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Abstract: Acoustic signals are important markers to monitor physiological and pathological
conditions, e.g., heart and respiratory sounds. The employment of traditional devices, such as
stethoscopes, has been progressively superseded by new miniaturized devices, usually identified
as microelectromechanical systems (MEMS). These tools are able to better detect the vibrational
content of acoustic signals in order to provide a more reliable description of their features (e.g.,
amplitude, frequency bandwidth). Starting from the description of the structure and working
principles of MEMS, we provide a review of their emerging applications in the healthcare field,
discussing the advantages and limitations of each framework. Finally, we deliver a discussion on
the lessons learned from the literature, and the open questions and challenges in the field that the
scientific community must address in the near future.
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1. Introduction

Vibrations are oscillatory movements close to an equilibrium state that occur in any
physical body possessing a mass. Depending on the specific case, such displacements can
have a periodic or random nature. Acoustic waves are an example of vibrations that occur
through the alternated compression and decompression of a mean (e.g., air, water). They
can be perceived as sounds by the hearing apparatus or transient movements of physical
bodies (e.g., earthquakes—ground motion) [1].

Acoustic signals in healthcare can be classified into two main groups: external inputs
used by auditory apparatus to perceive the surrounding environment, and acoustic
manifestations of structural displacements occurring in the body (e.g., heartbeat).

The first class is conveyed to the brain via two mechanisms: bone conduction and
air-bone conduction. In the first case, acoustic pressure waves are transferred to the
cochlea in the inner ear, and then to the brain, by exploiting the passive conduction given
by the bone structure of the skull [2]. In the second case, sounds are collected by the pinna
and then transferred to the cochlea passing through the middle ear, composed of the
eardrum and the ossicular chain, that filters and transmits acoustic inputs through the
synergistic combination of geometries and materials properties of the components [3].
Both these mechanisms, due to pathologies and malfunctions of the native tissues, can be
altered, directly affecting the hearing sense [4].

The second class includes, for instance, signals from the cardio-respiratory
apparatus, and are usually detected by a stethoscope, a tool that amplifies body sounds
through its bell-like shape in contact with the soft tissues closer to the body part being
monitored. Although stethoscopes have been widely used by physicians and healthcare
operators, their employment presents a few relevant limitations. First, a stethoscope is a
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piece of equipment that is not wearable but has to be held in close contact with the skin
and requires the presence of a trained operator to assess the magnitude and features of
the acoustic signal. This also implies a non-neglectable subjectivity in the evaluation of the
detected signals that, therefore, does not possess a quantitative nature. Moreover,
stethoscopes can be efficiently used for an occasional auscultation but they cannot be
employed for continuous and long-term monitoring activities that, in contrast, are
required for specific needs (e.g., assessing lung activity during sleep) [5,6].

In order to overcome these issues, microelectromechanical systems (MEMS) have
been successfully employed as an alternative to gold standards, to detect and finely
measure body vibrations through benchmarks of their dynamics (e.g., displacements,
accelerations), or indirectly using other signals (e.g., force). These tools can be properly
miniaturized, worn, and customized for each specific application and also for long-term
and continuous monitoring activities, eventually serving as point-of-care tools for at-
home self-assessments [7].

This review reports the main prototypes and commercial MEMS products for
detecting and processing acoustic vibrations in healthcare applications. First, we provide
a classification of MEMS based on their working principles and their general employment
as reported in the literature. Then, we cover the most studied applications in healthcare
where MEMS are used to perceive acoustic signals from environmental or body sources,
organizing the dissertation based on the specific targeted organ/physiological
phenomenon (Figure 1). A final section is then provided to summarize the take-away
messages from the literature and discuss the open challenges to be addressed in the near
future.

Auditory apparatus Sleep
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Figure 1. Fields of application for acoustic sensing devices covered in this work. The Figure was
assembled using images from freepik.com and Vecteezy.com.

2. MEMS: Classification and Employment

Microelectromechanical systems (MEMS) are mechanical and electro-mechanical
elements developed through microfabrication techniques that are usually made of three-
dimensional silicon microstructures, ranging between 1 and 100 pm in size. To fabricate
such devices, a number of different approaches have been pursued, e.g., film deposition,
isotropic and anisotropic etching, and masking and doping techniques [7-9].

MEMS are able to convert different types of environmental signals into detectable
electrical signals. Specifically, it is possible to highlight six main fields: electrical (e.g.,
resistance, capacitance, inductance), chemical (e.g., composition, reaction rate,
concentration, and pH), mechanical (e.g., displacement, velocity, acceleration, acoustic
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wavelength, and acoustic intensity), thermal (e.g., temperature, heat), radiative (e.g.,
intensity, phase, polarization, wavelength), and magnetic (e.g., field intensity,
permeability) [10].

MEMS sensors rely on transducers, devices that convert a signal in one form of
energy to a signal in another for purposes of measurement or control. Although the word
“transducer” has historically been used to refer exclusively to devices that convert
mechanical stresses, such as force or pressure into an electrical signal, the current
definition has been extended to include all forms of input stimuli (mechanical, electrical,
fluidic, or thermal) and output signals other than electrical [11]. The classification of the
main types of MEMS sensors, which have been developedis shown in Figure 2.

MEMS Sensor Types
L
I L 1 L 1 L T 1
. . : Radio- . o . .
Inertial Acoustic Optical Microfluidics Force Thermopiles Chemical
Frequency

Figure 2. Classification of MEMS sensor types.

Inertial sensors are commonly used to estimate body attitudes by measuring linear
accelerations and angular rates along the three orthogonal axes; acoustic sensors are used
to acquire sounds propagating across different mediums such as air, water, or solids;
optical sensors can detect light perturbations in both the visible and invisible spectrum
(e.g., IR, UV); radiofrequency sensors are used to acquire electromagnetic signals or
perform signal power monitoring; microfluidic sensors are used to handle or process
fluids at the microscale level; force sensors are used to detect mechanical pressures;
thermopile sensors are used to measure heat fluxes and temperatures with or without
contact with the surfaces; chemical sensors are used to detect chemical properties, e.g.,
gases concentration, pH levels and osmotic pressures.

Thanks to their miniaturization and excellent mechanical and electrical properties,
MEMS usually exhibit low power consumption, high sensitivity, light weight, high
resolution, stable performance, and ease of integration with other devices and systems. A
wide range of MEMS sensors, such as microphones, accelerometers, gyroscopes, pressure,
gas, thermal, flow, and biosensors, have been developed and are currently available on
the market. Their usage has grown steadily in commercial application, and are currently
extensively employed in almost all production fields [12]:

e Automotive, e.g., collision and rollover sensing devices for airbags deployment; fuel
level and vapor pressure detection; tire pressure; active suspension and braking
monitoring; navigation systems;

e Healthcare, e.g., blood pressure, breathing, glucose and heartbeat sensing; auditory
assessment; prosthetics; sleep monitoring; muscle stimulation; drug delivery
systems; pacemakers;

e Industrial automation, e.g., machine health monitoring; predictive maintenance;
automatic safety mechanisms activation; surveillance of production processes; goods
tracking and logistics;

° Consumer electronics, e.g., temperature and vibration monitoring for PC, hard disks,
printers, home appliances; gesture recognition for gaming controllers and
smartphones; sports training devices;

e Environmental and agriculture, e.g., environmental sensing and weather forecasting,
soil fertilization and irrigation planning; crop health monitoring; automated farming;

° Telecommunications, e.g., network devices monitoring; fault detection and
localization; electrical and optical signal processing;
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e Aerospace and defense, e.g., surveillance; satellite monitoring; UAV and remote system
operations; weapons guidance; spacecraft and aircraft navigation.

Independent of the physical phenomena they are designed to acquire, MEMS sensors
can be built by exploiting distinct working principles. The main working principles can
be classified into eight categories (Figure 3).

Inertial accelerometers, for example, can be manufactured to rely on the piezoelectric,
piezoresistive, capacitive or optical effect. Piezoelectric-based sensors exploit the capabil-
ity of a particular material (usually a metal or a semiconductor) to produce an electrical
voltage in response to applied mechanical stress (and vice versa) [13]. Electrothermal sen-
sors are based on materials that generate a voltage difference when exposed to a temper-
ature difference [14]. Resonant sensors are small electromechanical structures that vibrate
at high frequencies and typically produce, as the output, a frequency shift induced by the
external stimulus altering the mechanical properties of the resonator (e.g., the mass or
stiffness) [15]. Electrochemical sensors generate electrical signals in response to chemical
reactions [16]. Tunnelling sensors are based on the electron tunnelling gap transducers,
which measure a displacement by the change in tunnel current between two electrodes
[17]. Capacitive sensors rely on the variation of the electric capacitance of one or more
pairs of plates when the distance between them changes due to external stimuli. In con-
trast, optical sensors are based on manipulating light signals through a mean, e.g., micro
mirrors or switches [7]. A different approach involves the so-called “localized surface
plasmon resonance” (LSPR), a term that is used to describe the electron density wave that
travels over the metal surface. Plasmonic biosensors are a class of devices that use sensi-
tive noble metal nanoparticles (NPs) integrated into a biosensing assembly for applica-
tions in environmental pollution analysis, illness diagnosis, and human health monitoring
(viral detection) [18-21].

In healthcare, microphones and accelerometers have been the most commonly em-
ployed sensors for acquiring acoustic and vibration signals.

Microphones are acoustic sensors operating in the human audio frequency range (20—
20,000 Hz) that are conventionally made of a flexible membrane and a back-plate where a
bias voltage is applied. As the sound wave hits the membrane, it induces its oscillation,
causing a proportional variation to the electrical capacitance that the coupled electronics
can subsequently acquire. Since this model has some limits in terms of maximum signal
level and sensitivity to environmental conditions, further sensing mechanisms have been
investigated to improve acoustic sensor performance, which include using a back-plate-
less design to minimize air damping, using piezoelectric sensing components to achieve
low-power directional detection, and optical sensing to deal with extreme environmental
conditions. Microphones based on the piezoelectric effect have been predominantly em-
ployed due to the simple and robust construction coming from the absence of a backplate,
an improved linearity and very low power consumption that allows constant standby [9].

Accelerometers, in contrast, are inertial sensors that can be modeled as a unit com-
posed of a spring, mass and damper, one for each of the sensing directions. The mass is
suspended by a specifically designed suspension system that is characterized by a given
spring constant. Due to the small size of the micromachined sensing element, an addi-
tional viscous damping factor is introduced to dissipate the energy and prevent the mass-
spring system from experiencing excessive vibrations. Under an acceleration input, the
mass moves relative to a fixed frame structure embedded in the sensor case. Different
transduction methods, such as piezoelectric, piezoresistive or capacitive, can be used to
measure the displacement of the mass and, hence, determine the inertial force [22]. MEMS
accelerometers have advantages over traditional high precision electromechanical sen-
sors, such as small size, extreme ruggedness, low power consumption, and low-cost [23].

Figure 4 shows four typical architectures employed in the design of acoustic and vi-
bration sensors, based on different working mechanisms [24]: in panel (a), the sensing
element, which can be a piezoresistive or piezoelectric material, is embedded in an oscil-
lating cantilever holding a suspended mass. The sound waves hitting the structure entail
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a bending of the sensing element that, in turn, generates a manageable voltage difference.
In contrast, in panel (b), the sensing element is assembled onto a diaphragm that deforms
with the incoming acoustic waves. The sensing element is made of piezoelectric or piezo-
resistive materials, or even optical nanofibers, which exploit the propagation interference
effect [25]. A capacitive sensing mechanism can also be used by employing both the sus-
pended mass design—panel (c)—or the diaphragm design—panel (d). In such cases, two
parallel conducting plates are used: one is fixed to the sensor support structure while the
other is free to oscillate. The variable distance among the plates causes a proportional
change in their capacitance that is indirectly measured by either controlling the frequency
of an oscillator or the attenuation of an alternating current signal.

Electrothermal Resonant

Piezoelectric Electrochemical

MEMS
Working

Piezoresistive principles Tunnelling

Localized surface
plasmon resonance

Optical

Capacitive

Figure 3. Working principles of MEMS sensors.

The architectures based on the suspended mass designs are also commonly used for
manufacturing inertial sensors where the primary structure is replicated for each of the
axes, along with the forces that are measured.
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Figure 4. Common architectures of acoustic and vibration sensors. Panel (a) cantilever with embed-
ded sensing element and suspended mass. Panel (b) diaphragm with embedded sensing element.
Panel (c) cantilever with capacitive layers and suspended mass. Panel (d) diaphragm with capacitive
layers.

3. Sensing Devices in Healthcare

Sensing devices in healthcare have had, and will have, a huge impact on the future
of the healthcare cycle. Currently, clinical devices are able to manage and analyze medical
data, environmental conditions, and personal habits from a multitude of (bio)sensors.

In the following subsections, we present the current and most significant applications
of sensing devices for detecting and processing acoustic signals in healthcare.

3.1. Auditory Apparatus

Hearing loss affects more than 5% of the population worldwide [4]. This condition
affects the ability to communicate between individuals, perceive sounds from the
surrounding environment, as well as enjoy all leisure activities that involve sound
perception, which has been demonstrated to have substantial long impact on the body’s
welfare.

Hearing loss can be caused by a malfunction of the middle or the inner ear. In the
first case, the condition is named conductive hearing loss since it affects the functioning
of the eardrum or the ossicular chain while, in contrast, with sensorineural hearing loss,
doctors identify an issue in the cochlea, the part of the inner ear where sound amplification
takes place, and pressure waves are converted into electric signals to be transferred to the
brain [26].

Conductive hearing loss is usually recovered by intervening with the damaged
structure by applying a biological or synthetic tissue replacement to patch/replace the
eardrum [27,28] or by using a prosthesis to recover material continuity between the
tympanic membrane and the cochlea in place of the damaged ossicles [29,30].

A different situation applies for the sensorineural hearing loss that affects hair cells’
motility in the cochlea, so that they are not able to perform their tasks. In this case, hearing
aids for mild/moderate conditions consist of a microphone and a processor that amplifies
sounds, delivered directly into the ear canal. However, the amplification is not frequency-
sensitive and only 30% of the elderly could benefit from such devices [31].

In the case of relevant conditions, cochlear implants (Cls) are employed to directly
stimulate the auditory nerve, based on the amplitudes and frequencies of the external
sound, through an array of implanted electrodes, without relying on the hair cells [4,32].
This complex assembly presents external components (microphone and signal processor)
connected with the implanted part through a magnetic inductive link. The implanted
device is selectively activated by a signal processor that elaborates the sounds perceived
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by an external microphone [33]. CIs are largely employed, and more than 180,000 people,
both children and adults, have benefited from such devices [31].

However, traditional CIs suffer several limitations in terms of day-to-day
practicalities (e.g., an external appearance that may induce a social stigma or the
impossibility of being treated with a magnetic resonance), and reliability in the long-term
[34,35].

Scientists in academia and industry have been developing solutions to improve the
design of hearing devices in terms of efficacy and implantability in the body. Specifically,
most components, from the battery to the speech processor, can be successfully implanted
under the skin close to the pinna. The main issue, for almost total implantability, concerns
the tool to detect acoustic signals (e.g., the microphone) [36].

Figure 5 reports a classification of the acoustic sensors for hearing devices able to
perceive external acoustic pressures.
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Piezoelectric
MEMS
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Figure 5. Classification of the acoustic sensors for hearing aids based on the implantation site and
the final application.

The first class is of subcutaneous capacitive sensors that transform the deformation
of a membrane into an electric signal. Such devices are usually placed above the pinna to
achieve the best directional sensitivity. The first commercial device was presented in 2001,
a titanium-based microphone called TICA with dimensions in the order of 4 mm and a
weight of 0.4 g, covering a bandwidth up to 10 kHz. Although it was implanted in 20
patients, there are no recent studies on it [37]. A different approach was pursued with
TIKI, a tool with two microphones, one external and one subcutaneous, which work in
parallel through a microprocessor. In particular, the implanted microphone covers a
volume of 7.5 x 28 x 28 mm under the skin, achieving the upper frequency of 6 kHz [38].

Carina™ (Cochlear Ltd., Sydney, Australia) consists of an assembly with a
subcutaneous condenser microphone with noise filtering, implanted surgically on the
skull behind the subject’s ear. Although its behaviour has been optimized to detect
airbone sounds up to 5 kHz and was implanted in 110 patients, successful integration in
a totally implanted cochlear implant has not been achieved yet [39-41].

Finally, Jung et al. designed a titanium membrane (diameter = 12 mm) with an
acoustic titanium tube to increase the first natural frequency. Tests were only conducted
in the laboratory using a skin-like membrane made of silicon up to a frequency of 8 kHz
[42].
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Concerning electromagnetic sensors, Maniglia et al. published an implantable 29 mg
displacement sensor comprised of a neodymium-iron-boron magnet encapsulated in a
titanium case that was fixed to the malleus. The motion of the malleus allowed the magnet,
interacting with a coil fixed on the temporal bone, detect a frequency of up to 3 kHz,
creating an electric signal. No clinical tests were reported in literature [43].

An optical sensor based on the reflection of a laser beam on the vibrating tympanic
membrane was proposed by Vujanic et al. in 2002. However, it was only a laboratory
prototype, and has not been further developed [44].

Piezoresistive MEMS sensors exploiting the acceleration of the incus were developed
by Park et al. in 2007. They exploited the low output impedance to enable remote
amplification. The prototype covered a volume of 387 x 800 x 230 pm? with a total mass of
166 um, and consisted of a mass suspended by a flexible beam covered with
piezoresistors. Tests were only conducted in laboratory using temporal bones and a laser
Doppler vibrometer (LDV) with frequencies up to 7 kHz [45].

Capacitive transduction has also been used for implantable devices [46,47]. A MEMS
displacement sensor was developed by Huang et al. in 2007: it consisted of a coiled spring
(mass = 15 mg, stiffness = 10 N/m) that transfered the displacement of the umbo to the
condenser fixed to the bone walls in a bandwidth up to 5 kHz. The prototype was tested
on only one human temporal bone with an LDV [48]. Ko et al., in 2009, improved the
previous design, fixing the assembly not on the temporal bone, but directly onto the umbo
through springs. The total mass resulted in 25 mg and it was tested in human temporal
bones with frequencies up to 8 kHz [49]. Using a capacitance, but exploiting the
accelerations instead of the displacements, Zurcher et al. designed a mass plate (14 mg—
1 x 1 mm?) that moved between fixed walls to generate a voltage. The total weight was 25
mg with a size of 2.5 x 6.2 x 1 mm? and it was fixed on the umbo, catching inputs up to 6
kHz [50]. In 2012, Young et al. investigated the response of a MEMS accelerometer under
a vacuum, giving new insights on reduced packaging needs [51]. In contrast, Sachse et al.,
developed a lumped parameter model of a MEMS capacitive acceleration-based sensor to
optimize its features in terms of mechanical and electrical noise, as well as its resonance
frequency. A prototype was later fabricated and tested in human temporal bones in a
bandwith up to 6 kHz [52].

A different approach was proposed by Woo et al., who aimed to measure pressure
variation inside the middle ear cavity due to the vibration of the eardrum. A membrane
whose diameter was 10 mm and thickness equal to 20 um, made of stainless steel, was
used as a implanted acoustic sensor in the middle ear cavity [53].

Another exploited physical phenomenon is the piezoelectric effect. Javel et al.
published a work in which the acoustic sensor consisted of a piezoelectric bimorph
material in the shape of a cantilever beam positioned on the malleus of adult cats. An
acousto—mechanical assessment was carried out by measuring the vibration up to 10 kHz
a LDV [54].

Esteem® (Envoy Medical Corporation, White Bear Lake, MN, USA), in contrast, is a
commercial device that exploits a piezoelectric acoustic sensor to detect the vibration of
the middle ear ossicles up to 10 kHz, but requires complex surgery and presents high
surgical complication rates [55-57].

A different concept was published by Koch et al. who developed a bidirectional
membrane transducer fixed at the incudostapedial joint to measure the force passing
through the joint. It was made of titanium with a volume of 4 x 2.5 x 1 mm? and a mass
equal to 35 mg. Tests were carried out in silico and on a test bench with a reduced
bandwidth (0.4—4 kHz) [58,59] (Figure 6).
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Figure 6. Transducer to estimate the force passing through the incudostapedial joint. Open Access
[59] © 2022 MDPI.

Kang et al. designed a biocompatible piezoelectric accelerometer using a ceramic
bimorph element and an electronic chip enclosed in a titanium case with a total volume
of 45 x 1 x 0.3 mm? and a mass equal to 38.4 mg. Tests were performed by gluing the
device on the incus of a cat and measuring the acoustic stimuli [60]. The same design was
tested by Gao et al. with a finite element model that included a human middle ear [61]. Jia
et al., in contrast, placed their piezolectric accelerometer on the long process of the incus,
achieving an increased volume of up to 5.91 x 2.4 x 2.0 mm? and a higher mass equal to 67
mg. Tests were carried out on seven temporal bones with frequencies up to 10 kHz [62].

Beker et al. changed the goal of using piezoelectric MEMS accelerometers, to using
them as CI sensors. They showed a finite element model of the device to harvest energy
from the umbo movement, that was later validated in the laboratory using a prototype
made of silicone and lead zirconate titanate (PZT) (volume of 4.25 x 4 x 0.525 mm?) in a
frequency range of 0.5-2.5 kHz [63]. With the same objective, Yip et al. used a piezoelectric
MEMS accelerometer made of PZT and validated it with a dedicated amplification circuit
on human temporal bones. It was also optimized to reduce the power consumption of the
connected cochlear implants in a frequency bandwidth of 0.3-6 kHz. No further technical
details were delivered by the authors [64].

More recently, Yiiksel et al. presented a similar device that worked in a bandwidth
between 0.2 and 5.5 kHz, with dimensions of 5 x 5 x 0.62 mm? (Figure 7). Tests were only
carried out on a testbench in the laboratory [65].

- Ceeee e
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Piezoelectric
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Figure 7. Piezoelectric MEMS sensor to feed cochlear electrodes. Open Access [65] © 2022 IEEE.
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A summary of the acoustic sensors for hearing aids, along with the main physical
and technical features, is reported in Table 1. As shown, there is a huge variety of sensing
devices for the auditory system to best suit the specific condition to treat and, most
importantly, because of the different working principles adopted to address the
engineering challenge. Therefore, it is difficult to deliver a global analysis in terms on
advantages and disadvantages for the different classes. However, it is possible to state
that, overall, all the devices aimed to fit the speaking frequency bandwith (1-4 kHz),

leaving the highest part of the hearing range (up to 20 kHz) uncovered.

Table 1. Acoustic sensors for hearing aids.

P
Device Size Weight Bandwidth Sensitivity ower ) Tests Ref.
Consumption
TICA:
subcutaneous
: Di ter: 4. Bref. 1 Impl in 2
microphone  Diameter: 4.5 -y 04 01-10kH, O 9PT 005-05mw mplantedin20 .0
based on a mm mV/Pa patients
capacitive
membrane
TIKI: two
capacitive
microphones .
Vol 7. 10 dB ref. 1 Impl
(one olume: 7.5 02-6kH, 109Bre 005-05mw |mplantedind g0
28 x 28 mm3 mV/Pa patients
subcutaneous
and one
external)
Carina™: Implanted in 110
subcutaneous patients, but a
microphone - - 0.25-5 kHz - 0.05-0.5mW  full integration  [40]
with condenser was not
microphone achieved
Subcutaneous Tested in the
I.'nicrol.)ho?e Diameter: 12 i 0.1-8 KHz 35dBref. 1 0.05-0.5 mW lab.o.ratory with [42]
with a titanium mm mV/Pa a silicone-made
membrane skin
Electromagnetic
Sensor:
interaction
30 dB ref. 1 Tested in th
between a ; ; 0.25-3 kHz e ~1 mW ST IR 43
. mV/Pa laboratory
magnet fixed on
the malleus and
a fixed coil
Optical sensor
based on the
reflection of a i i 0.5-10 Kz 46 dB ref. 1 6.4 MW Tested in the [44]
laser beam on ’ mV/Pa ) laboratory

the tympanic
membrane (or
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one of the
ossicles)

Piezoresistive
MEMS that
measured the
acceleration of

Volume: 387 x
800 x 230 pm?

the incus

Capacitive
MEMS

displacement
sensor based on

a coiled spring -
that transferred
the displacement

of the umbo to

the condenser

Capacitive
MEMS
displacement
sensor fixed on
the umbo
through springs

Capacitive
MEMS
acceleration
sensor: a plate
moved between
fixed walls to
generate
capacitance-
related voltage

Volume: 2.5 x
6.2 x 1 mm?3

Capacitive
MEMS
acceleration
sensor

Capacitive
MEMS that
measured the
middle ear

Diameter: 10
mm;
pressure thickness: 20

variation due to pm

the motion of
the eardrum

25mg

25mg

0.9-7 kHz

0.5-5kHz

0.8-8 kHz

0.2-6 kHz

0.5-6 kHz

0.1-10 kHz

46 dB ref. 1
mV/Pa

20dBref. 1
mV/Pa

20dBref. 1
mV/Pa

19 dB ref. 1
mV/Pa

9dBref. 1
mV/Pa

28 dB ref. 1
mV/Pa

>1 mW

=45 mW

=4.5 mW

=4.5 mW

=1 mW

Tested in the
laboratory with
temporal bones

and the LDV

Tested on one
temporal bone
and the LDV

Tested on
temporal bones

Tested in the
laboratory

Optimization
through
modeling;

tested in the
laboratory with
human temporal
bones

Tested in the
laboratory

[45]

[48]

[49]

[50]

[52]

[53]
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Piezoelectric An acousto—
bimorph mechanical
material in the assessment was
sk.lape of a i i 0.5-10 kHz 45 dB ref. 1 i carried 'out by [54]
cantilever beam mV/Pa measuring the
positioned on vibration of the
the malleus of sensor with an
adult cats LDV
Esteem®: a
piezoelectric
acoustic sensor
Tested on 134
to detect the ; ; 0.25-8 kHz ; ; estec on [55-57]
. . patients
vibration of the
middle ear
ossicles
Piezoelectric
force sensor: a
bidirectional
membrane Tests in silico
fi 1 14
transducer fixed - Volume: 4 x 35 mg 0.25-8 kHz - - and on atest [58,59]
at the 2.5 x1 mm?3
. . bench
incudostapedial
joint to measure
the force passing
through the joint
Pi .
iezoelectric Tests in the
accelerometer
laboratory on
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cochlear
implants

Piezoelectric

(PZT)

accelerometer
sensor: for
powering

cochlear
implants

Piezoelectric

(PZT)

accelerometer
sensor: for
powering

cochlear
implants

Tested on
temporal bones
- 03-6kHy 20dBrefl 0.01 mW to minimize  [64]
mV/Pa
energy

consumption

Volume: 5 x5 26 dB ref. 1 Tested in the
x 0.62 mm3

48mg  0.25-55kHz mV/Pa - laboratory [65]

3.2. Cardiovascular Apparatus

Bloodstreams make sounds in the frequency range of 20-1000 Hz while flowing
through the heart and procuring mechanical displacements [66,67]. Heart sounds are of
paramount importance since their features (e.g., intensity, frequency, duration) can be as-
sociated with multiple physiological and pathological information related to the health of
the heart itself [68,69], and, therefore, have been considered to diagnose and monitor car-
diovascular diseases. Human heart sounds are composed of four main components. The
two dominant features are the first heart sound (S1-systolic) and the second heart sound
(S2-diastolic). The first heart sound, S1, which reproduces the closure of the mitral and the
tricuspid valves, is generally distributed in the low-middle frequency range, between 10
Hz to 140 Hz [5]. In contrast, the S2 sound is related to the closure of the aortic and pul-
monary valves [70] in a frequency range between 10 Hz and 400 Hz, with an upper bound
higher than S1 but, in contrast, with a shorter duration [5]. Additional heart sounds are
the third heart sound (S3) and the fourth heart sound (54) [6] that can be present when
patients show congestive heart failure or adventitious pulmonary sounds [71,72] associ-
ated with deteriorating cardiopulmonary conditions [72-74]. Their frequency distribution
is below 50 Hz, and the vibration amplitude is lower than S1 and S2. Due to the weakness
of 53 and 54 signals, their identification can be effectively assessed by using highly sensi-
tive accelerometers [71,75-77].

Stethoscopes and electrocardiographs (ECGs) have been the most popular tools used
to monitor and diagnose heart diseases. However, the main limitation of traditional steth-
oscopes is related to the high dependency on the clinical experience of doctors, and the
limited applicability to long-term medical assessments [5,6]. In contrast, ECGs have been
considered more accurate, but there are specific heart diseases that are difficult to diag-
nose [6].

A method to identify the S1 sound was proposed by Pharm et al. that employed a
miniature, battery-operated wearable device as shown in Figure 8. A dedicated algorithm
analyzed the power spectral of the acoustic pulse signal to detect the S1 sounds and to
remove the artifacts for an accurate heartbeat detection. The results showed a higher ac-
curacy, of up to 98.7%, with an error lower than 0.28 bpm, with respect to a commercial
photoplethysmography (PPG) device [78].
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Figure 8. Wearable device to monitor the heart sound at the wrist. The device is composed of a
MEMS microphone sensor integrated with Bluetooth. Open Access [78] © 2022 Nature Publishing
Group.

In contrast, Sharma et al. developed a wearable device placed on the suprasternal
notch at neck. This new device is easier to manage compared with the traditional multiple
electrodes attached on the chest, in which the monitored heart sounds are usually cor-
rupted by other external artifacts and from the respiratory cycles [79].

The proposed algorithm was designed to accurately determine the heart rate, avoid-
ing the external noise. Specifically, the heart sound was extracted from the acoustic re-
cording and the cardiac cycle was segmented and classified into S1 and S2 sounds, achiev-
ing results with an accuracy of up to 94.34% [80].

In contrast, Chan et al. presented a cuff-less, low cost and ultra-convenient blood
pressure monitoring device endowed with a 3-axis accelerometer, positioned on the upper
chest. This device was used for the estimation of the systolic and diastolic pressures and
was able to monitor the blood pressure at 1 Hz, as long as the accelerations data of the
patient was collected and available [81].

A new solution that did not require a direct contact with the patient to control the
heartbeat and the heart rate was proposed by Quian et al. The authors employed a micro-
phone and a speaker on a device, e.g., smartphones or laptops. It was possible to generate
an acoustic cardiogram (ACG) from inaudible acoustic signals, as schematically depicted
in Figure 9. By analyzing the ACG signals obtained from the human body, it was possible
to discriminate the heart rate and the heartbeat by employing frequency-modulated
sound signals able to discriminate the heart signal from external noise. Moreover, using
the double microphone endowed on a mobile device, it was possible to convert the acous-
tic data into heart and breath rates. Results showed a median heart rate error of 0.6 bpm,
and median heartbeat interval error of 19 ms [82].

P
K
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Figure 9. Schematic of the acoustic cardiogram using inaudible acoustic signals to monitor heart-
beat.

The use of a MEMS heart sound sensor was investigated by Cut et al., whose novelty
consisted of a bionic MEMS based on the pick-up mechanism of the three-dimensional
ciliary bundle structure of human ear hair cells. The acoustic sound was analyzed and
optimized using analytical and simulation methods, and eventually, experimentally
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tested. The sensor possessed a small size, and showed very good results such as a high
sensitivity to monitor heart sounds (-189.5 dB @ 500 Hz), a good working bandwidth of
10-800 Hz, and low interference with environmental noises [83].

Qu et al., in contrast, developed a device made of a piezoelectric MEMS acoustic sen-
sor with a low-noise amplification circuit integrated into silicone membranes with an air
cavity. This light-weight device resulted to be skin compatible, low-cost, and unaffected
by external environmental sounds [77].

Numerous cardiovascular diseases are related to abnormal blood pressure values: in
particular, about 54% of strokes and 47% of coronary heart diseases are connected to blood
pressure, which has become a crucial indicator of a person’s health status [84].

Interestingly, some studies have suggested a correlation between the S2 and the aor-
tic blood pressure [85-88]. MEMS accelerometers have been used to measure systolic
blood pressure [81,89,90], and this approach has represented a good, non-invasive option
to monitor patients and predict cardiovascular diseases (e.g., the hypertension disease)
[91,92]. Generally speaking, non-invasive diagnoses have relied on the monitoring of the
electrical activity or cardiac pump activity, exploiting the dynamic electrocardiogram,
phonocardiogram, echocardiogram, or contemporary medical imaging techniques such
as NMR, CT, and PET [93].

Among the others, atherosclerosis is a coronary arteries disease that causes the dis-
ruption of normal laminar flow of blood and generates stream turbulences. This condition
occurs when the walls of the coronary arteries become thicker due to deposited plaques
(based on fat, cholesterol, fibers, calcium, and other substances from blood) in the arteries.
The accumulation of this plaque restricts the arteria, reducing the normal blood flow, and,
consequently, reduces the heart of oxygen. The result is a narrowed lumen in which the
blood flow creates a characteristic turbulent sound that can be detected with external tools
to avoid hearth attack and failure or arrhythmias [94]. A recent study by Whinter et al.
presented an investigation on a large group of patients with low and middle likelihood of
coronary artery disease (CAD). The portable acoustic device developed for the detection
of CADs was mounted at the fourth intercostal space. The heart sound was analyzed using
a dedicated CAD score algorithm that included both acoustic features and clinical risk
factors. With a negative predicted value of 96%, this acoustic system could potentially
support a clinical assessment, reducing the demand for more advanced and costly diag-
nostic tools [95]. Table 2 summarizes all the wearable devices developed to monitor heart-
beat and blood flow with high accuracy and low cost. Most importantly, they are unsus-
ceptible to external environmental sounds, compared with traditional devices.

Table 2. Devices to detect heart-related acoustic signals.

Device

Mechanism Application Results Ref.

Removed the artifacts for an
accurate heartbeat detection, with

New miniature, battery- Wearable device to An algorithm analyzed the an accuracy of 98.7% and an error

operated wearable
device

monitor the heart  acoustic pulse signalto ~ lower than 0.28 bpm, compared  [78]
rate at the wrist detect S1 sounds with a commercial

photoplethysmography (ppg)
device

Wearable device

suprasternal notch at

Wearable device

The algorithm determined The results showed an accuracy of
the heart rate, avoiding the 94.34% for the heart rate [80]
external noise determination

placed on the

neck

Portable acoustic device

The device was Dedicated CAD score A negative predicted value of 96%, [95]
mounted at the algorithm that included this device could reduce the
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fourth intercostal ~ both acoustic features and demand for more advanced and
space clinical risk factors costly diagnostic tools
The device was . .
. Estimated the systolic and
. endowed with a 3- . ,
Device for blood . diastolic pressures and Low cost and cuff-less, able to
o axis accelerometer, . . [81]
pressure monitoring . monitored the blood  monitor the blood pressure at 1 Hz
positioned on the
pressure
upper chest
ACG discriminated the

Non-contact device to
control the heartbeat
and the heart rate

A microphone and a heart rate and the heartbeat
speaker on a device, by using frequency-
e.g., smartphones or modulated sound signals to

Results showed a median heart
rate error of 0.6 bpm, and median  [82]

laptops identify the heart signal heartbeat interval error of 19 ms

from the external noise

Bionic MEMS

dimensional ciliary ~ and simulation methods,
bundle structure of  and experimental test

Device based on the
pick-up mechanism The acoustic sound was

Small size, high sensitivity to
monitor the heart sounds—189.5
db @ 500 Hz, a bandwidth 10-800  [83]
Hz, and low interference with
environmental noises

of the three- analyzed using analytical

human ear hair cells

Piezoelectric MEMS
acoustic sensor: a The device recorded Low cost, light-weight, skin
Heart sound sensor low noise different heart sounds  compatible device, unsusceptible [77]
attached on the chest amplification circuit, ~ while at rest and after  to external environmental sounds;
and silicone training activities good stability
polymers
3.3. Fetus

Accelerometers can be used to monitor fetal heart beats/sounds and movements,
picking the signal from the fetus. Acoustic signals from the fetus are sometimes too weak
to be detected in the early gestation stage, in particular, before the 30th week of gestation
[96]. Fetal body movements are strictly connected with fetal health [97-99], and its reduc-
tion is frequently a warning of health complications, for example, fetal distress, fetal
growth restriction, or hypoxia. Monitoring the fetal phonocardiography is also very im-
portant in diagnosing congenital heart disease [96,100]. Currently, the standard methods
of fetal monitoring (FM) are limited to their use in clinical environments.

It has been estimated that early neonatal deaths and fresh stillbirths due to birth as-
phyxia are, respectively, 1 and 1.3 million every year. Urdal et al. studied a multi-crystal
strap-on low-cost Doppler device, including an accelerometer, to monitor the fetal heart
rate (FHR) during labor using the signals detected by the accelerometer to estimate uterine
contractions [101].

Ghosh et al. evaluated the performance of an acoustic sensor-based, cheap, wearable
FM monitor that pregnant women could use at home. A thresholding-based signal pro-
cessing algorithm based on the fusion of the sensors’ outputs to automatically detect FM
was developed to analyze the data. The new signal processing algorithm proposed to
combine data from all the sensors and to remove artefacts due to maternal movements.
The achieved results showed a sensitivity, specificity, and accuracy of 83.3%, 87.8%, and
87.1%, respectively, relative to the maternal sensation of FM [99].

In a later study, Ghosh et al. compared an acoustic sensor, an accelerometer, and a
piezoelectric diaphragm as potential candidates for a wearable FM monitoring system.
The acoustic sensor and the piezoelectric diaphragm better determined the durations,
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intensities, and locations of kicks, than the accelerometer. Moreover, they demonstrated
that the acoustic sensor and the piezoelectric diaphragm were able to detect weaker fetal
movements, compared with the accelerometer [102].

Zakaria et al. developed a system with six accelerometers and an Arduino microcon-
troller interfaced with a Matlab-based post-processing software to detect fetal movements
(Figure 10). The sensors were placed on the maternal abdomen and recorded signals from
the fetus, achieving an accuracy of 85.57%, very close to the ultrasound technique, which
has an accuracy of about 97%, while the maternal perception is 59.8% [103].

Figure 10. The recording system with six accelerometer sensors and an ARDUINO microcontroller.
Open Access [103] © 2022 ARPN — Asian Research Publishing Network.

Altini et al. proposed a new wearable device placed on the abdomen to better detect
fetal kicks. They proposed a system that combined data from accelerometers and electro-
myography (EMG). The system drastically reduced the false-positive kick detection [104].

Zhao et al. developed the concept of e-health home-care for fetal signal perception,
applying the Internet of Things (IoT) to the system, to connect all the terminal monitoring
units to a control center. The wearable system provided four accelerometers for fetal sig-
nal acquisition. The signal was processed using a microcontroller via Bluetooth combined
with an Android based device, that provided statistics and information on the fetal health
status [105]. A schematic of the system is depicted in Figure 11.

Accelerometers g Monitoring
. e Platform
Embedded

System
Figure 11. Components of the local fetal movement monitoring device.

Yusenas et al. studied the use of accelerometers and MEMS microphones to develop
a device for counting fetal movements to sense various types of fetal movement [106]. In
their study, acceleration sensors and MEMS microphones were used to detect three ac-
tions performed on the subject’s abdomen: flicking, tapping, and knocking of the fetus.
The acceleration sensors showed an accuracy of 69.96% for the tapping action, while the
accuracy of the MEMS microphones was 71.11% for the flicking action; however, the ac-
curacy of MEMS microphones was very low for the knocking action (31.11%). The combi-
nation of these two devices is a promising tool for monitoring fetal movements.
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A good way to prevent fresh stillbirths and early neonatal deaths due to birth as-
phyxia is by monitoring the regular assessment of the fetal heart rate (FHR) in relation to
uterine contractions. Urdal et al. studied a method that reduced the noise increasing the
interpretability of FHR Doppler signals, and a method that used accelerometer signals to
estimate uterine contractions. The noise in the FHR signal was removed using only the
sampled heart rate. Using a three-axis accelerometer set near the Doppler sensor, it was
possible to evaluate the contraction when the maternal movement was little [101].

Table 3 lists the novel aspects of fetal monitoring devices that have been proposed to
date. These new technologies are able to monitor pregnant women at home without the
presence of a doctor and, in particular, show a high accuracy in isolating the mother move-
ments from that of the fetus in addition to when the mother is not in a resting condition.

Table 3. Devices to detect fetal acoustic signals.

Device Mechanism Application Result Ref.

Developed a thresholding-

A cheap acoustic sensor- based signal processing

Wearable acoustic sensor Analysis of fetal
based device used by . Y algorithm to detect fetal [99]
monitor movements .
pregnant women at home sounds by removing artefacts
due to maternal movements
A comparative study of
an acoustic sensor, . .
A silicon-based membrane Better determined the
accelerometer, and L. . . ..
. .. similar to the abdomen to Captured fetal sounds durations, intensities, and
piezoelectric diaphragm . o . . X [102]
. o mimic the vibrations due to produced by the kicks locations of fetal kick
as candidate vibration .
fetal kicks movements
sensors for a wearable FM
monitor
The sensors were
. . Performed better in
Six accelerometer sensors MATLAB signal process tool placed on the maternal . e .
; identifying episodes of fetal
and ARDUINO to record, display and store  abdomen to record . ) [103]
. . activity and episodes of
microcontroller relevant fetal movement and process the signals

inactivit
from the fetal y
Internet of Things (IoT)
applied on the system to
connect all terminal
monitoring units to a control

IoT-based wearable
system for fetal

E- health home care, Internet
of Things (IoT) was applied on
Local monitoring unit the system to connect all the [105]
terminal monitoring units to a
control center

movement monitoring
using accelerometers and
machine learning

center; the system consisted
of two parts: the local
monitoring unit and the
remote health evaluation unit

The noise was
removed using the The accuracy of usin
The devices were used to & . Y &
. sampled heart rate; the  acceleration sensors was
) detect three actions o . .
Acceleration sensors and ., three-axes 69.96% for the tapping action;
. performed on the subject’s . .
MEMS microphones accelerometer set near while for MEMS microphones
the Doppler sensor,  was 71.11% for the flicking
evaluated the action

contraction

[106]
abdomen: flicking, tapping,
and knocking

A multi-crystal strap-on Developed methods to Noise present in the FHR [101]
low-cost Doppler device, increase FHR Doppler signals signal was reduced, for good
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including an
accelerometer

Wearable system

Single wearable system

by reducing noise and detection of contractions when
estimating uterine the maternal movement was
contractions using accelerom- low
eters

Successfully discriminated

Combination of Local monitoring unit
fetal and maternal movements,
accelerometers and bespoke on the maternal [107]
. and also movements when the
acoustic abdomen .
mother was active
Variable length Single wearable device Decreased false-positive kick
accelerometer, combination placed on the detection, and separation from [106]
data with electromyography abdomen the maternal noise

3.4. Respiratory System

Respiratory sounds provide vital information about patients’ health and disease,
such as chronic obstructive pulmonary disease (COPD), chronic bronchitis, bronchial
asthma, etc. [108].

They are classified as normal or adventitious sounds, whose presence generally in-
dicates a pulmonary disorder [109,110]. The adventitious sounds are of two types: contin-
uous (Wheezes and rhonchi) and discontinuous. Crackles, as well, may be produced either
by pressure equalization or by a change in elastic stress resulting from the sudden opening
of closed airways in the lungs [111].

During the first decades of the 1800s, Rene Theophile Hyacinthe Laennec invented
the stethoscope which, since then, has become the most employed tool of every medical
setting, and is even considered as synonymous with the profession itself [112].

However, as early as 1985, some scientists [113] pointed out the stethoscope’s limita-
tions because of its low diagnostic value ascribable to the attenuation of higher frequen-
cies which contain valuable diagnostic information regarding respiratory sounds. Indeed,
the stethoscope has a frequency response that attenuates frequency components of the
lung sound signal above about 120 Hz [114], and the human ear is less sensitive to a lower
frequency band. Hence, auscultation through stethoscopes is a subjective process that de-
pends on the physician’s own hearing perception, and the experience and competencies
of the medical staff, that can lead to a high inter-observer variability.

Respiratory sound analysis (RSA) or respiratory sound monitoring (RSM) seeks to
address the issues of the stethoscope by allowing physicians to record, store and visualize
the sounds produced by the respiratory system, as a digital recording, using specific anal-
ysis equipment.

The application of new technologies, e.g., electronic stethoscopes, wearable accel-
erometers, MEMS, could represent a new approach to detecting and diagnosing respira-
tory disorders [115].

The electronic stethoscope, working as a traditional one, is able to amplify signals to
2000 Hz (respiratory sounds are limited to this frequency) and to record respiratory and
heart sounds, which are converted into electrical signals and saved as digital files, for
more accurate data processing and transmission [116-118].

Moreover, some research groups have used an electronic stethoscope to generate in-
put data for further analysis or classification, using machine learning algorithms such as
convolutional neural networks (CNN) or support vector machines (SVM), in the diagnosis
of asthma in children [119,120].

Compared with the stethoscope, miniaturized accelerometers can be taped onto the
chest wall, integrated into belts, worn on the skin or mounted into clothing, guaranteeing
continuous and unobtrusive cardio-respiratory monitoring. Therefore, they can be wear-
able sensors, as depicted in Figure 12, for different applications and operative scenarios,
thus, improving users’ life quality and preventing diseases [121,122].
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Figure 12. Schematics of a wearable and wireless breathing sound monitoring system as presented
in [108].

For instance, asthma is a chronic respiratory disease, whose continuous monitoring
becomes relevant for patients’ breathing without missing any asthma attacks. Yuasa et al.
[123] proposed continuous breathing monitoring in daily life, using a wearable chest-
mounted device, which consisted of a microphone, a photoreceptor and a flexible cover.
They was able to show that chest movement could be used for estimating the breathing
period and for tracking the asthma attacks of the wearer. In particular, the device was
attached to the upper chest with an adhesive gel sheet, while the chest movement signal
was acquired by a photoreactor using the deformation of the flexible cover accompanying
the respiring chest. In addition, the study allowed estimation of the preferred position for
placing the device, because the signal amplitudes at that location were large and less af-
fected by any shoulder movements. A correlation between sound amplitude and tidal vol-
ume, detected by a MEMS microphone, was observed. Indeed, the breathing phase iden-
tification experiment showed that the periodicity of the chest movements could be used
to estimate the breathing periods and phases, whose frequency strongly depends on the
wearer’s health condition, such as wheezing, which is typical of an asthma attack [123].

The work of Guesneau et al. [124] evaluated the respiratory rate from the signal of a
single-axis accelerometer fixed at the top of the abdomen. The use of a third-order low
pass Butterworth filter, the initial estimation of the respiratory rate, turned out to be a
deeply accurate method to demonstrate the potential of the accelerometer as a low-cost,
non-intrusive method of screening for sleep disorders through respiratory and cardiac
signals detection, extracted with a single and in situ measurement.

In the field of respiratory sleep monitoring, the work of Chunhua et al. [125] ap-
peared to be innovative due to the proposal of a novel smart flexible sleep monitoring belt
with MEMS triaxial accelerometer, developed to detect vital signs, snore events and sleep
stages with an achievable precision of 97.2%. This RS monitoring device was both feasible
and effective due to its low cost and high performance with detection accuracies of heart
rate and respiration rate of about 1.5 bpm and 0.7 bpm, respectively. Moreover, the sensi-
tivities awake, REM, light sleep, and deep sleep stages were 90.2, 77.1, 78.1 and 73.5%,
respectively, results that allow the collection of various vital signs during sleep monitor-
ing.

Similarly, a two-stage amplified PZT sensor was investigated by Chen et al. [126] for
monitoring lung and heart sounds in discharged pneumonia patients. In the study, they
used a self-developed sound sensor based on a novel asymmetric gapped cantilever com-
posed of a piezoelectric beam made of piezoelectric ceramic, to continuously monitor lung
and heart sounds. The idea was to convert the biomechanical energy (such as the acoustic
vibration) to electric energy due to the piezoelectric effect, reaching high sensitivity at a
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frequency less than 1000 Hz, suitable for weak lung and heart sound monitoring, gaining
great potential for clinical use and home-use health monitoring.

The use of piezoelectric devices was also exploited within the investigation of Ngu-
yen et al. [127], where a MEMS-based microphone and a piezoresistive cantilever were
able to measure a 0.1-mPa acoustic signal with a frequency down to 2 Hz. The obtained
highly sensitive low-frequency device showed a compliance that was 200 times higher
than the conventional piezoresistive cantilever, with an SNR of ~80 dB in the range of 2 to
200 Hz, optimum in different applications, such as healthcare and photoacoustic-based
gas/chemical sensing, etc.

The novel coronavirus disease (COVID-19), which has rapidly swept around the
globe, has created the need for technological solutions for medical-preventive actions,
such as the capability to continuously monitor key physiological parameters of the dis-
ease.

In particular, the study of Xiaoyue et al. [128] proposed an automated wireless de-
vice, tailored for COVID-19 patients, able to detect vital signs and respiratory activity,
such as cough, in revealing the early signs of infection and in quantitating the responses
to therapeutics, both in clinical and home settings. The system was characterized by soft,
skin-mounted electronics that incorporated high-bandwidth and a miniaturized motion
sensor, enabling digital and wireless measurements of mechano—-acoustic (MA) signatures
of both core vital signs (i.e., heart rate, respiratory rate and temperature) and underex-
plored biomarkers (coughing count), as indicators of both disease and infectiousness (Fig-
ure 13).
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Figure 13. Working principle of the air-silicone composite device as presented in [128].

Similarly, Qixin et al. [129] proposed the idea of a triboelectric nanogenerator for res-
piratory sensing (RS-TENG), which was designed and integrated with a facemask that
endowed respiratory monitoring function due to small volume, easy fabrication, simple
installation and economical applicability, helpful for developing multifunctional health
monitoring gadgets during the COVID-19 pandemic.

Finally, the employment of smartphones for recording respiratory sounds has gained
relevant interest [130,131]. Indeed, the built-in microphone was found to be a low-cost,
contact-free, trustable, and straightforward solution for breathing monitoring, even
though more studies and clinical validation are still required [115].

For instance, smartphones could be used for wheeze recognition using an SVM clas-
sifier in pediatric patients [132], or for developing an automatic system to detect crackle
sounds [133].

In [132], the presented device was 71.4% accurate in the sensitivity and 88.9% in the
specificity of the recorded sounds, requiring no direct contact with the patients, no stand-
ardized environment, and only a standard smartphone. Conversely, in [133], the authors
described a device that allowed crackle detection with an accuracy ranging from 84.86 to
89.16%, a sensitivity ranging from 93.45 to 97.65%, and a specificity ranging from 99.82 to
99.84%. Moreover, it led to successful results related to crackle disclosure, the most
masked noise among the frequency components of respiratory sounds.
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More recently, an app was developed for this purpose, taking 15 s to detect a crack-
ling sound [134] using a smartphone’s microphone to assess a potential COVID-19 infec-
tion [130]. Table 4 summarizes and highlights some of the most innovative features related
to the proposed devices for RS monitoring, to date. Such sensing typologies appear rather
contextualized within the current scenario, which is strongly marked by the recent pan-
demic emergency. Concerning this specific scenario, such devices also allow a continuous
monitoring of the patient without a clinician present.

Table 4. Sensor equipment for respiratory sound monitoring (RSM).

Device Mechanism Application Result Ref.
Hybrid-based Monitoring of
yorie-base Elastic flexible cover, OMITOTINg © Breathing phase
aspiration and . asthma attacksand . e .
L . microphone (MEMS) and . identification of patient [123]
respiration sensing hotoreactor detection of the condition, such as wheezin
(HARS) P breathing phases ’ &
Single-axis Non-intrusive Testing of three different
accele‘romete.r Wearable elastic belt, worn method of ?creenlng breathing modes: r.10rmal,
accessorized with a ., for sleep disorders slow and fast, with an [124]
. around the subject’s abdomen . .
third-order low pass and patient follow- accuracy of breathing
Butterworth filter up frequency evaluation <1%
. Detection of heart Accuracies of heart rate and
L Belt packaged by the micro- . o
Digital signal . . and respiration  respiration rate reached by
fiber cloth of a PET-flexible .
processor (DSP) . . rates, snoring the belt were about 1.5 bpm
o . sensor film consisting of a L. . [125]
circuit and a flexible recognition, and  and 0.7 bpm, respectively.
_ pressure sensor array and a o :
sensor film _y sleep stages Accuracy of 97.2% in the
MEMS triaxial accelerometer e ) .
classification snoring recognition method
Tracking of the recovery
¢ .
A sound sensor made of an cotse oF pretmona
. . . Lung and heart patients with a rapid, simple
Small-sized and  asymmetric-gapped cantilever o . o
L . . sound monitoring and highly sensitive
ultra-sensitive structure with a ceramic L . [126]
. . . . in discharged detection of lung and heart
accelerometer  piezoelectric beam in zirconium , . . .
. pneumonia patients sounds with a great potential
titanate (PZT) as the top layer ..
for clinical use and home-use
health monitoring
Sensing piezoresistive Applications in Small size device witha SNR
MEMS-based cantilevfr Ix)/vith ultra-high I;1I:.>a1thcare of ~80 dB in the range of 2 to [127]
microphone . . & o 200 Hz and a high SNR in
acoustic compliance monitoring
low-frequency range
Monitoring of
COVID-19
. ) Detection of decay trend of
. o infections due to a .
Wearable real-time monitoring . coughing frequency and
MA sensors continuous record ; [128]
system . intensity through the course
of coughing .
of disease recovery
frequency and
intensity

Intelligent facemask

An ultrathin FEP film and Al Respiratory sensing High sensitivity and
foil as triboelectric layersand a  (RS-TENG) for feasibility in respiratory [129]
conductive cloth tape as  coronavirus disease monitoring in diagnosing
electrode (COVID-19),  many respiratory diseases of
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integrated with  human bodies, able to give
facemask timely alarm after breathing
stops
Recording, by a built-in Accuracy with median errors
. of less than 1% for the nasal
microphone and the headset _ .
e ) ) Detecting nasal sound, for all breathing
Built-in microphone microphone of an iPhone 45 | .
. airflow and tracheal ranges even if the [130]
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3.5. Gastrointestinal Tract

Many people suffer from motility and functional bowel disorders that require an ef-
fective assessment of their intestinal conditions, playing a vital role in the diagnosis and
evaluation of eventual diseases [136]. Indeed, out of nearly eight billion human beings, it
is likely that almost all emit and/or have heard bowel sounds (BS) [137].

Although such sounds are closely linked to vital processes of life and health, they are
notoriously difficult to be directly measured since they occur randomly in time and loca-
tion with very low amplitudes, compared with other body sounds. As a matter of fact,
many physicians initially proceed with invasive testing (blood tests, stool tests,
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colonoscopy and/or biopsy) to rule out potentially fatal organic disease before confirming
the less serious diagnosis. These invasive tests are not only unpleasant for patients, but
could carry significant risks together with physical discomfort, psychological distress and
financial costs due to time off work.

In addition, there is a diffused lack of effective tools other than the non-invasive prac-
tice of auscultation [138]. However, while the sounds from the lungs and heart have been
widely investigated due to their characteristic and regular patterns, capturing sounds pro-
duced by the stomach and intestines remains an open challenge.

Hence, for decades, many doctors and researchers have developed miniaturized,
easy-to-fabricate and wearable medical devices to support medical diagnosis as well as to
reduce cost [139].

Mamun et al. [136] proposed a novel, ultra-low power, real time bowel sound detec-
tor, able to measure meal instances in artificial pancreas devices. This system provided
aid to long-term diabetic patients by the use of a front-end detector that transduced the
initial bowel sound, recorded from a piezoelectric sensor, into a voltage signal. Therefore,
it provided a non-invasive approach to detect and to correlate physiological measures in
real time with motility or meal instances. This system only consumed 53 uW of power and
was implemented on a 0.96 mm? chip space. The frequency of bowel is well below 500 Hz,
so the detecting systems should detect bowel sounds with high accuracy in the presence
of environmental noise. The sensitivity of the proposed implant was not only easily tai-
lored, but could also isolate abdominal vibrations from a noise spectrum signal dominated
by the heartbeat, or from noise from talking and walking, showing about 85% accuracy in
detection of gastrointestinal sounds with a low number of false-positives.

In contrast, Dagdeviren et al. [140] showed the importance of piezoelectric-based de-
vices in detecting bowel sounds. They reported and designed an ingestible, flexible pie-
zoelectric device that sensed mechanical deformation within the gastric cavity in both in
vitro and ex vivo simulated gastric models. Indeed, despite advances in device develop-
ment for GI monitoring, significant risks associated with solid, non-flexible gastrointesti-
nal transiting systems remain, that can eventually lead to intestinal obstruction or are re-
lated to limited battery lifespan drawbacks. This device does not display cytotoxicity for
cell metabolic activity or for plasma membrane integrity. Furthermore, cell adhesion and
spread was observed over the device surface, highlighting its potential biocompatibility.
Concerning the electrical performance, the PZT GI-S behavior depended on the type of
bowel motion occurring during the assessment. For instance, when air was introduced
into the stomach, the device reported a pressure increase given indirectly by a significant
voltage increase from about 10 to 60 mV. Then, after 40 s of inflation, pressure appeared
to be stabilized (plateau voltage curve) while, after the air was released, a decrease in
voltage occurred. The proposed example showed the potential sensitivity of the device to
detect changes associated with air ingestion, as well as the capacity to guide evaluation
and treatment in cases of aerophagia or intestinal bacterial overgrowth.

Hence, the development of a system capable of both sensing and remaining flexible
within the gastrointestinal (GI) environment, eventually reducing the mentioned risks,
may have a good impact on the diagnosis and treatment of motility disorders. The small
dimensions and flexible nature of such a device could also reduce the likelihood of GI
tissue damage, maximizing its broad applicability. Similarly, the smart shirt for digestion
acoustics monitoring, named GastroDigitalShirt, implemented by Baronetto et al. [141],
monitored the different digestion phases (peristaltic contractions) across six hours in par-
ticipants with no prior GI diseases, capturing the main bowel sound (BS) types reported
in the literature. The prototype embedded an array of eight miniaturized microphones
connected to a low-powered wearable computer for performing long-term, automated
auscultation to clinically monitor digestion and track a number of specific disease symp-
toms.

In the field of wearable devices, the work of Fengle et al. has gained great interest.
They developed a flexible, skin-mounted device for long-term and real-time
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monitoring/evaluation of bowel sounds based on the integration of a three-dimensional
printed elastomeric resonator with flexible electronics, attached to abdominal surfaces.
Clinical tests, conducted on patients with mechanical intestinal obstruction or paralytic
ileus, highlighted the relevance of the device for capturing the characteristics of bowel
sounds as an auxiliary tool in the diagnosis of bowel issues [139].

Another flexible device, useful for the digital auscultation of bowel sound monitor-
ing, was proposed by Gang et al. [142]. They produced a flexible dual-channel with active
noise reduction, wireless, wearable and conformably attached to the abdominal skin. It
allowed the continuous wearable monitoring of BSs for patients with postoperative ileus
(POI) from pre-operation (PODO0) to postoperative day 7 (POD?), providing performant
guidance for doctors to choose a reasonable feeding time for patients after surgery and to
accelerate their recovery. The main innovation of the abovementioned soft, light, and thin
device was the ability of digital auscultation with active noise reduction due to a synchro-
nous acquisition channel for ambient noise. The adaptive filter was used to subtract the
ambient noise from the noise-contaminated BS signals, with performant results for BS
monitoring in noisy clinical environments. The maximum NRR of active noise reduction
was -19.7 dB in testing under a sound level of 45 dB of ambient noise, rendering the de-
tected final frequency closer to the common standard value of doctors” auscultation. The
presented device used a bandpass filter to elaborate low-frequency internal noise that pos-
sessed a bandwidth of 10-20 Hz. In contrast, after the filter, the only frequency peak was
at 280 Hz, corresponding to the potential peak in the BS spectrum. However, the tradi-
tional bandpass filter was not able to effectively suppress ambient noise. In attempting to
solve this further issue, Wang et al. adopted an adaptive filter, able to optimize the sub-
traction between the ambient noise contained in BS signals [142].

Table 5 summarizes the keener and more innovative devices in BS detection, not only
for gastrointestinal motility sensing, but also for continuous wearable monitoring in post-
operative ileus patients. Such devices are a solid alternative to the traditional invasive
screening and prevention procedures. In fact, they are characterized, for instance, by in-
gestible devices, free of any type of cytotoxicity, and with high biocompatibility within
the gastrointestinal system.

Table 5. Sensor equipment for gastrointestinal sound monitoring.

Device

Mechanism Application Result Ref.

Integrated real time
bowel sound detector

Flexible printed
circuit board (fPCB)

Smart Shirt

Polyimide fPCB film, equipped

Remote real-time monitoring
The physiological was achievable with wireless
measure of meal  technologies in an easy-to-

Wearable piezoelectric sensor instances in fabricate, low-cost, light- [136]

artificial pancreas weight and wearable device
devices based on a piezoelectric MEMS
acoustic sensor

Continuous wearable
monitoring of BS for patients

with two auscultation and an Bowel sound
. L. with postoperative ileus (POI) [140]
overall structure of silicone monitoring .
) from pre-operation (PODO) to
packaging

postoperative day 7 (POD?)

Slim-fit T-shirt as a substrate for =~ The capture of Substantial data collected with
the microphone system, in abdominal the accurate detection of 4 BS
elastane, and with an embedded sounds produced  types, as reported in the

[141]

microphone matrix during digestion literature
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Flexible piezoelectric
devices

A PZT GI-S encapsulated with a
1.2um-thick layer of polyimide
and a 10pum-thick layer of
ultraviolet curable epoxy Gastrointestinal
(LOCTITE 5055; Henkel), motility sensing
equipped with an electrical
connection and computer-
controllable USB multimeter

The ingestible device, sensing
mechanical deformation
within the gastric cavity, was
able to quantify the behaviors [142]
of the gastrointestinal tract
using computational
modelling

3.6. Sleep Monitoring

According to the National Institute of Health, sleep is an integral part of the daily
human routine, as essential as food or water. Therefore, several efforts have been made to
promote research on sleep and related areas. Sleep is a physiological process repeated
every 24 h, and its description has involved researchers, clinicians, physiologists,
technicians, and engineers [143].

Currently, it is generally accepted that the essential sleep variables to characterize the
sleep process are: the amount of time needed to accomplish the transition from awake to
sleep (i.e., sleep onset latency, SOL), the total amount of sleep (i.e., total sleep time, TST),
the amount of wake time in minutes during the sleeping period after sleep onset has been
achieved (e.g., wake after sleep onset, WASO), the sleep efficiency (SE) commonly defined
as the ratio of TST and time in bed, and the number of awakenings (NWAK) during the
night [144]. This consensus starts from the definition of the cyclical pattern of sleep,
composed of a rapid eye movement (REM) and non-REM (NREM) phase. The NREM
phase is generally divided into four different stages, namely, Stage 1, Stage 2, Stage 3, and
Stage 4. Knowledge of these stages allows the further inference of new variables. In a
clinical setting, the gold-standard device to characterize human sleep is considered
polysomnography (PSG). PSG is a diagnostic tool able to record several physiologic
parameters and signals through electroencephalography, electrocardiography, oximetry,
and measures of respiration generally exploiting chest belts [145].

PSG is used to infer the different sleep stages, and represents an indirect measure of
sleep. Unfortunately, it is expensive, and a medical doctor generally supervises the tool in
a hospital setting. Consequently, many alternatives have been proposed in the literature
to enable sleep monitoring in a less intrusive manner and to allow continuous monitoring
at home.

Recent advances in smart health, both from the hardware and software point of view,
have, therefore, led to solutions for clinical settings and home monitoring. Wearable
technologies can monitor movements and physiological parameters (e.g., heart rate and
respiratory rate). In this context, actigraphy represents a typical wearable sleep
monitoring device: sleep and wake phases are detected by gathering information from
body movements, typically using sensors worn on the wrist [146]. Through inertial
sensors, typically accelerometer, gyroscope, and magnetometer, these devices are also
able to estimate orientation, and acceleration, thus, inferring information about body
movements [147]. The medical device industry have, thus, presented many devices both
for sleep monitoring and sleep apnea detection. These devices have relied on different
combinations of raw signals.

From a clinical standpoint, many devices have been approved by national public
health administrations. In addition to the above mentioned actigraphy and
polysomnography, which are widely used in clinical and hospital settings, a few wearable
devices have been marked as “medical device” or have obtained FDA clearance. For
example, the AcuPebble SA100 is a small and wearable device able to detect obstrusive
sleep apneas in adults through the sensing of physiological sounds generated by the body
and the detection of respiratory and cardiac biomarkers. Acoustic signals are transferred
to a mobile device, and finally to the cloud, for further processing. The device achieves
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good accuracy compared with gold standard devices [148]. Another interesting device
that has received FDA clerance is the DROWZLE Sleep Apnea, a mobile application that
claims to be able to detect sleep apneas using the patient’s phone [149].

From the consumer point of view, several proposals have been presented as enabling
technologies to monitor sleep through the heart rate: ballistocardiography, piezoelectric,
and photoplethysmography [150]. As an example, Emfit QS [151] is a
ballistocardiography-based device that exploits a thin strip placed under the mattress
which is able to evaluate sleep stages, giving information about apnea or bed occupancy.
Similarly, the Withings sleep device exploits a strip underneath the mattress and provides
sleep stages, snoring information, and HR monitoring during the night. In contrast, the
Beddit device allows the identification of similar features but relies on a no-contact
piezoeletric strip [152]. Another devise is the Beautyrest, which exploits passive
piezoelectric sensors to detect human pressure on the mattress [153]. Finally, an
interesting new technology applied to sleep medicine is the photoplethysmography
(PPG). PPG, similar to a pulse oximeter, exploits a light source and photodetector to
identity differences of light intensity caused by vascular tissue and blood flow. Based on
PPG, remarkable consumer devices are produced by Garmin, Fitbit, Whithing, and
Xiaomi, and are able to identify sleep stages through heart rate monitoring [154]. PPG is
also used to evaluate respiratory rate and, in the market, the Oura ring represents a
consumer device able to identify sleep stages and total sleep time [155]. It is important to
remark that sleep monitoring devices show important differences in sleep stage
evaluation when compared with outputs of gold-standard devices. However, as a main
drawback, commercial devices are not able to identify sleep disorders.

Figure 14 shows a summary of recently developed systems with applications in sleep
monitoring.

Hearth activity
¢ ECG-—electrode
* PCG - stethoscope Pulse wave
¢ SCG - Accelerometer | * PPG - photodiode
Brain waves * Sp02 - photodiode
* EEG- electrode * Pulse pressure - pressure sensors
Respiration Movements
* Body movement— accelerometer | * EMG —electrodes
* Airflow — Humidity sensor \ * Actigraphy— Inertial sensors
* Lungsound —Stethoscope ¢ Body positions—Inertial sensors

Snoring sound - Microphone

Figure 14. Classification of the most recent systems and applications for sleep monitor.

Wearable devices also incorporate technology to monitor the heart rate, but generally
are not able to accurately discriminate between sleep stages. Typically, they can
discriminate if a user is awake, asleep, sleep duration and time awake. Validation studies
about actigraphy and wearable devices have shown an agreement with PSG of typically
around 85-90% [156,157]. The literature shows that the accuracy of such devices has
increased year after year, and the performance of commercial products has started to be
comparable with gold-standard devices for sleep monitoring. In this review, we are
focusing on sensing devices for processing acoustic signals, and, therefore, we summarize
in Table 6 those MEMS-based wearable devices also able to collect heart rate and/or
respiratory information. Furthermore, we analyze recent findings on devices utilized to
detect obstructive sleep apnea syndromes (OSAs), often simply called apneas, namely, a
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breathing disorder characterized by temporary obstructions of the upper airways (no
breathing episodes) during sleep [158]. In this regard, the authors of a recent review
reported the most relevant studies on the analysis of acoustic properties for classifying
OSAs including peak intensity, duration, and occurrences [159].

Table 6. Wearable devices for sleep monitoring and detection of OSAs.

Device Mechanism Application Result Ref.
An HR itori
SimpleLink multi- n monitoring system ' o
that uses the angular rate Real-time monitoring, but
standard sensorTag . . . . . .
. data from a single axis of a ~ Detection of HRin  method still required further
CC2650STK which . . .
. N MEMS gyroscope to detect  real-time for sleep  testing with a larger pool of [160]
includes an inertial .. . . .
. . heartbeats. IMU was secured physicians participants in real-life
measuring unit . . .
(IMU) to the chest using an elastic scenarios
fabric belt
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application was applied to
the wri§t, containing a digital Distinguished sleep The slgep/wake c.lassification
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. . from wake, and .
Apple Watch vigilance test, sending data determined slee consistent. However, the [161]
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7 stages, compared with Ve .
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started until the patient
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the nostrils, monitoring apnea detection sensitivity, reliability, and

respiration using its response time




Biosensors 2022, 12, 835 29 of 39

sensitivity to humidity
change

Table 6 shows some of the innovative approaches in the wearable devices industry
applied to the sleep framework. Despite some of the mentioned devices having reached a
research-grade prototype, the Table shows an increasing interest in sleep monitoring, es-
pecially in the home setting. It is interesting to note that HR was the most-used infor-
mation, and that researchers tried to include respiratory information using accelerometers
or piezoelectric sensors. Another aspect to note, is the importance of collecting and pub-
lishing public and open datasets of human sleep sessions, and more effort should be spent
in comparing devices’ outputs with the gold-standard devices generally used by clini-
cians.

In order to avoid wearable or intrusive devices, researchers have also proposed
technologies to enable sleep tracking in a non-instrusive but objective manner. Generally,
these devices are not classified as medical devices, and their main target is to understand
user habits. As well shown in [165], unobstrusive sleep monitoring is mainly performed
through the analysis of cardiac, breathing, and moving events. Authors also offer a
taxonomy of existing unobstrusive methods for sleep assessment, as shown in Figure 15.

Unobstrusive sleep monitoring

Monitoringsleep Monitoringsleep
disorders parameters
Respiration events Physical activity Cardiac activity

Plethysmography

L ¢ Coloror depth camera * Actigraphy
¢ Spirometry nasal ; .
¢ Pressure sensors * Ballistocardiography
¢ Coloror depth camera B e
* Actigraphy ¢ Capacitivesensors
¢ Pressure sensors 5 : ;
. « Ballistocardiography * Conductivesensors

Microphones

Figure 15. Taxonomy of existing unobstrusive methods for sleep assessment.

In this context, MEMSs are particularly useful for detecting acoustic signals from the
heart and, moreover, the analysis of the sound during breathing cycles could lead to
understanding apnea events.

The emerging technologies based on MEMS include ballistocardiography,
ultrasounds, and phonocardiographic sensors. Ballistocardiography built upon
accelerometers, relies on the representation of cardiac events in order to give insights on
blood injections. Ballistocragraphy based on accelerometers, can infer about cardiac
events by detecting the induced vibrations. In contrast, ultrasound sensors have been used
to process breathing rate and body movement. In [164], the authors proposed a no-contact
ultrasonic device to quantify breathing activity. Based on a low power ultrasonic active
source and transducer, the device measured the frequency shift produced by the velocity
difference between the exhaled air flow and the ambient environment, i.e., the Doppler
effect.

Existing methods and studies have shown remarkable effort in developing new
methods to assess sleep information, nevertheless, they are generally not able to correctly
identify all the sleep stages, i.e,, REM, SWS, and NREM1-3. In this regard, wearable
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systems are more suitable for enabling home sleep monitoring. Recent advancements,
new sensing materials, and advancements in data analysis and deep learning methods
could lead to the full assessment of human sleep in non clinical settings, allowing a wide
spread of tools for monitoring and preventing sleep problems in the population.

Table 7 shows a few innovative examples of non-obtrusive and innovative devices
for sleep monitoring. These devices mainly rely on microphones in order to understand
breathing or snoring. The most interesting approach is represented by the ballistocardio-
graph applied to sleep monitoring. In addition to interesting results recently reached by
this technology, a wide validation campaign seems missing and, furthermore, these de-
vices seem strongly influenced by several external factors, e.g., the mattress thickness and
users” weight.

Table 7. Unobtrusive sleep monitoring solutions which exploit acoustic signals.

Device Mechanism Application Result Ref.

Embletta®X100 PSG: IoT sleep SCA11H bed sensor from

BCG sensor used was the The model could
distinguish between

tracking platform, including . Portable and long-
) . . Murata. Environmental sleep and wake states,
ballistocardiography, environ- . . term sleep . [166]
. data loggers, including o but could not classify
mental sensors, and actigra- .y monitoring
h humidity, temperature, each sleep stage as
Py light and sound. accurately as PSG
A validation on a subject
A 40 kHz ultrasound equipped with a pressure
transmitter illuminated an sensor connected to a
area including the subject’s Breath monitoring nasal cannula showed
Ultrasonic transducers head. One receiver, tuned with a focus on sleep the synchronization of [167]
to the same frequency, apnea detection the pressure signal
recovered the signal provided by the nasal
reflected from the scene. cannula with the signal
spectrogram.
Results f linical
The reflections from the coTits Trom a ciinica
. study with 37 patients
human body arrived at a
. . showed good
specific time depending on
. performances on
the distance from the . .
. Detection of apneas detecting apnea events.
. phone speaker. Focusing L.
Microphone and estimation of = The apneas-hypopneas [168]

on the corresponding
frequency allowed authors
to reliably extract the
amplitude changes due to
breathing.

total sleep time  index could be improved.
Other respiratory-related
events or physiological
information were not
detected.

Finally, an interesting topic strictly related to sleep monitoring is lucid dreaming
[169]. It is the phenomenon that occurs when a person is aware that they are dreaming,
and can influence dreaming thoughts.

Lucid dreams arise most frequently during REM sleep, but rarely during NREM or
immediately after the awake state. According to [170], currently the main challenge in this
field is to develop a reliable system able to induce this phenomenon. In fact, lucid dream-
ing is rare, but the capability of inducing it could have a huge clinical application, e.g., for
treating recurrent nightmares in post-traumatic stress disorder [171]. As a consequence,
industries have started to introduce devices into the market that claim to induce lucid



Biosensors 2022, 12, 835

31 of 39

dreaming. The authors of [170] offered an interesting review of the most recent devices
for inducing lucid dreaming. Generally, these devices rely on electroencephalographic ac-
tivity and eye movement. A few devices available in the market are also equipped with
MEMS and accelerometers. For example, Aurora is a headband equipped with electrodes
for EEG and accelerometers for detecting body movements [172]. Another interesting ex-
ample is the Hypnodyne’s ZMax device. Similar to Aurora, it is a headband able to emit
light, it is vibrotactile, and emits auditory stimuli. The device collects sleep information
through frontal sensors able to detect brain activity and ocular movements, in addition to
the collection of heart rate, temperature, sound, and body movements through accelerom-
eters [170]. Although lucid dreaming applications have not directly exploited MEMS and
accelerometers, as for sleep and apnea monitoring, they could represent a plus for devel-
oping more accurate and reliable assessments in sleep medicine.

4. Conclusions and Future Overlook

MEMS have revolutionized data collection in many fields, but healthcare is definitely
one of the frameworks in which they have had a major impact. In particular, the possibility
of reliably catching information from physiological acoustic signals has changed the ap-
proach of monitoring health conditions and providing personalized treatments to pa-
tients. The employment of MEMS has progressively changed the traditional approach
consisting of using stethoscopes, to qualitatively appreciate the small vibrational signals
from internal organs or in relation to auditory apparatus, have improved the capability of
sensing devices to transmit pressure variations to improve the hearing sense and, more
importantly, the quality of life in patients with hearing loss conditions.

Figure 16 shows a roadmap of miniaturized sensing devices in healthcare, highlight-
ing past, present, and future directions. In the next five to ten years, we could witness a
wider range of applications, from implantable sensors to reliable vital signals monitoring
and telemetry.
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Figure 16. Roadmap of sensing devices for healthcare.

Despite the high number of useful benefits and opportunities for the near future, the
employment of miniaturized systems in “acoustic” healthcare has not really taken off, be-
cause of a few limitations. First, acoustic signals generally possess small amplitudes that
are easily affected by different sources of noise: from noises from mechanical actions, e.g.,
friction between the device and the hosting tissue/fabric, to the more common electromag-
netic noises due to external aleatory environmental conditions, particularly relevant in
long-term monitoring procedures. Moreover, wearable devices are not always accepted
for use on a daily basis, because they may limit movements and, psychologically, may
cause discomfort.
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Therefore, from the technical standpoint, there a several challenges to be addressed.
The first challenge concerns the importance of lowering not only the footprint, but also
the cost of the entire life-cycle of the products, from the energy costs for the fabrication, to
costs related to the final end-users and, eventually, for their potential recycling. From a
design standpoint, effort for the development of a new generation of nanoscale sensing
materials is envisaged, aiming also to achieve a synergistic employment of different, and
occasionally overlooked, materials [173].

Moreover, the future of sensing devices in healthcare is also related to efficient algo-
rithms able to efficiently analyze big data and signals, involving users’ personalization
and clinical experts’ guidelines. A personalized healthcare will combine continuous
health monitoring, and real-time feedback from end-users and clinicians.

As reported, being an interdisciplinary field, we envisage a stronger collaboration
and involvement of different professional figures, including data scientists and engineers
that can deliver new techniques to collect and process data, including artificial intelli-
gence, thus, giving devices the capability of being “smart” in terms of data acquisition,
processing, and visualization in real time and remotely, in the global framework of the so-
called Internet of Things. This approach, particularly relevant in the current Industry 4.0
scenario, will further improve the conditions and life quality of patients, making easier, at
the same time, the periodical clinical checks from professionals. The involvement of
(bio)materials experts will also improve the physical and psychological conditions of sub-
jects, limiting issues with internal hosting tissues, as well as creating “smart” fabrics able
to better comply with the body, thus, reducing the discomfort of wearing sensing devices.

Moreover, new research avenues could be considered, especially those that have
been only marginally treated by the scientific community, including sounds from swal-
lowing for dysphagic patients [174], or acoustic electromyography [175].

In addition to the technical aspects, clinicians struggle to fully trust new devices and
have preferred using the golden standards (e.g., stethoscopes, large pieces of equipment),
even though they are often costlier and more invasive. Therefore, in the near future, an
improved trust of MEMS must be built in order to increase their use in current clinics.
This will enable closer contact between the scientific community and the end users, while
also allowing the collection of more data that will help improve current designs to over-
come current technical limitations.
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