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In particular, M E is generated by calling the recursive algorithm Extract, which
takes as input:

e an assumption set A,
e an oid o,
o the set of edges 5.,

e and a type 7,.

At each step, the task of Extract is to extract from S, a set of marked edges
ME, that verifies the judgement A; ME, | o :: T,. We shall see that in the presence
of shared oids the generation of marked edges is a non-trivial task and relies on a
particular usage of assumption sets.

An example of extraction is illustrated in Figure 7.2. Note how the set M E of
edges in the resulting d corresponds to a subset of the edges of s.
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Figure 7.2: Example of extraction

In the following we discuss marked edges generation and assumption sets han-
dling, separately. Finally, for the sake of code readability, we describe some proper-
ties characterising the algorithm’s behaviour.

7.2.1 Generation of marked edges

Extract mirrors the algorithm Proof defined in Chapter 6, in that it provides a
case for all possible pairs (o, T,) identified by the typing rules. However, while
Proof checks whether d,(0) is the set of marked edges required for o to have type
T,, Extract attempts to extract from s.(0) the set of marked edges d, (o) required
for o to have type 7,. In particular,
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e in the case of an atomic type int or string, Extract simply checks if o belongs
to the corresponding domain. If so, the call returns an empty set of marked
edges, otherwise returns fail;

o in the case of union types T} + 75, Extract returns the marked edges required
for o to have type Ti or, if this is not possible, type T5. This is done by
recursively invoking Extract with o and 73, and, if necessary, with o and Ts;

e in the case of recursive types pX.T, the algorithm returns the set of marked
edges required to type o as the unfolding T’ [“X 'T/ X]-

Except for the case of atomic types, the cases of Extract discussed above dis-
patch the extraction of marked edges to further recursive calls. The only case that
identifies edges from an SSDB and generates marked edges is the record type’s. Here,
the algorithm extracts the edges M E, emanating from o that match the structural
requirements imposed by the fields of the record type T, = [y : T1,... , b : T,]. If
any of the fields cannot be matched, the call fails.

In particular, the call sequentially processes the fields from 1 to n, generating
at each step ¢ the marked edges M E, required for o to conform to the record type
[li:Th,...,l;: T;]. Indeed, ME, collects the marked edges generated to satisfy the
structural properties of the fields I; : T}, with j : 1,... ,i. For each field [; : Tj, the
algorithm:

1. determines the set of candidate edges 5. (o, 1;);

2. selects in 5.(0,1;) the edges that satisfy the structural requirements of Tj; in
particular, the algorithm searches for one edge for each non-collection field and
one or more edges for each collection field:

- T; #1 coll(U): checks if there is one candidate edge < o,l;,0' > whose
target object o satisfies the structural requirements of the type T;; this
is done by recursively applying Extract to ¢”’s and 7; under the assump-
tions Ay;

T; =r coll(U): checks if there are candidate edges < o,l;,0' > whose
target object o’ satisfies the structural requirements of the type U; this
is done by recursively applying Extract with U to all o”’s of candidate
edges, under the assumptions A,; if no edge can be selected, Extract
generates an empty collection edge < o,l;, ¢, Oy >;

3. if the structural requirements of T; cannot be satisfied, the algorithm returns

fail;

4. assume the structural requirements of T; can be satisfied, then:
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- T; #1 coll(U): one recursive call, corresponding to a selected edge <
0,1;,0' >, has successfully returned a set of marked edges ME; = MEy;
the algorithm generates from the selected edge the set of marked edges
ME; ={< o,l;,7,0 >};

T, =r coll(U): more than one recursive call, each corresponding to a
selected edge < o, l;, 0’ >, has successfully returned a set of marked edges
ME,; this yields the set M E; = Uv<o,l,-,o'> M E; the algorithm generates
the set ME; = Uv<ogos {< 0,1, ¢,0' >} of all marked edges extracted
from o for the field /; : Tj;

note that the sets M E, are the marked edges required to satisfy A,; MEy -
o uT;or Ay; MEy o' :: U,

5. ME, contains all marked edges generated so far for the record fields I; : T; with
j:0,...,9—1, hence it is such that A,; ME,Fo:: [y : Th,... ,l;—1:T;—1];
the algorithm adds to M E, all marked edges extracted for the current record
field, that is the union between the marked edges M E; generated for [; : T; and
the marked edges M E; generated by the corresponding subcalls. Accordingly,
Ay; ME,Fo:: [l : Ty, ... ,1; : T;] is now a valid judgement.

If the structural requirements of all pairs /; : T; of the record type can be fulfilled
by o, the algorithm returns the set of marked edges

ME, = (Omz) U (LRJMEi)

which verifies A,; ME, o :: T,.

In conclusion, Extraction(3,T) invokes Extract (), 3., 5,, T), which returns
the set of marked edges M E required to prove §); ME + 5, =: T, and, by definition
of typing, (3, ME) : T.

Consider again the example in Figure 7.2, where T =, [person : coll([name :
string])]. The call Extraction(s, T) invokes Extract(f), 5, o1, T). Since the record
type is of the form [person : coll(U)], Extract searches for the subset of candidate
edges S.(o1,person) C 3.. Before the algorithm can effectively mark these edges
with ¢, it must verify that their target objects, namely o, and o3, are in turn ex-
tractable according to the type U of the collection values. To this aim Extract
issues two recursive calls, to match 0, and o3 with U. These calls generate the
sets ME,, = {< og,name,r,” Adam” >} and ME,, = {< o03,name,r,” Eve" >}.
Therefore, the algorithm can generate the marked edges < oy, person,c,0s > and
< o1, person,c,03 > and return ME = ME,, U ME,, U {< o1,person,c,0y >, <
o1, person, ¢, 03 >}. The resulting d = (0, ME) is clearly of type T.
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7.2.2 Assumption sets

It is interesting to consider type checking in the case of cyclic values and values with
shared oids. A value is cyclic if it contains an oid o that is not trivially reachable
from itself; an oid is instead shared if it is not the root and is reachable from the
root by at least two paths p; and ps, where p; is not an extension of p, and vice
versa.

Consider the value d, the type T, and the call tree CT of the computation
Proof((, d, d., T). We know that in the generic call Proof(A, d,, o, T), the as-
sumption set A has the only purpose of avoiding infinite loops in correspondence
with cyclic values and p-types. In particular, this is done by informing each invoked
recursive call about the pairs < o, record type T, > visited so far in the call path.
For the definition of call trees, paths and chains, see Section 6.6.1.

Similarly, Extract keeps track in A of the pairs < o, record type T, > visited in
the current call path. However, note that the test for the termination of a call path
takes place within the record type case, rather than in an independent algorithm
case, and entails a type equivalence check.

These differences are due to the fact that Extract does not simply check for
the conformity of o with respect to 7,, but must generate an o that respects this
property. Thisis not a trivial task in the presence of shared oids, where the algorithm
may reach o through different call paths and attempt to extract from it according
to different record types; o could be extractable according to different record types
and, without a proper termination test, the algorithm would return an inconsistent
set of marked edges.
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Figure 7.3: Example of wrong extraction due to loose termination test.

To be convinced of this, assume Extraction adopts the termination test of
Proof, that is the test terminates an execution path when the pair < o, record
type 1, > is encountered for the second time. The application of Extraction
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in the example shown in Figure 7.3 results in the value d shown in the picture,
which is not typable according to the input type. Indeed, the oid o4 is visited by
two independent call paths of the algorithm, respectively extracting according to
the types [name : coll(string)] and [child : coll(string)]. Both 5.(0oy,name) and
Se(09, child) contain edges that satisfy the structural requirements of these types,
Hence, the algorithm terminates returning the value d. This result is not sound
with respect to extractability since both A; ME + o4 :: [name : coll(string)] and
A; ME & o4 = [child : coll(string)] are not valid judgements.

This problem is solved by enriching the assumption set of Extract also with the
pairs relative to the oids that have been extracted so far in the call chain. Thus, the
generic assumption set A may contain pairs (o, [l; : T1,... 1, : T,,]) relative to two
kinds of oids:

o eztractable oids: the oids visited in the current call path: the algorithm is
currently checking whether these oids can be extracted or not; their presence
in A is to avoid circular reasoning;

o egtracted oids: the oids visited in the current call chain which are not into the
current call path: these are the oids that have been successfully extracted so
far; their presence in A is to avoid the redundant visit of shared portions of
the SSDB.

To ensure correctness, the record case of the algorithm should first check whether
the input o, to be extracted according to T}, is an extractable or an extracted oid in
a pair (0,T)) of A. In this case, if T, =1 T, the algorithm returns an empty set of
marked edges; this is because the call that had first visited o, and added (o, T7) to
A, is in charge of the generation of the correspondent marked edges. If T) #+ T, the
algorithm returns fail, as the call was trying to extract o according to a different
record type.

Thus, when the extraction algorithm successfully terminates, we know that all
marked edges relative to an oid o were generated by only one record case call ac-
cording to T, that is o conforms to T.

In particular, assumption sets are enriched by record type case calls. Consider
the record case call Extract(A4, E, o, T,). The node in the call tree corresponding
to this call may have the following, ordered, set of children:

Extract(Ay, E, o1, Tp,) ... ,Extract(An, E, on, Tp,)

First, the algorithm ensures that for all i : 1,... ,n. AU (0,T,) C A;. This informs
the call Extract(4;, E, o;, T,) about all extractable oids visited so far in the call
path. Call paths originating from Extract(A4;, E, o;, T,,) can thus terminate when
an extractable oid is encountered.

Moreover, the successful execution of the call Extract(4;, E, o;, T,,), returns a
pair (ME;, AA;). The set AA; contains the pairs (o/, T,y) relative to the successful
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record case calls that contributed to the generation of the set M E;. The assumption

set relative to the next call in the call chain, Extract(As1, £, 0iy1, Loy, ), is thus

enriched with the extracted oids in AA;. Call paths originating from such call can
thus terminate when an extracted oid is encountered.

Finally, if the record case call is successful, the algorithm returns (AA, ME),
where

AA= (o, T,) Ul A4

i=1
This set can be passed to further extractions to ensure the consistency of typing.

As an example of use of the correct termination test, consider again the extraction
in Figure 7.3. The call relative to the visit of 0; with the type [man : T1, woman : Ty,
first issues the subcall,

Extract({(o1, [man : Ty,woman : Tz))}, S, 02,T1)

relative to the only candidate edge < 01, man,0, >. This call successfully termi-
nates, and returns the pair (AA,,, ME,,),

AA,, = {(02,T1), (04, [child : coll(string)])}
ME,, = {< 0q,children,r,04 >, < 04, child, c, “Cain" >}
Hence, the algorithm issues the call
Extract(Ao,, Se, 03,T2)

relative to the only candidate edge < o1, woman,o; >, where A,, = {(o1, [man :
Ty, woman : T])} U A,,. Recursively, this call will issue a record case call

Extract(Ao, U {(03, T2)}, Se, 04, [child : coll(string)])

This call will fail, hence the overall extraction, because o4 is currently an ex-
tracted value associated with a type [child : coll(string)] that is not equivalent to
[name : coll(string)).

7.2.3 Reading the algorithm

To be able to better read the code of the algorithm, it is worth pointing out the
following observations. Consider the generic call

Extract(4, E, o, T) = (AA, ME)

where ME # fail, then:
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e The objects potentially reachable by the call chain originating from this call
are those reachable from o with edges in E. In particular, the termination
test excludes from this set the objects that are reachable from o only passing
through oids o such that there exists (6, T) € A. The set O4 i of the objects
potentially extractable by this call, is the set of the objects potentially reach-
able, deprived of the oids appearing in the pairs of A. Indeed, we have shown
that such oids are to be extracted by the call that first inserted them into the
assumption set.

e AA contains the pairs relative to those record case calls which effectively
contributed in the generation of the marked edges in ME. Specifically, if
(8, T) isin AA, then 8 € O4,,, and 6 ¢ A. Moreover, ¥(5, T) € AA the call
chain originating from this call contains a successful call

Extract(Ag, E, 8,T) = (AAg, MEy)

such that (0,T) € A5, ME; = ME(0) and Az C AA.

e V(0, T) € AA. ME(%) # 0. This is because typing for records always requires
at least one marked edge and Extract must generate edges accordingly.

o If me € ME_)then it can b_ss either that th&re exists e € E such that e =<me
, label(me), me> or that me= 0y and E(me, label(me)) = ;

e Proof (A, ME, o, T) returns a valid derivation tree. Observe that, however,
by dropping A the algorithm may fail. This is not the case for judgements
derived from Proof, where the assumption set can be generated from any
point of the proof, and has only termination purposes. Indeed, the judge-
ment corresponding to a successful application of Extract, generally features
only a subset of the marked edges required to prove its validity. The rest of
the marked edges is represented by pairs (6, T) relative to extracted and ex-
tractable oids. Only in a later stage will the recursive unfolding replace these
pairs with the corresponding sets of marked edges and unify them with M E.

7.3 Termination

The termination of Extraction strictly depends on the termination of Extract.
The latter can be proven by observing that, thanks to the assumption sets, all call
paths relative to a computation Extract(A4, E, o, T) must be finite.

Lemma 7.3.1 If Extract(Ay, E, oy, Ty),..., Extract(4;, E, 0;, T;),... is a
call path of the call tree of Extract(Ay, E, oo, To), then,

AgCAC...CAC...
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Proof. Call i + 1 occurs at a deeper level in the path than call i. Before invoking
a subcall 7 + 1 the assumption set can only be expanded or left untouched, hence
A; C Aiy1. Indeed, the proof follows directly from the observation that during the
execution of Extract the assumption set can only be expanded and never contracted.

]

Theorem 7.3.2 (Termination of Extract) Given T € T, A C P, (0id x T),
s € S and o € Obj(s), the callExtract(A, s., o, T) terminates in a finite number
of steps.

Proof. We prove this statement by contradiction, assuming Extract(A, s., o, T)
does not terminate. If this is the case, an infinite call path p originates from the call
tree associated with this call. As by definition of S we know that | Oid(s) | < oo,
we can infer that there exists an oid 0 € Oid(s) visited infinite times by the calls in

By definition of Extract, the input types 7" of the calls in p are all such that
T' C T. As p is infinite, 0 is visited infinite times, and 7 is canonical, there exists
[lh : Th,--. 1y : Tp) © T, such that Extract(4, se, 0, [l1: Th,y-.. b 2 Ty]) is in p.
By definition of Extract and by Lemma 7.3.1, we know that the assumptions sets
relative to the calls following this one in p will contain AU{(o, [l : Th,... ,ln : Tp])}-

As[l; : Th,... ,ly : Tp] is canonical too, for the same reasons, there must exists
a further call Extract(4, s, o, [l : T),... I, : T!]) in p. Since AU {(o, [l :
Ti,....l, : T} C Z’, by definition of Extract this call terminates. Its result
would be either (@, 0), if [l; : Th,..., L : T = [l : T4, ..., I, : T}], or (0, fail)
otherwise. Therefore, p cannot be infinite and Extract terminates in a finite number
of steps. [ ]

Theorem 7.3.3 (Termination of Extraction) Let T € T and s € S. The call
Extraction(s, T) terminates in a finite number of steps.

Proof. Directly from theorem 7.3.2, as Extraction(s, T) depends on the result of
the call Extract(, s., s, T). ]

7.4 Relevance

When defining a type T, so as to extract interesting data from an SSDB 3, the user
may not be aware of the exact overall structure of 5. Indeed, we can generally assume
that T is defined after an eye-inspection of 5 or, if available, of a representation of
its structure.

As a consequence, before writing long-life applications over values of type T one
would be able to make sure that all interesting data in 5 are embraced by the ex-
traction according to T. The same requirement surfaces when long-life applications
are already available and running over extracted values of type T. As discussed in
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Chapter 4, extraction may be repeated after long intervals of time to synchronise
with the rare but possible updates of 5. It may well be the case that some of these
updates were interesting to the user but do not fall in the subset of § captured by

T. Therefore, the extant applications would run over obsolete extracted data.

Extraction

[ person: coll([name:string,
] child: [name:string] ])

[ person:
coll([name: string,
child: coll([name:string]) 1)

[ person:
coll([name: string,

child: coll([name:string])
1+ ) )
[name: string,

son: coll([name:string])

Figure 7.4: Example of extraction with a low-relevance type

Consider the picture in Figure 7.4, where the extraction system is passed the
SSDB 5. Assume the user is interested to compute over the subset of 5 involving
persons with a name and a child, which in turn has a name. From an initial analysis
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of the collection the user comes up with the type,
[person : coll([name : string, child : [name : string]])]

shown in the first extraction in the picture. Observing the resulting value d, we
note that 5 contains more data that may be potentially interesting to the user. For
example, differently from the user’s request, an element of the collection person may
feature more than one child; moreover, there are other subsets of 5 that semantically
correspond to elements of persons but are discarded because their label is son rather
than child.

These sort of misjudgments may be very frequent, as we aim at dealing with the
general scenario of SSDBs featuring a large number of paths, inserted at different
times, possibly by different users with a different cognition of data representation.
Therefore, after extraction, our algorithm provides the user with information rel-
ative to the degree of relevance of his current typing, with the specific purpose of
minimising the misjudgments exemplified above.

We measure relevance in terms of data capturing and precision.
Data capturing is simply the ratio between the edges effectively extracted from
S and the edges in 5.

Definition 7.4.1 (Data capturing) Let T € T and 3 € S. Given the successful call,
Extraction(3,T) = d
data capturing of this eztraction is calculated as:

Erase(d,
dataCapt(s, d) = %
Se

This measure may help the user, who knows the size of s, to figure out whether
our query methodology is convenient in a given application context: a low level of
data capturing may suggest the existence of an extremely small regular core, which
may be better handled by SSDQLs as those presented in Chapter 2.

By lost information for o we mean the edges in 5(o0) that have not been ex-
tracted due to the structural constraints of the extraction type T, but were re-
garded as candidate for extraction by Extract. Consider again the first extraction
in Figure 7.4: the edges < 0y,child,o5 >, < 01,person,o3 >, < 01,person,os >
and < oy, person,o; > fall in this category. Indeed, the first edge was a possible
candidate for Extract, because < o9, child, 05 >€ 5(03)nita; however, it was dis-
carded because the first edge considered by Extract was < 0o, child, 04 >, which
fully satisfied the structural requirements of the record field child.

Precision of extraction measures how well a record type T minimises the quantity
of lost information for a specific oid o0 € Oid(s). In particular, precision is the ratio
between the number of edges outgoing o correctly extracted by the algorithm to
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satisfy the typing for T, and the number of edges outgoing o that were candidate
for that extraction. The overall precision of a record type is calculated in terms
of two separate forms of precision, non-collection field precision and collection field
precision:

Non-collection field precision: it is related with the extraction of edges relative
to record fields that are not associated to collection types. This is the case
for child in the first extraction exemplified in Figure 7.4. The structural
requirements of a non-collection record field entail the extraction of the first
edge satisfying the typing, in the example < 0y, child, o, >. However, there
is another edge labelled as child, which is therefore likely to be relevant for
the user. The system associates with this field a precision of %, meaning that,
due to structural constraints, the extraction returned only one edge out of two
interesting edges.

The user, by observing that this measure is related with a non-collection record
field, may try to improve precision of his extraction by adding a collection type
to T', thereby turning it into,

[person : coll([name : string, child : coll([name : string])])]

which is the type relative to the second extraction illustrated in Figure 7.4.

Collection field precision: it is related with the extraction of edges relative to
record fields that are associated to collection types. This is the case for person
in the second extraction exemplified in Figure 7.4. The structural requirements
of a collection record field entail the extraction of all edges satisfying the
typing, in the example < o1, person,o, >. However, there are other edges
outgoing o labelled as person, which are therefore likely to be relevant for
the user. The system associates with this field the precision i, meaning that,
due to structural constraints, the extraction returned only one edge out of
four potentially interesting edges. The user, by observing that this measure
is related with a collection record field, may try to improve precision of his

extraction by adding a union type to T, thereby turning it into,

[person : coll([name : string, child : coll([name : string])]+
[name : string, son : coll([name : string])])
]
which is the type relative to the third extraction illustrated in Figure 7.4.

Given d € D extracted from 5 € S according to T € T, we can formally give the
following definitions:
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Definition 7.4.2 (Non-collection field precision) Let T =¢ [l : Ty, ... ) ln : T,JET
and o € Oid(d). For all field l; such that T; # coll(U), the non-collection field
precision in s for l; and o is:
_ 1

| se(o, ) |
Definition 7.4.3 (Collection field precision) Let T =1 [l : Th,... 0l : T)JC T
and o € Oid(d). For all field l; such that T; =y coll(U), the collection field precision
in s forl; and o is:

neprecs(o, 1;)

de (0,
el 1 5e(o,) [#0
cprecs 4(0,1;) =

1 | se(0,;) |[=0

Observe that the precision of a collection field with respect to an oid o is certainly
1 if its extraction involved an empty collection.

Finally, we are able to provide a measure of the total precision of a record type
with respect to a given oid. This measure is obtained in terms of the measures of
precision for the individual fields of the record type.

Definition 7.4.4 (Record precision) Let T =, [l : Th,... ,In : T,] in T and o an
oid in s' that has been extracted according to T. The record loss for T in s with o is:

1 n n
rprecs (0, T) = o Z neprecg(o, ;) + Z cprecs q(o, 1;)
i=1, TiZrcoll(U) =1, Ti=rcoll(U)

This measure provides minimal information about every single extraction of an
oid with respect to a record type. If properly combined, these precisions may provide
extremely interesting information to the user.

For example, each record type T appearing in an input type T’ could be associated
with a total precision. That is the ratio between the sum of the record precisions
for oids in d conforming to 7', and the number of oids in d conforming to 7.

Zonid(d). or TPTeCsd(0,T)
[{o€ Oid(d) |o:: T} |

totrprecs 4(T) =

However, different measures of precision could be conceived, such as providing
weights for different fields, or simply returning the total sum of the individual losses
for each record, or calculating the loss of an extraction with respect to a type in
terms of the loss of the related subextractions.

It is interesting to note that in practice relevance will be available to programs.
Hence, its first use may be by the programs themselves, for example providing some
thresholds.
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With reference to rprec, after a successful extraction of d from 5 and T, the user
is presented the list of the pairs (0,T) where T C T is a record type. Each record
type comes along with its precision, as well as the precision of the single fields.
These measures draw a picture of the extraction process that may help the user to
improve its extraction.

For instance, the first extraction shown above produces the following measures
of precision:

Record type Oid Fields Precision Total Precision
[person : coll(Th)] o (person, 1) :
[name : string, child : Ty] 02 (name, 1), (child, §) g
[name : string] 04 (name, 1) 1

The relatively low total precision of the first two record types suggests to explore
the precision of the related fields. Note that, as a general rule, a low non-collection
field precision suggests the addition of a collection type, while a low collection field
precision suggests the introduction of a union type. Following this reasoning, we
reach the third extraction exemplified in Figure 7.4. The measures of precision for
that extraction are:

Record type Oid Fields Precision Total Precision
[person : coll(Th)] 01 (person, 1) i
[name : string,child : T3] 09 (name, 1), (child, 1) 1
[name : string,son : Ty] o3  (name, 1), (son, 1) 1
[name : string| 04 (name, 1) 1
[name : string] 05 (name, 1) 1

The developers or the programs may be satisfied with an extraction even if it
does not report a precision 1.

7.5 Cost

An execution of Extraction may potentially require the repeated traversal of a
whole SSDB. This undesirable feature is quite typical in semistructured data re-
search, where applications are often faced with the problem of the traversal of a tree
or a graph. Generally, however, these applications show extremely bad performances



102 CHAPTER 7. EXTRACTION ALGORITHM

for worst-case scenarios and are well-behaved in real scenarios. In other words, an
application’s worst case complexity has not the same relevance as the experimental
results.

In this Section, we show the potentially exponential nature of Extraction, in
order to provide the reader with a better understanding of the algorithm’s behaviour.
We shall measure cost in terms of the size of the SSDB 5 to be traversed by Extract,
i.e. in relation to the number of edges in 5. We shall see that the algorithm entails
exponential execution costs when applied to specific, simple types and tree-structured
SSDBs. However, we shall also debate the general practical value of these kind of
calculations and claim that the cost for a real application extraction is averagely
linear on the number of edges.

Due to the structural mismatch between record fields and edges emanating from
oids, the average execution of Extract may not traverse arbitrarily large subsets
of the tree-structured 5. Accordingly, if no call of Extract fails, the worst case is
when the input § and T are such that 5 is in a one-to-one mapping with a value d of
type T. The cost of this extraction is that of a depth-first visit of the SSDB graph,
namely O(m) where m =| s, | is the number of edges in 5.

Due to the failure of specific call paths, however, the same edges may be visited
more than once. By observing Extract, this may happen when a call issued by
a union type case Extract(A4, E, o, Ty + T5) fails. Indeed, the failure of the call
Extract(4, E, o, T1) causes the invocation of the call Extract(A4, E, o, T), which
may traverse again the edges outgoing o and the edges reachable from o. Note that
the same problem may arise when selecting candidate edges for a record field.

In the following, we show the exponential behaviour of the algorithm when ap-
plied to a union type and a specific SSDB, which maximises the number of failures
and visit of edges. In particular, we apply Extract to the SSDB 5 with n levels and
fan-out f = 1 illustrated in Figure 7.5, and the u-type:

T= pX.U,

where U =Ty +...+ Ty and T; = [a: X] fori:1,...,k. In its execution, Extract
visits all oids in o0 € Oid(s) with a union type T + ... + T}, and fails after having
tried the extraction of o according to all members 7;. In particular, each record case
call with o and [a : T], invoked by a union case, causes the visit of the whole path
from o to ciao in S, and fails only when visiting that string. This failure propagates
back again to the union case call, which invokes an identical record case call relative
to the next member of the union. Intuitively, the same path may be thus visited
an exponential number of times. We give a formal proof of this in the following
proposition.

Proposition 7.5.1 The ezecution cost of Extraction(s,U) is O(k™).
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010 Level 1
ai
02 Level 2
ai
03 ‘ Level 3
I
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(G Level n—-1
a
Level n
‘‘ciao”’

Figure 7.5: Worst case SSDB and type

Proof. First, note that if we consider the root of 5 at level 1, we have that
m= |5 | =n—-1

As the cost of Extraction is the cost of Extract, we prove the statement for the
latter, by showing that the number of edges visited by the call Extract(4, 3., 3., T)
is k™, i.e. k™.

This statement can be proven by induction on the number i of levels of 5 to be
traversed by the generic union case call Extract(A, E, o, ;, U [T/X]), which we

shall denote as Extract,_;.

Extract,_; issues a call Extract(4, E, o, [a : T]) in order to extract from
0n—1 according to the first member of the union type. The only candidate edge for
the label a is < 0,_1,a, “ciad” >. Accordingly, the call will invoke a further p-type
case call with “ciao” and fail, because “ciao” is not an oid as required by p-types.

This failure propagates back to Extract,_;, which will try the extraction of 0,1
with the second member of the union. As all members of the union will fail, this
process is repeated k times, then the union case call fails. Each time the union case
call tries to extract according to one of its members, the edge < 0,_1, a, “ciad” > is
visited once. Hence, the call visits the edge a total of k! = k times.

By IH we know that all calls Extract,_;, with j : 1,...,¢ — 1, fail after
visiting k7 edges.
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The call Extract,_; issues a call Extract(4, E, o,_4, [a : T]) in order to extract
from o0,,_; according to the first member of the union type. Such a call identifies the
only candidate edge outgoing o,_;, namely < 0,_;, @, 0,—;+1 >, and issues the call
Extract(4, E, 0,_;41, T) = Extract, ;1. The latter is a union case call at level
i— 1. By IH we know that this call traverses k'~! edges before failing. This failure
propagates back to Extract,_;, which attempts the extraction of < 0,_;, a, 0p—iy1 >
with the second member of the union type. This process is repeated k times, then
Extract,_; fails. The candidate edge < o0p_1,a,0,—;11 > is visited k times. In
addition, each of this visits caused the visit of k= edges, for a total of k' edges
visited.

In conclusion, extracting an SSDB as simple as 5 with a type as simple as T,
entails the visit of k" edges. Since m = n — 1 we can state that the execution cost
for Extraction is O(k™).

u

Note that the scenario we constructed represents a particularly extreme situation.
For k£ = 2 and m = 30, for example, the total of edges visited by the algorithm would
be close to a billion.

In real applications, we expect the user to extract by means of a reasonable
number of union types, not to fall in the category of non optimal types. Besides,
only a portion of the oids in the collection would be extracted according to them,
and we do not expect all edges reachable from such oids to satisfy all members of
a union type. Furthermore, due to the mismatch between the labels of the record
fields and the labels of the edges, portions of the SSDB may not be traversed at all.

Consider the extraction of a generic SSDB with m edges with the type:

[Dept : [Emp : coll([Name : string + [FirstName, SecondName : string])]].

This type cannot possibly give rise to an explosion of complexity. The algorithm
will not visit the same edges twice, as the members of the union type are different
and there are no objects in the SSDB that may match both. For this quite common
scenario, the algorithm may traverse at most all m edges.



Chapter 8

Extraction Algorithm Correctness

In this Chapter we prove correctness of the algorithm Extraction with respect to
extractability of L as defined in Chapter 7. In particular, according to the definition
of correctness in Chapter 4, we shall prove:

Soundness: every successful execution Extraction(3,T) = d is such that d is
extractable from s according to T

Completeness: if the set of values D; 7 C D which are estractable from s according
to T is not empty, the call Extraction(s, T) is successful and returns d € D 7.

We shall show that Extraction is sound with respect to extractability, but not
generally complete. Indeed, the algorithm is complete whenever its application is
restricted to tree-structured SSDBs. We shall also observe, however, that incom-
pleteness is typically due to particularly critical scenarios, whose exceptionality does
not generally compromise the usability of Extraction to all SSDBs. Furthermore,
on the basis of the examples of incompleteness, we shall suggest how Extraction
could be modified in order to decrease its degree of incompleteness.

8.1 Soundness

In this Section we prove the following soundness theorem.

Theorem 8.1.1 (Soundness of Extraction) Lets € S and T € T. Every success-
Sful _execution of the algorithm Extraction(s,T) = d is such that ssd(d) < 5 and
d:T.

To this aim we require the notion of success tree of Extract, which is the tree
obtained by the call tree eliminating the nodes relative to failing calls and all nodes
which are reachable from these. Formally,
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Definition 8.1.2 (Fuiling node) A failing node of a call tree is a node corresponding
to a failing call, i.e. a call of Extract that returns a pair (0, fail).

Definition 8.1.3 (Success tree of Extract) Let 5 € S, T € T, Extraction(s,T)
= d be a successful execution of the algorithm, and CT (Extract((, 3., 3., T)) be
the call tree corresponding to such execution.

The success tree ST(Extract(D, 5., 5., T)) of this execution is the tree ob-
tained from the call tree by dropping all failing nodes and all nodes reachable with a
call path originating from a failing node. We denote as STy the nodes in the success

tree ST.

Furthermore, in the following we shall denote as M E the set of marked edges
generated by a record case call.

Definition 8.1.4 (Marked edges generated by a record case call) Let ST be a success
tree, s € S, 0 € Oid(s), A an assumption set, T = [l; : Th,... I, : T,] € T. The
node Extract(A, s., o, T) € STx has a finite set of children,

Sub = {EXtI‘&Ct(AI, Sey 01,4 Tl’) e 7EXtraCt(Ak’ Se) Ok, T’;)}

such that k > 0. By definition of Extract, we know that each of these calls was
invoked after identifying a corresponding candidate edge < o,l,0; >. The set of
marked edges generated by Extract(A, E, o, T) is the set

ME = (U{< o,l,m,0; >})U( U {< O,Ii,C,QU >})

=1 Ti=coll(U)As(o,l;)=0

obtained by appropriately decorating the corresponding selected edges and adding the
empty collection edges where necessary. Extract(A, E, o, T) will return the set of
marked edges

k
ME:MEUUMEi

=1

where M E; is the set of marked edges returned by Extract(4;, E, o;, T}).

i

8.1.1 Soundness of inclusion

Lemma 8.1.5 Let A be an assumption set, E a set of edges, o € Obj, T € T, and
ST the success tree of a call of Extract. If,

Extract(4, E, 0, T) = (AA, ME).
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and,
Extract(4, E, 0, T) € STy
then,
ssd((o, ME)) < (o, E)

Proof. We prove this statement by induction on the finite depth 7 of the success tree
ST (Extract(A, E, o, T)) and adopting the identity id as the morphism required to
prove lt-inclusion.

i=0

Case Extract(AU {(o,T)}, E, 0, T): the call corresponding to this node returns
the pair (), #); in general for all set of edges E, (o, ) < (o0, E) as ssd((o, 0)) =
(0, 9) and id(o) = o;

Case Extract(A, E, o, int): the same as for the case above;
Case Extract(A, E, o, string): the same as for the case above.
Case Extract(A, E, o, [l1 : T1,... ,l, : T,)]) = (AA, ME): where
AA={(o,[h:Th,... 0l : T,])} and ME = U{< 0,1, ¢, 0y, >};
i=1
this case occurs when

Vi:l...n(Ty =5 collUy)) A (| B(L) |=0).

Note that Erase(J:_,{< 0,1, c,0y, >} = 0, hence the proof is trivial as above.

‘We assume that the thesis holds for all nodes of ST with depth less than 7.
Since i > 0, by definition of ST, for all Extract(A, E, o, T) € STy there exists a
finite set of children,

Sub = {Extract (A, E, o1, Th) ... ,Extract(A, E, o, Tx)}

such that £ > 1 and their depth is ¢+ — 1. Furthermore, the call corresponding to
the node Extract(A, E, o, T) returns a pair (AA, ME) and the calls corresponding
to the set of children above return pairs (AA;, ME;) with 1 < j < k. By observing
the algorithm we notice that for all j : 1,... ,k, ME; C ME.
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When T'=; T1 + Ty or T =, pX.T, then k =1 and ME; = ME. As in both
situations it also holds that o = o;, the thesis can be inferred directly from the IH
ssd((o1, MEy)) < (o1, E).

When T =, [l; : T{,...,l, : T}], by observing the algorithm, we find that
ME = ME U\J;_, ME;. By TH we know that

Vj:1,... k. ssd(oj, ME;)) = (0j, Erase(ME;)) < (0;, E)
hence, in order to prove our thesis, we remain to prove that,

Ve € Erase(ME).
e 0id = 3¢ € E.(id(e) =€ Aid(e)=¢c A label(e) = label(e'))
-
e

ce Atomic = 3¢ € E. (id(e) = A A label(e) = label(e'))

Applying identity id as the morphism to prove inclusion, this becomes,

Ll —
e

Ve € Erase(ME).3¢ € E.(e=e A " A label(e) = label(e'))

that is,
Ve € Erase(ME).e € E

This can be trivially proven by simply observing the algorithm. Indeed, Vme €
ME with mee Obj (ﬁeg EC, i.e. is not an empty collection value), there exists
Extract(4;, E, o;, Tj), with j : 1,...  k such that

di:l,...,n.
(< 0,l;,0; > E(o,l;) A me=o0 A label(me) =1; A me=o;)

From these conditions we can derive that
Vme € ME. (me€ Obj = e € E. erase(me) = €)
which implies, by definition of Erase,
Ve € Erase(ME).e € E

Therefore,
k
ssd((o, ME)) = (o, Erase(ME) U U Erase(ME;))) < (o, E)
j=1
(]

Theorem 8.1.6 (Soundness of inclusion) Let 5 € S, T € T, Extraction(s, T) =
d. Then, ssd(d) <3.
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Proof. We know that
Extraction(s, T) = d = (3., ME)
where
Extract(A, 5, 3., T) = (AA, ME).
By Lemma 8.1.5 we obtain
ssd((s,, ME)) < (5, S¢) = 5.

8.1.2 Soundness of typing

The following judgement is an extension of the typing judgement A; ME o :: T
to the typing of a set A of pairs (o, T):

Definition 8.1.7 (A;; ME ' Ay) Given two assumption sets A1 and As, a set of
marked edges ME,

Ay MEF Ay & Y(o,T)€ Ay. Ay MEFo:: T

We prove soundness of typing as a direct consequence of the following theorem,
which states a strong invariant for the algorithm Extract.

Theorem (Invariant for Extract) Let A be an assumption set, E a set of edges,
0 € Obj, T €T. Then,
Extract(4, E, 0, T) = (AA, ME) A ME # fail = A; ME - AA.

We prove this statement by induction on the finite depth i of the success tree
associated with the generic call Extract(4, E, o, T'), by proving the invariant for
each case of Extract. The hardest part of the proof is the one involving the record
type case call,

Extract(4, E, 0, T) = (AA, ME)

where T =y [l; : T} +,... 1, : T,]. Such call may recursively issue 1 < j < k
calls,
Extract(Aj, E, 0j, T}) = (AAJ, MEJ)
which are all located at depth ¢ — 1 in the success tree. The results (AA;, ME;)
are combined together to yield (A4, ME) in the following way:

k k
AA=(o,T)U ] A4, ME =ME U | J ME;
j=1

j=1
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Accordingly, in order to prove that A; ME  AA is an invariant for the record
type case call above, we should prove that,

k k
A, MEU|JME; + (o, T)U | A4;
=1 j=1

is a valid judgement. By induction hypothesis, we can assume that the & -
judgements

are valid; as by observing the algorithm we can infer,
i1
Aj=Au(o,T)UlJAA
t=1
this equates to say that,
j-1
(AU (0,T)U| JAA); ME; - AA;.
t=1

are valid F'-judgements. Consider the F-judgement for j = £,

k-1
(AU (o, T)U | AA); ME, - AA;.

t=1

From it we can directly produce another valid F-judgement, which almost proves
our final statement for the record type case:

k-1 k
(AU(0,T) U AA); ME, F (0, T) U JAA,.

t=1 t=1

Indeed, to prove our thesis we show that there exists a dependency between the
AA;’s and the M E;’s. Informally, this dependency states that if a pair (o, T) can be
proven correct with a judgement of the form AA; UA; ME 0 : T than it can be
proven correct also with a judgement of the form A; MEUME; 0 :: T. Intuitively,
this relation allows to replace the AA;’s with the ME;’s in the judgement above,
thereby leading to our final proof of statement.

Before we proceed with the proof, we introduce the following formal tools.

Definition 8.1.8 (Converging and diverging assumption sets) Given an assumption
set A € Ppin(Oid x T), and o € Oid, A converges on o (A(0) |) if and only if there
ezists a type T € T such that (0,T) € A. Vice versa A diverges on o (A(o) 1) if
and only if there is no type T € T such that (0,T) € A.
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Definition 8.1.9 (Independent assumption sets) Two assumption sets A;, Ay €
Psin(Oid x T) are independent (A; < Ay) if and only if:

e VYo € Oid. (A1(0) 1 = Az(0) 1);
e Vo € Oid. (A2(0) L = Ai(0) 1).

Definition 8.1.10 (Compatible sets of marked edges) Two sets of marked edges
MEy, ME,; € P4;,,(Oid x Label x M x Obj*) are compatible (M E; = ME,) if and
only if:

— —
YoeME, N ME, . MEl(O) = MEQ(O)

A first interesting property of a successful call
Extract(4, E, o, T) = (AA, ME)
is that the sets AA and A are independent.

Lemma 8.1.11 Let E be a set of edges, T € T, A € Pg;,(0id x T), o € Obj, and
ST the success tree of a call of Extract. If,

Extract(4, E, o, T) = (AA, ME).
and,
Extract(A, E, 0, T) € STy
then,
AxAA

Proof. This statement can be proved by simply observing that AA contains the
pairs (0, T') relative to calls

Extract(4, E, 0, T) € STy

in the call chain originating from Extract(A, E, o, T). As (6,T) € AA these
calls effectively generated marked edges from E(0). Accordingly, A(0) 1 otherwise,
as A C A the termination test would have prevented these extractions.

On the other hand, if A(o) | all calls

Extract(4, E, 0, T) € STy

in the call chain originating from Extract(A, E, o, T) would be such that A C A,
thus A(0) J. Accordingly, none of these calls could have extracted edges from E(o),

from which AA(o) 1.
(]
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Note that, given a successful call Extract(4, E, o, T) = (AA, ME), the oids of
—>
the edges extracted by the call, namely the set M E, are a subset of the oids in O 4.

Hence, intuitively, A converges only on the oids o e];/[_];“ such that | ME(o) |=0,
while AA converges on the remainder. Indeed, | ME(0) |= 0 only if the extraction
with respect to o could not be performed due to A(o) |, which means that an earlier
call in the call chain had successfully performed the extraction of the edges outgoing
0. To our purposes we require related but simpler results, which we prove in the
following Lemma.

Lemma 8.1.12 Let A be an assumption set, E a set of edges, o € Obj, T € T, and
ST the success tree of a call of Extract. If,

Extract(4, E, 0, T) = (AA, ME).
and,
Extract(4, E, o0, T) € STy
then,
P
Yo eME .AA(o) |

Proof. We prove this statement by induction on the finite depth ¢ of the success
tree ST.

i=0
Case Extract(AU {(0, 1)}, E, 0, T) = (0, 0): trivial;
Case Extract(4, E, o, int) = (0, 0): trivial;
Case Extract(4, E, o, string) = (0, 0): trivial;
(

Case Extract(A4, E, o, [l; : T4, ... , 1, : To,]) = (AA, ME): where,

AA={(o,[h:Th,... ,ln: Tu])} and ME = | J{< 0,4, ¢, 0y, >};

i=1
this case occurs when
Vi:l...n.(T; = coll(U;)) A (] E(l;) |=0).

the conclusion is trivial.
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We assume that the thesis holds for all nodes of ST with depth less than 1.
Since ¢ > 0, by definition of ST, for all Extract(A, E, o, T) € STy there exists a
finite set of children,

Sub = {Extract(A4:, E, o1, T1) ... ,Extract(A, E, o, Tx)}

such that £ > 1 and their depth is ¢ — 1. Furthermore, the call corresponding to
the node Extract(A, E, o, T) returns a pair (AA, ME) and the calls corresponding
to the set of children above return pairs (AA;, ME;) with 1 < j <k.

When T' =, 1+ To or T =; pX.T, then k = 1, Ay = A, and AA4; = AA.
Therefore, the thesis can be inferred directly from the TH for (i) and (i7).

When T =, [l1 : T}, ... ,l, : T}], by observing the algorithm, we note that,

k
AA=Au| A4,

t=0

where AAg = {(o,[ly : Th,... ,1n : T,])}. By IH, we know that,
—
Vj: l,kWGME] AA](E)
—
Given 0 e M E, either,

-
e 3j:1,...,k.0 €ME;: by IH we know that AA;(0) |, from which, as AA; C
AA, we can conclude

AA(D) 4;
B
e 0 €EME: then 0= o, and, as (o, [l; : T1,...,l, : T,]) € AA, we can trivially
conclude
AA0) L.

The following Lemma describes under which conditions a set of marked edges
can be added to a judgement without compromising its validity.

Lemma 8.1.13 Given two sets of marked edges M E, and M E,, an assumption set
A, 0€0id, and T € T,

(ME, < ME, A (A; ME,Fo:T) = A ME,UME,Fo=T
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Proof. The judgement A; ME; - o :: T may be valid because A(0) |, o € Atomic
and o is a value of T, or because M E(o) satisfies 7. In the first case, any set of
edges could be added on to M E;, as rule (HY P) has precedence over the other rules.
Similarly, in the second case, the addition of edges to M E; would not compromise
the typing of o with the atomic type T'. In the third case, the addition of edges
could compromise the typing. Indeed, the addition of outgoing edges to an oid may
no longer satisfy the requirements of 7. The proof follows directly from observing
that the hypothesis of comp‘a‘tibility between M E; and M E, ensures that the set of

edges outgoing all oids in M E; cannot be altered by the union with ME). ]

We show that the conditions above apply to the sets of marked edges ME;
resulting from the subcalls Extract(A4;, E, o;, T;) issued by a record type case call
of Extract.

Lemma 8.1.14 Let ST be a success tree for Extract, with Extract(4, E, 0, T) €
STy, with T =y [l : Ty, ... 1y : Ty] and

Extract(4, E, o, T) = (AA, ME).
Let

Extract(4;, E, o;, Tj) = (AA;, ME))

with 1 < j < k be the children of this node in STy, then,
V1< i < jo < k.ME; < MEj,.

Proof. We prove this statement by contradiction, assuming that there are 1 <
«— —
51 < j2 < kand o eEME;, N ME;, such that MEj, (0) # ME;,(0). According
to Lemma 8.1.12, AAj, (0) | and AAj, (o) |; but this is absurd, as we know that
AA;j, € Aj, and, by Lemma 8.1.11 Aj;,(0) L = Aj,(0) 1.
[

Notice that a valid judgement A;; ME; F A, indirectly establishes a sort of
dependency between the edges M E; and the assumption set A; on one side, and
the assumption set A, on the other side: the pairs (o, T') in Ay are all verified for
typing by the edges in M E; and the pairs in A;. Accordingly, we expect to be able
to:

1. replace the assumption set Ay with the edges M E; in any F'-judgement A; U
Ag; MEy  Aj, without compromising its validity: Ay; MEs UME, F Az is
still valid;

2. add the assumption set Ay to the right side of the judgement: indeed, as
A;; MEL B Ay and Ay; ME;UME, B Aj are valid, the judgement A;; M E,U
ME, = A3 U A, is also valid.
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The following Lemmas prove that these intuitions are true, but only under par-
ticular conditions.

Lemma 8.1.15 Let A be an assumption set and Ay; ME & Ay be a valid judge-
ment. Then,

is a valid judgement.

Proof. The proof comes directly from the type rules in Definition 6.6.1. An as-
sumption (0,T) is extracted with (HY P) from an assumption set A only to ter-
minate valid branches of potentially infinite proofs. Accordingly, if the judgement
Ay ME ' A, is valid, the addition of new assumptions cannot compromise its
validity, but only potentially shorten the corresponding proof of validity. ]

Lemma 8.1.16 (Replacement) Given the assumption sets A1, As, and As, the sets
of marked edges ME, and ME,, o € Obj, and T € T, if

1. ME, < ME,,
2. A;; MEL F Ay, and
3. Ay U Ag; MEy - Aj;
then
Ay; ME, UMES - Az U Ag;

we can replace As with ME; and add it to the right side without compromising
the wvalidity of the judgement.

Proof. We first prove that Ay; ME;UME, | Aj is a valid judgement, by induction
on the finite depth of the derivation tree of the valid judgement A;UAy; MEs Fo:: T
where (o, T) € A;. Afterward, as A1; ME, b Ay and ME; = M E,, we can trivially
claim that A;; ME, U ME; F Az U A, is a valid judgement.

i=0
Case (HY P): that is (0, T) € A; U Ay. It can be either,

o (0,T) € A;: thus Aj; ME, F o :: T is a valid judgement; by hypothesis
1 and Lemma 8.1.13 we derive A;; ME, U MEy o0 :: T}

e (0, T) € Ay: by hypothesis 2 we know that A;; ME; - o :: T; by hypoth-
esis 1 and Lemma 8.1.13 we derive Ay; ME,UME, Fo:: T;
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Case (INT): trivial, as assumption sets and marked edges are not required to verify
the premises of the rule;

Case (STRING): trivial, as assumption sets and marked edges are not required
to verify the premises of the rule;

Case (EMPTY — COLL): trivial, as assumption sets and marked edges are not
required to verify the premises of the rule.

by induction assuming that the thesis holds for the premises of the rule at
hand.

Case (REC): that is A; U Ag; MFEs + o :: uX.T; the premise of this rule is the
judgement AyUAs; MEobF o T [”X'T/X]. By IH we know that A;; ME;U

MByFo:T [#X-T/X]. Applying (REC) we derive Ai; ME, UME; F o
1 X.T as expected.

Case (UNION — L): thatis Ay UAy; MEy b o :: T1 +Ty; the premise of this rule is
the judgement A;UAy; MEy b o :: T7. By IH we know that A;; ME,UME,
o Ty. Applying (UNION — L) we derive Aj; ME; UME, - Ty + Ty as
expected.

Case (UNION — R): as for case (UNION — L);

Case (RECORD — COLL): thatis AyUAg; MEy o[l : Th,... 1, : T,,]. Note
that, the premises of this judgement are 1 < j < k judgements

AUAU{(o LT, b Ta))}s MEs &0 2 Tj.
By Lemma 8.1.15, the judgement
A U{(o, [h :Th, ..., 1 : TR))}; ME A,
is valid. Therefore, by IH we can now state that Vj : 1,...  k:

AU{(o[h:Th,...,ln:T.]))}s MEy UME, F o =: T]'

Since by hypothesis 1 we know that M Es(0o) = (M E; U M E»)(0), (REC) can
be applied again so as to achieve:

Ay MEiUMEsy o[l Thy ... 1y 0 T
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So far, we have formally shown that the subcalls
Extract(4;, E, oj, T;) = (AA;, ME;),
with 1 < j < k, of the record type case of the algorithm do verify the condition
V1< g <jy < k. MEj < MEj,.

The next Lemma applies lemma F'-replacement, on the base of these conditions,
50 as to to prove the validity of a judgement that almost proves the invariant for
the record type case call.

Lemma 8.1.17 Let ST be a success tree for Extract, with Extract(4, E, 0, T) €
STy, with T = [l : T4, ... .1, : T,,] and

Extract(4, E, o, T) = (AA, ME).
Let
Extract(4;, E, o, Tj) = (AA;, MEj)

with 1 < j < k be the children of this node in ST, then Vt : 1,... k:
t t
As ME b AA, = AU{(o, T)}; |JME; - |24,
j=1 j=1

Proof. We prove this statement by induction on the finite number %k of subcalls
invoked by the record type case call.

by observing the algorithm, we know that A; = AU {(o, T)}; by hypothe-
sis we know that Ay; ME, - AA;, which corresponds to what we need to prove,
namely AU {(o, T)}; MEy F AA;.

if we consider that:

1. (Uf;ll ME;) < MEy: direct consequence of Lemma 8.1.14;

2. by IH,
k-1 k-1

Au{(o, )} | ME; + | A4
j=1 j=1

and,
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3. by hypothesis, Ay; MEy, = AAg, which is

k-1
AUu{(o, )} U | A4); ME, F AA,

j=1
we can apply Lemma 8.1.16, obtaining
k k
AU{(o, )} |UME; = | A4;
j=1 j=1
u

As mentioned above, the result of the previous Lemma almost works out the
invariant for the record type case of Extract. The following Theorem, on the basis
of such result, provides a complete proof for our invariant.

Theorem 8.1.18 (Invariant for Extract) Let A be an assumption set, E a set of
edges, 0 € Obj, T =1 [l1 : Th, ... ,ln : T,] € T, and ST the success tree of a call of
Extract. If,
Extract(4, E, o, T) = (AA, ME).
and,
Extract(4, E, o, T) € STy
then,

A, MEF AA

Proof. We prove this statement by induction on the finite number i of recursive
calls issued by Extract(4, E, o, T) to terminate its execution.

i1=0

Case Extract(AU {(o,1)}, E, 0,T) = (0, 0): A, 0+ @ is trivially true;
Case Extract(4, E, o, int) = (0, 0): as for the case above;

Case Extract(A, E, o, string) = (0, 0): as for the case above;

Case Extract(A, E, o, [l; : T1,... 1, : T5)]) = (AA, ME): where

AA={(o,[l: Th, ... ,ln : To))} and ME = | J{< 0,1, ¢, 0y, >};

i=1
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this case occurs when
Vi:l...n.(T; =¢ coll(U;)) A (] E(l;) |=0).

The conclusion comes directly from the definition of Extract, which ensures
that A; MEt o[l :Th,... 1, : T,], from which A; ME+ AA.

Case Extract(A, E, o, uX.T) = (AA,ME): the i — 1'th step of execution is then
Extract(4, E, o, T [MX‘T/X]) = (AA,ME).
Thus, the thesis follows directly from the IH;
Case Extract(A, E, o, Ty + Tz) = (AA, ME): the i — 1’th step is then either
Extract(4, FE, o, T1) = (AA, ME)
or
Extract(4, E, o, T5) = (AA,ME).
In either case, the thesis follows directly from the IH;

Case Extract(A4, E, o, [l1 : T3, ... ,ln : T]) = (AA, ME): thiscallinvokes 1 < j <
k:

Extract(4;, E, o;, T}) = (AA;, ME))

calls, with M E; # fail. All these calls require less than i calls to terminate.
By IH we can assume that V1 < j < k.(4;, ME; = AA;) and, by the
application of Lemma 8.1.17, obtain the following valid judgement:

k k
AU{(o, [l : Ty, b T} | ME; = | A4;

j=1 j=1
— —
Since ME= {0} and o §EU§:1 ME; (because Aj(o) | forall j:1,... k), we
can deduce that ME = (U;;l ME;) and apply Lemma 8.1.13 to achieve the
valid '-judgement

k
AU{(o, [l : T1,... I : T} MEF | A4 (8.1.1)

j=1
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where ME = ME UJ\_, ME;.

Note that we can state that,

AU{(o,[h:Th, .. ln: Tp))}s ME & oj 2 T} (8.1.2)

for all j : 1,... k. The proof of this is quite intuitive, but we give it below
for completeness of presentation. Consider the generic subcall

Extract(A]-, E, 04, T}’) = (AA], ME]),

by definition of Extract it can be that:

e (0, T}) € Aj: o; has been already extracted by an earlier call; since
j—1
Aj=AU{(o, [lh:Th,... .l : TR} UJ A4
=1

if (0;, Tj) € AU{(o, [l : Th,... 1y : T,])} the conclusion derives from
the application of rule (HY P) to the -judgement 8.1.2; if (0;, T}) €
U{;ll AA;, the conclusion comes directly from the F-judgement 8.1.1;

e T} € {int, string} and o; € Atomic: in this case the conclusion is trivial,
as both rule (INT) or rule (STRING) apply to the F-judgement 8.1.2;
in particular, as by hypothesis M E; # fail, we know that o; satisfies the
atomic type T7;

(0, T]’) € AA;: if none of the two cases above apply, since ME; # fail,
then o; must have been extracted by the subcall; therefore, by definition
of Extract, (o;, T]) € AAj; the conclusion derives directly from the -
judgement 8.1.2.

Therefore, as by definition of the algorithm the marked edges ME verify the
requirements of [l; : T3, ... ,l, : Tp,], rule (RECORD — COLL) can be applied
to get the valid judgement:

A, MEFo: [l Ty, ... 1y : Ty

which in turn clearly implies that

A; MEF {(o, [li: Thy ... 1 : TR}

Considering that,
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L US, ME; < ME: trivial, as

k
ME =ME U | ME;
j=1
and
k
ME = | | ME;.

j=1
2. Ay MEVF {(o, [lL: Th, ... ,ln : T,]) }; and
3. AU{(o, [l : Thy... I T} Ulsy ME; = U, AA;.
by Lemma 8.1.16, we can state that
A; MEF AA
where AA = {(o, [l : T1,... ,ln : TR])}U U;?:l AA;, is a valid judgement.

As we shall see in the following Theorem, soundness of typing is a trivial conse-
quence of the invariant proven above.

Theorem 8.1.19 (Soundness of typing) Let s € S, T € T, Extraction(s, T) =d.
Then, d : T.

Proof. By definition of extraction,
Extraction(s, T) = d = (s,, ME)

where Extract(D, se, s, T) = (AA, ME) and ME # fail. By Lemma 8.1.18
we know that ; M E - AA. By definition of Extract it can be that:

1. (s, T) ¢ AA: thisis when T € {int, string} and s, € Atomic; as ME # fail,
we know that s, satisfies the atomic type 7'; hence

00k s =T
is a valid judgement, from which
d=(s,,0):T
2. (s, T) € AA: by definition of --judgement,
0; ME‘ s, =T
is a valid judgement, from which
d= (s, ME):T
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8.2 Completeness

As shown in Chapter 4, completeness of an extraction algorithm with respect to
extractability depends on the definition of the set of values extractable from an
SSDB with respect to a given type. In the case of L this set is defined as follows.

Definition 8.2.1 (Eztractable values) Let 5 € S, T € T. The set of values ex-
tractable from § according to T is defined as,

D7 = {d|d is extractable from s according to T}

The algorithm Extraction is not complete with respect to extractability. In
other words, given 3 € S and T € T such that D; 7 is not empty, the algorithm
does not guarantee a successful termination.

In the following we provide examples of incompleteness and discuss their impact
in the practical usage of our extraction system. Afterward, we show that Extraction
is complete whenever its application is restricted to the domain of tree-structured
SSDBs.

8.2.1 Cases of Incompleteness

We shall find that incompleteness is due to the presence of shared oids in the SSDB
to be traversed by the algorithm, in combination with one of the following:

o the determinism introduced in the union type case of Extract;

o the determinism introduced in the extraction of one edge out of multiple can-
didate edges in the record type case of Extract;

or to the over-restrictive termination test in the record type case of Extract.

Union and record types determinism
Consider the example in Figure 8.1, where the SSDB 5 is extracted according to the
type T,

[
man : [children : [age : int] + [child : string]],
woman : [children : [child : string]]

l.

Extract begins its execution visiting o, with the record type T. Since o; verifies
the required properties, the algorithm invokes two recursive calls,

Extract(Ay, 5., 09, [children : [age : int] + [child : string]])
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5

Extraction
System

02

name children

" Adam" . "Eve" 02
child, age children
g

"Cain" 18 00T
[ man: [children:[age: int]+ [child: string] ] C Tch“d

woman: [children: [child: string] .

o
"Cain"

Figure 8.1: Example of incompleteness due to union types

where 4; = {(0, T)} and,

Extract(A4; UAA,, S., o3, [children : [child : string]])

where AA; represents the result of the extraction of the previous call.

The first recursive call recursively issues the union type case of Extract with
o4 and [age : int] + [child : string]. Thus, the algorithm invokes a call of Extract
with o4 and the first type in the union, namely [age : int], which will be successfully
terminated, extracting the edge labelled as age. In summary, the call path of the
first recursive call returns the pair (AA;, M E;) such that,

AA; = {(09, [children : [age : int] + [child : string]]),
(04, [age : int])}

ME = {< o0y, children,r,04 >, < 04, age,r,18 >})

The second recursive call recursively visits o3 with [children : [child : string]],
and then o4 with [child : string], under the assumptions A,. The latter call will fail,
because (o4, [age : int]) € Ay and [age : int] £y [child : string].

Nevertheless, as shown in Figure 8.1, the algorithm could have extracted the
value d € D 7. The failure is due to the fact that the algorithm does not support
the non-determinism encountered when extracting according to the members of a
union type. To do so, rather than fail and terminate, the algorithm should roll back
to the first visit of o4 with a union type and try the next member of the union.

As an example of the second kind of non-determinism, consider the scenario
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illustrated in Figure 8.2, where the SSDB 5 is extracted according to the type T,

[

child : [name : string|,
favouritechild : [age : string]]

B

Extract begins its execution extracting o; with the record type T, which requires
the existence of an edge labelled as favouritechild and of an edge labelled as child.
Note that, o; features two edges that, being labelled as child, are candidate for
the extraction; Extraction fails if the edge to be selected first is < oy, child, 03 >.
Indeed, the extraction according to this edge would succeed and eventually lead to
the extraction of o3 with respect to [name : string]. Afterward, the call relative
to the label favouritechild will then try to extract oz with respect to the type
[age : int], thereby causing the failure of Extraction.

However, observe that had Extract first selected the edge < oy, child, 0y >,
Extraction would have successfully returned the value d as shown in the picture.
As in the case of union types, the algorithm does not support the non-determinism
brought into play by the edges candidate for an extraction. In the example above,
the algorithm should have rolled back to the extraction of 0; with the record type
and try with another candidate edge labelled as child.

Non-determinism could be enforced by endowing the algorithm with backtracking
techniques. The successful extraction of o with a record type 7', which is a subterm
of a union type U, should be memorised in a separate environment B as a tuple
(0, T, oy, U, Ay), where oy is the oid that was extracted according to U, through
which o was extracted, and Ay is the assumption set passed to the call with oy and
U. Whenever a subsequent record type case call fails on o because of a mismatch
with 7', the algorithm should roll-back to the extraction environment relative to the
extraction with U and try the extraction of o with the next member of the union.

The same technique could be applied to the edges with the same label of a
record type call. If the call fails, as exemplified above, and there are other non-
tried candidate edges available, the algorithm should roll back and re-apply the
extraction.

Termination test

Incompleteness is also due to the termination test in the record type case of Extract,
which is too strong with respect to L’s relation of typing. For example, the SSDB
5 in Figure 8.3 could be extracted according to the type,

[
man : [children : [child : [name : string] + T]],
woman : [children : [child : [name : string]]]

!
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Extraction
System
child

d
020 favourite 03 |::> o1
nam% child name, age child
r
o o) 02 favourite 03
"Cain" "Adam" 18 name child age

[ child: [name:string] "Cain ]og
] favouritechild: [age: int]

Figure 8.2: Example of incompleteness due to edges with the same label

returning the value d shown in the picture. Indeed, the oid 05 could be extracted
both with [name : string] + T, for all T € T, and with [name : string].!

Unfortunately, the algorithm’s termination test is so restrictive that it forbids
this extraction before it can take place. When visiting for the second time the shared
node o4 with the type [child : [name : string]] the termination test fails for the oid
had been previously extracted according to the type [child : [name : string] + T
and,

[child : [name : string]] # [child : [name : string] + T].

Observe that this happens whenever a generic oid (o4 in the example above)
is extracted according to record types differing for the union types they feature as
subterms.

A partial solution to this problem consist in defining a relation of subtyping based
on the rule 77 <y 7} + 7. By means of this relation the termination test could be
refined to check whether an oid falls in the category exemplified above and can
therefore be extracted. For instance, the algorithm would successfully visit o, as
[child : [name : string]] <r [child : [name : string] + T1.

Note that, to be effective, the test should be combined with the backtracking
techniques mentioned above. Indeed, the the algorithm may first successfully visit
and extract o4 with [child : [name : string] + T]. Accordingly, the second visit
with [child : [name : string]] would not satisfy the subtyping check. Backtracking
techniques over union types and equally labelled edges would make sure that the
algorithm will try the other way around, thereby returning the correct extraction.

Enriched with subtyping test and backtracking techniques, Extraction would
capture a larger set of extractable values, but would not yet be complete. There are

!Note that, with reference to the union type case anomaly discussed above, this extraction may
be performed because, luckily, [name : string] is the first matching member of the union type.
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man woman
020 053
name children
name
children Extraction d
o 04 o System o
" Adam" "Bye" 1

child
man woman
o5 r r
02 03
name children
! Children
"Cain® 0.0 T
'Cain

[ man: [children: child
[child: [name: string] + T] 0s LT
1
woman: [children: name
[child: [name: string] r
1 "Cain"

Figure 8.3: Example of incompleteness due to over-restrictive termination test

other two main problems, whose solution would be too expensive to be implemented:
the order of the labels of a record type, which imposes an order of visit of the
edges emanating from an oid, and the presence of particular forms of shared oids.
These oids are reached by different call paths of the algorithm with record types
T,...,T, that are not in subtyping relation and have a non-empty intersection,
that is there exists 7" such that Vi : 1,... ,n :.7T <; T;. In particular, these oids
can be extracted according to T, and should therefore be extractable according to
all T;’s, but the algorithm fails, as the types are not in subtyping relation. As an
example of this scenario, consider again o4 in the example above, and the two types
[child : [name : string] + T1] and [child : [name : string] + Ty], where Ty £+ T and
Ty £+ Ty. Clearly, d is extractable according to both types, but the algorithm fails.

Observations

The anomalies presented above prove that our algorithm is not complete with respect
to extractability. However, a more complex algorithm could be developed, which,
heavily exploiting backtracking techniques and a refined termination test, could pro-
vide the level of non-determinism required to capture almost all extractable values
for any input 5 and 7.

Nonetheless, the anomalies shown above are quite peculiar and may occur only
in presence of shared oids and cycles, which are in turn quite rare in SSDBs. In
addition, their manifestation does not violate the semantic of the programming
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language L, but only hamper the extraction of an extractable value. Therefore,
we believe the system can be successfully used also in presence of shared oids and
cycles.

Finally, as we shall discuss in the next section, our algorithm can be proven com-
plete with respect to tree-structured SSDBs. This restriction does not compromise
the importance of our approach as most of the scenarios in the real world do not
necessarily feature shared oids and cycles and fall in this category. For instance, the
majority of semistructured databases available are represented as XML documents,
which are based on tree-structured models.

8.2.2 Case of completeness

Extraction is not complete with respect to the definition of extractability, due to
the extraction of typed values from SSDBs containing shared entities and cycles.
However, if we restrict our attention to a smaller set of SSDBs, completeness can
be proven.

Definition 8.2.2 (Non-shared oids) Lets € S. o € Oid(s) is non-shared if there
exists only one path from s, to o.

Definition 8.2.3 (Tree-structured SSDBs) The set of Tree-structured SSDBs is de-
fined as,

Sy = {s € S|Vo € Oid(s). o is non-shared}

Restricting to the set S; ensures that the algorithm Extraction cannot suc-
cessfully visit the same oid twice in the same call chain. Accordingly, if an oid is
successfully extracted according to a record type, no termination test can cancel
such extraction and the anomalies described earlier cannot take place. As the AA’s
and the termination test are no longer necessary, the algorithm Extraction in Fig-
ure 7.1 can be significantly simplified, to become the algorithm Extraction; shown
in Figure 8.4.

Consider d € D;7. As d has no shared oids, the proof of conformity of d,
to T requires to check conformity of each o € Oid(d) with a record type [l :

Ti,...yln : T,), only once. Accordingly, as ssd(d) < 35, we also know that each oid
o € Oid(ssd(d)) can be reached by Extract with the record type [l : Ti,... 1, :
T,]o- In particular, as o conforms to [l : T1,...,l, : T,,], and Erase(d(o)) C 3(0),

we know that this call can be performed successfully. Moreover, once extracted, o
cannot be visited again in the call chain of Extract. Thus, the successful extraction
of o cannot affect other extractions in the call chain.

In conclusion, Extract:(Se, S, T) cannot fail and Extraction; is complete.
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Extractions: Sy x T — DU {fail}
Extractiony (S, T =
{ ME:= Extract;(Se,5r, T
if ME = fail then return fail
else return (5., ME) }

Extractt {Pyin (Oid x Label x Obj) x Obj x T —
Pfin(Oid x Label x M x Obj*) U {fail}
case Extracti(E, o, pX.T)
{ return Extract((E, o, T [uX.T/X}) }

case Extract;(E, o, int)
{ if o€ Integer then return ()
else return fail }

case Extract:(E, o, string)
{ if o€ String then return {
else return fail }

case Extracti(E, o, Ti +T»)
{ ME := Extract; (E, o, T1)
if ME = fail then return Extract{(FE, o, T»))
else return ME

case Extract;(E, o, T), where T =p [ty T, e T
{ ME:
for i:=1 to n do

{ FAILED :=true
if T; =t coll(U)
then if E(o,l;) =0
then { ME:= MEU{<E,li,c,@U >} <introduces an empty collection edge>
FAILED := false }
else for all e € E(o,l;) do
{ ME; := Extract;(FE, ?, [2))
if ME; # fail then
{ ME:= MEUMEU { <,lj,c,e>}
FAILED := false } }
else for all e € E(o,l;) do
{ ME; := Extract;(E, e, T})
if ME; # fail then
{ ME:=MEUMEWU { <e,l;,r,¢>}
FAILED := false
exitfor; } }
if FAILED then <one record’s label could not be satisfied by E(0)>
{ ME := fail
exitfor } } }

return ME }

case Extracti(E, o, T), vhere o0 and T do not match any of the cases above
{ return fail }

Figure 8.4: Extraction algorithm for tree-structured SSDBs



Chapter 9

SNAQue

In this Chapter we describe a novel and complementary approach to static typing
approaches for querying XML, based on the extraction mechanisms presented in
Chapter 4.

We present a prototype of the system SNAQue — the Strathclyde Novel Archi-
tecture for Querying Ertensible markup language (cf. [46, 47]) — currently under
development at Strathclyde University, Glasgow (UK). SNAQue will enable pro-
gramming languages interlaced with CORBA to be used in querying the information
represented in XML format.

SNAQue is based on an extraction algorithm EXTR;p, for the Interface Definition
Language (IDL) of CORBA (cf. [79]), which extracts Java objects corresponding to
regular subsets of XML SSDBs. Given an IDL definition and an XML SSDB, our
system returns a CORBA object that serves the extracted value across the ORB
framework.

In describing the system, we assume the reader has a some understanding of
concepts such as skeletons and stubs in CORBA.

9.1 The prototype

CORBA IDL is an interface definition language based on the syntax of the type
language of C. IDL describes the most common type abstractions of programming
languages, plus some forms of behaviour, such as functions and procedures. In
particular, specific mappings from IDL definitions to the types of programming
languages (Java, C, and many others) are available, which implicitly define a typing
relation between the values of the language and IDL definitions.

The definition of extractability underlying the system SNAQue is based on the
mapping JIDL from IDL to Java classes, according to which Java objects are in a
typing relation with the IDL definitions that map onto their corresponding classes.
Hence, a Java object is extractable from an XML SSDB according to an IDL defi-
nition if:
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e it conforms to the IDL definition: the object is of the class to which maps the
IDL definition;

e the object maps onto an SSDB included into the XML SSDB.
Due to the quite straightforward mappings:

e IDLtoT: from a subset of IDL, that does not include interfaces, onto the type
system T

e XMLtoS: from XML SSDBs to tree-structured SSDB Sy;
e JAVAtoD: from Java objects to the values D;

we formally defined extractability based on the definition of extractability for L.

Definition 9.1.1 (Eztractability for IDL and Java) A Java object j is extractable
from an XML SSDB xml according to an IDL definition idl if there ezists d € D
such that JAVAtoD(j) = d, and d is extractable from XMLtoS(zml) according to
IDLtoT(idl).

Similarly, the algorithm EXTR;pr, sound with respect to this definition, exploits
the algorithm Extraction; defined in Chapter 7.1 Specifically, given the input ami
and idl, EXTR;p, performs the following steps:

1. relying on parsers IDLtoT and XMLtoS that translate from CORBA IDL to T
and from XML documents to S, calculates a type T = IDLtoT(idl) and an
SSDB s = XMLtoS(zml);

2. executes the call Extraction;(s,T), which here we assume to be successful; the
call yields a value d such that d : T'; due to the mapping IDLtoT, d structurally
and statically conforms to idl too;

3. generates a Java object j corresponding to d such that j conforms to idl.

Note that the equivalence between values of different languages identified by
CORBA is similar in principle to the one identified with a mapping between the
values of a language and SSDBs. Hence, given the mapping ssd(JAVAtoD(z)) from
Java objects to SSDBs, any CORBA-compliant language may transparently access
the extracted value via the given IDL definition. SNAQue (see Figure 9.1) makes
this possible by serving the Java object resulting from EXTR;p; across the ORB.
Specifically, the system,

'Recall that Extraction; takes as input a tree-structured SSDB s and a type 7' from the
type system T of the language L; the result of the extraction is a value d of type 7', this value
corresponding to a subset s’ of s.
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1. generates the CORBA interface I;4 corresponding to the simple CORBA defi-
nition idl: Iy describes a CORBA object that has a method getData returning
an object of type idl;

2. defines the CORBA object, by providing a Java implementation for I;4, that
is a Java class whose method getData returns the Java object j.

1p[MgIo9fqOrgIo)

.

Figure 9.1: SNAQue: extraction of CORBA objects from XML SSDBs.

[J avaObjec%

<)] ‘ JavaObjectBuilder ‘

As described in Chapter 4, the approach consists of two phases. First, a pro-
grammer attempts to project an arbitrary XML document onto a given IDL type
with SNAQue. If the extraction can be performed, the system creates a CORBA
object whose unique method getData returns the representation of the extracted
value. Secondly, programs in a general-purpose CORBA compliant language can be
written with respect to this object, and refer to the object extracted value with a
call to the method getData.

In the following sections, we formally prove the correctness of SNAQue by pro-
viding a mapping from XML documents onto the set S; and a mapping from IDL
definitions onto the types in T. Moreover, we shall observe how the Java object j
conforming to idl is generated according to a one-to-one mapping from the extracted
value d.
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Finally, we shall see how 7, i.e. the representation of the extracted value, is served
to consuming distributed applications via a CORBA object corresponding to ;.

9.2 From XML documents to SSDBs

There are strong similarities between the logical part of the XML format and the
graph-based data models for SSD. Indeed, as illustrated in Chapter 2 (see Fig-
ure 2.3), an XML document can be modelled by an SSDB in which oids correspond
to document elements and the edge relation corresponds to the nesting relation for
elements. In particular, the prototype of SNAQue focuses on mapping from the
core subset of the XML format, namely that relative to the logical structure of doc-
uments, onto the set S; of tree-structured SSDBs. To achieve this, XML documents
are not considered under the influence of a schema, thus interpreting attribute values
as being of type STRINGTYPE. This excludes the interpretation of XML documents
as graphs through the attribute types ID and IDREF. The reason for this is that we
aim at giving a proof of soundness of the prototype and not a complete data model
for XML.

In the following we shall describe the specific design choices characterising the
mapping from XML to SSDBs underlying SNAQue. For simplicity, we shall illustrate
this mapping by means of graphic representations of graphs rather than relying on
the syntactic representation for SSDBs in S;.

9.2.1 Ordering

Elements of XML documents are ordered according to their position in the text.
Ordering of elements is in contrast to most SSD models where two SSDBs are equal
regardless of the order of siblings (see Section 5.2). Although order can be easily
captured in SSD data models, it complicates the semantics of the corresponding
query languages and reduces their performance [88]. The distinction, however, is of
no real importance for our purposes, as we can always replace collection of edges
with lists of edges in the definition of S;, and collection types with list types in the
type system.

9.2.2 Attributes

XML makes a clear distinction between elements and attributes, although they are
similar forms of labelled representation.

An attribute appears always in relation to an element, and has a unique name in
the scope of that element. Attribute values are always enclosed in quotation marks,
and have a different meaning depending on the type with which they are declared
in the document’s schema, if one exists. Specifically, attributes can be of type:
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o STRINGTYPE or ENUMERATION: their value is interpreted respectively as one or
many tokens of free text;

e ID, IDREF and IDREFS: they are used to enhance the representation of rela-
tionships between data beyond simple nesting (e.g. shared and cyclic data); an
attribute of type ID specifies a name for the element that is unique across the
document and can be referenced by attributes of type IDREF (single reference),
or IDREFS (multiple references).

As to the modelling of attributes, most approaches distinguish according to the
type. An attribute of type STRINGTYPE is usually associated with the oid that
models the associated element; it is then lexically distinguished from an element, in
query expressions of related languages. Attributes of type ENUMERATION are usually
ignored.

Matching attributes of type ID and IDREF/IDREFS instead, are interpreted to-
gether as edges between matching vertices. Such edges originate from the oid asso-
ciated with the referencing attribute, are labelled with the name of the attribute,
and reach the oid associated with the element containing the reference attribute.
Of course, the correct interpretation of attributes of type ID, IDREF, and IDREFS
depends on the availability of a documents DTD, or the like. Without a schema,
ID attributes are usually discarded and IDREF/IDREFS attributes can only be inter-
preted as strings, as the literal mode of [62].

In our prototype, we adopt the latter strategy and avoid reference/referencing
attributes. Moreover, we view attributes of type STRINGTYPE and ENUMERATION as
separate, childless elements. We do this because we are not constrained by the need
of recovering the XML document from the associated SSDB. For an example of the
mapping, see Figure 9.2.

..... Coordinator
<COORDINATOR HOMEPAGE="www.cs strath.ac.uk/~richard">
<NAME> R.Connor </NAME> o
</COORDINATOR>
""" Homepage Name
@) @)
"www cs strath.ac.uk/~richard" "R.Connor"

Figure 9.2: Example of mapping for attribute.

9.2.3 Elements with mixed content

An XML element has either an element content, when it contains sub-elements but
not free text, or a mixed content, when it contains free text optionally intermixed
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with other elements.

The mapping of elements with mixed content requires some arbitrary decisions to
be made. However, although such elements appear quite often in XML documents,
the issue is usually ignored in most approaches. Consider, for example the simple
fragment of XML in Figure 9.3.

<AUTHOR> Richard Connor
<DEPT> Computer Science </DEPT>
</AUTHOR>

Figure 9.3: Example of mixed elements

Intuitively, we would associate the text Richard Connor with a childless oid and
draw and edge to this oid from the oid associated with the element AUTHOR. The
problem arises when we consider the label of such an edge, as we do not have one.
We solve this problem by labelling these problematic edges with the name of the
element associated with their source oid. Such choice can be justified on a semantic
ground, as element names are meant to identify the meaning of the content they
surround.

AUTHOR —
Dept Author
O
"Computer Science"  "Richard Connor"

Figure 9.4: Example of graph representation for mixed elements.

For example, the XML fragment in figure 9.3 is modelled by the graph in fig-
ure 9.4. Intuitively, in terms of our SSD model, the XML fragment describes an
entity corresponding to an author: the entity qualifies itself with name Richard
Connor and with associated department that of Computer Science.

Notice that the same situation occurs when an element has some attributes of
type STRINGTYPE or ENUMERATION as well as a content of sole text (see Figure 9.5).

9.2.4 Empty Elements

XML allows elements that have no content at all, i.e. empty elements. These are
denoted by either a succession of start and end tags, such as <author> </author>,
or by a single empty-element tag, namely <author/>. Due to the commitment to
flexibility of XML, empty elements have an ambiguous semantics, where possible
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<NAME OFFICEMATE="ref">
<FIRSTNAME> Paolo </FIRSTNAME>
<SECONDNAME> Manghi <SECONDNAME>
</NAME>

Name Firstname Officemate

Secondname

(@] (@] (@] (6] o

"F.Simeoni" "ref" "Paolo” "Manghi" "ref"

Figure 9.5: Example of mapping for attribute of text elements.

interpretations are that they describe truth or stand as placeholders in partial in-
formation. While the first interpretation implies a misuse of modelling concepts,
as meta-data would be used as data, the second recalls null values in relational
databases and is at least questionable in this scenario. Although, we could not
represent empty elements altogether, we found more appropriate to our mapping
to choose the second interpretation and model empty elements as childless vertices
with an associated value of undefined. This requires the non-influential addition of
this new value to Atomic in the definition of S;. In particular, undefined belongs to
all types in T. As a result, <author/> maps onto the SSDB illustrated in Figure 9.6.

Author

o

undefined

Figure 9.6: Example of graph representation for empty elements

Finally, Figure 9.7 shows the modelling of a fragment of XML that includes all
the problematic features discussed above.

9.3 From CORBA IDL to types of L

The prototype of SNAQue performs extraction of Java objects with respect to the
subset of IDL that maps onto the types in T'.

The mapping onto atomic, record, and collection types is relatively straightfor-
ward. Indeed, our type language supports only integers and strings as atomic types,
which map from long and string respectively in IDL. Moreover, record and collection
types map from struct and sequence types respectively:
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<HIPPO_RESEARCH_GROUP>
<NAME>
<FIRSTNAME> Paolo </FIRSTNAME>
<SECONDNAME> Manghi <SECONDNAME>
<HOMEPAGE><HOMEPAGE>
</NAME>
<NAME-> F Simeoni <NAME>
<NAME> S Neely <NAME>
<COORDINATOR HOMEPAGE="www.cs.strath.ac.uk/~richard">
<NAME> R.Connor </NAME>
</COORDINATOR>
</HIPPO_RESEARCH_GROUP>

XMLtoS(HIPPO_RESEARCH_GROUP)

[OX ]

Name
Coordinator

"S Neely" "F.Simeoni"
Homepage Secondname

Name

Homepage Firstname

@) @) [@)

"www cs.strath.ac.uk/~richard" "R.Connor" undefined "Paolo" "Manghi"

Figure 9.7: An example of our mapping from XML onto graphs.

IDLtoT( long ) = Int

IDLtoT( string ) = String

IDLtoT( struct 1 {T; 11; ...; Tp L})=[l:Th,... ,01h: 1]
IDLtoT( sequence T 1) = [l : coll(T)]

Union types pose a minor problem, as we made the decision to model with
untagged unions in T, whereas IDL provides tagged unions. This led to a decision
to either add tags to our own union types, which would present no special problem,
or else to make some arbitrary decisions in the mapping. The latter course was
chosen for purely pragmatic reasons.

We do not support mappings from IDL interface definitions. The purpose of
such definitions is to model object-oriented classes, incorporating both data and
behaviour. We do not, at present, expect behaviour definitions to be included within
the source XML, and there is no sense in which they could be mapped to our data-
description type language. 2

2Notice however that, in object-oriented host languages, struct definitions are translated by
IDL compilers into classes. The behaviour associated with these classes is simply to update and
retrieve the values of instance variables corresponding to the given struct fields.
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Finally, we require our IDL definitions to end with a typedef declaration, which
declares a single type variable, and take this as the main definition for our purposes.
This definition may rely upon others in the sequence; any in the sequence that are
redundant with respect to this purpose are ignored. An example of SNAQue-valid
IDL definition is illustrated in Figure 9.8.

struct bustype { string coachbuilder; long noOfSeats };
struct cartype { string make; long topSpeed };
typedef union { bustype bus; cartype car } vehicle;

Figure 9.8: Example of main definition.

Note that, once a value is extracted according to a main definition, SNAQue
needs to define an IDL interface to serve it across the ORB. As earlier mentioned,
this interface will simply introduce a method getData that returns an object of the
type defined in the main definition.

9.3.1 Sequences and Unordered Collections

As mentioned previously, there is an important semantic difference in the treatment
of collection types in the core system and both XML and CORBA IDL. The collec-
tion type of the core system represents an unordered collection, in keeping with the
graph-based semantic model. In XML, the order in which tags appear within the
text is significant, giving a repeated tag the semantics of an ordered collection or
list. Equally, the sequence type constructor in IDL translates in various languages
to ordered bulk constructors, for example to array in Java.

However, we need take no further account of this in the implementation. Al-
though our core system has an unordered semantics, it is implemented on a machine
by a representation which has an implicit ordering. So long as our algorithms for
parsing and extracting the data work from beginning to end in a consistent man-
ner, then the representation of the extracted subset will preserve the same order as
the XML input. When this data is lifted and placed in a Java array behind the
generated interface, once again the order is preserved, giving a total preservation of
order from the original XML through to the CORBA interface, and then through
whatever language is used to access it.

9.3.2 TUnions

There are two possible semantic mappings from the labelled unions of IDL to XML
data.

The first, which we adopt, assumes that the labels are not significant within
the original data, but are instead only used as a programming aid to test for the
structure of the underlying data. This interpretation allows a direct mapping from
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IDL labelled unions onto the untagged unions of our type system, as the retrieved
data perfectly matches the semantics of both types.

The second is that the labels are significant entities within the XML, and the
union construct can then be used to abstract over different tags, rather than different
structures.

For example, the main definition vehicle in Figure 9.8, could be expected to
describe either of the XML examples:

<VEHICLE>
<COACHBUILDER>Alexander</COACHBUILDER>
<NOOFSEATS>43</NOOFSEATS>

</VEHICLE>

<VEHICLE>

<BUS>
<COACHBUILDER>Alexander</COACHBUILDER>
<NOOFSEATS>43</NOOFSEATS>

</BUS>

</VEHICLE>

Our choice, which is purely arbitrary, is the first:
IDLtoT(union(Tl 1,; To 12)) = T1+Ty

The identifier bus is then significant in the final query code, where it is used as a
shorthand for the expected structure.

9.4 CORBA object instantiation

In the event of a successful call to Extraction,, with XMLtoS(zml) and IDLtoT(idl),
returning a value d, EXTR;pz, must create a Java object j such that JAVAtoD(j)= d.
Once j is created, SNAQue generates a CORBA object that serves the extracted
value across the ORB framework.

Both operations, illustrated in Figure 9.1, depend on the generation of an IDL
interface ;4 corresponding to idl. I;4, which has an automatically generated unique
name, defines a single method getData, whose return type is idl. For example, the
IDL definition:

struct person {string name};
struct data {long age};
typdef sequence <person> people;
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extracts a value d of the form illustrated in Figure 9.9, and translates in the interface:

struct person {string name};
typdef sequence <person> people;
interface Getting Data28103

{

people getData()

where the IDL structure data has been removed as it was not reachable from the
main definition.

d
Q

01
N
person . person
<
erson pekgon «
c c C N~ C
02 03 04 )
1

name / name | name
1

r r r,
@) O
"Fratini"  "Bevini"

Figure 9.9: Extracted value

Based on Iy, SNAQue instantiates the CORBA object as follows:

1. compiles I;y with JIDL, a compiler from IDL to Java, and gets the Java class
skeleton for I;5 and the Java classes for idl;

2. creates a Java object j, an instance of the classes for idl, that corresponds to
d;

3. creates the CORBA object corresponding to I;4: that is a Java object with a
unique method getData returning the Java object j.

With reference to our example, the interface Getting Data28103 defines a se-
quence people of structures person, which in turn have one property name. When
this interface is JIDLed, i.e. processed by a JIDL compiler, three Java source
code files are produced along with a number of helper classes: the class skeleton
Getting Data28103, and the classes peopleType. java and personType. java.

The class Getting Data28103 corresponds to the interface and declares the
method getData(), returning an object of type peopleType. The peopleType class
contains a constructor and methods to access the elements of the sequence. The
personType class contains a constructor and one attribute name of type string.
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This Java source code is generated, manipulated, compiled, and executed by
SNAQue to construct first j and then the related CORBA object.

Achieving this requires dynamic class source code creation, method/class name
lookup, and compilation. Programs must examine themselves and manipulate in-
ternal properties. Programming languages that support reflection can achieve this.
Reflection is a language mechanism which enables computations to generate lan-
guage code, compile it and execute it at run-time.

SNAQue uses the Java reflection API, which provides the means for determining
the fields, constructors and methods of Java objects and classes, for:

o creating the Java object: Java reflection API offers the methods forName,
getMethod, and getReturnType, which are used by the system to discover the
return type of the getData method of the skeleton. In our example this type is
the class peopleType. The constructors of this class, and arguments to these
constructors, are also determined by reflection. The object j is generated
by recursively running through the structure of d, in conjunction with the
structure of each class definition, and calling the appropriate class constructors
as the recursion unwinds.

This process is based on the static constraint governing the nature of d so
that it conforms in structure to idl, hence to the Java classes. In our exam-
ple, the system gets and uses the constructors of the classes peopleType and
personType. A new element of an array of class peopleType is created for
each oid reachable from the root of d (see Figure 9.9) with a label person, i.e.
03, 03, and alike. Furthermore, each of these oids must have an outgoing edge
labeled as name, which corresponds to the instance variable name of objects of
the class personType. Such variable can then be instantiated with the target
values of these edges, i.e. Fratini, Bevini and so on.

creating the CORBA object: the CORBA object is generated by compiling and
instantiating the Java class skeleton corresponding to the given IDL interface,
where the method getData is filled in by SNAQue with Java code that simply
returns the newly created object j. In our example, getData is completed with
code that returns the Java object of class peopleType constructed according
to the process exemplified above.

Once the CORBA object has been instantiated, any CORBA client can access
it through the corresponding stub and operate over the extracted value by invoking
the method getData.

At the current stage of development, the execution of SNAQue is requested by
an invocation to a CORBA object. In particular, both the XML data and the IDL
definition reside on the server side of the CORBA gateway. A client program makes
a call, through a stub to this object, to a distinguished method at the server. The
server executes this method, which performs the projection of the XML data onto
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the given IDL definition. Future versions of SNAQue, will provide a Web interface
through which users can specify an XML URI, an IDL definition, and perform the
extraction they need.

9.5 Experience with the prototype

The initial data set was chosen from the numerous biodiversity database projects
undertaken by the Palaeobiology Research Group at the University of Glasgow.
A test load, documenting the major groups of marine organisms that colonised
Tropical America over the last 30 million years, has especially been identified as
suitable for experimentation within the approach proposed. This data includes
several thousand genera and is insufficiently regular to allow the use of conventional
database technology to address the range of queries required. Whilst the bulk of the
data is highly structured taxonomic information, there are significant amounts of less
structured data that should be included. For example, morphological characteristics,
which vary widely in the different groups of organisms, and other crucial data such
as population densities, images, life habits and habitats. The data as we received it
is in the form of a treatise: it has no explicit structure in terms of tags or labels but it
does have a high degree of implicit structure. This implicit structure exists because
of a standard format developed by palaeobiologists, over several hundred years, for
documenting their findings. Given an understanding of this standard format it was
possible to write a parser that converted the plain text into XML. A section of the
plain text follows:

?Apsilingula WILLIAMS, 1977, p. 403 [*A. parkesensis; OD]. Elon-
gate oval with subparallel lateral margins; dorsal and ventral pseudoin-
terareas poorly known; both valves strongly thickened posteriorly, with
deeply impressed muscle scars; ventral visceral area extending to mid-
valve; transmedian scars possibly

A portion of the corresponding XML, as produced by the parser, is shown in
Figure 9.10. The resulting XML is structured but irregular; for example, not every
genus has a shell. wlnformation of this kind is of vital importance to the study of
biodiversity, in terms of analysing extinction patterns, and is still normally gathered
by manual inspection of the text of the treatise.

Note, however, that every genus has a name, an author and a date. We use these
fields for an example application, which is to print a list of all these attributes for
each genus in order of the recorded dates. Operations of higher complexity could
be performed over these data, which include the insertion in a DBMS and/or their
combination with data stored in other DBMSs or SSDBs.

As a first step, we illustrate the process of extraction of a regular subset of our
XML SSDB corresponding to an object with IDL,
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<FAMILY>
<GENUS>
<NAME confirmed="false">Apsilingula</NAME>
<AUTHOR>WILLIAMS</AUTHOR>
<DATE>1977</DATE>
<PAGE>p. 403</PAGE>
<SYNONYM>[*A. parkesensis; 0D]</SYNONYM>
<DESCRIPTION>
<SHELL>Elongate oval with subparallel lateral margins</SHELL>
<VALVES>both valves strongly thickened posteriorly </VALVES>

</GENUS>

</FAMILY>

Figure 9.10: XML source produced by the parser.

struct nametype {string confirmed; string name;};
struct genustype {nametype name; string author; long date;};
typedef sequence <genustype> genus;

which translates in the type,

[ genus: coll([author: string;
name: [confirmed: string; name: string];
date: int 1)

Figure 9.11 shows the value d extracted from the SSDB in Figure 9.10.

SNAQue returns a CORBA object, implemented in Java as an object of class
Getting Datail0, that serves the value d across the ORB. Client programmers that
want to use this CORBA object, must first compile its IDL interface, in order to get
a Java class stub to the object. Then, around the stub, they can write and compile
the code of consuming applications.

For simplicity, we give an example of a Java client in Figure 9.12.> We assume
the IDL interface has been compiled, and that mlObj (line 1) is the name reference
to the CORBA object across the ORB framework.

The client coerces, i.e. narrows, the reference xmlObj to a corresponding Java
object of type Getting Datal0 (line 1). In particular, zmlObj is narrowed to p,
which becomes the reference to the CORBA object for the consuming applications.

3Note that our client was written in Java just for simplicity, while zmlObj could have been
coerced into an object of any CORBA-compliant language.
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Figure 9.11: Extracted value d

Indeed, calling the getData method (line 2) of p returns an array of genustype
objects as defined by the IDL and in the mapping from CORBA to Java.

The array of genustype objects contains Java objects corresponding to the two
structs in the IDL. The code outputs all the data in the array (line 3 — 5) and then
uses a quicksort algorithm to sort them by date (line 6). The sorted array is then
displayed (lines 7 —9).

1) Getting Datal0 p = Getting DatalOHelper.narrow(zmlObj);
2) gettingl0.Getting DatalOPackage.genustype[]l obj.data = p.getData();
3) System.out.println("Name, Author, Year");

4) for (int i=0; i<obj_data.length; i++)

5) System.out.println(obj_data[i] .name.name + ", " +
obj_data[il.author + ", " +
obj_datali].date + ".\n");

6) QuickSort(obj_data, 0, obj_data.length-1);

7) System.out.println("\nSorted data:");

8) for (int i=0; i<obj_data.length; i++)

9) System.out.println(obj_datali] .name.name + ", " +
obj_data[i].author + ", " +
obj_datali].date + ".\n");

Figure 9.12: Client query in Java.

SNAQue identifies a novel concept that we believe to be of significant importance
within the field of querying XML data. Rather than adopting the more common
approach of designing a special-purpose query language for the domain in particular,
SNAQue provides a semantic model through which the information encoded in XML



144 CHAPTER 9. SNAQUE

can be exported into the domain of traditional programming systems. We do not
claim that this approach is in any sense better, but that it is complementary in that
it is stronger for certain classes of problem. In particular it seems to be well-suited
to querying tasks which require generalised computation, especially over large sets
of data.

Efficiency aspects of the approach are also clearly important; we believe in prag-
matic terms that the subset creation is quite tractable. However, we are determined
to go through a deep analysis of performance as long as SNAQue will reach a usable
version, so as to provide precise results and claims about usability and effectiveness
of our approach.

There are many future directions for this research topic. CORBA has been
chosen as a convenient proof of concept mechanism, but the same approach can be
used for any programmable domain that is based around a static typing discipline.
For example it seems an interesting idea to use a similar mechanism to translate
from XML into a relational database.
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Conclusions and Future Issues

The main contribution of this thesis is to have laid the foundations of mechanisms
enabling applications of typed programming languages to indirectly compute over
regular subsets of SSDBs. In itself, this result is a step forward towards the integra-
tion of SSD with structured data and typed programming languages.

Known approaches for typing SSDBs either statically impose a type and con-
strain data population or infer a type from the database after data population. The
first offer the advantages of static typing at the cost of limiting the number of ir-
regularities in the database. The second, while enabling unconstrained database
population, offer only part of these advantages. Our approach is complementary to
these, as it fully recovers the benefits of static typing after data population. We
believe that in combination with navigational approaches, extraction mechanisms
may provide complete functionality for SSD.

In particular, this work provides a specification for the realisation of an extraction
mechanism in a typed programming language. Any language can be associated with
a notion of extractability, which captures the concept of value extractable from an
SSDB according to a given type. Based on extractability, an extraction algorithm
can thus be constructed. Moreover, algorithm’s correctness can be proven verifying
specific properties of soundness and completeness with respect to extractability.

In order to show the feasibility of extraction mechanisms for most programming
languages currently in use, we have realised an extraction mechanism for a repre-
sentative typed language L featuring a set of standard types. First, we have defined
extractability of L and then given a corresponding algorithm Extraction. Given
an SSDB and a type of L, Extraction returns an extractable value, along with the
measures of precision and data capturing. By interpreting these measures, users
may be able to improve the results of their subsequent extractions.

Extraction is proven to be sound with respect to extractability for L, but not
complete. While soundness is fundamental for extraction algorithms, however, we
have shown that in many application contexts the incompleteness of Extraction
has no relevant impact. This is the case for tree-structured SSDBs, for which we
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provide a specific complete algorithm Extraction;.

Finally, as a practical example of an extraction mechanism, we presented the
system SNAQuE. SNAQuE extracts Java objects from XML SSDBs and is built
around the algorithm Extraction;. Indeed, the system focuses on XML documents
interpreted as tree-structured SSDBs and a subset of Java types that matches the
types of L. A prototype of SNAQuE has been developed and is currently under
improvement at the Computer Science Department of Strathclyde University.

We believe that important and immediate enhancements to our work should be
the following:

Complete algorithm Compared with others, which typically disregard these is-
sues, the query methodology derived from the usage of Extraction enables
applications to indirectly operate over SSDBs with shared oids. On the other
hand, the presence of shared oids is the principal cause of algorithm’s incom-
pleteness. We have seen that incompleteness is due to quite specific combina-
tion of types and SSDBs and does not generally represent a problem for users.
However, providing a reliable version of the algorithm would certainly be a
stronger result. Therefore, an important future issue is that of realising a ver-
sion of Extraction, only suggested in this work, which proves to be complete
with respect to extractability.

Formal definition of extractability for a language Extractability is based on
a mapping from values of the language to SSDBs and on a definition of inclu-
sion between SSDBs. While the mapping is strictly related with the target lan-
guage, the inclusion relation is language-independent. Indeed, the behaviour
of an extraction mechanism for a specific language varies depending on the
form of inclusion adopted.

An algebra for the definition of inclusion relations could be a useful tool for
extraction mechanism designers. Such an algebra, for instance, may support
operators for the definition of equivalences between different sets of labels
or for the construction of particular structural associations between SSDBs.
Hence, designers could first define a mapping from SSDBs onto the language
values, and then construct a customised definition of inclusion depending on
the specific SSD scenario.

Measures When successful, Extraction returns also the measures of precision and
data capturing. We have seen that their importance is that of disclosing to
users the backstage of the extraction process. As a further improvement, other
measures may be conceived to provide different forms of feedback to the users.
For example, users may be interested in a single quantity qualifying the overall
precision, rather than relying on a list of record-specific quantifications.
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Experiments Due to the absence of a working implementation, the need for ex-
traction systems stands on a strong claim only. Thus, once completed, the
SNAQUuE system will be deeply tested so as to provide evidence for the usabil-
ity and effectiveness of our approach.

In summary, extraction mechanisms bridge the SSD domain to typed program-
ming language domains. Accordingly, they become useful tools in many application
contexts, as both extensions to extant programming environments or platforms for
the construction of new SSD-based programming systems. In the following we show
some ideas which may give rise to novel research avenues.

10.1 Customised extraction mechanisms

The benefits of an extraction mechanism depend on the host language. In this work,
for example, we have described the system SNAQuE, which extracts Java objects
from SSDBs. This gives users the immediate advantage of writing type-correct Java
applications over subsets of SSDBs, as well as specifying computations over high-
level types rather than over simple labelled graphs. A further peculiarity of SNAQuE
is that Java objects can be served as a CORBA service across the CORBA ORB
framework.

Moreover, through the appropriate interfaces with various DBMSs, Java appli-
cations may become the means to populate a DBMS with regular subsets of SSDBs.
This way, SSDBs could be queried with the benefits of DBMSs. However, extrac-
tion mechanisms could be devised to directly inject SSD into relational DBMSs.
Here, other issues come into play, such as how to extract relationships, specified via
external keys, from SSDBs.

10.2 Persistence and extraction mechanisms

In Persistent Programming Languages [13, 17, 75, 48, 16], computations store values
together with their types into a persistent store. Values thus survive the applications
that created them and may be retrieved by any run-time computation by performing
an intern operation. Such operation takes a reference to the value, i.e. a name, and
a type. If the value type matches the given type, the values is safely imported into
the interested computation.

Similarly, an extraction mechanism checks for the existence of a regular SSDBs
that corresponds to a value of a given type, and possibly returns such value. Ac-
cordingly, extraction mechanisms could be naturally hosted in a persistent language,
where programmers are used to accessing values through dynamic controls.

A more ambitious project is that of realising a persistent language around a
semistructured persistent store. Here, a persistent store would become an SSDB
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whose data can be retrieved by high-level applications exploiting an extraction
mechanism. Similarly, applications would persistently store the data they create
according to a corresponding SSD representation. The persistent store could thus
be queried over by means of SSDQLs. In particular, by adopting an XML represen-
tation of the store, persistent data could be also accessed via HTTP and visualised
with a browser.

This idea suggests the further realisation of a persistent language integrating
under the same binding mechanism, high-level commands with commands for the
manipulations of SSDBs in a navigational fashion.

10.3 Databases data-first design

Schema-first techniques for DBMSs design (see Chapter 2) are not well suited to
the creation of databases for complex application domains, such as scientific, geo-
graphical, financial, and multimedia domains. This is due to the fact that major
structural changes to the schema of a populated database may be turn out to be
critical.

Extraction mechanisms suggest a novel design technique, which may be apt to
these particular scenarios. Data collections are built in an untyped fashion as SSDBs
and become constrained by a schema only at a later stage. Precisely, users populate
an SSDB with their relevant data and incrementally project relational or object-
oriented schemas assumptions onto the database. Such process terminates when
and if a satisfactory binding between schema and the SSDB can be reached.

These techniques are currently under investigation at the Department of Com-
puting and Information Science of Strathclyde University.
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