated
in this work, is that of modifying the original SSDB according to the modifications
carried out to the extracted values.

1.1 Thesis goals

This thesis is about the realisation of eztraction mechanisms for typed programming
languages.

First, we provide a specification for the extraction process, according to which
any language can be associated with a notion of ertractability. Extractability for
a language captures the concept of value extractable from an SSDB according to
a given type. Based on extractability a corresponding algorithm can thus be con-
structed and proved correct.

We then show the feasibility of extraction mechanisms for most typed program-
ming language in use. To achieve this, we first define the set S of SSDBs, and then
characterise and implement an extraction mechanism for a representative language
L. The definition of L consists of a typing relation between a set D of values and
a type language T, where T comprises a set of standard types: atomic, record,
collection, union, and recursive types.

We believe that the generality of L entails an informal proof of the feasibility of
an extraction mechanism for all typed languages that support at least a subset of
the types in T. Furthermore, other types could find a suitable mapping in S and
more specific extraction mechanism could be devised.

Specifically, we formally characterise extractability for L. A value d € D is
extractable from an SSDB s € S according to a type T € T, if d is of type T and
there exists an s’ € S included in s such that s’ is equivalent to d.

Based on extractability, we provide a corresponding algorithm Extraction for
L. Given s and T, the algorithm returns a value d extractable from s according to
T, if one exists, or else it fails. In case of success, Extraction returns also a measure
of quality of the extraction process. Such measure, called precision,' quantifies the
practical value of d in terms of the amount of information in s that is potentially
relevant to 7" but not extracted in d. Precision may help users at defining a better
input type, and thus extract a larger and more useful subset of data.

INot to be confused with the notion of precision in information retrieval.
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Moreover, we formally prove that Extraction is sound with respect to ex-
tractability of L. This ensures that if Extraction(s,T) returns d, then d is ex-
tractable from s according to 7. We also show that the algorithm is not complete
with respect to extractability. Accordingly, Extraction(s,T’) may fail even if there
exists a value extractable from s according to 7. We discuss the consequences of
this in terms of the usability of the algorithm. To conclude, we define a complete
algorithm Extraction, for the extraction of values of L from tree-structured SSDBs.

Finally, we shall illustrate the applicability of extraction mechanisms by present-
ing the system SNAQue. SNAQue enables CORBA-compliant languages to compute
over regular subsets of XML SSDBs.

1.2 Thesis outline

The work is organised as follows. The first two chapters give an overview of SSD
research. Specifically, Chapter 2 focuses on the main motivations behind SSD intro-
duction, and presents semistructured data models and query languages. Chapter 3
completes the SSD survey by discussing the techniques proposed in the literature to
overcome the absence of a schema in SSDBs.

The general principles underlying extraction mechanisms, along with possible
applications and implementations of the mechanisms, are described in Chapter 4.
The subsequent chapters define the extraction mechanism for the language L. In
particular, Chapter 5 provides a definition of the SSD domain we shall refer to in
our study. Chapter 6 defines the representative typed language L, providing a type
language, a type equivalence relation, a set of values, and a typing relation. The
mapping from language values to SSDBs is also defined here.

Chapter 7 shows an extraction algorithm Extraction for L based on the notion
of extractability for L. The notion of precision of extraction is defined and termi-
nation of the algorithm is proven. In Chapter 8, the proof of soundness for the
algorithm Extraction is illustrated and the general problems behind completeness
of Extraction are extensively discussed.

Chapter 9 shows a practical application of an extraction mechanism by reporting
the results of a project called Strathclyde Novel Architecture for Querying document
Ezchange format (SNAQue). A prototype of SNAQue has been developed at the
Department of Computer Science of the University of Strathclyde, Glasgow (UK).



Chapter 2

Semistructured Data

In the last few years, there has been an increasing interest in storing, handling
and querying semistructured data. The literature does not provide a unique clear
definition of semistructured data, which have been indifferently referred to as data
whose structure is not known in advance, data stored out of a database, XML files,
data on the Web, data with irreqular structure, etc.

In this thesis, we refer to a definition of semistructured data which abstracts
from concepts such as regularity or irregularity of the structure and only depends
on the data models through which the data are represented. Moreover, we show the
motivations behind the introduction of semistructured data models, which ground
on the inappropriateness of Database Management Systems (DBMSs) to handle pe-
culiar kind of information. We believe that separating the data models from the
information sources to be handled can provide a strong reference for understanding
the rational behind semistructured data research.

DBMSs offer services for the efficient handling of information sources. An in-
formation source is a collection of information characterised by a specific internal
organisation, i.e. a structure, which can be exploited to identify specific portions of
the current instance of the collection. In DBMSs, a schema is the representation
of the structure of the generic instance of an information source, while a database
represents a specific instance of an information source.

In this Chapter we shall explore the relation between the definition of a schema
and quality and efficiency of the corresponding database, to find out that DBMSs
are no longer convenient when the schema is not optimal. Indeed, we shall see that
a useful schema describes regular data, thereby providing high-quality modelling of
the information source involved, supporting high-performance operations over the
corresponding database, and guaranteeing correctness of applications. Vice versa, a
non optimal schema generally describes irregular data, thereby providing the same
benefits with unreasonable human and system costs.

We shall define irregular (regular) information sources those information sources
whose structure cannot (can) be described by an optimal schema in a DBMS, and
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whose instances are hence represented by irregular (regular) data.

The inappropriateness of DBMSs to handle semistructured information sources,
called out for novel technologies. Investigations led to the definition of SSDBMSs and
semistructured data models, according to which any information source is represented
as a rooted, directed, labelled graph carrying values on the leaves. Accordingly, in
SSDBMSs a database, namely a semistructured database (SSDB), is a collection of
electronic data representing both structure and instance of an information source.
We shall define as semistructured data (SSD) any collection of electronic data forming
an SSDB.

Note that, differently from traditional data models, which provide type languages
to define expressive user-defined schemas, SSD models offer only a single predefined
data structure to represent SSDBs. The choice of a graph-like structure has a twofold
advantage: labelled graphs can model any sort of information source, and data can
be inserted into the database at any time, with no restrictions on the structure of
the data. At the same human and system costs, an SSDB may represent regular or
irregular information sources.

On the other hand, the graph-structure of SSDBs inevitably impoverishes the
level of interaction with the data for both users and system. Indeed, semistruc-
tured query languages support commands to run queries over the graph structure
of a database, so as to return smaller, possibly more regular views of the original
database. Hence, users are matter of factly operating only over graphs, as no other
data structure is available. Most importantly, due to the lack of a schema, i.e. an
explicit description of the database’s content, the underlying system cannot support
the typical benefits associated with static typing in DBMSs, even in presence of
regular data.

2.1 Database construction

The main motivations behind the introduction of SSD research are to be found in
the construction process of a traditional database, which leads from an information
source to a correspondent database. We identify two approaches to traditional
database construction, namely schema first and data-first, whose difference stays in
the kind of information source involved.

e In schema-first approaches the information source is a reality to be electron-
ically organised, namely a problem domain. The realisation of a database
consists of a precise sequence of stages involving the modelling of the reality
and the implementation of the resulting model, with particular attention to the
modelling of the structure of the problem domain and its relative implemen-
tation through a database schema. The database, representing a particular
instance of the problem domain, is populated only on a second stage.
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o In data-first approaches the information sources are electronic data available
before the database is constructed. Data engineering analysis must be per-
formed, in order to realise the database schema to which the interesting subset
of the external data source will conform, as well as the software required to
automatically populate the database with that source.

2.1.1 Schema-first approaches

In schema-first approaches (see Figure 2.1) a database is realised according to a long
and engaging work, which begins with the analysis and modelling of the structure
of the information source of a reality, namely a problem domain, and ends with a
problem implementation which satisfies at best the requirements of designers.

Usually, a generic instance of the problem domain can be conceived as a set of
entities characterised by a specific structure. According to this structure, entities
are associated with a set of properties, which are facts describing a feature of an
entity, and can be classified in categories, each gathering entities featuring the same
set of properties. Modelling, in database design, consists in identifying the set of
categories of a generic instance of the problem domain by means of the abstraction
mechanisms of a given data model. A conceptual model is the result of modelling a
problem domain according to a given data model.

Consider the problem domain of a library, where the category of books contains
entities corresponding to individual books, each characterised by the properties title
and authors. An analyst, working with object-oriented data model abstraction mech-
anisms, would model this problem domain as a class Books of objects with properties
title and authors. Similarly, using relational data model abstraction mechanisms, the
analyst would have represented this problem domain as a relation with attributes
title and authors.

A conceptual model becomes a database when implemented through a computer
language embodying the abstraction mechanisms of a particular data model. The
resulting system encompasses schema, data, and applications as described by the
conceptual model and is called problem implementation.!

As mentioned above, the main issue of conceptual models is that of providing a
non-ambiguous description of the structural organisation of the entities of a problem
domain. On the same line, problem implementations focus on an accurate realisation
of a schema, commonly intended as a computer description of the structure of the
data that will be hosted in the database. The name schema-first is due to the
fact that database population, i.e. the operation of creating the electronic data
representing the current instance of a problem domain, takes place after the creation
of the schema, i.e. the representation of the structure of the problem domain.

!Note that conceptual model and problem implementation may be based on different data
models. Mappings from data models into others are available, allowing the realisation of problem
implementations which are sound with respect to conceptual models based on different data models.
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REAL WORLD

@

data
model

Problem
Domain

Conceptual
Model
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schema and data

Problem

Implementation

Figure 2.1: From the real world to a database

2.1.2 Data-first approaches

In data-first approaches, from which the name, the problem is that of developing a
database to handle a subset of data stored in a set of given electronic information
sources (see Figure 2.2).

These data sources can be classified as databases or documents. Databases con-
tain data whose purpose is that of being handled with query languages, while doc-
uments contain data whose main purpose is that of being crated, modified, and
eventually visualised by means of specific applications.

Unlike schema-first approaches, in data-first methodologies there is no need for
a proper modelling phase as the information sources are generally characterised
by either an explicit description of the structure, i.e. the schema of the database,
or an implicit structure, i.e. a precise textual pattern which outlines the relevant
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information in a document. Instead, an engineering analysis of the data sources
involved is required, in order to define a schema mirroring the structure of the
subset of data of interest.

Once the schema has been constructed, the corresponding database is ready to be
populated with the relevant set of data. This operation involves the transformation
of the relevant subset of the data sources into data instances conforming to the
schema of the target database. Such transformation is performed by ad-hoc software,
namely wrappers [7, 8, 69, 43, 18, 80], which retrieves the relevant subset of data
from the data sources to insert it into the target database according to its new
structure.

In general, the realisation of wrappers is a non-trivial and ad-hoc task. In partic-
ular, observe that wrappers moving data from a source database into a target one,
rely on DBMSs primitives for both extracting and inserting data. Instead, wrappers
that move data from documents into a target database, are in fact parsers which
search for the data identified by a given textual pattern and then insert them into
the target database through the appropriate primitives. Next, we shall see that there
are various classes of documents, and point out which of these are more suitable for
data-first approaches.

Data in documents

Nowadays, a large amount of the information processed when working on a computer
is stored in documents rather than in databases. Consider for example the World
Wide Web, which is the greatest repository of information on earth. Data on the
Web is stored in documents, and the only way to access the information therein
is typically through visualisation and reading. Needless to tell, if inserted into a
database, this information could be queried over with great advantage for system
users.

To achieve this, users apply data-first approaches: they analyse their documents,
identify a textual pattern which corresponds to a DBMS data structure, realise a
DBMS schema according to that pattern, and develop the corresponding wrappers.
However, this process is not applicable to all kinds of documents, some of which
may be illegible, hence not analysable, by humans. In particular, we can identify
two main categories of documents:

o Interpreted documents: this class gathers documents that can only be inter-
preted by the applications that created them. Examples are zip files, ps files,
pictures, and sound, which can be modified and/or visualised and/or executed
only through specific applications, such as Win-Zip, Ghostview, Photoshop and
so on. In summary, the storage format of interpreted documents focuses on
how to represent fonts, styles, characters, colors, pixels, and so on, and is
hardly readable by a human.
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DATA SOURCE

‘ Data H Structure ‘
data
Wrappers model
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8
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Figure 2.2: From electronic data to a database

o Legible documents: this class gathers documents whose main purpose is that
of being modified and visualised for consultation by humans.2 Well known
instances of these documents are BibTex files, HTML files, XML files, digital
libraries, on-line documentation, e-commerce database files and so on. Of
course, legible documents may also be interpreted by specific applications,
such as BibTez, Later, and Web browsers, but their storage format outlines a
human readable content [37, 1].

Data-first approaches are applicable to legible documents only, which, unlike
interpreted documents, can be read and manipulated by humans.

Consider for example BibTex files, whose content could be queried with great
advantage for documents writers. BibTex files data closely resemble relational data,
as they consist of a set of entries that could be mapped onto a list of records. Hence,

2Tt is hard to trace a neat line between interpreted and legible documents. For instance, is
a Word file interpreted or legible? The answer is up to the human ability of interpreting the
underlying structure of a document format. However, we introduced this distinction to help the
reader at understanding what sort of application domains are involved.
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if the set of BibTex files at hand contains a list of equally structured entries, users
could easily define a relational schema and write ad-hoc software to move the entries
content into the target relational database.

As a further example, consider the HTML files generated as responses of queries
run over a remote relational database through a Web interface. As the structure of
the query response is presumably fixed in time, hence predictable, one may think
of defining a local database to handle the regular information within such files. A
programmer may design a database schema corresponding to the identified structure
and develop wrappers to translate the HTML pages into data conforming to the
schema.

2.2 Schemas

For both data-first and schema first approaches the efficiency of an overall database
strictly depends on the relationships between the schema and the database, and
the schema and the structure of the information source involved. In the following
we capture the various facets of this relationship in the notion of optimal schema,
and claim that DBMS databases should be used only when built around an optimal
schema.

2.2.1 Schema benefits

DBMSs typically provide a query language for the specification of queries, which
are powerful applications for the insertion, modification and retrieval of data into
a database. In general, a query can be regarded as a compound of structural and
operational properties. For example, an SQL query generally consists of a set of
relations (from clause) plus a set of predicates over their instances (where clause)
and a set of operations to be applied over the filtered data (select, insert, or delete
clauses). Such queries are performed by traversing only the current instances of the
specified relations, selecting the subsets of such instances which respect the given
predicates, and eventually returning the result of the operations applied to the data
thus filtered.

Query languages do not provide full support for the realisation of complex appli-
cation systems computing over a DBMS. High-level applications, such as user inter-
faces, are realised by means of more sophisticated programming languages, whose
type systems are compatible with the DBMS data models. Consequently, queries
can be perfectly integrated with high-level applications, which otherwise could not
interact with the database.

Accordingly, applications over a DBMS may be of various forms and complex-
ity, ranging from simple queries to high-level applications. In this general context,
schemas are important in DBMSs for they entail the following benefits:



12 CHAPTER 2. SEMISTRUCTURED DATA

e system and users have access to a short and neat description of the data
potentially present in the database:

- the system can check the correctness of the applications: an application
is correct if it aims at computing over data described by the schema,
i.e. data that can be potentially contained into the database, and, more
generally, if run-time errors cannot occur or can be prevented;

- users have the understanding of what is in the database and can define
potentially correct applications;

e the system can optimise both space and time efficiency:

- databases omit information that may be kept within the schema rather
than being repeated in each instance of the data;

- standard and optimised data access techniques can be devised: being the
data stored according to a particular structure, if statistical information is
kept up to date, a query optimizer can be built, as well as data structures
for intelligent access to the data (indexes).

Correctness of applications

Due to the high level of complexity of an application system constructed around a
DBMS, the property of type correctness is of paramount importance as it ensures
that no-run time errors will occur and that no data-inconsistency will arise.

Informally, an application is type correct if the correspondent computations ma-
nipulate values only with operations associated with the respective types. This
property can be statically checked at compile time, before applications are executed,
due to the presence of types assigned to the input and output of the applications,
and to the set of pre-defined operators applicable over the values of these types.

However, DBMS applications also interact with queries, i.e. applications specifi-
cally operating over the database. Accordingly, so as to ensure that the result of a
query can be correctly used by other applications, the query must be proven correct
with respect to the database. Query correctness should hold whenever a query is
executed and can be generally defined as follows:

Definition 2.2.1 (Query correctness in DBMS) Let Q be a query. Q is correct if
there can be data in the database that satisfy the structural properties of Q.

This property ensures the good sense of (), which means that if () yields an empty
result this can be interpreted as no data in the database satisfied the predicates of
the query.

Finally, data is stored in a database according to a precise format, strictly related
with the structure of the data as described in the schema. This means that at any
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time no datum in the database may have structural properties not described by
the schema. Therefore, modulo schema modification, queries can be checked for
correctness, once for all, at compile time, by matching the structural properties of
the query against the schema.

2.2.2 Optimal schemas

The quality of a database depends on the relationship between the schema and the
structure of the information source, i.e. a problem domain or an electronic data
source, to be handled with a DBMS. Moreover, DBMSs rely on a great deal of
system artifacts, whose performance strictly depends on the relationship between
the schema and the database. A schema that satisfies at best these relationships is
called optimal schema.

Definition 2.2.2 (Optimal schema)
A schema is optimal in presence of:

e good modelling: the static irregularities of the information source to be han-
dled by the DBMS, i.e. the properties of entities which are not common to all
entities of a category, are well-described by the schema. This is the case when
the relationship between schema and information source is not affected by an
ezxcessive use of information loss or typing loss, where:

- information loss is adopted to produce a simpler schema: the static irreg-
ularities of the information source are not represented in the schema;

- typing loss is adopted to produce a homogeneous schema: the static ir-
regularities of the information source are extended to all entities of the
category.

e data efficacy: the relationship between schema and data fulfills the following
requirements:

- the schema is a short description of the data: in presence of a schema as
large as the data, optimisation techniques are totally obsolete;

- the schema is quite stable in time: modification to the schema are notori-
ously expensive in terms of human work, as they require the modification
of old data and applications [74].

DBMSs research studied how to efficiently handle regular information sources,
which are those leading to optimal schemas. Regular information sources are charac-
terised by a structure which is quite stable in time and is not affected by structural
irregularities, i.e. in general, entities belonging to the same category feature the
same set of properties.
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In the following we study information sources that cannot be efficiently handled
by a DBMS, and claim they are the main motivation behind the introduction of
SSD research.

2.3 Irregular information sources

Despite of the database design approach adopted, be it schema-first or data first,
when the resulting schemas are not optimal, traditional database methodologies turn
out to be extremely inefficient. This happens for irregular information sources whose
importance derives from the structural irregularity and instability they feature, i.e.
those affected by one or both of the following irregularities:

o static irregularities: entities of the information source that belong to the same
category feature different properties; the structure of the generic instance of
such information source is inherently irregular, thereby good modelling or data
efficacy cannot be kept over a reasonable threshold;

o dynamic irreqularities: the structure of the information sources is unstable
and frequently changes in time, hence data efficacy cannot be provided.

Information sources bearing either static or dynamic irregularities are called
irregular, as their inherent structure does not lead to an optimal schema. However,
as we shall see in the next Section, irregular information sources may be handled
electronically through SSD technology. Below, we exemplify known schema-first and
data-first irregular information sources.

2.3.1 Irregular problem domains

Today, common examples of irregular problem domains are given by problem do-
mains of specific research fields, such as biology, palaeobiology, and similar ones.

For instance, although fossil information sources generally present a common
structural pattern that could be represented in a traditional database schema, each
fossil may also be associated with further peculiar, relevant information. Moreover,
the incessant discoveries constantly introduce new fossils, hence new structural prop-
erties.

Such information source is certainly affected by static irregularities as the cate-
gory of fossils features entities with relevant and different properties. Any attempt
to model such scenario with DBMS data models would either make heavy usage of
information loss, in order to keep only the properties common to all fossils, or type
loss, in order to extend the properties peculiar to each fossil to the category of all
fossils.

An alternative is that of considering the category of fossils as a compound of
different categories, each peculiar to a limited number of fossils, i.e. those featuring
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the same properties. In this case, good modelling may be provided, but data efficacy
would be very low, as the schema would be almost the size of the data.

Finally, note that in such scenario, data efficacy would be quite low anyway, due
to the frequently changing structure of the information source. Indeed, this would
entail changes to the schema, which are likely to imply modifications to both the
data and the applications.

For the reasons exemplified above, whenever a problem domain is affected by
static and dynamic irregularities, DBMSs cannot be generally adopted and other
tools should be employed instead [87].

2.3.2 Irregular data sources

In data-first approaches the structure of relevant data plays an important role as it
identifies interesting data in the source documents or database, and it may implicitly
define a schema for the target database. However, the resulting schema may not
be optimal. Indeed, blending different data sources together and storing them in a
DBMS database, or either moving document information into databases, may lead
to irregular collections of data. Next, we discuss these common scenarios.

Integration of different information sources

A challenging issue in database research is that of the integration of heterogeneous
information sources, in order to query them together in the same database system.

The problem is that of blending data deriving from various information sources,
such as relational or object-oriented databases, the Web, file systems, and others,
in an integrated data repository, so as to query them all together. Data in such
a repository could be modelled in the general framework of object-oriented data,
but the overall structure is likely to be irregular. Indeed, some objects may have
missing attributes, others may have multiple occurrences of the same attribute, the
same attribute may have different types in different objects, semantically related
information may be represented differently in various objects. The resulting data is
therefore inherently irregular, and cannot be efficiently stored in a DBMS database.

Legible documents

Generally, the structure of information stored within documents is not optimal.
Indeed, optimal structure is typically associated with data whose main purpose is
that of being queried over, while the purpose of documents is that of being read by
humans and interpreted by specific applications.

For example, in BibTex files it is customary to find compulsory entry fields
missing. Furthermore, while some fields have meaningful structure, e.g. author,
there are complex features, such as abbreviations or cross references that are not
easy to describe in some database systems (cf. [1]). Due to these static irregularities,
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the application of data-first techniques to BibTex files is likely to lead to an inefficient
database.

In fact, the structure of data stored in legible documents is often irregular, un-
known in advance, and even when it is known, it may change without notice. For
such reasons, documents constitute a potential source of irregular information.

Data on the Web and eXtensible Markup Language

The success of the World Wide Web is largely due to the adoption of HTML (Hy-
per Text Markup Language) [83], and, more recently, to the introduction of XML
(eXtensible Markup Language [24]). Both markup languages have been proposed as
international standards for publishing Web documents, providing a common, simple
and human legible format for documents. Since Web-documents favored quick and
easy information exchange, people from the Web community started to re-design or
convert their data onto Web documents so as to make them available to an increas-
ingly wider community.

In particular, due to its flexibility and expressiveness, nowadays XML incessantly
plays the role of a standard data-ezchange format rather than that of a standard
document-ezchange format. XML documents are explicitly intended as information
to be queried over, this fact generating an enormous demand for XML-as-database
technology.

For example, consider the Home pages of the academics of a Computer Science
Department. These pages may contain some similar information, such as name,
e-mail, photo, age and address. However, some of this information may be missing
in some pages, while extra information may be present in others. Transferring this
information into a database may result in a quite inefficient setting, due to the bad
definition of the corresponding schema. In fact, since all the information should be
preserved, the schema would be affected by typing loss or information loss, or lead to
a schema that is almost a copy of the data. In addition, once the mapping from the
HTML (XML) source onto the database schema is designed and the correspondent
wrappers are written, there is no certainty for future HTML (XML) pages to fit with
the current schema. Accordingly, HTML documents, as well as XML documents,
are often taken as examples of irregular information sources.

2.4 Semistructured Data

We have seen that irregular information sources are characterised by a structure
that is either:

e too variable to be represented by a stable schema;

e too irregular to be represented by a short and clear schema.
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These observations led to the definition of semistructured data models, according
to which databases are self-describing collections of data represented as rooted, di-
rected, labelled trees or graphs [25]. Note that, unlike traditional data models, which
provide a set of abstractions to be appropriately combined to define the conceptual
model of a database, SSD models offer just one abstraction mechanism. Accordingly,
system developers are not concerned with the creation of a schema, which is implic-
itly defined by the data model and describes all possible semistructured databases
(SSDBs) as labelled trees or graphs. In this work we define semistructured data as
data stored in an SSDB.

The most representative semistructured data model is the Object Ezchange Model
(OEM) [81]. The novelty of this data model is in the fact that it implicitly defines a
schema for all possible databases, which are represented as rooted, labelled, directed
graphs with values into the leaves. In particular, OEM consists only of the definition
of the set of SSDBs by means of the following BNF:

db = Node
Node ::= < id, Label, Value >
Value::= Atomic | {Node, ... ,Node} | id

Il

where the identifiers id have unique identity in the model.

From the modelling point of view, unlike traditional data models, OEM provides
a conceptual model with the unique category of graphs and, by the grammar above,
implicitly defines the corresponding schema. Thus, the representation of the struc-
ture of an information source is left to the expressivity of the single database, which
can only represent entities and properties, i.e. associations, between entities.

By definition, entities of an instance, which are represented by identifiers in the
database, are possibly related with other entities for being their property values;
properties are uniquely represented in the database by pairs (label,id), where id is
a target node. Note that identifiers are considered as independent individuals and
not as members of a class or a relation as in traditional data models.

Figure 2.3 graphically exemplifies an OEM collection. Each identifier is associ-
ated with a label which provides its description, and may have an arbitrary number
of children that may be equally named. Furthermore, a child may be an ancestor of
its parent.

Note how the data model consents the definition of databases featuring any sort
of static irregularity. Entities that belong to the same category, such as the entities
labelled as Professor in the example, may be feature different properties, e.g. Phone.
Furthermore, there is no restriction on the names of the properties of an entity, which
can be repeated as for Professor for the entity named as Fibonacci. Finally, other
entities, with arbitrary structural properties, may be added to the actual database
at any time.
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<FIBONACCI>
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o o </NAME>
"Giorgio"  "Ghelli" <E-MAIL>
albano@di.unipi.it
</E-MAIL>
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id i
"ghelli@diunipiit’ 10 1

Figure 2.3: OEM and XML SSDBs of the Fibonacci’s group pages

Different authors considered specific restrictions or representations for their data
models, depending on the issues they were seeking. Typical examples are, narrowing
the analysis to trees, so as to avoid tedious reasoning about cycles and shared nodes,
and considering labelled edges rather than labelled nodes. A notable case is that of
XML documents, which are a widely accepted representation for SSDBs due to the
hierarchical structure of the format (cf. [4, 88]). For instance, consider the XML
document corresponding to the OEM collection in Figure 2.3.

An SSDB is a representation of the structure and of the instance of an informa-
tion source. This integration makes SSD technology extremely flexible as it gives to
the user the ability of:

o freely inserting or deleting data representing portions of the information source
at any time;

e modifying the database in correspondence of changes to the information source
at any time with very low costs.

In practice, these models have been applied to quite a few research prototypes,
working on the areas of data integration and conversion (cf. [36, 39, 45]), Web Site
management (cf. [86, 54, 59]), general purpose management of semistructured data
(cf. [29, 51]), and XML data management, which we shall discuss in the following.
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2.5 Semistructured data manipulation

SSD models provide the flexibility required to represent SSD. On the other hand,
system and users are provided only with:

1. the semantic information given by the labels;

2. the implicit structural information derived from the hierarchical structure of
the database.

Consequently, the data can only be accessed and manipulated as a labelled graph
with unknown topology. These features considerably limit the range of possible
operations over the data, which can only be treated as graphs, and inevitably reduces
the number of system facilities, such as query optimisation and the usage of indexes
over the data. In this Section we introduce the general feature of the most common
semistructured query languages.

2.5.1 Query languages

Semistructured Query Languages (SSD@QLs) are fundamentally tools to identify pos-
sibly more regular, smaller, views of large SSDBs. Views are the result of the
execution of queries, which specify a set of assumptions over the structure of the
data to be queried.

For instance, a query over the collection in Figure 2.3, written in Lorel 3], the
language defined by the TSIMMIS project group, looks like:

select result:x.Second
from Fibonacci.*.Professor x
where ¢‘ghelli’’ in x.E-mail

The query searches the surname of those professors whose e-mail contains the
string ghelli, and returns a tree-structured SSDB with one edge result for each of
the surnames found in the process. Moreover, even though this does not apply to
our example, the clause x states that the node labelled Professor could have been
at arbitrary depth in the database graph, as long as it was a descendant of the root
node labelled Fibonacci.

An SSDQL query consists of three parts, to be executed separately to get a
result: binding, filtering, and constructing.

First a set of candidate nodes is identified, by providing the structure through
which they must be reached from the root of the graph, i.e. the entry point of the
database. Subsequently, the resulting set is bound with a variable, such as z in the
sample query above.

The structure for the identification of the candidate nodes is generally given in
terms of a set of paths of the form ly,ls,...,l, to be matched against the SSDB.
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The result of applying such paths to an SSDB graph, is the set of nodes e, such
that there exist an edge (r,l1,e1), (e1,l2,€2), ..., (én—1,ln, €s) in the SSDB, where r
is the entry point of the database.

A query specifies a set of paths by means of Generalised Path Ezpressions (GPEs,
cf. [38, 40]), which are expressions of the form p;.ps,... .p,, where the p;’s may
be a label [ or particular symbols, known as wild cards, of the form #, ?, |. For
example, the GPE [;,1,,...,l, represents only the relative path, while the GPE
ly. % .l represents the infinite set of paths which begin with a label /; and reach a
label I, after encountering an arbitrary number of labels.

The process of querying an SSDB is based on pattern matching techniques ex-
ploiting the inherent graph structure of the given data model and the semantic
information coded by the GPEs.

Afterwards, the set of nodes can be filtered through a set of predicates applied
over the corresponding binding variables, such as ¢ ‘ghelli’’ in x.E-mail in the
query above. The set of nodes triggered by the predicates is in turn applied to a
set of constructors, such as result: x.Second, which return an SSDB as a result
of the query.

The expressive power of SSDQLs is measured on the base of the kind of queries
the user can express (cf. [28]). Most languages provide the basic operations re-
quired by relational query languages, such as joins and grouping, plus some form of
restructuring, i.e. the ability of creating a new SSDB from another one.

Well known query languages are Lorel [3, 82] developed by the TSIMMIS group,
Stru@L [55], UnQL [29], developed by the UnQL group, YATL [39] developed by
the Verso group, TQL [33], and others. These languages typically provide SQL-like
constructs, through which programmers may create and query SSDBs.

Furthermore, in the last few years the World Wide Web Consortium (W3C)
focused on the design of standard data models [56] and query algebras [53] for XML
SSDBs, so as to provide general guidelines for commercial developers. Well known
XML query languages are Lorel adapted to XML [63], XQL [84], and XML-QL [49],
XPATH [40] developed by the W3C, XDuce [66], Quilt [35], and XQuery [34, 70].
In the next Chapter, we shall see that XDuce, Quilt and XQuery support types for
SSDBs, and are the only example of SSDQLs with the expressive power of Turing-
complete languages.

2.5.2 Query languages implementation

The implementation of SSDBMSs is a known and interesting problem, which em-
braces most of the issues of traditional database design plus others, stricly peculiar
to the challenge of querying SSDBs.

Two main approaches have been explored. The first, and most researched, ap-
proach is based on the storage of data in a relational, or object-relational, DBMS,
and on the translation of the queries into SQL queries [61]. Quilt [32] and XML-QL
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have been implemented in this way. These implementations usually are not able to
support all operations one would require in an SSDQL, due to limitations of the
underlying DBMSs which are definitely intendend for different purposes [85].

Another approach, which is much more expensive but overcomes these limi-
tations, consists in the construction of a new complete and specific system. For
example, Lorel [71], Stru@L [50], XML-QL, and XQL have been implemented in
this way, while the implementation of Xyleme [9] is somehow intermediate. This
approach requires the definition of a new storage model [67], a specialized query
algebra, as well as the definition of adequate cost-based optimisation techniques.
While some efforts have been spent in the context of Lorel and, to some extent, of
Stru@L, satisfactory algebras and general cost models for such implementations are
still missing.

2.6 Semistructured data drawbacks

So far, we have shown how the choice of SSD models may overcome the problem of
using otherwise inefficient DBMSs to manage irregular information sources. On the
other hand, SSDBMSs are not as powerful as DBMSs as explained in the following.

o Query optimisations and data access cannot be supported: due to the absence
of a schema the only possible execution plan is the exhaustive traversal of the
whole database according to the structure specified by the GPEs; furthermore,
the data cannot be stored according to particular data structures, exploiting
indexes as in DBMSs, but only according to strategies for the memorisation
of labelled graphs.

o Query correctness cannot be supported: with reference to Definition 2.2.1 of
query correctness for DBMSs, in SSDBMSs query correctness cannot be stat-
ically checked as there is no notion of static schema. Indeed, as structure of
the database may change at any time, query correctness should be checked
whenever a query is executed. Furthermore, since in SSDBs the structure of
the data is intermixed with the data, query correctness should be matched
against the actual SSDB.

In conclusion, query correctness in SSDQLs may be dynamically checked, dur-
ing query execution, by verifying that all paths specified by the query found a
match in the traversal of the SSDB. This way, when a query returns an empty
result the user learns if this was due to the erroneous GPEs he had specified
or, more interestingly, because none of the candidate nodes identified in the
binding part survived the query filtering.

Clearly, this notion of correctness cannot be a discriminating factor for the
repeated execution of the query as it could be in a DBMS. Indeed, a query
may turn out to be incorrect for one execution and, due to modifications to
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the database, correct for the one immediately after. Furthermore, due to the
size of a database and to its potentially changing topology, users cannot be
aware of the precise structure of the database.

In fact, users define queries after an eye-inspection of the database content,
so as to identify peculiar structural properties, and queries are performed in a
greedy fashion, in an attempt to get back as much information as possible.

o The language type system is poor: the absence of a schema and, consequently,
of a static form of query correctness, hampers the integration of SSDQLs with
traditional typed languages, which require the specification of types for the
values to be manipulated and whose type systems are usually much more
sophisticated than semistructured data models. Accordingly, the level of com-
plexity of SSDBMS applications is generally limited to the SQL-like queries
presented above. Computations over the database may modify the content of
an SSDB only by renaming some edges or nodes, changing values in the leaves,
or adding nodes and edges to the SSDB.

o Queries may be hard to define: the absence of schema, hence of a short de-
scription of the data, typically hampers the definition of queries looking for
specific data in the SSDB. The users may get hold of structural information
only after an eye-inspection of higly-irregular graph-like databases.

There are two main trends in SSDQLs realisation. Those that do not take into
account any form of meta-information and those that are based on the assumption
that the SSDB comes with a schema. The former are usually a specific case of the
latter when a schema is not available. In the following chapter we discuss the set-
backs listed above and show how some of them have been overcome by reintroducing
the concept of type for SSDBs in SSDQLs.
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Typing semistructured data

In the previous Chapter we have highlighted the differences between SSDBMSs
and DBMSs. In particular, we concluded that SSDBMSs can be applied to handle
any kind of information sources, while DBMSs offer notably efficient services when
applied to information sources with stable and regular structure and show very
poor performances when applied to irregular information sources. Consequently,
for strongly irregular information sources, SSD technology seems to be the only
possible solution. However, the lack of schema generates a notable distance between
SSDBMSs and DBMSs, summarised by the following aspects:

e application correctness: correctness of applications over a database cannot be
guaranteed, while in DBMSs it is verified at compile time by means of type
checking mechanisms;

o operations applicable over the data: data manipulation is limited to queries
upon a labelled graph structure, while in DBMSs it is open to sophisticated
computations over various typed data structures, such as relation, records,
collections, and so on;

system optimisations: queries may be executed by simply sequentially travers-
ing the whole database, while in DBMSs queries are performed by exploiting
various forms of optimisations for query execution and data access;

o user knowledge: users may come to know the content of a database by an
inspection of the overall database, while in DBMS users have access to a
schema, which is a short description of the database’s content.

Nevertheless, structure-less is not a proper definition for semistructured data
models. Indeed, each datum in an SSDB is reachable by traversing the database
according to a specific structure, i.e. a sequence of labels from the entry point,
called path. In this Chapter we discuss when and how a separate description of
such structure, i.e. a schema, may be statically or dynamically provided for SSDBs.
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In particular, we shall see how the choice of either typing methodology for SSD is
concerned with a general trade off between limiting the flexibility of SSD models
and improving all of the benefits deriving from meta-information.

3.1 Static and dynamic typing for SSD

The observation that data in SSDBs are identified by a precise structure has mo-
tivated a number of investigations into the applicability of typing techniques to
SSDBMSs. There are essentially two different research trends aiming at typing
SSD, according to which a type may be provided statically or dynamically.

Static typing The relationship between types and data is that of conventional
DBMSs, i.e. the data in the database must structurally conform to the schema.
We shall see that different definitions of schema and conformity may be given,
so as to capture irregular data and guarantee some of the benefits of static
typing at the same time.

Dynamic typing This approach does not impose any constraint on the structure
of SSDBs, which can be arbitrarily organised; readable and possibly succinct
forms of meta-information are inferred from the structural information repre-
sented by the labels of SSDBs, in order to be exploited by the user to better
define his queries and by the system to support forms of query optimisation.

In the following we present static and dynamic approaches together with some
examples of well-known approaches.

3.1.1 Static typing

Static typing techniques for SSD mirror DBMSs schema-first methodologies in that
a schema is provided before data population. In both scenarios, this requirement
entails a strong assumption of structural stability of the information source at hand,
whose structure must be fixed in time and known in advance. In general such
assumption excludes the applications of such techniques to irregular information
sources affected by dynamic irregularities, and static typing techniques are custom-
ary applied to information sources mainly affected by static irregularities.

The ability of a type language to describe data irregularities is in a trade-off with
static typing benefits, i.e. the ability of the system to provide optimisations, effective
definitions of query correctness, user knowledge, and sophisticated data structures.
Therefore, various forms of static typing techniques for irregular information sources
have been proposed, whose nature depends on the amount of irregularities to be
handled by the system. So as to reveal this trade off, next we present a well known
approach relying on DBMSs systems endowed with peculiar typing methods, which
privileges static typing benefits to system flexibility, and some typing approaches
for SSD, which gain further flexibility by loosing some of the benefits.
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o DBMS languages with union types: mildly irregular information sources are
represented as values of traditional data models endowed with union types:

- query and applications can operate on traditional and intuitive type struc-
tures, such as relation, records, collections and others;

- all static typing benefits can be supported.

DBMSs and programming languages advantages can be exploited, but the
amount of irregularities must be very limited due to system efficiency issues
implied by union types.

e SSDBMSs with low-level type systems: irregular information sources are rep-
resented as SSDBs, whose content is described through an algebra of low-level
types, which typically describe the structure of labelled graphs, rather than
that of values such as records and relations:

- applications are limited to queries operating over labelled graph struc-
tures;

- depending on the relation of conformity between types and SSDBs, query
correctness may assume different shapes or not be supported at all, while
query and storage optimisation can be generally supported.

Some benefits of DBMSs static typing cannot be supported, but low-level
types and SSDQLs can generally better cope with irregularities than DBMSs
with union types. As examples of low-level types for SSD, we shall show some
known examples of XML typed query languages, and the peculiar typing of
UnQL by means of graph schemas.

Union types

Untagged union types are introduced in programming languages to increase appli-
cation flexibility by allowing values of different types to be described by the same
one. Informally, the semantics of union types states that a value v conforms to a
union type union(Ti,...,T,) if there exists ¢ : 1,...,n such that v conforms to

Due to their peculiar nature, union type values should be projected into their

specific type of the union before they can be referred and manipulated. To this aim,
programming languages support particular commands, such as,

typeof x is union(Ty, ..., T,)

union case x of

T

:< operating on z as a value of type 7} >;
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T, :< operating on z as a value of type T, >;
endcase;

At run-time the case command matches the actual type of the value associated
to the variable x with the T;’s and executes the branch corresponding to the match-
ing type. Note that, despite of the dynamic type checking required, the introduction
of union types does not compromise static type checking of applications.

Sophie Cluet, in [41], observed that language type systems or traditional database
data models, endowed with union types, are apt to describe some mild form of ir-
regular information sources. To be convinced of this, recall that static irregularities
derive from entities, represented by values v, each featuring a different set of proper-
ties, represented by the types T;, which all belong to the same category. Union types
can be used to represent such category as a collection of type set(union(Th, ... ,Ty)).

For example, in Figure 3.1, by means of intuitive languages for the definition
of values and high-level types in a DBMS application, we provide the value x
corresponding to the SSDB in Figure 2.3 with the corresponding high-level type
Professors. Applications and queries operating over the elements of the collection
x can be checked for correctness, and system and users can take advantage of all
benefits usually enforced by DBMSs.

let profname = [First = ‘‘Giorgio’’, Second = ‘‘Ghelli’’ ]

let gg = [ Name = profname, E-mail = ‘‘ghelli@di.unipi.it’’,
Phone = 123456 ]

let aa = [ Name = ‘“A. Albano’’, E-mail = ‘albano@di.unipi.it’’ ]

let x = { aa, gg }

type Professors = set(Professor)
type Professor = union(record(E-mail: string;
Name:record(First: string;
Second: string);
Phone: integer );
record(Name: string; E-mail:string ); );

Figure 3.1: Type description for the value representing the Fibonacci’s SSDB

Note how a set of OEM nodes with the same label and reachable from the same
node, such as Professor with Fibonacci in our example, intuitively maps into a
collection value, such as a relation in relational databases. Similarly, a node reaching
differently labelled nodes intuitively maps into a record value.

This approach should be used when the number of static irregularities runs un-
der a certain threshold and the overall data structure is quite stable in time. In
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summary, the information source should be almost regular. Indeed, a type which
accurately describes a value representing a significantly irregular information source
would provide little useful abstraction over the database and compromise system’s
efficiency: such a type would be beyond human understanding and require expensive
static and dynamic type checking controls, therefore be of no practical use.

Integration of different SSDBs

A less obvious approach to the typing of irregular information sources has been
proposed in the specific field of integration of different databases. This integration
process falls in the category of DBMS data-first approaches and requires the recast-
ing of the data sources according to a new unifying schema. However, as explained in
Section 2.3.2, the integration of databases representing different information sources
is likely to lead to a collection of irregular data. Such data cannot be re-cast under
an optimal schema and should therefore be represented as SSD, thereby losing any
static type information associated with the original structured data source.

However, sometimes databases are unified because they contain related informa-
tion which should be merged to be queried over as a single repository, e.g. databases
of professors from different departments. Still, although the databases may be de-
scribed by very similar schemas, as long as the conceptual models were developed
by distinct individuals, the resulting data may present static irregularities. In the
presence of a limited number of irregularities, the resulting database could be rep-
resented by DBMS languages endowed with union types, as shown in the previous
paragraph. However, applications written for the original schemas should be rewrit-
ten as they might not be correct for the new schema.

Buneman and Pierce [30] claimed that the data arising from this specific form of
integration can be represented by SSDBs whose content is described by a particular
type system endowed with untagged union types. Union types capture the irregu-
larities of the resulting data, while specific type rules consent to reduce the number
of modifications to the applications which are typically required in correspondence
with changes to the schema.

The type system proposed by the authors is the following:

T ::=T; X Ty | (records)
Ty + Ty | (untagged unions)
set(T) | (sets)
1:T (singletons)

which describes SSDBs as trees, represented by nested record values, where the label
of the fields cannot be repeated. In particular, record types are defined as products
of singletons of the form 1:T, but may also include elements of the form T; + Ts.
Hence, a further peculiarity of this language are typed operators to access record
structures such as T; x (T, + T3), not to be described here.
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Databases could be represented by means of such values, while the schemas could
find a match, at least a partial match, in the type system above. Thus, SSDBs could
preserve, at least partially, some of the static information provided by the schema
of the original data source. Consequently, typed applications may be written to
operate over the SSDB, potentially exploiting all benefits of static typing.

The type system is provided with type equivalence rules, subtyping rules and
a distribution rule over record and union types, which defines the following type
equivalence:

Ty X (Ty + T3) = (Ty X Ty) + (T; x T3)

Assume the SSDB is typed as set(T; x T3) and that a new data source, whose
schema maps onto a type set(T; x T3), should be added to it. Their integration
could be typed as set ((T; X Ty) + (T; X T3)). The distribution rule states that
those applications written to operate on the part common to both data sources, i.e.
the type T, are still correct and can therefore operate on the resulting SSDBs
without being modified.

For example consider the integration of two databases constructed to model
professors according to the types db_one and db_two:

db_one:

set((Name: [(First:string) X (Second:string)]) x
(E-mail: string) X
(Phone: integer) )

db_two:
set((Name: string) X
(E-mail: string) )

The resulting database could be typed as db, i.e. a set of the union of the core
types of the two original sets:

db:
set([ (Name: [(First:string) x (Second:string)l) x
(E-mail: string) X
(Phone: integer) ] +
[ (Name: string) x
(E-mail: string) 1)

According to the distribution rule, the following type equivalence holds:

db = set((E-mail: string) X
[(Name: (First:string) X (Second:string) ) X
(Phone: integer)
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+
(Name: string)

D

Thus, applications operating only on the field E-mail and proved correct with
respect to both db_one and db_two can be reused on the new database. In a way, the
type system degrades gracefully when new data sources, with variation in structure,
are added to the SSDB, while preserving the common structure of the data sources
where it exists.

The authors claim that for the amount of irregularities generally encountered
in this particular form of data integration, the system shows good performances;
in particular, the complexity of the distribution rule algorithm is reasonable. The
ideas behind this type system have been extended in subsequent works, in particular
in the realisation of the XML processing functional language XDuce [66].

Types for SSDQLs

SSDQLs should be adopted to handle information sources whose irregularities could
not be efficiently handled by DBMSs. When dealing with SSDBs, types are ab-
stractions as expressive as GPEs over labelled graphs, and conformity is a matching
relation between the structure provided by the type and the structure of the actual
database: a database conforms to a type if the paths defined by the type are present
in the database according to the type semantics.

For instance, consider XML query languages [57]. The spread of standards for
specifying XML meta-information, such as DTDs [15] at first and XML Schema [52,
89, 21] afterward, called out for the realisation of typed XML query languages,
capable of exploiting a schema if available. DTDs and XML schemas are low-
level type systems, describing the nested, tagged structure of XML documents and
capturing the static irregularities of the data.

For example, a DTD for the XML document in Figure 2.3 may look like:

<!ELEMENT Fibonacci (Professor*)>
<!ELEMENT Professor (Name, E-mail, Phone?)>
<!ELEMENT Name ((First, Second) | ﬁPCDATA)>
<!ELEMENT E-mail ﬁPCDATA>

<!ELEMENT Phone {PCDATA>

This schema requires the XML documents conforming to it to have an entry
point labelled as Fibonacci, nesting an arbitrarily long sequence of tags Professor.
Furthermore, each of such tags should feature two tags Name and E-mail, possibly
followed by an optional tag Phone. Finally, Name may nest either a simple string,
denoted by the type §PCDATA, or a sequence of two tags First and Second, in turn
of type #PCDATA.
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Typed XML languages range from those capable of querying typed data to those
providing Turing-complete programming paradigms. Examples of the first kind are
XSL [91], YATL, TeQuyLa [10, 12, 11], while examples of the second kind are XDuce,
XQuery, and Quilt.

For instance, XDuce is a Turing-complete typed programming language for the
definition and manipulation of XML documents. The type system, which is based
on the ideas exposed in [31] and reported in the previous paragraph, have the same
expressive power as DTDs and describe XML documents. Language programs are
second order typed functions operating over the data that can be checked for cor-
rectness before execution. Interestingly, types are used as a matching tool for the
data at run-time: data dereference is performed by matching types with data at
run-time, in a way that resembles that of untagged union type values. This is be-
cause the generic XML document may be described by different types and accessed
according to different interpretations.

Based on types, some optimisation techniques have been designed, but not yet
developed, for nested queries [44, 42, 68] and GPEs matching [73, 72, 38, 60]. Due to
the variety of application contexts, however, there are no precise definitions of query
correctness. Correctness is generally intended as a relation between the structure
specified by the GPEs in a query and the schema of the database. For example,
consider again the XML document in Figure 2.3 and the DTD given above. The
query

select x
from Fibonacci.Professor.(Name | Fullname) x

searches for paths from the root of the document that match either the structure
Fibonacci.Professor.Name or Fibonacci.Professor.Fullname. The query may
be considered as correct or incorrect, depending on the kind of correctness policy
adopted.

Existential approaches to correctness would establish that the query is correct
because there exists a non-empty intersection between the paths defined by the
schema semantics and the paths specified by the query semantics. The rational
underneath such policy is that a query is correct as long as there is a chance to
produce a result. The user may be possibly warned by the system about the fact
that his query is searching for paths that cannot be found in the database. Such
policy, which is inappropriate for traditional type checking, is quite reasonable when
dealing with SSDBs.

Universal approaches to correctness would instead establish that the query is
not correct because the query searches for paths not described by the schema. The
underlying policy may state that a query is correct only if all paths in the query find
a match in the schema; in other cases, the policy may be more restrictive, stating
that a schema with a union type can only be accessed by queries which specify a
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case for each member of the union, i.e. the query must match at least one path in
the database.

Other refinements of these definitions are possible, each leading to a different
notion of query correctness. In general, due to the variety of application scenarios,
it is hard to find a solution which applies to all situations. Indeed, only few languages
provide a definition of query correctness, with the notable exception of XDuce.

The drawbacks of these approaches are that applications are quite poor, as they
operate on data modelled as an XML graph; furthermore, as pointed out in the

introduction of the Section, these techniques are pointless in presence of strongly
irregular information sources.

UnQL and Graph schemas

In the language UnQL [29], SSDBs are edge-labelled graphs where values are spec-
ified as the last edges of paths. For example, the Un@)L database corresponding to
the OEM collection in Figure 2.3 is illustrated in Figure 3.2.

(0]
Fibonacci L

1
Professor Professor
E-mail Phone E-mail
Name
Oo
05

"
ghelli@di.unipi.it", First Second \ 123456 "A_Albano”

01,0 010 0140

"albano@di.unipi.it"

"Giorgio"| "Ghelli"

%150 O %16

Figure 3.2: UnQL database

In a later stage of development, the language, which is similar to the SSDQLSs
presented in the previous Chapter, has been extended with a type system [26, 60, 58].
In UnQL a type is a graph, namely a graph schema, whose edges are marked with
constraints, namely unary formulas, over the domain of SSDB labels. A SSDB db
conforms to a graph schema G (db < G) if it is similar to it. Informally, this means
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there exist a relation R between the nodes of the SSDB and the nodes of the schema
such that:

1. the roots are in R,

2. (01,0]) € R if for each edge (01,l,09) outgoing a node o; in the SSDB there
exists an edge (o}, p(z), o5) outgoing the node o} of the schema such that:

(a) the label associated with the former edge verifies the predicate associated
with the latter edge: p(l) is true;

(b) 0, and o), are in R.

Note that, graph schemas are not as restrictive as traditional programming lan-
guage type and low-level types, in that conformity does not enforce the presence of
a label outgoing a node. As a consequence of this, the empty SSDB conforms to all
possible graph schemas.

Figure 3.3 illustrates an example of graph schema for the database graph in
Figure 3.2. Note that, for simplicity, the predicate p(z) = (z = Fibonacci) is
simply replaced with Fibonacci. G states that if there is an edge labelled Fibonacci
outgoing the entry point of the database, such edge reaches nodes which have an
outgoing edge labelled as Phone or others which are not equal to it. In turn, edges
labelled Phone lead to nodes whose outgoing edges can only bear integer values.

Fibonacci Fibonacci
not(Phone) not(Phone)
Phone Phone Address
O

Integer T String
O O

G, G,

Integer

Figure 3.3: Graph schemas

Query correctness cannot be supported because the notion of schema is too
loose and does not provide complete information about the data. For instance, the
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database graph in Figure 2.3 conforms also to Gy. A query ) selecting entities
reachable with the path Professor.Address.z should be intuitively correct with
respect to Gy. However, its result would be empty because the data cannot satisfy
the structural properties of the query.

In practice, Un@)L exploits graph schemas for the definition of typed views over
the data (Gg’s), to provide user knowledge, and to improve query optimisation and
decomposition.

3.1.2 Dynamic typing

Dynamic typing approaches exploit typing information mostly with the purpose
of enabling resource optimisation and promoting user understanding of the data.
Given an existing SSDB, information about its structure is automatically or semi-
automatically inferred by the system.

Notable examples of dynamic typing methodologies are Representative Objects,
Dataguides, and approzimate types, which we shall discuss in the following.

Minimal type inference

These techniques are concerned with inferring a detailed and minimal schema from
a given SSDB. Dataguides [90, 64] and Representative Objects [78] are examples of
such schemas.

For example, representative objects are labelled graphs obtained from the original
SSDB by keeping track of all possible paths from the root. One such schema is
the minimal description of an SSDB and can be used for schema browsing, user
knowledge purposes, and basic forms of query optimisations, such as avoiding the
execution of queries whose result is proven to be empty. Techniques for schema
maintenance have also been developed.

In the presence of SSDBs with shared nodes nested at various levels, schema
inference becomes very expensive. These methodologies, however, are also doomed
to fail also in presence of a sheer number of irregularities. Indeed, the size of the
resulting schema would not provide useful information to the user.

Approximate typing

Minimal types provide useful but limited abstraction over an SSDB. In particular,
when the data is extremely irregular, the number of possible paths in the SSDB
becomes overwhelming and defining precise queries turns into a challenging task.
This motivated the development of more sophisticated type inference techniques [77,
76], whose main aim is that of identifying some regular structure underlying very
large SSDBs. Nodes in the SSDB are assigned a type, while trying to minimise the
total number of types and the deficit. Deficit measures, given an association between
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a node and a type, the amount of information related to the node, typically its
outgoing and/or incoming labelled edges, which is disregarded by the type.

Informally, the methodology is based on (4) a distance function between SSDBs
and (i7) a measure for the size of types. Given an SSDB db, the problem is that
of finding a set of types 7 and a database db’ such that (i) db’ is typed as 7, (i%)
the size of 7 is smaller of a given threshold, and (ii¢) the distance between db and
db' is minimised. The resulting type, together with the associations of nodes to the
corresponding types, may then be passed to the user, for user knowledge purposes,
and to an optimiser, in order to improve query evaluation.

The authors proved the problem of inferring a perfect type for an SSDB to be
NP-complete, and their solution relies on heuristics capable of calculating the best
approzimate type for an arbitrary database. They developed two different strategies,
the first based on schemas as Datalog programs, and the second resulting in a
traditional structure of nested record types. The difference between the two rests
in the notation used: monadic Datalog programs describe SSDB by defining classes
of nodes in terms of their incoming and outgoing edges, while records characterise
a sets of nodes in terms of their outgoing edges, here corresponding to record value
fields.



