Chapter 4

Extraction Mechanism

Emerging typed approaches provide languages capable of querying SSDBs with the
benefits associated with static typing. As shown in Chapter 3, these approaches are
profitable when SSDBs do have an irregular but known structure. However, these
solutions fail at fully recovering the benefits of traditional typed approaches and yet
preserve the modelling flexibility granted by SSD.

In this thesis, we present a radically different approach, in that we do not propose
a new query language for SSD, but a system for querying SSDBs with existing,
computationally complete, typed languages. The system is based on a language-
dependent extraction mechanism, which performs the extraction of regular subsets
of SSDBs that correspond to values of a given type. Accordingly, users can freely
populate their SSDBs and fully recover the benefits of static typing when convenient.

We believe there exists a wide range of SSDBs that could be gainfully manip-
ulated with our mechanism. Moreover, our approach should not be regarded as
an alternative to the navigational techniques presented in Chapter 2, but rather
complementary to them. In combination, the two approaches can provide complete
functionality for SSDBs management.

In this Chapter, we first present the intuitions behind the idea of extracting reg-
ular subsets of SSDBs and then introduce a specification of the process of realisation
of an extraction mechanism for a language. We then discuss possible application
scenarios and compare our approach with other typing techniques for SSD.

4.1 Intuitions

In earlier chapters, we have observed that typed language values are typically used
to represent quite regular information sources, while labelled graphs, i.e. SSDBs, are
flexible modelling primitives that can be used to represent any information source.
Accordingly, we can draw a mapping from the values of a programming language
onto those regular SSDBs that represent the same regular information sources.

To be convinced of this, consider a language with record types. A record value,

36 CHAPTER 4. EXTRACTION MECHANISM

d = [firstname = ‘‘Michele’’, surname = ‘‘Casini’’]
of type ,
T = record[firstname: string, surname: string],

represents an entity of the problem domain friends of mine. Such entity can be
equally represented by the SSDB in Figure 4.1. Hence, d could map onto s, as the
latter features the structural-syntactical properties, i.e. the labels, required by d to
be identified as a value of type 7.

5

oo
firstnaﬁumame
O O

"Michele" "Casini"

Figure 4.1: SSDB as expressive as the language value d.

This mapping emphasises that typed application computing over the values of
the language are indirectly computing over the corresponding regular SSDBs. Ac-
cordingly, based on the mapping, the SSDB s in Figure 4.1 could be conveniently
converted into the corresponding value d of type 7', so as to be computed over with
the benefits of static typing.

As SSDBs are usually adopted to represent irregular information sources, how-
ever, this observation is apparently of no practical value. Indeed, as explained in
Chapter 2, a type that abstracts over a significantly irregular information source
provides little useful information, and is therefore of no practical use.

However, many if not most SSDBs include one or more regular SSDBs that
represent values abstracted over by wuseful types. This observation inspired the
realisation of language-dependent eztraction mechanisms. These mechanisms first
identify the regular subsets of an SSDB that are equivalent, according to a given
mapping, to values of a given type. Then, if these subsets exist, the corresponding
values are generated to be injected into the language.

As an example of this process, consider the SSDB s in Fig. 4.2. Intuitively, the
regular SSDBs sy, s9, s3 contained in s fulfil the structural requirements entailed by
the three language types:

Ty = record[a:record[b:integer]]
T, = coll(record[a:record[b:union(integer, record[c:stringl)1])

T35 = let rec X = record[a: record[d: X,b:record[c:string]l]

4.1. INTUITIONS 37

An extraction mechanism, given s and the three types above, would first identify
the three regular subsets sj, sy, and s3, and then generate language values of the
form

dy= [a=[b=1]1]
dy={ [a=1[b=111, [a=[b=2]1, [a=[b=[c=‘‘three’’]] }

ds = ‘‘three’’]]]

Il
™
I
o
I
o
1
e
o
1
Iy

such that dy, do, d3 map onto s1, s9, s3, respectively. These regular SSDBs can thus
be indirectly computed over by applications in L operating over values of types T},
T, and T3, i.e. under the governance of a static typing regime.

Figure 4.2: Extraction of regular subsets

38 CHAPTER 4. EXTRACTION MECHANISM

4.2 Extraction mechanisms realisation

The realisation of an extraction mechanism for a language is a non-trivial task, which
first focuses on giving a formal characterisation of extraction and then concentrates
on the definition of a corresponding algorithm.

In particular, any language can be associated with a formal definition of ez-
tractability, which captures the concept of value extractable from an SSDB according
to a given type. Given a definition of extractability, an extraction algorithm can thus
be constructed and proved correct with respect to it.

In the following, we give a specification of extractability for the generic pro-
gramming language, a specification of a corresponding algorithm, and a definition
of correctness of the algorithm with respect to extractability.

4.2.1 Extractability

Extractability for a language characterises an extraction mechanism, specifying
when a value can be classified as extractable according to a given type from a
given SSDB. Intuitively, this is when:

1. the value has the given type;
2. there exists a regular SSDB such that:

(a) the subset is included in the given SSDB;
(b) the subset is equivalent to the given value.
Let PL be a programming language with a typing relation :C D x T that asso-
ciates a type T' € T with the set of values d € D such that d : T (see Figure 4.6).

More formally, the notion of extractability for PL is based on:

1. a relation of inclusion <C S x S between SSDBs (see Figure 4.3), which
indirectly associates each SSDB s with the set of SSDBs included into it.

S

Figure 4.3: Inclusion relation

4.2. EXTRACTION MECHANISMS REALISATION 39

ssd

D

Figure 4.4: Mapping from typable values to SSDBs

2. amapping ssd : D — S, from values to SSDBs (see Figure 4.4), which justifies
the equivalent expressiveness of d and s;

Accordingly, we can provide a specification of extractability for the generic PL
as follows.

Definition 4.2.1 (Specification of extractability for PL) Let T € T, s € S. A
value d € D is extractable from s according to T if d : T, and there exists ' € S
such that ssd(d) = s’ and s' < s.

The notion of extractable value can be naturally extended to the notion of set
of values eztractable from an SSDB according to a type.

Definition 4.2.2 (Specification of extractable values) Let s € S, T € T. The set
of values extractable from s according to T is defined as,

D,r ={d| d is eztractable from s according to T}

4.2.2 Extraction algorithm correctness
The generic extraction algorithm,
EXTRpy : SxT—=DU {fa,zl}

is constructed according to a specific definition of extractability for PL. As illus-
trated in Figure 4.5, given s and T', EXTRpy, is expected to return a value extractable
from s according to T, if one exists. If D, r is empty, i.e. there is no value extractable
from s according to T, the algorithm returns fail.

Correctness of EXTRpy, is formally established by proving soundness and com-
pleteness with respect to extractability. Formally,

CHAPTER 4. EXTRACTION MECHANISM

40

Figure 4.5: Extraction algorithm outline

Definition 4.2.3 (Soundness of EXTRp;) Let s € S and T € T. An eztraction
algorithm EXTRpy, is sound if, every successful ezecution EXTRp.(s,T) = d is such

that:
e ssd(d) < s (soundness of inclusion);

e d: T (soundness of typing).
Definition 4.2.4 (Completeness of EXTRpr,) Let s € S and T € T. An extraction

algorithm EXTRpy, s complete if, whenever Dy # 0, EXTRpy (s, T) = d with d €

Ds,T-
T

D

Figure 4.6: Typing relation

Completeness is here given in a very general form, so as to allow the definition
of the simplest extraction algorithm. However, other definitions can be conceived,

4.3. A NEW SSD QUERY METHODOLOGY 41

which narrow this one by defining specific properties the extracted value should
respect.

4.3 A new SSD query methodology

Given a correct extraction algorithm EXTRp, for a language PL, the query method-
ology consists of two phases:

e In the first phase a programmer attempts to project a given type T onto a
given s, that is s and T are passed as input to EXTRp;,. If extraction is not
possible the user will be notified of the failure, otherwise an extractable value
is returned.

When successful, the extraction process also yields a quantification of rele-
vance' of the extracted value (see Figure 4.5). Relevance should be able to
provide users with information over the practical importance of the extracted
value with respect to the type they have specified. By interpreting this in-
formation, users may be able to improve the input type and perform further,
more useful extractions. This process may continue until users believe rele-
vance meets proper requirements.

o The second phase is exactly that of traditional typed programming and query
mechanisms: the applications and the data are known to conform to the same
type, and therefore standard static properties relative to the target language
environment can be assumed. Among these, application correctness is always
supported, while optimisations are up to the hosting system.

Our methodology does not represent an alternative to navigation-based query
approaches. On the contrary, we believe that in combination, the two of them can
provide a complete support to SSD management. In other words, flexibility should
be a fundamental property of SSD while regularity of typing should be recovered
when advantageous.

4.3.1 Possible application scenarios

The main inconvenience of extraction mechanisms is the cost of traversing an SSDB
in the attempt to extract a value. This operation may require the repeated visit of an
entire SSDB and, according to its size, strongly degrade performance. Accordingly,
our query methodology is particularly suitable in application scenarios where new
extractions do not occur frequently.

In particular, new extractions are needed when new types are to be matched
against the SSDB, or when types require to be matched against an up-to-date version
of the data. Hence, extraction mechanisms should be employed when,

INot to be confused with the notion of relevance in information retrieval.

42 CHAPTER 4. EXTRACTION MECHANISM

o the SSDB involved is quite fixed in time: applications implicitly operate over
a mirror of the current SSDB;

e the SSDB involved may be modified: applications do not require to operate
over an up-to-date version of the data;

e applications are not subject to frequent type modifications.

For instance, in the case of user-interactive typed queries over the database,
each query may require the execution of a new extraction. In this scenario, SSDQLSs
seems to be generally the best approach.

An example of a scenario suitable to our extraction system is that of palaeobio-
logical data. These data are usually kept in very large (XML) SSDBs with a fairly
regular core. Such databases would benefit from our methodology and run complex
applications over the regular subsets of their highly irregular SSDBs.

4.3.2 Implementation notes

The extraction system may be implemented in various ways, according to the differ-
ent application context and requirements. Here, we briefly discuss the main issues
of materialisation of the extracted values and of distribution of the system over a
network.

Materialisation

Given an SSDB s and a type T, let d be the value resulting from the extraction from
s according to 7T'. In order to be accessed by applications, d should be available to
the run-time system of L.

This could be done by materialising d, i.e. transforming the corresponding subset
of s into an internal representation of the values of type 7.

A further solution could be to create an index to s, which provides a transparent
interface between the run-time environment of L and the subset of s corresponding
to d. A computation accessing d would directly access, through the index, the
corresponding parts of s.

Note that, as the index would refer to the actual data in s, changes to d may
be directly reflected on s. Furthermore, the extraction process may be incremen-
tal, thereby handling better frequently changing SSDBs. Finally, observe that the
presence of multiple indexes over the same SSDB may correspond to multiple type
views over the data, and eventually result in some sort of integrated, shared and
safely accessed SSDB.

Distribution over a network

SSDBs are becoming common on the Internet, especially in the form of XML files.
We thus expect the net to be a suitable application scenario for the extraction

4.3. A NEW SSD QUERY METHODOLOGY 43

system. This introduces the non-trivial problem related to the location of the SSDB,
the extraction system, and the consuming applications.

For example, if the extraction system is local to the consuming applications
while the SSDB is remotely located, the operation of transferring and filtering the
database locally could be very expensive in terms of time and bandwidth.

In Chapter 9 we present a CORBA-based implementation of the extraction mech-
anism, in which the system is local to the SSDB and the applications may be re-
motely located. Extraction requests are then sent to system, which returns handles
to the resulting subsets. Applications may then prefer to materialise a copy of the
data locally or to keep working with the handle on the remote extracted data via
the handle.

4.3.3 Comparison with other typing techniques for SSD

As far as we know only the system Ozone [2] proposed something similar, with the
purpose of integrating the data model ODMG with OEM. Ozone supports a coercion
function which converts OEM collections into ODMG objects according to a type,
based on intuitions similar to the ones explained in this Chapter. This solution,
however, is specific to ODMG and is not justified by a complete formal treatment.
Moreover, only tree-structured OEM databases are regarded, extracted according
to collection and record types only.

Extraction mechanisms are generally complementary to other typical solutions
to typing SSD, as we shall discuss next.

Static approaches

In Chapter 3, we have seen that in the presence of a large number of irregularities of
the information source, traditional data models endowed with union types cannot
be used. Hence, not to renounce the advantages of static typing, low-level types are
introduced. These types can flexibly describe the structure of SSDBs, and statically
capture static irregularities of any kind.

Low-level static types can be used to support many of the DBMSs benefits dis-
cussed in earlier chapters and yet cope with static irregularities. However, dynamic
irregularities cannot be handled, as the SSDB must be populated according to a
pre-defined schema.

Our system does provide the abstractions and the benefits typical of DBMSs,
while keeping the full irregularity of SSDBs. Regularity is recovered when possible
and gainful, while irregularities are left to SSDBMSs.

Dynamic approaches

As we shall see in later sections, this approach is complementary to ours and would
indeed form an essential part of an integrated system.

44 CHAPTER 4. EXTRACTION MECHANISM

Dynamic types do not provide query correctness, but only some form of query
optimisation. On the other hand they do not limit the number of irregularities in an
SSDB. These techniques may be profitably used, paired with our approach, for the
purpose of extracting a subset of regular information from an SSDB. Such values
may than be imported within the run-time environment of a typed programming
language and gain all the benefits of static typing.

Chapter 5

A Semistructured Data Model

In this Chapter we provide a formal definition of SSDBs, to which we shall refer in
the realisation of an extraction mechanism for the representative language L.

Our SSDBs are defined according to a data model that describes any problem
domain in terms of two modeling primitives: entities, assertions about the exis-
tence of concepts or phenomena in the problem domain; and facts, named binary
associations between entities.

Given the problem domain of my life, for example, a physical person who is a
friend of mine, the sequence of characters Fabio, or the number 30 are all examples
of entities. Furthermore, the first two entities may be associated by a fact Name,
while the first and the third one may be associated by a fact Age.

Facts are directed associations between source and target entities: they increment
the knowledge about entities beyond their simple existence by qualifying target
entities as properties of source entities. We distinguish unique entities, i.e. a friend
of mine, from value entities, or simply values, i.e. 30, according to whether they are
of interest per-se or only as properties of other objects.

We represent problem domains modelled by these primitives as graph-structured
SSDBs. In SSDBs entities and facts are represented, respectively, by objects and
labeled edges between objects. In particular, we focus on SSDBs with the following
properties:

i) there is a distinguished object called the root of the SSDB;
1) edges are labeled and directed;
i13) any object in the SSDB is reachable via a path of edges from the root;

iv) leaves are atomic values from integers and strings.

For example, the SSDB in Figure 5.1 represents the problem domain of the
authors of a paper.

In the following we formally define SSDBs, together with different forms of equiv-
alence and inclusion relation between them, which we shall exploit in later chapters.

46 CHAPTER 5. A SEMISTRUCTURED DATA MODEL

Name

"P.Manghi" "F.Simeoni"

Name Firstname Surname

"Computer Science "Richard" "Connor"
University of Strathclyde"

Figure 5.1: Graphical representation of a SSDB according to our data model

5.1 A formal definition of SSDBs

We define the domain S of SSDBs as a particular subset of the domain I' of labeled
graphs. Labeled graphs are built out of the following primitive domains: Label,
String, Integer, and Oid, all abiding by standard definitions. Labels are used on
edges to represent fact names, while strings and integers model atomic data in ter-
minal objects. Object identifiers represent identity for non-terminal objects. Next,
we shall use the abbreviations Atomic = String + Integers, and Obj = Oid + Atomic.

Labeled graphs are pairs (o, E) where o is an oid identifying the root of the
graph, and E is a set of edges, i.e. triples < 0,1, 0" > where o € Oid, o’ € Obj, and
| € Label. Formally, the set I' of graphs can be defined as:

T = Obj x Pyin(Oid x Label x Obj)

Note that this definition includes graphs that are not SSDBs. For example,
graphs whose oids are not reachable with a path from the root. To restrict to
SSDBs, we first require the following notation:

e g=(0,E) €T, with g, = E and g, = o;

e e=<0,1,0 >€ Py;,(Oid x Label x Obj), with €= o, ¢= 0', and label(e) = I.

5.1. A FORMAL DEFINITION OF SSDBS 47

Definition 5.1.1 (Objects and oids in a graph) Given a graph g € T the set of oids
in g is defined as,

—
e—=

Oid(g) = {o € Oid|ec g, A (e=oV e=o0)};
similarly, the set of objects in g is defined as,

Obj(g) = Oid(g) U {v € Atomic|e € g, A €= v};

Definition 5.1.2 (Operators on set of edges) Given a set of edges E and an oid
o0 € Oid, the set of edges outgoing o in E is defined as,

E(0o) = {e € E |e=o};
the set of edges labeled with [in E is defined as,
E(l) = {e € E | label(e) = l};
the set of source oids in E is defined as,
ha —
E={ecOid|ec E};
the set of target oids in E is defined as,
- -
E={ecOid|ec E};
the set of labels of the edges in E is defined as,
Label(E) = {label(e) | e € E}.

Definition 5.1.3 (Reachable oid) Given a set of edges E and 0,0 € Oid, o is
reachable from o in E (0 <g o) if

7 . .
1. o' =0, i.e. 0<po;

2. there ezists a path in E, i.e. a sequence of edges [e1, ... ,e,] such that <6_1: 0,
- ; . =«
e,=0,andVi:1,... , n—1. e;=e;.

Definition 5.1.4 (SSDB)
The set of SSDBs is the set S C T, defined as,

S={geT |YoeOid(g). 0 <, 9.}

48 CHAPTER 5. A SEMISTRUCTURED DATA MODEL

5.2 Inclusion of SSDB graphs

Inclusion of SSDB can be provided according to various definitions, each depend-
ing on concepts such as identity, topology and labeling of graphs. Extant SSD
approaches typically rely on well-known relations between graphs, such as isomor-
phism [62] and simulation [27].

The choice of a particular definition is fundamental to our extraction system,
which relies on an inclusion relation to identify an extractable value. We first intro-
duce lt-inclusion, which we shall adopt, followed by simulation and by an example
of a very peculiar inclusion relation.

5.2.1 Inclusion by labeling and topology

Inclusion by labeling and topology ensures that an SSDB &' is included into an SSDB
s if the latter has all the structural properties of the former: objects and edges in s’
find a one to one mapping with a subset of the object and edges of s.

Definition 5.2.1 (SSDB lt-inclusion) Given s,s' € S s’ is lt-included in s (s’ < s)
if there ezists a morphism h : Oid(s") — Oid(s) such that h(s.) = s,, and Ve' € s,

— —! —
=e =€

1. if ¢’ Oid then Je € Se h(gl) A h(e) A label(e') = label(e)

—

2. if ¢'e Atomic then Je € Se h(gl) —e A e=¢ A label(€') = label(e)

Consequently, identity by labeling and topology ensures that two SSDB graphs
are the same if they have the same structural properties: there exists a one-to-one
correspondence between both objects and edges.

Definition 5.2.2 (SSDB li-equivalence) Given s,s' € S, s is lt-equivalent to s if
s'<sands<s'.

In Figure 5.2 the graph ss is lt-included into the graph s;, while the two graphs
s3 and s, are lt-equivalent.

5.2.2 Identity by bisimulation

A common form of inclusion is that provided by graph simulation.

Definition 5.2.3 (SSDB simulation) Given two SSDB graphs s and s', a SSDB
simulation between them is a binary relation R,y C Oid(s) x Oid(s") such that, if
01R, 50] then,

1. if 0, € Oid then ¥ < 01,1,090 >€ s., 3 < 0}, 1,0, >€ sl s.t. 03 R, o 0h;

2. if o, € Atomic then o, = os.

5.2. INCLUSION OF SSDB GRAPHS 49

Figure 5.2: 1t-included and bisimilar graphs

The graph s is similar to the graph s' (s <, ') if there exists a graph simulation
R, o such that s, R s,.

Identity by labeling corresponds to graph bisimulation. In Figure 5.2, we show
two bisimilar graphs which are It-included and are not lt-equal.

Definition 5.2.4 (SSDB b-equality) Given s,s' € S, s’ is bisimilar to s if s <p &'
and s’ <y s.

In Figure 5.2 the graphs s; and s, are bisimilar, as well as the graphs s3 and s4.

5.2.3 SSDB d-inclusion

Other, more sophisticated, forms of inclusion may be defined, giving rise to more flex-
ible and powerful extraction mechanisms. For example, consider the tree-structured
SSDBs in Figure 5.3.

The SSDB &' is d-included (depth-included) in the SSDB s. Intuitively, this is
true because any path in s’ appears in s modulo some discontinuity. As suggested
by the example, this form of inclusion may be particularly suitable for extracting
collections of elements of the same type that are spread over the whole SSDB.

50 CHAPTER 5. A SEMISTRUCTURED DATA MODEL

HIPPO_RESEARCH_GROUP

Q0

Name
Coordinator

(6]
"S Neely" "F.Simeoni"

Secondname

Firstname

o

"R.Connor" "www.cs.strath.ac.uk/~richard" "Paolo” "Manghi"

HIPPO_RESEARCH_GROUP_NAMES

O

"S Neely" "F.Simeoni" "R.Connor" Secondname

Firstname
O o
"Paolo" "Manghi"

Figure 5.3: Other forms of inclusion.

Chapter 6

Target language

In this Chapter, we define the typed language L, for which we shall realise an
extraction system. L is characterised by a set of values and a type language based
on standard constructs. As our focus is on the extraction of values of a given type
from SSDBs, we are not concerned with the definition of specific value operators for
L.

Introducing the type language, we provide a general introduction to recursive
types. We then give a coinductive characterisation of type equivalence, followed by
an inductive axiomatisation.

The only purpose of L is providing the formal platform required for the definition
of extractability for a language. Accordingly, language values are directly defined as
particular labelled graphs, so as to simplify the definition of a mapping from values
to SSDBs.

Finally, we formally define the typing relation and give an inductive axiomatisa-
tion for it, with a corresponding proof of soundness and completeness.

6.1 Type language

The type language of L offers standard constructs for data description: simple base
types, record, collection, and union constructors, as well as a way of introducing
recursive definitions. As these are typical abstractions supported by most program-
ming languages, we believe the results of our work can be easily adapted to specific
languages and type systems. As we shall see in Chapter 9, for example, fragments
of XML SSDBs may be extracted with respect to a subset of the Java type system.

Formally, we consider the subset T of the well-defined and canonical expressions
generated by the BNF grammar G:

T u= int|string | X | T1+ T | pX.T | [l :Th, ... by 2 T] | coll(T)

where Vi : 1,...,n. l; € Label. In the union expression 17 + T3, the T;’s are called
members. The expressions pX. T, X is a recursive variable and T is called body.

52 CHAPTER 6. TARGET LANGUAGE

Finally, the pairs [; : T; of a record expression [I; : T1,... ,l, : Tp] are called record
fields, where [; is a record field label and T; is a record field expression.
The set of well-defined expressions generated by G is defined as follows:

Definition 6.1.1 (Well-defined expressions)

VEint
(integer)
V F string
(string)
((Ti Zz coll(T) A(V ET) V (Ti =z col(T)) A (V ET))
VE[L T b T
(record)
where i,j:1,... ,n.jFi=1l#I;
VET, VT
VL +T,
(union)
V, XFT
VEuX. T
(rec)
XeV
VEX
(var)

The judgement - T states that T is well-defined. Proofs of well-definition of
expressions are inductive-algorithmic. Indeed, rule (rec) gathers in V' the recursive
variables introduced by u-expressions, and rule (var) validates the well-definition of
the corresponding bodies at subsequent stages.

The rules are fairly standard, except for (record). The rule canonically requires
the labels of record fields to be different, but restricts to well-defined expressions
where collections can appear only as record field expressions. For example, expres-
sions such as [a : coll(Ty) + Ty] or coll(T) are not well-defined." We shall refer to

L As we better explain in later Sections, this choice is due to the fact that we shall conveniently
represent the values of L as particular labelled graphs, so as to ease the formalisation of the
extraction process. In particular, collection values are represented as oids with a set of equally
labelled outgoing edges. As a collection type should specify such label, we have chosen to refer to
the record field label.

6.1. TYPE LANGUAGE 53

record fields as non-collection fields or collection fields, depending on the nature of
the record fields expression.

The set of contractive expressions is defined as follows.

Definition 6.1.2 (Canonical ezpressions) An exzpression of G is canonical if its
recursive variables appear as ezpressions of non-collection field of a record (1 : X)
or as expressions of collections (I : coll(X)).

In later Sections we shall see that the expressions discarded by this definition
do not describe interesting language values and may introduce problems in the
formalisation of type equality and typing.

Finally, we can define the set of types of L as,

Definition 6.1.3 (Type language T) The type language T of L comprises all well-
defined and canonical expressions defined by the grammar G.

6.1.1 Recursive types

Types are introduced in programming languages to characterise sets of values. In
particular, recursive types are meant to characterise values whose structure consists
of the arbitrarily large repetition of the same fixed pattern. As such, recursive types
extend the capabilities of a type system to the abstraction over values with variable
structure.

In T recursive types are syntactically represented by p-types. In this section, we
show the rationale behind their introduction in type theory.

Let us consider the type system T* of all the types in T except for u-types and
variables. Recursive types are motivated by type equations in T* of the form:

X =T(X), (6.1.1)

where X is a meta-variable ranging over T* and = is the symbol of provable
equality. A solution of (6.1.1) is a type expression T € T* that substituted to all
occurrences of X, transforms the two members of the equation into equal types, i.e.
T =T(T). Note that T, called recursive type, characterises values whose structure
consists of the finite repetition of the same fixed pattern T'(X).

To introduce such types in T* a finite syntactic notation to represent the infi-
nite solution 7' = T(T(T(T(T(T(...))) is required. The solution can be univocally
characterised in terms of its structural pattern T(X). Hence, the type system T* is
extended with recursive variables and new type expressions, u-types, of the form,

pX.T(X)

54 CHAPTER 6. TARGET LANGUAGE

uX.T is also called the canonical solution of (6.1.1). Intuitively, the recursive vari-
able X marks the point from which the structural pattern determined by the body
can be infinitely substituted to generate the infinite solution of (6.1.1).

Note that, for this notation to be unambiguous, each recursive equation in T*
must have a unique solution. This is generally true, as equations of the form (6.1.1)
seem to admit only the solution obtained by infinitely expanding T'(X). However,
when T'(X) is X, all types in T* could be solutions of the equation X = X. For
this reason, we restricted T to canonical type expressions. This excludes types of
the form pX.X and pX.X + X, which may compromise the consistency of our type
system.

6.2 Type equivalence

The type language T is similar to that studied by Amadio and Cardelli in [14] and
Brandt in [22]. In these works, the focus is on the definition of type equality and
subtyping, which become both intuitively and formally complex in the presence of
recursive types. Here we adapt these results to formally characterise and axiomatise
type equality in T, referring to the literature for formal proofs where these are
required.

In T* two types T, T' € T* are equal (T' = T") if they are syntactically equiva-
lent, up to the ordering of the record fields and the union members. An immediate
consequence of introducing recursive types is that syntactical identity is no longer
sufficient to capture type equality.

In the following, we present two formalisation of type equality in T. The first,
weak type equality, is an inductive axiomatisation which captures only partially type
equality. Inductive rules provide both a neat definition and a proof algorithm for
type equality. The second, strong type equality, is more expressive but less intuitive.
Therefore, we relate the corresponding inductive axiomatisation to a mathematical
characterisation.

6.2.1 Weak type equality

The relation of weak type equality is inductively defined by a set of rules of the form,
n>0

where z, 1, ...z, are pairs of equivalent types (77,T3). Such rules state that the
pair z is in the relation provided that the pairs x;,... ,z, are in the relation.

Specifically, = ,, is the smallest subset in T x T that is closed with respect to
the rules in Figure 6.2.1, where we implicitly consider record types and union types
equivalent up to the reordering of fields and members, respectively.

6.2. TYPE EQUIVALENCE 55

T=rwT
(REF — EQ)

T' =y T

Ty T
(SYMM — EQ)

T “~Tw T, T =~Tw T3

Tl =Tw T3

(TRANS — EQ)
Tl =Tw T1’ 3 aTn =T,Ww Ty’L

LTy Ty = [0 T, sy T

n

(RECORD — EQ)

T =g T'
coll(T) =x 4 coll(T")
(COLL — EQ)

Tl =T,w T1’ T2 =T,w Tzl
Ty +To = T+ T}

(UNION — EQ)

(UNFOLD — EQ)

Figure 6.1: Weak type equivalence rules

Rule (UNFOLD — EQ) is justified by the following observation. Since uX.T
represents the only solution of the equation X = T'(X), the equivalence uX.T =
T(pX.T) must hold as both types are trivially a solution for the equation. Syn-
tactically, this equivalence is captured by the rule (UNFOLD — EQ), where the

substitution operation T’ [T/ X} replaces any occurrence of X in 7 with the type 7.

The right member of (UNFOLD) is called one-step unfolding of uX.T', denoted as
unfold, (uX.T). It is obtained by substituting each occurrence of X in the body T
with uX.T. By transitivity, we infer that uX.T is also equivalent to its two-step

unfolding unfoldy, =T [unf oldy (pX T)/ X]) as well as to all its n-step unfoldings.

For example, the equation X = [a : X] is associated to its canonical solution

56 CHAPTER 6. TARGET LANGUAGE

uX.[a : X]. Therefore, the equivalence,
pX.a: X =1y la: pX.[a: X]|
should hold, as well as the equivalence,

pXa: X]=ryla:[a: pX.[a: X]]].

6.2.2 Strong Type Equality

Weak type equality is not expressive enough to capture type equivalence in T. To
understand this, consider the equations X = T(X) and X = T(T(X)). Obviously,
the solution of the first is also a solution of the second. Their canonical solutions,
puX.T(X) and pX.T [T(X)/ X]: respectively, must thus be equivalent in T. With

weak type equality, intuitively, these types can be proven equivalent applying the
rules an infinite number of times, as their unfolding expand to the same infinite
type. Consequently, according to the inductive interpretation of the rules, the pair
(uX.T(X), pX.T [T(X)/X}) cannot be included in the relation. Such recursive

types are known in type theory as non-synchronised recursive types, for their equiv-
alence cannot be proven with rule (UNFOLD — EQ).

The literature offers two different formalisations of strong type equality, one by
Amadio and Cardelli [14] based on semantic grounds and one by Brandt [22, 23]
based on syntactical grounds. The first defines equivalence of types in terms of
equality of corresponding mathematical trees. The second defines type equivalence
as a syntactic property of types. These definitions offer support and justification for
two different axiomatisations with which equivalence of two types can be formally
proven in a finite number of steps. The two systems have been proven equivalent
by Brandt in [22, 23]. In the following, we present the more intuitive formalisation
suggested by Brandt and rely on it to describe type equivalence in T.

Definition of type equality for T

Brandt’s intuition is that two type expressions are equivalent if and only if their
structural comparison, possibly obtained by unfolding the p-types if any, does not
show any syntactic diversity. If such analysis can be indefinitely protracted with no
evidence of contradiction, the two type expressions must be equivalent.

Formally, this structural comparison can be captured by a simulation relation,
according to which two expressions are equivalent if there exist a type bisimulation
between them.

Definition 6.2.1 (Type bisimulation)
A bisimulation on recursive types is a binary relation R on T satisfying:

6.2. TYPE EQUIVALENCE 57

1L (uXT)RT = (T [NX-T/X]) R

2 TREXT) = TR @ [PXTx])

T, T R T, T = Vi l,..on: T, RT]

n

3

4 (AT R(TA+T) = TLRT A T, RTS
5. coll(T) Recoll(T") = TRT

b.

. string R string
7. int R int

Definition 6.2.2 (Type equivalence) Let T,T € T. T = T if and only if there
ezists a bisimulation R such that T R T.

Definition 6.2.3 (Type equivalence relation) Type equivalence relation =.., i.e. the
set of all pairs of equivalent types in T, is the largest type bisimulation in T.?

Brandt proves that this definition is equivalent to that given by Amadio and
Cardelli, which includes also the pairs of non-synchronised type expressions. Fur-
thermore, he gives a corresponding inductive axiomatisation of =, in order to prove
the computability of the proof of equivalence of two type expressions.

Inductive axiomatisation for =,

Definitions as 6.2.2 above are known as coinductive definitions, as they are the dual
of inductive definitions. To this regard, note that the implications zy,... ,z, = «
in the bisimulation definition are equivalent to a set of rules of the form,

L1y, Tn
x

The coinductive interpretation of these rules defines the relation =y that includes
all the pairs of type expressions 7" and 7" such that there exists a type rule of the
form,

L1y Tn

T=,T

and the the pairs in the premises zy,...,, are again in =..> The resulting
relation is equivalent to the largest bisimulation =, defined in 6.2.3 Indeed, two

2Note that the largest bisimulation is implicitly transitive, reflexive and symmetrical.

3Note that the same set of rules, if augmented with rules for reflexivity, symmetry and tran-
sitivity, reduce to the rules that define weak type equivalence. For an interesting discussion on
inductive and coinductive definitions, well-founded and non-well founded sets, and relation between
them, refer to [20, 19, 5, 6]

58 CHAPTER 6. TARGET LANGUAGE

expressions may be equivalent because of an infinite application of type rules justifies
so. In particular, the rules,

T [X Ty] = T

UXT = T'
(REC — L — EQ)

T =T [[LX.T/X]

T =, uX.T
(REC — R— EQ)
justify equivalence of non-synchronised types, thereby capturing strong type equiva-
lence.

Given two non-synchronised type expressions their equivalence cannot be proven
with a finite number of applications of these rules [6]. Brandt noticed, however, that
coinductive proofs for this specific set of rules either terminate in a finite number
of steps or else indefinitely and circularly repeat the same finite number of steps.
Finite proofs could be obtained by enriching the judgements in the rules with sets of
assumptions, that keep track of the pairs of types which have been already visited in
the proof. Specifically, rules will be based on judgements of the form A - T = T",
that state that T =, T’ under the assumptions A.

Definition 6.2.4 (Type equivalence rules)

AT =, T
(REF — EQ)

AT =, T

AT =, T
(SYM — EQ)

AT =T A-T =T1"

AT =, T"
(TRANS — EQ)

Al int =1 int
(INT — EQ)

Al string =¢ string
(STRING — EQ)

ApX. T=2 T FpX. T =, T'
(HY P)

6.2. TYPE EQUIVALENCE 59

ApX. T = T T [1X Ty = 1
AFpX. T =, T'

pX. T=T' ¢ A
(REC — EQ)
AbTy =T .. ArTy=, T,

ARG Ty, T = [0 T, 1 2 T
(RECORD — EQ)

AT =, T
AF coll(T) =y coll(T")

(COLL — EQ)

AFT =T AF T = T
AT+ T = T +T;

(UNION — EQ)

Recursive types are the only types that entail circular proofs. Accordingly, as-
sumption sets are enriched only by rule (REC), thereby keeping track of all pos-
sible returning points for the proofs, while rule (HY P) extracts assumptions from
assumption sets to terminate circular proofs. For example consider the following
proof of equivalence between the non-synchronised type expressions T’ = uX.[a : X]
and 7' = pX.]a: [a: X]:

TRUE
(T=T), (Ja:T)=2T"), (T =x[a:T)FT =T

(HY P)

(T=2T", (la:T] =+ T"), (T =z [a: T F[a:T] =x [a:T"] (RggOsz)
(T=T),(a:T|=xTY+T=¢[a:T (REC%%RD:EC%)
T=2T), ([a:T|==T)F[a:T|=ra:|a:T]] (REC — EQ)

(T=TYkFla:T]=T
OrT =2 T

(REC — BQ)

These rules are not to be associated with either inductive or coinductive defini-
tions of type equivalence. In fact, they inductively define a set of triples of the form
(A,T,T"). Their purpose is capturing the circular, hence finite, nature of proofs of
equivalence induced by the coinductive definition of type equivalence.

Indeed, Brandt showed that, whenever) = T = T”, there exists a type bisimula-
tion R such that includes 7' R T" and vice versa. Furthermore, Brandt showed that
O+ T =T if and only if k4 T = T', where I 4¢ is a judgment in the type rules of
Amadio and Cardelli. As the authors proved soundness and completeness of their
rules with respect to a terminating algorithm to check type equivalence, the same

60 CHAPTER 6. TARGET LANGUAGE

holds for Brandt system. This result is very important to us, as the algorithm we
propose in Chapter 7 requires a type equivalence check.

6.3 Value language

We represent the set of values of L as a particular form of labelled graphs, so as
to simplify the description of the extraction process as well as its formalisation.
Specifically, values differ from SSDBs for a mark, i.e. a further label, assigned to
each edge, and for particular leaf values, i.e.)z, denoting empty collections of type
T.

Marks will be used to distinguish between record field values and elements of
a collection in the specification of the typing relation. Consider, for example, the
values in Fig. 6.2.

d, d,
@] @]
a b c c
r r c C
1 "two" 3 4 1 "two" 3 4

Figure 6.2: Examples of values

According to our interpretation, the values dy, ds, d3, and d4 stand for the more
traditional syntactical representations [a = 1, b =" two"], [c = {3, 4}], [a =1, b ="
two”, ¢ = {3,4}], and [a = 1, b =" two", ¢ = {}int], respectively.

Observe that we introduced empty collection values because we denote collections
as sets of equally labelled edges emanating from the same oid and marked with c.
The type has been introduced to disambiguate typing, in the case an empty collection
is shared by other values.

Furthermore, we represent values of L as graphs with shared nodes and cycles.
These mirror well-known examples of shared values in programming languages, such
as objects, in oo-programming languages, or explicit locations, e.g. pointers, in im-
perative languages.

Overall, this representation has the advantage to be quite representative for any
programming language and to be easily mapped onto SSDBs. The extraction process
will transform an SSDB into a value of L by simply adding the appropriate marks
and the possible empty collection values.

Formally, the set of language values can be defined as a restriction over the set
of marked graphs.

6.3. VALUE LANGUAGE 61

Definition 6.3.1 (Marked graphs) The set of marked graphs is defined as,
Ly = Oid x Ppin(Oid x Label x M x Obj™)

where M = {r, c}, m is a meta-variable ranging over M, and, Obj* = Obj+EC,
where

EC ={0r|T €T}
(7 denotes an empty collection value of type T.
As for SSDBS we introduce the following notation:
e d=(0,ME) € D, with d, = ME and d, = o;

e me =< 0,l,m, 0 >€ Psin(0id x Label x M x Obj™), with me= o, me= o,
label(e) = I, and mark(me) = m.

All the definitions introduced in Chapter 5 for SSDBs can be lifted to marked
graphs.

Definition 6.3.2 (Operators on set of marked edges) Given a set of marked edges
ME and an oid o € Oid, the set of marked edges outgoing o in ME is defined as,

ME(0) = {me € ME |me= o};
the set of marked edges labelled with [in M E' is defined as,
ME(l) = {me € ME | label(me) = l};
the set of source oids in M E is defined as,
ot —
ME= {mee Oid | me € ME};
the set of target oids in M E is defined as,
— —
ME= {mee€ Oid | me € ME};
the set of labels of the marked edges in M E is defined as,
Label(M E) = {label(me) | me € ME};
the set of edges marked as r in M E is defined as,
ME, = {me € ME | mark(me) = r}
the set of edges marked as ¢ in ME is defined as,

ME, = {me € ME | mark(me) = c}

62 CHAPTER 6. TARGET LANGUAGE

Note that in the following we shall denote the set of edges in M E marked as c,
outgoing the oid o, and with label [as M E(o,1),.
Finally, the set of values of L is the defined as follows:

Definition 6.3.3 (Values of L) The set of values of L is the set D C T,,, defined
as,

D = {(G, ME) € Ty, | Yo eME .
(i) o<mp©
(i) | ME(o) |>0
(i11) Yme € ME(o).
mark(me) =r =
(| ME(o,label(me)), | =1
4(| ME(o,label(me)). | =0)
me= 0r =
(mark(me) =¢) A
(] ME(o,label(me)). | =1)}

Clearly, marked graphs are similar to SSDBs, in that they are rooted graphs
in which oids are all reachable from the root. In particular, we expect our record
values not to have repeated labels and to be unambiguously typed. Accordingly, D
does not include marked graphs in which oids have:

® 10 outgoing edges;
® two or more outgoing edges with the same label and marked with r;
e a set of outgoing edges with the same label and different marks.

Furthermore, as the values () denote empty collections, we consider only marked
graphs in which these values are reached by edges < o,l, ¢,y > and cannot have
siblings reached by edges labelled as [.

6.4 Mapping from values of L onto SSDBs

Language values can be easily mapped onto SSDBs by removing marks and the
edges corresponding to empty collections. Formally,

Definition 6.4.1 (Mapping from D to S) Let erase : (Oid x Label x M x Obj) —
(Oid x Label x Obj) be the mapping,

<n‘1_e, label(me), me> n?e;é Or

erase(me) = { 0 e O

6.5. DEFINITION OF TYPING 63

Let Erase : Ptin(Oid x Label x M x Obj) — Pfin(Oid x Label x Obj) be the
mapping

Erase(ME) = {erase(me) | me € ME }.
Finally, let ssd be the mapping ssd: D — S such that:
ssd((o, ME)) = (o, Erase(ME)).

Note that ssd does not vary the topology of its argument, as the only edges
to be removed, those corresponding to empty collections, are terminal. Therefore,
reachability is not compromised and its application on a value d is such that ssd(d) €

S.

6.5 Definition of typing

A value d has type T, or else is a value of T', if d respects the structural requirements
identified by 7'. This equates to say that d has type T if its root d, features the
structural properties of T. Hence, typing depends on a conformity relation between
a type and the edges emanating from the oids of a value. Specifically, conformity
can be formally defined as the following mathematical relation.

Definition 6.5.1 (Conformity relation) Let T € T and ME C Py, (Oid x Label x
M x 0bj™)). Rye € Obj* x T is an ME-conformity relation if:

Lo Ry pX.T = 0 R T [P T)x]

220 Rup T+ Ty = (0 Ruge Th)V (0 Rup Tb)
3. 0 Ry int = o € Integer

4. 0 Ryg string = o € String

5. 0p Ryp T = T=p T

6. 0 Ry [h:Th,...1n: T =

(a) Label(ME(0)) = {li,... ,ln};

(b) Vi:1,...,n.Yme € ME(o,l;)
i. Ty %z collU) = (mark(me) =r A me Ryg T)
ii. Ty =¢ coll(U) = (mark(me) = ¢ A me Ryg U).

64 CHAPTER 6. TARGET LANGUAGE

First of all, note that conformity associates each oid o only with record types
that have the same labelling. We shall see that this assumption notably simplifies
the formalisation of the extraction process, but excludes any sort of polymorphism,
such as record type subtyping. The extraction algorithm, however, could be adapted
to a extract according to a typing that supports subtyping.

Secondly, recursive types characterise sets of values whose structure equates the
repetition of a certain structural pattern T'(X) for an arbitrary, finite number of
times. In other words, the type expression pX.T describes values whose structure
conforms to T', where every occurrence of X in T stays for uX.T again.

Definition 6.5.2 (ME-conformity of objects) Let o € Obj*, T € T, and ME C
Psin(Oid x Label x M x Obj*)). o ME-conforms to T (0 >yp T) if there exists a
conformity relation Ryrg such that oRpygT.

Finally, we provide the definition of typing in terms of the previous definition.

Definition 6.5.3 (Typing) Let d € D, T € T. d has type T (dt>T) if and only if
dT [>df T.

For example, the value d in Fig. 6.3 is of type T =, pX.[a : 7], i.e. its root o
conforms to 7. Indeed, according to the recursive type interpretation given above,
for o to conform to T, o should conform to the type [a : T]. As we consider a
strict interpretation of record types, o should have only one outgoing edge, labelled
as a and marked as 7. Since this is true, we have to make sure that the target
node o' of such edge is of type T, and so on. This reasoning suggests a relation
Ry, = {(o,uX[a: X, (0,[a: pX.la s X])), (o, puX.[a: X]), (d[a : pX.fa: XID},
which proves conformity of o to T'.

6.5.1 Observation about typing

Observing the conformity relation above, while rules 1 to 4 capture the intuition
directly, rule 5 requires a deeper explanation, which we shall give in the following.

roOo

0O T

Figure 6.3: Value d

6.5. DEFINITION OF TYPING 65

Furthermore, we shall also show some interesting differences between the set
of values for L and SSDBs, thus justifying the introduction of marked graphs to
describe values. Indeed, relying directly on S would have notably simplified our
work but would have led to an ambiguous typing relation.

Collection types

Traditionally, collection types coll(U) are treated independently from record types

[li : Th,... 1, : T]. Intuitively, in our settings coll(U) should abstract over oids
with a set of outgoing edges which target oids conforming to the type U. [l :
Ti,...,l, : Ty] should abstract over oids with n outgoing edges, exactly one for each

field I; and labelled with /;, and targeting an oid o' conforming to T;.

However, note that this interpretation of collection types is far too loose in our
context, where, due to extraction purposes, we expect also collection types to be
associated to a specific labelling of the edges.

One possible solution is that of introducing ezplicitly labelled collection types, i.e.
types of the form collqe(U). For example, the type collepia(string) would abstract
over oids with a set of outgoing edges labelled as child which target atomic values
conforming to the type string.

The problem with this solution is that it is based on an interpretation of the data
typical of programming languages. Here, records and collections values are usually
separate syntactical entities. Instead, SSDBs are populated with no concern about
separating oids intuitively representing collections values from those that intuitively
represent records values. For example, consider the two possible instances s’ and s”,
in Fig. 6.4, of SSDBs representing the family of Adam and Ewve.

Assume developers are interested in running applications written in L over the
language value d representing the man and the children of the family represented in
s'. In this case there is no type that abstracts over this subset of s': record types
are useless because there are two labels child outgoing o; collection types are useless
because the edge labelled as man compromises the interpretation of o as a collection
value.

Note that the same extraction applied over s” would succeed. s” could be typed
as [man : string, children : collohia(string)]. Unfortunately, while SSDBs of the
form of s are possible, but not frequent, SSDBs of the form of s’ are natural in
a semistructured data model. This inconvenience could be avoided by refining the
semantics of explicitly labelled collection types. Collection types coll;(U) appearing
within a record field I’ have two possible interpretations: if [= I’, the structural
requirements of coll;(U) should be applied to the oid that is being associated to the
record type. This way, the record [man : string, child : collpya(string)] could type

s

Facing this cumbersome semantics of collection types, which relies on label
matching within record types, we preferred to introduce the less intuitive but uni-

66 CHAPTER 6. TARGET LANGUAGE

> ’

K
Qo
child woman children woman
child/ man man
O O O @)

Q
"Cain" "Abel" "Adam" "Eve" "Adam" "Eve"
child child
O O
"Cain" "Abel"

Figure 6.4: SSDBs of Adam and Eve’s family

form definition presented by rule 5 in the definition of conformity. Collections types
are still labelled, but their label is that specified by the record field within which
they appear. This has the drawback of forcing the usage of collection types within
record types. SSDBs such as s = (0, {< o,child,” Cain” >, < o,child,” Abel" >),
which clearly represents a collection value of type string, can only be extracted and
typed as values of type [child : coll(string)]. On the other hand, both s’ and s” in
Fig. 6.4 can be successfully extracted with respect to the types [man : string, child :
coll(string)] and [man : string, children : [child : coll(string)]].

Marked edges and empty collections

Note that so far, while discussing extraction and typing in relation with collections
types, we did not mention marks and empty collection values. We have directly
dealt with SSDBs as if they could represent the values of L. This would considerably
simplify the formalisation of an extraction mechanism for L, where extraction would
simply consist of the identification of a regular subset of the original SSDB. Here,
we show that, due to lack of self-description of the edges and to the presence of
shared oids, SSDBs cannot represent the values of L.

Consider the definition of conformity as defined between types and SSDBs rather
than between types and values. As for the values of L, typing could only be checked
according to the self-description provided by labelled graphs, i.e. the labels of edges
emanating from an oid. Therefore, the SSDB 5 in Fig. 6.5 could be typed as:

[

man : [children : [child : coll(string)]],
woman : [children : [child : string]|

]l

6.5. DEFINITION OF TYPING 67

man woman

020 03

name children
name
children

@] 04 @]
"Adam" "Eve"
child

"Cain"

Figure 6.5: Ambiguous typing

Indeed, the edge < o4, child, “Cain” >, o, would conform to both
[child : coll(string)] and [child : string].

That is, SSDBs provide no way to differentiate an oid representing a record with a
collection field from one representing a record with a non-collection field. Due to
such lack of self-description, SSDBs may lead to an ambiguous typing, as in the case
of 04. For example, at run-time one could access o, as a collection value and drop
the only element therein. This would cause an inconsistency whenever o, is accessed
as a record in later stages.

Marked edges provide the degree of self-description required by the edges, i.e. by
the graphs, to disambiguate typing. Extraction becomes then the transformation of
an SSDB into a value by adding the marks required by the type at hand.

Now, consider conformity between types and values, the latter deprived of empty
collection values. The only possible way to represent an empty collection of type
[: coll(T)] would be to consider an oid o with no outgoing edges labelled as . This
definition, however, would be too loose and lead to ambiguous typing when shared
oids are involved. Consider, for example, the typing of the value d in Figure 6.6
with respect to the type,

[

man : [children : [child : coll(string)]],
woman : [children : [child : coll(int)]|

]

The oid o4 could be typed as both [child : coll(string)] and [child : coll(int)].
Of course, the addition of elements to either collection would cause a run-time

68 CHAPTER 6. TARGET LANGUAGE

d
o1
man woman
r r
020Q 03
chil(N/Adren
r
04 O

Figure 6.6: Ambiguous typing due to empty collections

type inconsistency. The introduction of typed empty collection values prevents this
anomaly and always ensures an unambiguous typing.

6.6 Axiomatisation of typing

In this Section, we provide an inductive/algorithmic axiomatisation of typing, which
we shall prove sound and complete with respect to the definition of typing (>). This
axiomatisation proves the usability of our type language and provides the foundation
for the proof of soundness of the extraction algorithm for L.

Definition 6.6.1 (Aziomatisation of typing) Let d € D, T € T. d has type T
(d:T) if and only if O;d. \- d, :: T, where:

A; MEFo::int o € Integer
(INT)
A; ME & o :: string o € String
(STRING)
AU(0,T); MEFo::T
(HY P)
T=T
A MEV:-Qp =T

(EMPTYCOLL)

A ME F o T [1X Tyy]
A, MEvo:puX. T

(REC)

6.6. AXIOMATISATION OF TYPING 69

Label(ME(0)) = {li,... ,l.} A
(Vi:1,...,n.Yme € ME(o,l;).

(T; ¢ coll(U) = mark(m)—r A AU (0,T); ME Fme: T)) A
(T; =1 coll(U) = mark(me) =c A (AU (o, T) ME Fme: U))
A ME+ro:T ET[llle,.. L, : T]
(RECORD — COLL)
A MEFo:T)
A MEFo: T+ T,
(UNION - 1)
A, MEFo:Th
A, MEFo:Ty + Ty
(UNION — R)

where rule (UNION — L) has precedence over the rule (UNION — R).

The judgement A; ME + o :: T states that o conforms to T according to ME
and under the assumptions A. This axiomatisation grounds on the same principles
of the type equivalence rules given in Section 6.2.2. In particular, assumptions are
enriched with record types rather than with p-types as in type equivalence. This
does not compromise termination and consistency of the rules, as the restriction to
canonical types (see Definition 6.1.2) ensures that all p-types in T include at least
one record type. Moreover, rule (HY P) plays the same role.

The rules provide a tool for algorithmically proving conformity of an oid to a
type with respect to a set of marked edges, but do not directly define typing. Indeed,
the rules define a larger set of tuples < A, ME,o0,T >, such that A; ME + o0 :: T.
Typing relation is instead defined by the subset of tuples <), ME, 0, T >, such that
(0, ME) is a value of L, associated with the judgements §; ME F o:: T.

Next, we prove this axiomatisation is sound and complete with respect to the
definition of typing.

Theorem 6.6.2 (Soundness and completeness of typing) Let d € D, T € T.
d>T & d: T
Do do so, we shall rely on the definition of derivation tree,

Definition 6.6.3 (Derivation Tree) Given a judgement A; ME + o :: T a deriva-

tion tree is a term of the following grammar:
DTy,... DT, , ,
DTu=—"""" |T=.T I
A MEFonT \ + T' | o € Integer | o € String | fail

where n > 0.

70 CHAPTER 6. TARGET LANGUAGE

6.6.1 Completeness

Completeness states that given d € D and T' € T, d> T entails d : T. To prove
completeness we rely on an algorithm Proof (see Figure 6.7) that given o € Obj™,
a set of edges ME, and a canonical type T, returns the derivation tree for the
judgement @; ME + o :: T. We shall prove that this algorithm terminates and than
that if o>z T then Proof (@, ME, 0, T) returns a valid derivation for §; ME F o ::
T. Consequently, since d > T implies that d, >4, T, we can prove prove that the
judgement 0; d,, - d, :: T is valid, from which, by definition, d : T.

Note that a call Proof(A, ME, o, T) returns the derivation tree relative to the
judgement A; ME & o :: T. When no rule is applicable, hence a judgement cannot
be proven, the algorithm returns fail; hence, all derivation trees generated by the
algorithm, whose leaves are different from fail, are valid.

Syntactic properties of types

In this section we point out an interesting property of types in T, which will be
fundamental in the proof of termination of the algorithm Proof. T is a well founded
set with respect to the following relation of syntactic inclusion, and each type T has
a finite number of syntactical subterms.

Definition 6.6.4 (Syntactic subterms)
Let T, T' € T. T is said to be a syntactic subterm of T" if T T T", where C is
defined as follows:

TCT
(REF)

Fi:1,...,n. (TET;) A(T; # coll(U))) V (T T U) A(T; = coll(D)))
TE [ll ZTI,... ,anTn]

(RECORD — COLL)

TCT
TCT+Th

(UNITON — L)
TCT
TET+ T,

(UNION — R)

TCU [;J,X. U/X}

TCuX. U
(UNFOLD)

6.6. AXIOMATISATION OF TYPING 71

Proof: Pyin(0id X T) X Ppin(Oid X label X M x ObjT) x Obj* x T — DT

Case Proof(AU (0,T), ME, o, T)

_ true (HY'P)
{ return AU (0,T); ME\ 0 :: pT

}
Case Proof(A, ME, o, int)
o € Integer
{ if o€ Integer then return A;ME I o::int
else return fail }

(INT)

Case Proof(A, ME, o, string)
o € String
{ if o€ String then return A;ME | o :: string
else return fail }

(STRING)

Case Proof(A, ME, Or/, T)
T —p T
{ if T =7 T then return A;ME}F O =T
else return fail }

(EMPTYCOLL)

Case Proof(A, ME, o, pX.T)
{ DT := Proof(A, ME, o, T[NX-T/X])

DT
2L (RE
return A;ME & o pX. T (REC) }

Case Proof(A, ME, o, Ti +T»)
{ DT := Proof(A, ME, o, T1)
DT
_— NION — L
if DT # fail then return AAMEFo:T + T (wnro)
Proof(A, ME, o, T3) UNION — R
else return A;MEro:Ti + T, (- R }
Case Proof(A, ME, o, T), where T = [l : T1,... I : Ty]
{ if Label(ME(0)) # {l1,...,ln}
then return fail < exact match between the labels in the value and in the type >
if (Ji:1,...,n(T; =7 coll(U) A I & Label(ME(0).) V (T3 ZT coll(U) A li ¢ Label(ME(o)r))
then return fail < labels of c (r) edges should be associated to (non) collection fields in the type >
DT :=0
for i:=1 to n do
{ if T; =7 coll(U)
then for all me € ME(o,l;). do
DT := DT;Proot(AU (0,T), ME, me, U)
else for all me € ME(o,l;), do
DT := DT;Proot(A U (0,T), ME, e, T) }
—_br (RECORD - COLL)
return A;MEF o T }

Figure 6.7: Algorithm Proof

72 CHAPTER 6. TARGET LANGUAGE

Lemma 6.6.5 The relation C is transitive, i.e. VU,V,Z € TifUCV,V C Z,
than U C Z.

Proof. We prove this statement by induction on the generic derivation V C Z of
syntactic inclusion. First we prove it for the axiom rule (REF), and then for the
other rules, by assuming that thesis holds for the premises of each rule.

Case (REF): we know that U C V and that V =, Z, thus, UCV =, Z.

Case (RECORD): we know that U C V and that, by the premises of the rule, for
i1, ,n

if T; =; coll(U") and V C U,
if T; £+ coll(U') and V C T;.

By Induction Hypothesis (from now on IH) we know that:

if T; = coll(U') then U C U;
if T; # coll(U') then U C T;.

Accordingly, an application of rule (RECORD) gives U C [l; : T3, ... , 1, : T,,].

Case (UNION — L): we know that U C V and that, by the premises of the rule,
V ETy. By IH U C T, hence an application of rule (UNION — L) gives
UCT +Ts.

Case (UNION — R): similar to the previous case.

Case (UNFOLD): we know that U C V and that, by the premises of the rule,
VCT [“X'T/X]. ByIHUCT [N‘X'T/X}, hence an application of rule
(UNFOLD) gives U C uX.T.

The next step is the definition of the subterm closure of a type, which is a function
that returns the set of all syntactic subterms of a type.

Definition 6.6.6 (Subterm closure)
The subterm closure of T € T is denoted as T* and defined as:

X* = {x}

6.6. AXIOMATISATION OF TYPING 73

(X 1) = {px.rhuT [PXT)x]
() + T)* = {T) + B} UT; UTS
int* = {int}

string* = {string}

([l Ty el T =

{{h:T,... LT vu | T
i=1T;=rcoll(U) i=1T;Zrcoll(U)

where substitution is applied element wise to sets of recursive types.

We then require the definition of the following property to be able to prove that
the relation of subterm closure is sound with respect to syntactic subterm definition.

Lemma 6.6.7 Subterm closure commutes with substitution, i.e.

@ [Ix]y =@y x| ur
where X € fu(T").

Proof. We prove this statement by induction on the structure of 7" such that
X € fo(T").

Case T' = X: the left hand side of the equation evaluates to
o [Tx]y =1
while the left hand side yields,
(X)* [T/X] UT* = {X} [T/X] UT* = {T}UT* =T*
Case T" = pY.U: we can assume that Y ¢ fo(T). By IH we know that,
w [Tx]pr=v [Tx]ur

therefore,

74 CHAPTER 6. TARGET LANGUAGE

() [T]y =
= (0 [Tx]y =

— v [Ix]yow [Ty [MY.U [T/X]/Y] _

(1m)

~ vy [T] v @ [T/X]UT)[NYU[/X}/]:

~ vy [Tx] v [Tx)) HMYU oz [[Ty] -
(v ¢ fo(ryand [0 [T = [0] [Ty

= {uY.U} [T/X] Slog [’”Y'U/Y]
= (wrutuur YU [T
= vy [Mxjur

T/X})UT*:
uT" =

Case T = T) + Ty: since X € fv(T"), than it must occur free in either T} or Ts.
We assume that X € fo(T) and X ¢ fv(T»), and, by IH,

@ [Tx]y = [Tx]ur

Therefore,

(1 +T) [T]y =

=T [T/X + 1 [T/X])’k =

=@ [Tx]+ [Tx ro @ [Ty o @ [Tx] =
{IH and X ¢ fu(T3) }

—{n+n} [Ux| o [Tx|ur o [Tx] =

({1 + T} UT; UT) [T/X] uT* =

(@ + 1) [Tx | v

The evaluation when X € fu(T3) or X € fv(T3) N fv(Ty) is similar.

Case T' =[l; : Th,... 1, : T,): since X € fu(T"), than there exists i : 1,...,n such
that, X € fu(T;). By IH we than know that for such i,

6.6. AXIOMATISATION OF TYPING 75

if T; =1 coll(U) then
 [Tx]y =v [T ur
if T; #x coll(T) then
@ [Tx)y =1 x| o
In the following we assume that there exists only one such 4, namely ¢ = 1,

and prove the equality for both cases listed above. From the proof it is clear
that the result is not affected by the number of 7}’s in which X occurs free.

[i = 1,11 =, coll(U)]

(b The ol T][T/X]
= (I 1 [T/x],..., T [T/x

{T1 = coll(U) }

= {7 [Trx] F/X o [Tx)ru
SIS —(T/

U2<z<n Ty Z peoll(U") Tz T/X
{10}
={[h Tl T} T/X]]uU* [Fx| v
U2§i§n, Ti=peoll(U") U T/X)
U2§i§n, TizTcou(U') T’ [T/X
=({lh: T TYU U UlUsgicn, mimeoory UV
U2<z<n Tizrcoli(U") Ty) /X UT* =
=T, T [T U

i =1, Ty #¢ coll(U)]

(Tl Tl [Tx]) =
:([ll:Tl[T/X]’---: T[T/X] =

{1y 2 coll(U) }

={:m [Trx] T [P [[Tx o

76 CHAPTER 6. TARGET LANGUAGE

T *
Us<i<n, nizreouwn(U" |7 /X |)7U

Uzgign, T,-zTcou(Uf)(Ti T/X)=
{IH}
—{l: Ty s T [Tx | u T [Tix | uTeu

« [T
U2§i§n, Ti=rcoll(U") v’ /X} u

Uzgign, T;zrcoll(T) i [T/X} =
={[h:T,... ly: T, UTFU

Uzgz‘gn, Ty=Tcoll(T) Uy

Us<i<n, TiZrcoll(T) T} T/X urT* =
=T, LT | Tx | uT

Now we have the tools to prove that {U |U C T} C T*.
Lemma 6.6.8 if T C U then T € U*

Proof. We prove this statement by induction on the generic derivation T C U.
Case (REF): the result follows by simply observing that T' € T*.

Case (UNION — L): we know that T'C T; and that, by IH, T € T}. Note that,
TCT+T) ={T+T}UT UT}

from which T € (T} + T»)*;

Case (UNION — R): the same as above;

Case (RECORD): we know that there exists ¢ : 1,...,n such that either T} #¢
coll(U) and T C T; or T; =, coll(U) and T C U. By IH, we know that either
T e U for T; =1 coll(U) or T € T; for T; # coll(U). In both cases we observe
that,

TC(h:T, T =
={ll: T, .l Tl Ui pm ooy U Y Ui nizcotiion T

Therefore, we get that T € ([l : 11, ... , 1 : To])*%;

6.6. AXIOMATISATION OF TYPING 7

Case (UNFOLD): we know that T C U [“X'U/X]. Moreover, by IH, we know

that T e (U [”X'U/X})*. Since substitution and syntactic closure commute
(Lemma 6.6.7), we can conclude that,

Tev [PXUx])u (ux.uy
By definition of subterm closure,
vt [PXUx] < (uxvy
hence T € (uX.U)*.

The next step is proving that the number of types in a subterm closure is finite.
On the base of soundness of subterm closure with respect to the syntactic subterm
relation, we can then prove that the number of subterms of a type is finite.

Lemma 6.6.9 For allT €T, |T* |< 00

Proof. We prove this statement by induction on the structure of 7'.

Case T = int: |int* | = | {int} | = 1< occ.
Case T = string: | string* | = | {string} | = 1 < cc.
Case T=X: | X*|=|{X}|=1<o00.

We assume that the cardinality of the subterm closure of the subterms of a type
is finite.

Case T = pY.U: by IH | U* | < oo, hence,
| w0 | = (o oo [PV Up | =1 o YU | < oo
Case T =T, +T5: by IH | T¥ | < 00 and | T | < o0, hence,
[(i +)" | = {+TR}UTT UTy |=1+ | TF U Ty | < o0
Case T =[l;: Th,... ,l, : Ty]: by IH we know that for all 4 : 1,... ,n, | T} | < o0

if T; #+ coll(U) and | U* | < 00 if T; #+ coll(U). Therefore,

‘ [IIZTIa--- ;ln:Tn]* | =
i * n %
= {llL Tyl TRIY 4 Ui:lTiETcoll(U) U | +| Ui:szcau(U)Ti |=
i * n *
=1+ Ui:lTiETcall(U) U |+ Ui:lT,-,%Tcoll(U) Tr|<oo

78 CHAPTER 6. TARGET LANGUAGE

u
Corollary 6.6.10 For allT € T, | {T"|T'E T} | < co.
Proof. From Lemma 6.6.8 we can infer that,
{I'T'ETC T
and | T* | < oo by Lemma 6.6.9, from which the thesis follows.
u

Properties of SSDBs

To prove the termination of the algorithm Proof, given in Figure 6.7, we also require
to show that the number of oids of a value that can be visited by Proof is finite.
From the definition of D we can directly infer the following lemma.

Lemma 6.6.11 Let d € D and o € Oid(d), then
| {0 € Oid(d) | o' <4, 0} |<| Oid(d) |< o0

Proof. The proof follows from the definition of D. The number of edges in a value
is finite, hence the number of oids is finite. Besides, the set of oids reachable from
an oid o € Oid(d) is clearly a subset of the possible oids in d, i.e. those reachable
with a path from o.

]

Algorithm execution properties

Next, we formalise some aspects of the computational behavior of Proof so as to
prove its termination. Each algorithm call Proof recursively issues a sequence of
subcalls in chronological order. Each subcall in the sequence is invoked once the
previous one has terminated and so on. Accordingly, each call can be associated
with an ordered tree of all the subcalls recursively generated by it.

Definition 6.6.12 (Call tree) Given an algorithm fun, the call tree of the recursive
computation fun(x) is a multi branched, node-labelled tree defined by,

CT(fun(z)) =
< fun(z), [CT(funy(z4)),... ,CT(fun,(zy,))] >

where the fun;(z;)’s, with i : 1,... ,n, are algorithm calls, in chronological order,
recursively issued by fun(z).

Definition 6.6.13 (Call path)
Given an algorithm fun, a call path of the computation fun(z) is a list of calls
corresponding to the labels along a tree path in CT(fun(z)).

6.6. AXIOMATISATION OF TYPING 79

Definition 6.6.14 (Call chain)

Given an algorithm fun, a call chain of the computation fun(z) is a list of nodes
corresponding to the preorder traversal of CT(fun(z)), i.e. the list in chronological
order of all calls to fun caused by the computation fun(z),

[fun;(z1), ..., fun;(z;),...]

Observe that, if an algorithm does not terminate, its call trees may be infinitely
deep as they would result in infinite call paths and chains.

Theorem 6.6.15 Letd € D, o, € Obj*(d), T, € T, ME C d., and A, an assump-
tion set. If

[Proof(Ay, ME, o1, Th),... ,Proof(A,, ME, o,, Tp),...]

where for all 1 < i < n, 0; € ObjT(d) and T; € T, is a call path relative to the
call Proof (A, ME, o1, Th), then for all 1 < i < n:

0i <M ot NT;ETy

Proof. We prove this statement by induction on the number n of nodes we regard
in a call path.

Trivial, from reflexivity of <j;r and C.

We assume that the thesis holds for the first n — 1 nodes in the call path
and perform a case analysis of the algorithm cases generating the n’th node in the
call path. Note that if n > 1 then fori: 1,... ,n — 1.0; € Qid(d).

Case Proof(A, ME, o, uX.T): the n’th execution step is then,

Proof(A, ME, o, T [”X'T/X}).

By IH we know that o <p;z 0, and that uX.T'C T}. By 6.6.5, we get that,
(REF)

T [MX.T/X] CT [MX.T/X]
(UNFOLD)

T [NX-T/X] CuX.T UXTCT,

(IH)
(TRANS)

T [X T e

Case Proof(A, ME, o, U; + Usy): two n’th steps may arise from this case, symmet-
rical to each other; either

Proof(A, ME, o, Uy)

80

CHAPTER 6. TARGET LANGUAGE

or

Proof(A, ME, o, Us).

Let’s assume we are in the case Proof(A, ME, o, Uy), then by TH we know
that Uy + U C T3, and directly that 0 <ug 01. Rule (UNION — L) tells us
that Uy C Uy + Us, hence by transitivity we can conclude that U; C T3.

Case Proof(A, ME, o, [l : T}, ... ,l, : T})]): there are two kinds of n’th step that

may arise from this case. The first one is of the form,

Proof(A4', ME, o, T})

for all T} #x coll(U); the second one is of the form,

Proof(A', ME, d, U)

for all T} =1 coll(U), where A" = AU (o,[l : T{,... ,l, : T}]). From rule
(RECORD — COLL) we know that T} T [ly : T{,... ,l, : T)] and U C [I; :
Ti,... ,ln: T}], respectively.

By IH we know that [l; : T7,...,l, : T),] C T3, hence by transitivity, we can
conclude, in both cases, that 7; C T} and U C T;.

By IH we know that o <pg o1, hence that there exists a path p, = [<
o, l,my,0f >, < of,l,my, 0, > ..., < o, ll,my,0 >] in d.. The call
Proof(A', ME, o, T]), as well as Proof(A’, ME, o', U), is issued because
there exists an edge < o,l;, m;, 0’ >€ ME(o);,. Therefore, o' <4, o0; because

[pos < 0,1;,m;,0' >] is a path in d,.

Lemma 6.6.16 IfProof(Ay, ME, o, Tp), ..., Proof(A;, ME, 0;, T;), ... is a call
path of CT(Proof(Ay, ME, oy, Tp)), then,

Ay C A C...CA4C...

Proof. Call i + 1 occurs at a deeper level in the path than call ¢. Before invoking
a subcall 7 + 1 the assumption set can only be expanded or left untouched, hence
A; C Aiy. Indeed, the proof follows directly from the observation that during the
execution of Proof the assumption set can only be expanded and never contracted.

6.6. AXIOMATISATION OF TYPING 81

Lemma 6.6.17 Let d € D, o € Obj*(d), T € T, Ay an assumption set, and
[Proof(Ay, ME, oy, Tp),..., Proof(4;, ME, o;, T;),...]
is a call path for Proof (Ao, ME, oo, Ty), then,

ANVi>0: (0, T) e | {(o5 T))}
0<j<N
Modulo type equivalence and simple equality of oids, every call path is composed
by the potentially infinite repetition of the same sequence of labels.

Proof. This statement is proven by contradiction, assuming that

YN 3i20: (o, T) ¢ |J {(05, Ty)}
0<j<N
A direct implication of this assumption is that |J {(0;, T;)} is an infinite set.
According to Lemma 6.6.15, we know that

Uty)} € (Joi) x (JT3) € {0 |0 < oo} x {T" | T' E T}

¢S]

From the corollaries 6.6.10 and 6.6.11, we can infer that,
Utos, T} <[40 |0 <mmoo} | - [{T | T'C To} | < oo

contradicting the fact that (J_{(0;, T;)} is an infinite set. Consequently, our
assumption was false and the proposition true.
L]

Theorem 6.6.18 (Termination of Proof) Ifd € D, o € Obj*(d), T € T, ME C
de, and A is an assumption set, than the call Proof(A, ME, o, T) terminates.

Proof. We proceed by contradiction, by assuming that Proof(A, ME, o, T) does
not terminate. Consequently, CT(Proof(A, ME, o, T) has an infinite path p. By
Lemma 6.6.17, there exists N such that:

¥i>0: (o T) € |J {(0) Ty)}
0<j<N
There exists ¢ > N such that (0;, T;) = (o, [l : Th,... 1 : Tp]) in p. Indeed,
had not this pair existed, all calls would be relative to union types or y-types, which
is not possible as T defines canonical types (see Definition 6.1.2).
As i > N, there exists (o, Ty) = (0i,[l1 : T} ... 1, : T]) such that ¥ < N and
T; =1 Ti. This pair is relative to a call Proof(A,, ME, ok, T;) such that k£ < 1.
Thus, by Lemma 6.6.16, the assumption set A; contains the pair (o, Tj). Therefore,
according to the record case of the algorithm, the call Proof(4;, ME, o;, T;) must
terminate and p cannot be infinite.
]

82 CHAPTER 6. TARGET LANGUAGE
Lemma 6.6.19 Letd € D, T € T, o € Obj*(d), ME C d,, and A an assumption
set, then:

o>yrT = Proof(A, ME, o, T) = DT

where DT is a valid derivation for A; MEFo::T.

Proof. Induction on the finite number i of recursive calls required for the termina-
tion of the call Proof(A4, ME, o, T).

i1=0
Case Proof (AU (0,T), ME,o0,T): the algorithm returns the valid derivation

(HYP) AU (0,T); MEt‘ 0 :: T;

Case Proof(A, ME,o,int): the algorithm returns a derivation (INT) A; ME +
o :: int, which is valid because from o > int we know that o € Integer;

Case Proof(A, ME,o,string): the same as above;

Case Proof(A, ME,(;,T): the same as above, but with the condition 7" =, T.

We assume the thesis holds for the calls of Proof that require less than 7
steps to terminate.

Case Proof(A, ME,o, pX.T): in this case the ¢ — 1’th step is
Proof(A, ME,o, T [”X'T/X]).
As we know that o >pp pX. T, we also know that o >y T [“X'T/X] from

which, by TH, we get that Proof(A, ME,o, T [“X'T/X]) generates a valid
derivation for A; ME+Fo:: T [MX'T/X]. Therefore, by rule (REC),

A MEFo:T [“X'T/X]
A;MEF o uX.T

Proof(A, ME, o,uX.T) = (REC)

is a valid derivation.

6.6. AXIOMATISATION OF TYPING 83

Case Proof(A, ME, o, T; + T3): in this case the i — 1’th step is either

Proof(A, ME, o, Ty) or Proof(A, ME, o, T3).

From o >y g T1 + 15 we can infer either o >pp 11 or o >yp Ty, If 0> yp 11,
by IH, Proof(A, ME, o, T;) returns a valid derivation for A; ME - o :: T}.
Therefore, by rule (UNION — L),

A MEVFo:T)

Proof(A, ME,o,T; +Tz) = A MEronT 4T (UNION - L)
; s+

is a valid derivation.

Case Proof(4, ME,o,[li: Ty ..., Ly :Tu)): o>ye [l : Ty ..., 1, : T,] ensures
that:

1. since the constraints in Proof and in the definition of ME-conformity >
are the same, this call does not return fail;

2. for each me € M E(o), this call recursively invokes one call of the general
form Proof(AU(o, [l : Ty ... , I : Ty]), ME,me, T.,,), which terminates
in at most 7 — 1 steps;

3. Yme € ME(0). me >ygTl,.
By IH we can infer that
Vme € ME(0). AU (0,[li : Ty ... ,1n : Tp]); ME bFmiex: T),,

Therefore, by rule (RECORD — COLL) we can state that,
Proof(A, ME,o,[li : T\ ... ,l,: Tp]) =

Vme € ME(0). AU (o, [l : Ty ... ,ln : T,]); ME Fme: T),,
A MEFo:[ly Ty ... 1, : Ty

is a valid derivation.

Theorem 6.6.20 (Completeness) Let d € D, T € T, then,
doT = d: T
Proof. By definition we know that d > T implies that d, >4, 7. By Lemma 6.6.19

we then know that Proof returns a valid derivation for 0;d, - d, :: T, therefore, by
definition of typing, d : T'. n

84 CHAPTER 6. TARGET LANGUAGE

6.6.2 Soundness

We prove soundness exploiting the principle of coinduction. The proof technique
consists in demonstrating that for all d € D and T € T such that d : T there exists
a d.-conformity relation R such that d RT. In the following we infer R from the
derivation tree relative to the proof of d : T.

Definition 6.6.21 (Derivation Tree Relation) Let d € D, T € T, such that 0;d. F
d. 2 T has a valid derivation tree DT. We call derivation tree relation the relation
yielded by the smallest function Rel : DT — P4, (Objt x T) such that:

{(0,)} UUL, Rel(DT3) Blu=lle
Rel(DT) =

€ otherwise
Note that Rel is well defined since any derivation tree DT is finite.
Theorem 6.6.22 (Soundness) Let d € D, T € T, then,
d:T = d>T

Proof. We prove that for all d and T such that d : T there exists a d.-conformity
relation R such that d, RT, from which we can conclude that d > T'.

By definition of : we know that d : T implies 0; d, + d, :: T. We dub DTyt
the derivation tree corresponding to that judgement and consider R = Rel(DTyr).
First of all note that, by definition of Rel, d, RT is true. Than we prove that R is
a de-conformity relation by showing that it respects the given conditions:

Case o Rint: if (o, int) € R there must be a judgment A; de & o :: int in DTy .
Since this is a valid judgement, o € Integer;

Case o Rstring: the same as above;
Case ();» RT: the same as above, but with condition 7" =, T;
Case o RuX.T: if (o, uX.T) € R there must be a judgement A; d. - 0 = pX.T

in DTy . Since this is a valid judgement, by rule (REC) the judgement
Ajde Fo T [“X'T/X] is in DTy too. Therefore, by definition of Rel,

oRT [“X'T/X];

Case oRTy + Ty: if (0, Ty + T5) € R there must be a judgement A; d. F o =
Ty + Ty in DT, r. Since this is a valid judgement, by rules (UNION — L)
and (UNION — R) there must be either a judgement A; d, - 0 = T} or a
judgement A; d. -0 :: Ty in DTy too. Therefore, by definition of Rel, o RT;
or o RT5;

6.6. AXIOMATISATION OF TYPING 85

Case oR|[ly: Ty ... Iy : Ty 2 if (o, [l1 : T1 ... ,ln : Tp]) € R there must be a judge-
ment A; de b o [ly : Ty ..., 1, : T,] in DTyr. Since this is a valid judge-
ment, by rule (RECORD — COLL) the judgements A’; de - 0; :: T}, where
0<j<mn>0and A =AU (o, [ly : Ty ...,lp : Tp]), are in DTy7 too.
By definition of Rel Vj : 0,... ,n.0; RT] as expected. Since the conditions of
rule (RECORD — COLL) are the same as the conformity relation, the thesis
holds.

86

CHAPTER 6. TARGET LANGUAGE

Chapter 7

Extraction algorithm

In this Chapter we first provide a definition of extractability for L, then we give
an algorithm Extraction based on this definition. We then describe in detail the
behaviour of Extraction and prove its termination. Moreover, we define relevance
of extraction in terms of the measures of precision of extraction and data capturing.

7.1 Extractability for L

As shown in Chapter 4, extractability for a language depends on the definition of a
specific mapping from values to SSDBs and a definition of inclusion. In the case of
L, we define extractability by means of the mapping ssd defined in Section 6.4 and
by lt-inclusion defined in Section 5.2.

Definition 7.1.1 (Estractability for L) Let 5 € S, T € T. A value d is extractable
from's according to T if d : T and there exists s € S such that ssd(d) = s and s < 5.

Note that extractability provides extraction system designers and application
developers with a precise specification of the extraction algorithm’s behaviour. In-
deed, Extraction has been realised following this definition. Furthermore, algo-
rithm users specify types for extraction according to the current database content,
but essentially relying on the definition of ssd and <.

7.2 The code

The extraction algorithm, shown in Figure 7.1, consists of two parts, Extraction
and Extract.

Extraction receives an SSDB 5 and a type T, and yields back either fail, if
no extraction can be performed, or an extractable value d = (5,, ME) € D. The
extraction of d consists of identifying a subset of edges in 5, and, by appropriately
marking them, generating a set of marked edges M E such that §; ME F 5, :: T.

88

CHAPTER 7. EXTRACTION ALGORITHM

Extraction: S x T — DU {fail}

Extraction(s, T) =
{ (AA, ME

= Extract((), se, s, T)

if ME = fail then return fail
else return (s,, ME)

endif }

Extract: Py, (Oid x T) x P;,,(Oid x Label x Obj) x Obj x T —
Pin(0id X T) X Pfin(Oid X Label x M x ObjT) U {fail}

case Extract(A, E, o, pX.T')

{ return Extract(A, E,o0, T [”X'T/X]) }

case Extract(A, E, o, int)

{ if o € Integer then return (0, ()
else return (0, fail)

endif }

case Extract(A, E, o, string)

{ if o € String then return (0, ()
else return (0, fail)

endif }

case Extract(A, E, 0, T1 +T»)

{ (AA, ME) := Extract(A4, E, o, T1)
if ME = fail then return Extract(A, E, o, T2))
else return (AA, ME)

endif }

case Extract(A, E,0,T), where T =1 [l1: T1,... ,ln : Tp)

{ if ITE€T.(0,T)E A

then if T =t Tthen return (0, §)
else return (0, fail)

endif

else { (AA, ME):=({(0,T)},) <insertion of extractable oids>
FAILED := false

i:=1

vhile i <n+ 1 and not(FAILED) do
if T; =T coll(U) <EXTRACTION FOR COLLECTION FIELDS>

then {

else {

endif
endwhile
endif

EMPTY :=true
for all e € E(o,l;) do
(AA;, ME,) :=Extract(AUAA, E, ¢, U) <search for selected edges>
if ME; # fail then
{ ME := MEUME;U { <‘g,li,c,z>} <generation of a marked edge>
AA:= AAUAA; <insertion of extracted oids>
EMPTY := false }
endif
endfor
if EMPTY then ME := MEU {< o,l;,c,0y >} endif }
FAILED := true <EXTRACTION FOR NON-COLLECTION FIELDS>
for all e € E(o,l;) do <collection field case>
(AA¢, MEg) := Extract(AUAA, E, ?, T;) <search for selected edges>
if ME; # fail then
{ ME := MEUMEU { <',l;,r,¢>} <generation of a marked edge>
AA:= AAUAA; <insertion of extracted oids>
FAILED := false
exitfor }
endif
endfor }

if FAILED then (AA,ME):= (0, fail) endif

return (AA, ME) }

case Extract(A, E, 0,T), where o and T do not match any of the cases above

{ return (0, fail) }

Figure 7.1: Extraction algorithm for SSDBs

