
An Experimental Toolchain for Strategy
Synthesis with Spatial Properties

Davide Basile� , Maurice H. ter Beek , and Vincenzo Ciancia

Formal Methods and Tools Lab
ISTI–CNR, Pisa, Italy

{basile,terbeek,ciancia}@isti.cnr.it

Abstract. We investigate the application of strategy synthesis to en-
force spatial properties. The Contract Automata Library (CATLib) per-
forms both composition and strategy synthesis of games modelled in
a dialect of finite state automata. The Voxel-based Logical Analyser
(VoxLogicA) is a spatial model checker that allows the verification of
properties expressed using the Spatial Logic of Closure Spaces on pixels
of digital images. In this paper, we explore the integration of these two
tools. We provide a basic example of strategy synthesis on automata en-
coding motion of agents in spaces represented by images. The strategy
is synthesised with CATLib, whilst the properties to enforce are defined
by means of spatial model checking of the images with VoxLogicA.

1 Introduction

Research on strategy synthesis in games is currently a hot topic, with established
relations with supervisory control [3, 60], reactive systems synthesis [41], parity
games [57] (with recent complexity breakthroughs [27]), automated behaviour
composition [44], automated planning [28] and service coordination [13]. Sev-
eral academic tools have been developed [7, 31–33, 39, 50, 52, 59] and applied to
disparate domains, including land transport [12], maritime transport [62], med-
ical systems [53], autonomous agents path planning [46], in which problems are
modelled as games and solved using tailored strategy synthesis algorithms.

In an automata-based setting, a strategy is a prescription of the behaviour
(transitions) of a particular player for all possible situations (states) that leads
that player to a specific goal (final state). Typically, there are other players
or an environment with different, often competing goals to account for, and
the set of transitions may be partitioned into controllable (by the particular
player) and uncontrollable transitions. Strategy synthesis is concerned with the
automatic computation of a (safe, optimal) strategy (controller) in such a game-
based automata setting.

Another hot topic concerns recent advancements in spatial model checking,
which have led to relevant results such as the fully automated segmentation
of regions of interest in medical images by brief, unambiguous specifications in
spatial logic. The topological approach to spatial model checking of [34] is based
on the Spatial Logic of Closure Spaces (SLCS) and provides a fully automated

http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0003-1314-0574

method to verify properties of points in graphs, digital images, and more recently
3D meshes and geometric structures [25, 56]. Spatial properties of points are
related to topological aspects such as being near to points satisfying a given
property, or being able to reach a point satisfying a certain property, passing
only through points obeying to specific constraints.

The tool VoxLogicA [24,36] (of which the third author is the lead developer)
has been designed from scratch for image analysis. Logical operators can be
freely mixed with a few imaging operators, related to colour thresholds, texture
analysis, or normalisation. The tool is quite fast, due to various factors: most
primitives are implemented using the state-of-the-art imaging library Simple-
ITK1; expressions are never recomputed (reduction of the syntax tree to a di-
rected acyclic graph is used as a form of memoisation); operations are implicitly
parallelised on multi-core CPUs. Ongoing work (cf., e.g., [26]) is devoted to a
GPU-based implementation which enables a speedup of 1-2 orders of magnitude.

Returning to the topic of strategy synthesis, the tool CATLib [6, 7, 16] is a
library (developed by the first author) for performing compositions of contract
automata [15] (a dialect of finite-state automata) and synthesising either their
supervisory control, their orchestration, or their choreography [13], using novel
notions of controllability [9]. Scalability features offered by CATLib include a
bounded on-the-fly state-space generation optimised with pruning of redundant
transitions and parallel streams computations. The software is open source [7],
it has been developed using principles of model-based software engineering [6]
and it has been extensively validated using various testing and analysis tools to
increase the confidence on the reliability of the library.

Contribution. In this paper, we propose a new approach to combine strategy
synthesis and spatial model checking. We proceed in a bottom-up fashion by
presenting a toolchain based on established off-the-shelf tool-supported theories.
We explore the combination of CATLib and VoxLogicA, to pair the composition
and synthesis functionalities of CATLib with the spatial model checking function-
ality of VoxLogicA. We provide a proof-of-concept example of strategy synthesis
on automata encoding motion of agents in spaces represented by images2. The
main insight is to encode an image as an automaton, whose states are the pixels
of the image. These states are then interpreted as positions of an agent, and
transitions to adjacent pixels represent motions of the agent. A composition of
automata is thus a multi-agent system, in which each state of the composition is
a snapshot of the current position of the agents in the map. A game can thus be
played by a set of agents against other opponent agents, where successful states
and failure states can be identified using spatial model checking of the images.
The strategy is synthesised with CATLib, while the properties to enforce are de-
fined by means of spatial model checking of the images with VoxLogicA. The

1 Cf. https://simpleitk.org/.
2 In the VoxLogicA approach, images are seen as a special kind of graphs, where
vertices are pixels, and edges represent proximity. Actually, the VoxLogicA family of
tools can also operate on arbitrary directed graphs. Adapting the present work to
the more general setting is left for future work.

https://simpleitk.org/

developed example is open-source and reproducible at [14]. The benefits include
showing the practical applicability of these two tools, providing an original ap-
proach to strategy synthesis and spatial model checking, bridging theories and
tools developed in different research areas and openings to future research goals.

Related Work. Practical application of spatial logics, including model check-
ing, has been ongoing during the last decade. For instance, the research line
originating in [48] merges spatial model checking with signal analysis. In the do-
main of cyber-physical systems, the approach of [65] demonstrates applications
of SLCS in a spatio-temporal domain with linear time, using bigraphical models.
An abstract categorical definition of SLCS has been given in [30]. The spatial
model checking approach of SLCS and VoxLogicA has been demonstrated in
case studies ranging from smart transportation [37] and bike sharing [35,38], to
brain tumour segmentation [4, 24], labelling of white and grey matter [23], and
contouring of nevi [22].

Synthesising strategies (or plans/control) for the motion of agents is a widely
researched problem [2, 42, 46, 47, 55, 63]. Spatial logics have been applied to this
problem to investigate the synthesis of strategies from properties of spatially
distributed systems specified with spatial logics [1, 49, 54]. Recently, the appli-
cation domain of smart cities has been explored in [58], and the aforementioned
signal-based approach has been enhanced for a hybrid approach to multi-agent
control synthesis, by exploiting neural network and spatial-logical specifications
in the Spatio-Temporal Reach and Escape Logic (STREL) formalism.

Differently from the above literature, we set out to integrate previously de-
veloped off-the-shelf algorithms and tools, with the aim of showing their ap-
plicability. Contract automata and their toolkit were introduced to synthesise
ochestrations and choreographies of compositions of service contracts exchanging
offers and requests [7,9,13,15]. The interpretation of an image as an (agent) con-
tract automaton enables to connect contract automata and CATLib with spatial
model checking and VoxLogicA, showing the flexibility of both approaches.

Structure of the Paper. We start with the background on CATLib and VoxLogicA

in Section 2. The toolchain is described in Section 3, whilst the experiments are
reported in Section 4. Conclusions and future work are mentioned in Section 5.

2 Background

We provide some background on the formalisms and tools used in this paper.

2.1 CATLib, Automata Composition, and Strategy Synthesis

We first formally introduce contract automata and their synthesis operation. A
Contract Automaton (CA) represents either a single service (in which case it is
called a principal) or a multi-party composition of services performing actions.
The number of principals of a CA is called its rank. A CA’s states are vectors of

states of principals; its transitions are labelled with vectors of actions that are ei-
ther requests (prefixed by ?), offers (prefixed by !), or idle actions (denoted with
a distinguished symbol ●). Requests and offers belong to the (pairwise disjoint)
sets R and O, respectively. Figures 2 and 3 depict example CA. In a vector of
actions there is either a single offer, or a single request, or a single pair of request
and offer that match, i.e., the ith element of a⃗, denoted by a⃗(i), is ?a, its jth ele-
ment a⃗(j) = !a, and all other elements are ●; such vector of action is called request ,
offer , or match, respectively. Thus, for brevity, we may call action also a vector
of actions. A transition is also called a request, offer, or match according to its
action label. The goal of each principal is to reach an accepting (final) state such
that all its requests (and possibly offers) are matched. In [20], CA were equipped
with modalities, i.e., necessary (◻) and permitted (◇) transitions, respectively.
Permitted transitions are controllable, whilst necessary transitions can be un-
controllable or semi-controllable. Here we ignore semi-controllable transitions
and consider necessary transitions to be uncontrollable. The resulting formalism
is called Modal Service Contract Automata (MSCA).

Definition 1 (MSCA). Given a finite set of states Q = {q1, q2, . . .}, an MSCA
A of rank n is a tuple ⟨Q, q⃗0,A

r,Ao, T,F ⟩, with set of states Q = Q1 × . . .×Qn ⊆

Qn, initial state q⃗0 ∈ Q, set of requests Ar ⊆ R, set of offers Ao ⊆ O, set of final
states F ⊆ Q, set of transitions T ⊆ Q × A × Q, where A ⊆ (Ar ∪ Ao ∪ {●})n,
partitioned into permitted transitions T◇ and necessary transitions T◻, such
that: (i) given t = (q⃗, a⃗, q⃗ ′) ∈ T , a⃗ is either a request, or an offer, or a match;
and (ii) ∀i ∈ 1 . . . n, a⃗(i) = ● implies q⃗(i) = q⃗

′
(i).

Composition of services is rendered through the composition of their MSCA
models by means of the composition operator ⊗, which is a variant of a syn-
chronous product. This operator basically interleaves or matches the transitions
of the component MSCA, but, whenever two component MSCA are enabled to
execute their respective request/offer action, then the match is forced to happen.
Moreover, a match involving a necessary transition of an operand is itself neces-
sary. The rank of the composed MSCA is the sum of the ranks of its operands.
The vectors of states and actions of the composed MSCA are built from the
vectors of states and actions of the component MSCA, respectively.

In a composition of MSCA, typically various properties are analysed. We are
especially interested in agreement . The property of agreement requires to match
all requests, whilst offers can go unmatched.

CA support the synthesis of the most permissive controller from the theory
of supervisory control of discrete event systems [29, 60], where a finite state
automaton model of a supervisory controller (called a strategy in this paper) is
synthesised from given (component) finite state automata that are composed.
Supervisory control theory has been applied in a variety of domains [13,21,43,45,
61,64], including healthcare. In this paper, we use the synthesis in the framework
of games, whose relation with supervisory control is well known [3].

The synthesised automaton, if successfully generated, is such that it is non-
blocking, controllable, and maximally permissive. An automaton is said to be

non-blocking if from each state at least one of the final states (distinguished sta-
ble states representing completed ‘tasks’ [60]) can be reached without passing
through so-called forbidden states, meaning that the system always has the pos-
sibility to return to an accepted stable state (e.g., a final state). The algorithm
assumes that final states and forbidden states are indicated for each component.
The synthesised automaton is said to be controllable when only controllable ac-
tions are disabled. Indeed, the supervisory controller is not permitted to directly
block uncontrollable actions from occurring; the controller is only allowed to
disable them by preventing controllable actions from occurring. Finally, the fact
that the resulting supervisory controller is said to be maximally permissive (or
least restrictive) means that as much behaviour of the uncontrolled system as
possible is still present in the controlled system without violating neither the
requirements, nor controllability, nor the non-blocking condition.

Finally, we recall the specification of the abstract synthesis algorithm of CA
from [13]. This algorithm will be used to synthesise a strategy for the spatial
game in the next sections. The synthesis of a controller, an orchestration, and
a choreography of CA are all different special cases of this abstract synthesis
algorithm, formalised in [13] and implemented in CATLib [6] using map reduce
style parallel operations of Java Streams. This algorithm is a fix-point compu-
tation where at each iteration the set of transitions of the automaton is refined
(pruning predicate ϕp) and a set of forbidden states R is computed (forbidden
predicate ϕf). The synthesis is parametric on these two predicates, which pro-
vide information on when a transition has to be pruned from the synthesised
automaton or a state has to be deemed forbidden. We refer to MSCA as the set
of (MS)CA, where the set of states is denoted by Q and the set of transitions
by T (with T◻ denoting the set of necessary transitions). For an automaton A,
the predicate Dangling(A) contains those states that are not reachable from
the initial state or that cannot reach any final state.

Definition 2 (abstract synthesis [13]). Let A be an MSCA, K0 = A, and
R0 = Dangling(K0). Given two predicates ϕp, ϕf ∶ T ×MSCA × Q → B, let the
abstract synthesis function f(ϕp,ϕf) ∶MSCA × 2Q →MSCA × 2Q be defined as:

f(ϕp,ϕf)(Ki−1,Ri−1) = (Ki,Ri), with

TKi = TKi−1 − { t ∈ TKi−1 ∣ ϕp(t,Ki−1,Ri−1) = true }

Ri =Ri−1 ∪ { q⃗ ∣ (q⃗ Ð→) = t ∈ T
◻
A , ϕf(t,Ki−1,Ri−1) = true } ∪Dangling(Ki)

The abstract controller is defined in Equation 1 below as the least fixed point

(cf. [13, Theorem 5.2]) where, if the initial state belongs to R
(ϕp,ϕf)
s , then the

controller is empty; otherwise, it is the automaton with the set of transitions

T
K
(ϕp,ϕf)
s

and without states in R
(ϕp,ϕf)
s .

(K
(ϕp,ϕf)
s ,R

(ϕp,ϕf)
s) = sup({ fn

(ϕp,ϕf)(K0,R0) ∣ n ∈ N}) (1)

CATLib. CA and their functionalities are implemented in a software artefact,
called Contract Automata Library (CATLib), which is under continuous devel-

opment [7]. This software artefact is a by-product of scientific research on be-
havioural contracts and implements results that have previously been formally
specified in several publications (cf., e.g., [9–11, 13, 15–20]). CATLib has been
designed to be easily extendable to support similar automata-based formalisms.
Currently, it also supports synchronous communicating machines [40,51]. CATLib
and the other CA tools [8] allow programmers to use CA for developing more
reliable applications. In this paper, we further showcase the flexibility of CATLib
by using it to synthesise strategies for mobile agents in spatial games. CATLib
has been implemented using modern established technologies for building, test-
ing, documenting, and delivering high quality source code. CATLib is tested up
to 100% coverage of all lines, branches, and the strength of the tests is measured
with mutation testing with top score.

2.2 VoxLogicA, Spatial Model Checking, and Image Analysis

The Spatial Logic of Closure Spaces (SLCS) is a modal logical language equipped
with a unary ‘nearness’ modality and two binary operators: ‘reaches’ and ‘is
reached’. The language is interpreted on points of a spatial structure, which is,
generally speaking, a Closure Space (cf. [34] for details). Graphs, digital images,
topological spaces, and simplicial complexes are all instances of closure spaces.

Here we concentrate on the interpretation of SLCS on images. In this case,
the two reachability modalities collapse and the nearness modality is a derived
operator based on the reachability operator, causing a particularly simple syntax.

Definition 3. Fix a set AP of atomic propositions. The syntax of SLCS is
defined by the following grammar (where p ∈ AP):

ϕ ∶∶= p ∣ ⊺ ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ρ ϕ[ϕ]

Models of SLCS formulae, for the purpose of this paper, are the pixels of
digital images; i.e., each SLCS formula induces a truth value for each point of a
given digital image. In order to define the interpretation of formulae, a notion of
path needs to be established, based on a notion of neighbourhood or connectivity
of pixels. Among infinitely many possible choices, VoxLogicA normally uses the
so-called ‘8-neighbourhood’, i.e., each pixel is adjacent to 8 other pixels, namely
those that share an edge or a vertex with it. Connectivity transforms the set
of pixels of an image in a (symmetric) graph. Graph-theoretical paths are then
well defined, and used below.

The interpretation of formulae depends upon a valuation of atomic proposi-
tions, assigning to each atomic proposition the set of points on which it holds,
and assigning a direct interpretation to the symbols p ∈ AP . The meaning of the
truth value ⊺ (true), negation (¬), and conjunction (∧) is the usual one. A pixel x
satisfies ρϕ1[ϕ2] if there is a path rooted in x, reaching a pixel satisfying ϕ1, such
that all intermediate points, except eventually the extremes, must satisfy ϕ2. We
make use of the derived operator ϕ1 ↝ ϕ2 which is similar to ρϕ2[ϕ1], but the
extremes are also required to satisfy ϕ1. The near derived operator Nϕ ≜ ρϕ[¬⊺]
is true at point x if and only if there is a pixel adjacent to x where ϕ holds.

From now on we use the tool’s syntax, which uses tt, &, |, !, ~>, and N for
true, conjunction, disjunction, negation, ↝, and N , respectively, permits macro
abbreviations of the form let identifier = expression, function definition
of the form let identifier(argument1,...,argumentN) = expression, and
other constructs not needed for the scope of this paper. On images, atomic
propositions can be expressions predicating over the colour components of the
pixels. For instance, in our example specification (cf. Figure 5), to characterise
the pixels composing a door as the blue pixels (note that 255 is the maximum
value since we are using 8-bit images), given that img denotes an image, we use:

let r = red(img)
let g = green(img)
let b = blue(img)
...
let door = (r =. 0) & (b =. 255) & (g =. 0)

Also, the tool permits global formulae that assign a truth value to models,
not just pixels in isolation. These can be based on the volume(phi) primitive,
that computes the number of pixels satisfying the formula phi. For instance,
existential and universal quantification are defined as follows:

let exists(p) = volume(p) .>. 0
let forall(p) = volume(p) .=. volume(tt)

The type system of VoxLogicA is very simple, and comprises numbers, Boolean
values, images of numbers (single-channel images, sometimes called grayscale),
images of Boolean values, very often called binary images or masks, and ordinary
multi-channel images. Operators are strongly typed with no type overloading.
Therefore, for instance, the pixel-by-pixel and of two Boolean-valued images is a
different operator with respect to the conjunction of two Boolean values, and it
also differs from the conjunction of the Boolean value of each pixel of an image
with a Boolean (scalar) constant. With some exceptions, the naming convention
of operators reflects their type, having a dot on the side of the ‘scalar’ value
(Boolean or number) and no dot on the side of the image, so for instance .&.

is Boolean and, whereas & is pixel-by-pixel and of two images. With respect to
Figure 5, for instance, we have that base and img are multi-channel images, with
the operators red, green, blue, extracting number-valued images from them.
The definition of mrRed (a red area) contains the =. operator taking a number-
valued image on the left, and a number on the right (hence the dot on the right
side). In the definition of the property forbidden1, one can find an example of
the use of the operator .|. which takes as arguments two Boolean values.

3 Tool Methodology

In this section, we discuss the tool methodology used to chain CATLib and
VoxLogicA in order to perform strategy synthesis of spatial properties. Later, in
Section 5, we will detail scalable techniques that can be adopted to improve the
presented methodology. The diagram in Figure 1 depicts the workflow and the
various activities in which the whole process is decomposed.

Input

CATLibVoxLogicA

convert image to a mobile agent
automaton, create other automata

Compose the automata to generate
all possib le behaviours

Start

Convert each state of the
composition to an image, a

snapshot of the current position of
the agents into the map

Export a JSon with
boolean values of

evaluations of properties
on images

Generate a composition with
only legal behaviour, for a given

in itial condition

Mark the legal composition
with forbidden, final states
using the JSon attributes,

mark
uncontrollable/controllable

transitions

Synthesise the strategy for the
marked automaton

End

PNG image of the map

Spatial model checking of
properties on images

Spati al
Properties

Archive of Images

JSon evaluated
properties:

forbidden states,
final states

Strategy
Automaton

Uncontrollable
player

Number of
agents

Starting
positions of

agents

import

export

export
output

import

import

export

Fig. 1. The workflow showing the integration of the two tools

Fig. 2. A zoom-in on a fragment of the agent automaton

[Driver]

[!goright][!goup] [!goleft][!godown]

[Open][Close]

[!close]

[!open]

Fig. 3. The driver automaton on the left, the door automaton on the right

The process starts with a PNG image, depicting a map or planimetry, for
agents to move in. Note that this implies that the state space is discrete, finite,
and can be provided by a user with no training on the underlying theories used.
Further input concerns the spatial properties that one wants to enforce with
the synthesised strategy, modelling the forbidden configurations to avoid and
the final configurations to reach, as well as the number of agents in the exper-
iments with their starting position, and an indication of which agents are the
controllable players and which are the uncontrollable opponents. The aim of the
process is to produce the maximally permissive strategy for moving the players
against all possible moves of the opponents, such that no forbidden configura-
tion is ever reached and it is always possible to reach a final configuration. In
game-theoretical jargon, this is both a safety game and a reachability game [5].
The strategy is maximal, in the sense that it includes all possible behaviour that
satisfies the above properties. If the strategy is empty, then there exists no strat-
egy for the players satisfying the given properties. CATLib only considers finite
traces: infinite looping behaviour where an agent is stalled and is prevented from
reaching a reachable final configuration is ruled out.

CATLib Activities. In this paper, CATLib has been extended to allow the import
of PNG images, which are internally converted into automata. These automata
have pixels as states and transitions connecting adjacent pixels. We interpret
these automata as agents, whose position is represented by the current state and
transitions are requests to move up, down, left, or right to adjacent pixels/states.
If a border is reached, then there will be no request transition in the automaton
to move beyond that border. Each state is labelled with both a position, rendered
in three coordinates (the third coordinate is currently not used), and the colour
of the pixel. Figure 2 depicts a small portion of an agent automaton.

Fig. 4. The state [(10; 10; 0) #FFFFFF, (5; 7; 0) #FFFFFF, Driver, Close] of
the composition of two agents, a driver, and a door. The door is in position (2; 7) and
is closed. The first agent is depicted red, the second is green, and the door is blue. The
attributes of the position of the two agents are both #FFFFFF, which is the hexadecimal
value for the colour white, i.e., both agents are placed on a white cell of the map.

A driver automaton is used to command an agent to move in a specific di-
rection. It is depicted in Figure 3 (left). The driver can impose some constraints
(e.g., never go down). Currently, the driver offers to move in each possible direc-
tion. The last automaton that is used models a door, which is initially closed,
and which can be opened and closed repeatedly. It is depicted in Figure 3 (right).

The first activity of CATLib thus consists of importing and creating the above
automata. There can be several instances of agents and doors or different maps
according to the parameters of the experiments to perform.

The second activity consists of composing these automata to generate all
possible reachable configurations. As stated in Section 2, the composition has
unicast synchronisations between offers and requests of agents (called matches),
and labels that are only single moves of an agent performing an offer. Agents who
perform requests can move only when paired with a corresponding offer. This
type of synchronised behaviour is called agreement: all requests must be matched.

In such composition, no restriction is imposed on the agents: they are free to
move over walls and doors, and even over other agents. Depending on the initial
conditions, some of these configurations could result to be not useful. However,
this allows to call the spatial model checker once on all possible configurations.
By changing starting conditions in different experiments it is not necessary to
invoke again the spatial model checker, since all possible configurations that can
be generated have already been analysed offline by the spatial model checker. In
the composed automaton, each state is a tuple of states of all agents (included
the door and the driver). Each state can be represented as an image, a snapshot
of the current configuration. For example, Figure 4 depicts a state rendered as an
image. The image is generated by colouring the starting PNG image with a red,
green, and blue pixel to indicate where, respectively, the first agent, the second
agent and the door are located. The door is only coloured when it is closed.

The third activity consists of generating all images for all states of the com-
position. These images are then passed to VoxLogicA (whose activities will be
described below) to evaluate for all properties whether or not they are satisfied.

The fourth activity of CATLib consists of generating a composition with only
legal behaviour. Indeed, to reduce the size of the state space, the composition of
CATLib allows to avoid generating portions of the state space that are known to
violate some property. In case of controllable ‘bad’ transitions, these will not be
generated since they will be pruned by the synthesis. In case of uncontrollable

‘bad’ transitions, these will be generated (since they cannot be pruned) but
their target state will not be visited (the synthesis will try to make these ‘bad’
states unreachable). Thus, once some agent is rendered as uncontrollable (by
changing its transitions to uncontrollable), it cannot be stopped from reaching
an illegal configuration. It follows that illegal configurations must be removed
before deciding which agents are uncontrollable and which are controllable. In
the experiments described in Section 4, the illegal moves are those where an
agent is placed on top of a wall (i.e., its state has colour #000000), on top of
another agent (i.e., in a state of the composition, two agents have the same
coordinates), or on top of a closed door (i.e., in a state of the composition, one
agent has the same coordinates as the door and the door is closed). Since these
are simple invariant properties (it only suffices to check the labels of states),
they can be directly checked in CATLib. VoxLogicA is used to evaluate more
complex spatial properties (cf. Figure 5). The aforementioned illegal moves are
also specified in VoxLogicA under the property wrong in Figure 5 below.

In this step it is also decided what are the initial positions of the agents,
i.e., the initial state where the state-space generation starts. Depending on the
given initial conditions, it is possible that some legal configuration previously
generated and passed to VoxLogicA will not be generated.

Once the state space for the chosen initial conditions and legal moves is
generated, it must be marked with the states that are forbidden and those that
are final. This is the fifth activity of CATLib. Also, it must be decided which
agents are controllable and which are not. This information is provided in part
as input parameters of the experiments and in part with a JSon file computed
with VoxLogicA, where each state has as set of Boolean attributes, one for each
evaluated spatial property.

After all states and transitions have been marked with the required informa-
tion, the strategy synthesis is performed as the final, sixth activity of CATLib.
The algorithm computes the maximal behaviour of the composition (in agree-
ment) such that it is always possible to reach a final configuration and forbidden
configurations are never traversed. If the strategy is non-empty, this will provide
information on the behaviour to be followed by the controllable agents to ensure
that a final configuration is always reached without passing through forbidden
configurations, against all possible moves of uncontrollable components.

VoxLogicA Activities. The first activity of VoxLogicA is the evaluation of the
formulae representing final and forbidden states. This is done via an auxiliary
python script, that takes as input the logical specification, described by a python
function, whose body is constituted by an “f-string”, that is a string, where
python expressions enclosed in curly braces are evaluated in place, the base image
(i.e., the map or planimetry where agents move), and the directory containing all
the reachable configurations, encoded as images. The python script then iterates
the specification, evaluating expressions where appropriate. The parameters of
the python function describing the specification are the base image filename
and the currently evaluated configuration, such that the specification can only

Table 1. Summary of the two experiments

First experiment Second experiment

Controllable Red and green agents Door

Uncontrollable Door Red and green agents

Initial state Green agent in front of red agent Green agent in front of red agent

Final states Both the red and the green agent
reached the exit

The door separates the green
agent on the right from the red
agent on the left

Forbidden states The door separates the green agent
on the right from the red agent
on the left, or the red and green
agents are not near each other

Both the red and the green
agent reached the exit

Strategy The red and green agents switch
position before traversing the door

Empty

evaluate properties of a single configuration, using the base image to identify
relevant regions (like walls).

The second activity of VoxLogicA collects all the properties that have been
computed in the first activity, locally for each state, and turns them into a
single source of information, in the form of a JSon file that contains a record
for each state, reporting on all the properties that have been described in the
specification. In order to do so, a special output mode of VoxLogicA is used,
where the tool outputs a single JSon record of all the user-specified properties
that have been printed or saved in the specification.

The presented methodology is a first step towards connecting CATLib and
VoxLogicA. While correct, its efficiency could be improved, especially the in-
put/output overhead. We provide details on future enhancements in Section 5.

4 Experiments

In this section, we describe the experiments that have been performed following
the process described in the previous section. We performed two experiments,
starting from the same initial conditions but with opposite controllable/uncon-
trollable agents and forbidden/final states. The setup and outcome of the exper-
iments are reported in Table 1. The repository containing all data, sources, and
information on how to reproduce the experiments is publicly available [14].

The PNG map image used as planimetry is a 10× 10 pixels image that weighs
188 bytes. It is depicted in Figures 1 and 4 (without coloured pixels). Since this
is a preliminary exploratory study, we focus on a simple image, leaving more
complex scenarios for future work.

The setup for the experiments is of two duplicate mobile agents, one door
agent and one driver agent. The door agent is placed in position (2; 7) (cf.
Figure 4). Initially, the red agent is in the top left corner of the white corridor
(position (1; 1)), whereas the green agent is just below the red agent (position
(2; 1)) and the door is closed. The initial state is depicted in Figure 6 (left).

The illegal moves were described in the previous section. We recall that in a
legal composition, no agent moves over a wall, a closed door, or another agent.

The invocation of the composition function of CATLib is reported below. The
composition is instantiated with the list of operands, namely the two agents,
the driver, and the door. The second argument is the pruning predicate: if a
generated transition satisfies the pruning predicate it will be pruned and not
further explored. When applying the composition it is possible to specify a bound
on the maximum depth of the generated automaton. In this case, the bound is
set to the maximum Integer value. The two agents are instantiated with maze tr

and maze2 tr being their set of transitions, which only differ in the initial state.
The property of agreement is passed as a lambda expression: transitions with a
request label will be pruned. Similarly, this condition is put in disjunction with
a condition checking whether the target state of the generated transition is ‘bad’
(i.e., an illegal transition), in which case the transition is pruned.

MSCACompositionFunction<String> cf = new MSCACompositionFunction<>
(List.of(new Automaton<>(maze_tr),new Automaton<>(maze2_tr),driver,door),

t->t.getLabel().isRequest() || badState.test(t.getTarget()));
Automaton<String, Action, State<String>, ModalTransition<String,Action,State<String>,CALabel>>

comp = cf.apply(Integer.MAX_VALUE);

In the first experiment, the final and forbidden states are set according to the
following definitions. Consider the specification given in Figure 5 (cf. Section 2 for
an introduction on the operators used therein). The final states are set to be those
on the right hand side of the image passing through the corridor where the door is
located (property final), and are depicted in Figure 6 (middle). Concerning the
forbidden states, we experiment with two different spatial properties to identify
them. The first property (property forbidden1) is a disjunction of two sub-
properties. It identifies as forbidden those states that are either illegal (property
wrong) or in which the two agents are in two areas separated by the closed
door, and the green agent is on the right side of the door, i.e., it can reach an
escape (a final state), whereas the red agent cannot because it is blocked by the
door (property greenFlees). In fact, Figure 4 represents one of these forbidden
states. The second property (property forbidden2) identifies as forbidden those
states that are forbidden according to forbidden1 or in which the two agents
are not close to each other, i.e., they are distant more than two pixels (negation
of the property nearBy).

Finally, in this first experiment we interpret the door as uncontrollable,
whereas the red and green agents are controllable. Basically, this is a scenario in
which the two players are playing against an uncontrollable door. Below we list
the code used to invoke the synthesis operation of CATLib. The instantiation of
the operation takes as argument the property to enforce, agreement in this case,
and the automaton where the synthesis is applied, called marked in this case.

Automaton<String, Action, State<String>, ModalTransition<String,Action,State<String>,CALabel>>
strategy = new MpcSynthesisOperator<String>(new Agreement()).apply(marked);

The most permissive synthesised strategy consists of 684 states and 2635 tran-
sitions (recall that in each transition, only one of the agents is moving). The

load base ="{baseimage}"

load img = "{datadir}/{image}"
let r = red(img)
let g = green(img)
let b = blue(img)
let rb = red(base)
let gb = green(base)
let bb = blue(base)

let exists(p) = volume(p) .>. 0
let forall(p) = volume(p) .=. volume(tt)
let forallin(x,p) = forall((!x) | p)

let door = (r =. 0) & (b =. 255) & (g =. 0)
let floorNoDoor = (rb =. 255) & (bb =. 255) & (gb =. 255)
let floor = floorNoDoor & (!door)
let wall = !floor

let mrRed = (r =. 255) & (b =. 0) & (g =. 0)
let mrGreen = (r =. 0) & (b =. 0) & (g =. 255)

let mrX = mrRed | mrGreen

let initial1 = exists(mrRed & ((x =. 1) & (y =. 1)))
.&. exists(mrGreen & ((x =. 1) & (y =. 2)))

let initial2 = exists(mrRed & ((x =. 6) & (y =. 3)))
.&. exists(mrGreen & ((x =. 1) & (y =. 4)))

let wrong = exists(mrX & wall) .|. (!. (exists(mrRed) .&. exists(mrGreen)))
let exit = (x =. 9) & (y >. 2) & (y <. 9)
let pathToExit = (floor ~> exit)
let canExit(mr) = forallin(mr,pathToExit)
let sameRoom = forallin(mrGreen,(mrGreen|floor) ~> mrRed)

let greenFlees = (!.wrong) .&. canExit(mrGreen) .&. (!.(canExit(mrRed)))
let nearby = exists(mrRed & (N N mrGreen))

let forbidden1 = greenFlees .|. wrong
let forbidden2 = forbidden1 .|. (!. nearby)

let final = exists(mrRed & exit) .&. exists(mrGreen & exit)

Fig. 5. VoxLogicA specification of the properties used in the experiments

length of a shortest path from the initial state to a final state is composed of
33 transitions to be executed. In the initial state (Figure 6 (left)), the green
agent is in front of the red agent on the path to the exit. However, in the strat-
egy the green agent cannot traverse the open door before the red agent. Indeed,
in this case, since the door is uncontrollable, it is not possible to prevent the
door from closing and separating the red agent (blocked by the door) from the
green agent (who can reach the exit). This is indeed a forbidden state that the
strategy must avoid. In the strategy, to overcome this problem, the two agents
switch position before crossing the door. Figure 6 (right) depicts the moment
where the red agent is crossing the door right after exchanging position with the
green agent who is still in the corridor. Indeed, in the shortest path they switch
position near the door. Note that no forbidden state occurs if the door closes
after only the red agent has traversed it. Indeed, in this scenario the green agent
is prevented from reaching an exit because it is blocked by the door. Hence,

Fig. 6. On the left the initial configuration of both experiments. In the middle the final
states of the first experiment (marked in violet). On the right a configuration traversed
by one of the shortest paths of the first experiment’s strategy, in which the red agent is
crossing the door before the green agent does, thus avoiding forbidden configurations.

after the red agent has traversed the door, the strategy guides the green agent
to safely cross the door such that they can both reach a final state.

To confirm the first experiment, we performed a second experiment by in-
verting the setup of the first experiment. In this second experiment, the door is
controllable, whereas the green and red agents are both uncontrollable. The final
states are those in which the door separates the green agent (on the right side of
the door) from the red agent (on the left side of the door). These are basically
the forbidden states of the first experiment. Similarly, the forbidden states in the
second experiment are those states in which both the green and the red agent
have reached the exit, i.e., the final states of the first experiment. The initial
configuration is the same as in the first experiment. As expected, in this dual
case the returned strategy is empty. Indeed, if this were not the case, then we
would have a contradiction because the green and red agents have a strategy to
reach the exit without being separated by the door with the red agent blocked,
for every possible finite behaviour of the door.

There is no strategy for the door to reach a final configuration mainly because
the door cannot ensure that the uncontrollable green agent traverses the door
first. Moreover, the door cannot prevent the agents from reaching the exit by
always remaining closed since (unless only the green agent has traversed the
door) a final state would not be reachable.

Performance of Experiments. We conclude this section by reporting the time
needed for computing various phases of the experiments and measures of the
computed automata. The experiments were performed on a machine with In-
tel(R) Core(TM) i9-9900K CPU @ 3.60GHz equipped with 32GB of RAM. The
time performance is reported in Table 2. We note that the synthesis is more ex-
pensive (computationally) than the composition. Indeed, as showed in Section 2,
each iteration of the synthesis requires to compute the set of dangling states,
which requires a forward and backward visit of the automaton. The marking is
the most computationally expensive phase of CATLib because each marking of
either a final or a forbidden state requires to search whether that state has a
final or forbidden attribute in the JSon file provide by VoxLogicA.

Table 3 reports the number of states, the number of transitions, and the
size (in bytes) of the various automata. As expected, the number of states of
the agent automaton is exactly the number of pixels of the image. The largest
automaton is the one with the unconstrained composition, whose number of

Table 2. Time needed to perform the experiments’ phases

Phase Both Experiments

Computing the unconstrained composition 26643ms

Generating images 7910ms

Running VoxLogicA 6140 s

Computing the legal composition 2487ms

First experiment Second experiment

Marking the composition with VoxLogicA

properties and controllability
108058ms 118291ms

Synthesis 2942ms 33472ms

Table 3.Number of states, transitions and size of the automata used in the experiments

Automaton #States #Transitions Size (bytes)

Agent 100 360 18723

Unconstrained composition 20000 164800 21858146

Legal composition 3200 15176 2004736

Marked composition (first experiment) 3202 17665 2339874

Marked composition (second experiment) 3202 15552 2066368

Strategy (first experiment) 684 2635 347652

states is the product of the states of the two agent automata and the door
automaton (100 × 100 × 2). We note that the agent automaton (encoding an
image as automaton) requires more space than the PNG image (188 bytes of the
image against 18723 bytes of the corresponding automaton). Moreover, the legal
states given the initial conditions are only a small fraction (16%) of the total
number of states passed to VoxLogicA. Finally, the marked compositions for the
two experiments have two additional states with respect to the legal composition,
which are the added initial and final states. The number of transitions of these
two automata differs according to the number of states marked as final, to which
a transition to the newly added final state is added, and the number of forbidden
states, to which a bad transition is added as a self-loop.

The evaluation of the given VoxLogicA specification (also reported in Ta-
ble 2) takes about 530 milliseconds per image, of which only 45 milliseconds are
spent on the actual computation; the rest is spent in file input/output, parsing
the specification, and recovering the results from python. Since all the images
are processed sequentially, the total analysis time for the 11562 images that
are generated is therefore a bit less than two hours, which dominates the total
computation time for the experiment. As discussed in Section 3, much of the
overhead could be eliminated (cf. the Conclusion for more information).

5 Conclusion

We have discussed an integration of the tools CATLib and VoxLogicA to perform
strategy synthesis on images processed with spatial model checking. Our con-

tribution constitutes the first application of CATLib and VoxLogicA to build a
framework for modelling and solving multi-agents mobile problems. The result
clearly demonstrates the feasibility of a full-fledged tool chain built from CATLib

and VoxLogicA and shows an original approach to combine strategy synthesis
with spatial model checking. The experiments performed in this paper are still
preliminary and not much thought has been given to the efficiency of the encod-
ings, the computations, and the tool integration. Hence, this paper offers a lot
of interesting opportunities for future work.

Future Work. The proof-of-concept example in this paper uses a 10 × 10 pixels
map. Efficiency and scalability are two key issues to address in the future. Several
possible scalable solutions are viable and some ideas are provided next.

In the current approach, many states are used to move agents up and down
the ends of corridors (each agent has a state for each pixel of the image). However,
fewer states could actually be sufficient. Relaxing the representation of an image
to one where each state is a zone of the image (e.g., a corridor) rather than a
pixel would drastically reduce the state space.

Another scalable solution could be to decompose a large image into smaller
images. For example, the final states of the first experiment in Section 4 could
be entering points to a new portion of the map. Several small maps could be
linked together by ports for entering and exiting.

Yet another scalable solution could be to drop the requirement of a strategy
to be most permissive in favour of some objective function to optimise. A near-
optimal solution could be synthesised as a trace using statistics over runs, in the
style of [46].

Currently, each new parameter setup requires to be implemented manually.
Similarly, the various CATLib and VoxLogicA activities depicted in Figure 1 need
to be invoked manually. Future research is needed to completely automatise our
proposal, providing a tool that takes as input the setup of an experiment, in-
cluding the map, and outputs the synthesised strategy, if any, in a push-button
way. This could result in an optimisation of the methodology presented in Sec-
tion 3. Indeed, as shown in Section 4 and Table 2, currently a bottleneck is
present in the processing of the images and JSon logs, mainly due to the offline
processing of all images by VoxLogicA, for all possible initial conditions of the
experiments. For example, the actual time spent on computing the evaluation of
properties using VoxLogicA is a small fraction of its total evaluation time. The
rest is spent in parsing, loading, and saving, which is repeated for each image
and could mostly be eliminated. The number of images and total size of the logs
could be reduced drastically by making CATLib and VoxLogicA interact online at
each new experiment. In this way, there would be no need for CATLib to initially
generate all possible states. Only those states that are actually reachable given
the setup of the experiment at hand could be generated. This would result in
far fewer images to be processed by VoxLogicA and a smaller JSon log to be
parsed by CATLib in return. Concerning VoxLogicA, the input/output overhead
could also be eliminated by loading several files at once in parallel, parsing the
specification only once, and exploiting the recent GPU implementation [26].

CRediT author statement

D. Basile: Conceptualization, Software, Formal Analysis, Investigation, Writing -

Original Draft, Writing - Review & Editing. M.H. ter Beek: Writing - Original

Draft, Writing - Review & Editing, Supervision, Funding Acquisition, Project Admin-

istration. V. Ciancia: Conceptualization, Software, Formal Analysis, Investigation,

Writing - Original Draft, Writing - Review & Editing.

Acknowledgments. Research partially funded by the MIUR PRIN 2017FTXR7S

project IT MaTTerS (Methods and Tools for Trustworthy Smart Systems).

References

1. Alsalehi, S., Mehdipour, N., Bartocci, E., Belta, C.: Neural network-based control
for multi-agent systems from spatio-temporal specifications. In: Proceedings of the
60th IEEE Conference on Decision and Control (CDC 2021). pp. 5110–5115. IEEE
(2021). https://doi.org/10.1109/CDC45484.2021.9682921

2. Alur, R., Moarref, S., Topcu, U.: Compositional synthesis of reactive controllers
for multi-agent systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 251–269. Springer (2016). https://doi.org/10.1007/978-3-319-41540-
6 14

3. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed au-
tomata. IFAC Proc. Vol. 31(18), 447–452 (1998). https://doi.org/10.1016/S1474-
6670(17)42032-5

4. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial
logics and model checking for medical imaging. Int. J. Softw. Tools Technol. Transf.
22(2), 195–217 (2020). https://doi.org/10.1007/s10009-019-00511-9

5. Basile, D., ter Beek, M.H., Legay, A.: Timed service contract automata. Inno-
vations Syst. Softw. Eng. 16(2), 199–214 (2020). https://doi.org/10.1007/s11334-
019-00353-3

6. Basile, D., ter Beek, M.H.: A clean and efficient implementation of chore-
ography synthesis for behavioural contracts. In: Damiani, F., Dardha, O.
(eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 225–238. Springer (2021).
https://doi.org/10.1007/978-3-030-78142-2 14

7. Basile, D., ter Beek, M.H.: Contract Automata Library. Sci. Comput. Pro-
gram. (2022). https://doi.org/10.1016/j.scico.2022.102841, https://github.com/
contractautomataproject/ContractAutomataLib

8. Basile, D., ter Beek, M.H.: A runtime environment for contract automata.
arXiv:2203.14122 (2022), 10.48550/arXiv.2203.14122

9. Basile, D., ter Beek, M.H., Degano, P., Legay, A., Ferrari, G.L., Gnesi, S., Di
Giandomenico, F.: Controller synthesis of service contracts with variability. Sci.
Comput. Program. 187 (2020). https://doi.org/10.1016/j.scico.2019.102344

10. Basile, D., ter Beek, M.H., Di Giandomenico, F., Gnesi, S.: Orchestra-
tion of dynamic service product lines with featured modal contract au-
tomata. In: Proceedings of the 21st International Systems and Software
Product Line Conference (SPLC 2017). vol. 2, pp. 117–122. ACM (2017).
https://doi.org/10.1145/3109729.3109741

https://doi.org/10.1109/CDC45484.2021.9682921
https://doi.org/10.1007/978-3-319-41540-6_14
https://doi.org/10.1007/978-3-319-41540-6_14
https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/10.1007/s11334-019-00353-3
https://doi.org/10.1007/s11334-019-00353-3
https://doi.org/10.1007/978-3-030-78142-2_14
https://doi.org/10.1016/j.scico.2022.102841
https://github.com/contractautomataproject/ContractAutomataLib
https://github.com/contractautomataproject/ContractAutomataLib
10.48550/arXiv.2203.14122
https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.1145/3109729.3109741

11. Basile, D., ter Beek, M.H., Gnesi, S.: Modelling and analysis with featured modal
contract automata. In: Proceedings of the 22nd International Systems and Soft-
ware Product Line Conference (SPLC 2018). vol. 2, pp. 11–16. ACM (2018).
https://doi.org/10.1145/3236405.3236408

12. Basile, D., ter Beek, M.H., Legay, A.: Strategy synthesis for autonomous driv-
ing in a moving block railway system with Uppaal Stratego. In: Gotsman, A.,
Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 3–21. Springer (2020).
https://doi.org/10.1007/978-3-030-50086-3 1

13. Basile, D., ter Beek, M.H., Pugliese, R.: Synthesis of orchestrations and chore-
ographies: Bridging the gap between supervisory control and coordination of ser-
vices. Log. Methods Comput. Sci. 16(2) (2020). https://doi.org/10.23638/LMCS-
16(2:9)2020

14. Basile, D., Ciancia, V.: Repository for reproducing the experiments, https://
github.com/contractautomataproject/CATLib PngConverter

15. Basile, D., Degano, P., Ferrari, G.L.: Automata for specifying and or-
chestrating service contracts. Log. Methods Comput. Sci. 12(4) (2016).
https://doi.org/10.2168/LMCS-12(4:6)2016

16. Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: Playing with our CAT and
communication-centric applications. In: Albert, E., Lanese, I. (eds.) FORTE 2016.
LNCS, vol. 9688, pp. 62–73. Springer (2016). https://doi.org/10.1007/978-3-319-
39570-8 5

17. Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: Relating two automata-based
models of orchestration and choreography. J. Log. Algebr. Methods Program.
85(3), 425–446 (2016). https://doi.org/10.1016/j.jlamp.2015.09.011

18. Basile, D., Di Giandomenico, F., Gnesi, S.: Enhancing models correctness through
formal verification: A case study from the railway domain. In: Pires, L.F., Ham-
moudi, S., Selic, B. (eds.) Proceedings of the 5th International Conference on
Model-Driven Engineering and Software Development (MODELSWARD 2017).
pp. 679–686. SciTePress (2017). https://doi.org/10.5220/0006291106790686

19. Basile, D., Di Giandomenico, F., Gnesi, S.: FMCAT: Supporting dynamic service-
based product lines. In: Proceedings of the 21st International Systems and Soft-
ware Product Line Conference (SPLC 2017). vol. 2, pp. 3–8. ACM (2017).
https://doi.org/10.1145/3109729.3109760

20. Basile, D., Di Giandomenico, F., Gnesi, S., Degano, P., Ferrari, G.L.: Specifying
variability in service contracts. In: Proceedings of the 11th International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS 2017). pp. 20–27.
ACM (2017). https://doi.org/10.1145/3023956.3023965

21. ter Beek, M.H., Reniers, M.A., de Vink, E.P.: Supervisory controller synthesis for
product lines using CIF 3. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9952, pp. 856–873. Springer (2016). https://doi.org/10.1007/978-3-319-47166-
2 59

22. Belmonte, G., Broccia, G., Vincenzo, C., Latella, D., Massink, M.: Feasibility of
spatial model checking for nevus segmentation. In: Proceedings of the 9th Interna-
tional Conference on Formal Methods in Software Engineering (FormaliSE 2021).
pp. 1–12. IEEE (2021). https://doi.org/10.1109/FormaliSE52586.2021.00007

23. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Innovating medical image
analysis via spatial logics. In: ter Beek, M.H., Fantechi, A., Semini, L. (eds.) From
Software Engineering to Formal Methods and Tools, and Back. LNCS, vol. 11865,
pp. 85–109. Springer (2019). https://doi.org/10.1007/978-3-030-30985-5 7

https://doi.org/10.1145/3236405.3236408
https://doi.org/10.1007/978-3-030-50086-3_1
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.23638/LMCS-16(2:9)2020
https://github.com/contractautomataproject/CATLib_PngConverter
https://github.com/contractautomataproject/CATLib_PngConverter
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.1007/978-3-319-39570-8_5
https://doi.org/10.1007/978-3-319-39570-8_5
https://doi.org/10.1016/j.jlamp.2015.09.011
https://doi.org/10.5220/0006291106790686
https://doi.org/10.1145/3109729.3109760
https://doi.org/10.1145/3023956.3023965
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1007/978-3-319-47166-2_59
https://doi.org/10.1109/FormaliSE52586.2021.00007
https://doi.org/10.1007/978-3-030-30985-5_7

24. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: A spa-
tial model checker for declarative image analysis. In: Vojnar, T., Zhang,
L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 281–298. Springer (2019).
https://doi.org/10.1007/978-3-030-17462-0 16

25. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink, M.:
Geometric model checking of continuous space. arXiv:2105.06194 (2021), https:
//arxiv.org/abs/2105.06194

26. Bussi, L., Ciancia, V., Gadducci, F.: Towards a spatial model checker on GPU. In:
Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 188–196.
Springer (2021). https://doi.org/10.1007/978-3-030-78089-0 12

27. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity
games in quasipolynomial time. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC 2017). pp. 252–263. ACM (2017).
https://doi.org/10.1145/3055399.3055409

28. Camacho, A., Bienvenu, M., McIlraith, S.A.: Towards a unified view of AI plan-
ning and reactive synthesis. In: Proceedings of the 29th International Conference
on Automated Planning and Scheduling (ICAPS 2018). pp. 58–67. AAAI (2019),
https://ojs.aaai.org/index.php/ICAPS/article/view/3460

29. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer
(2006). https://doi.org/10.1007/978-0-387-68612-7

30. Castelnovo, D., Miculan, M.: Closure hyperdoctrines. In: Gadducci, F., Silva,
A. (eds.) Proceedings of the 9th Conference on Algebra and Coalgebra in
Computer Science (CALCO 2021). LIPIcs, vol. 211, pp. 12:1–12:21 (2021).
https://doi.org/10.4230/LIPIcs.CALCO.2021.12

31. Cauchi, N., Abate, A.: StocHy: Automated verification and synthesis of stochastic
processes. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp.
247–264. Springer (2019). https://doi.org/10.1007/978-3-030-17465-1 14

32. Ceska, M., Pilar, P., Paoletti, N., Brim, L., Kwiatkowska, M.Z.: PRISM-PSY:
Precise GPU-accelerated parameter synthesis for stochastic systems. In: Chechik,
M., Raskin, J. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 367–384. Springer (2016).
https://doi.org/10.1007/978-3-662-49674-9 21

33. Cheng, C., Lee, E.A., Ruess, H.: autoCode4: Structural controller synthesis. In:
Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 398–404.
Springer (2017). https://doi.org/10.1007/978-3-662-54577-5 23

34. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spa-
tial logics for closure spaces. Log. Methods Comput. Sci. 12(4) (2016).
https://doi.org/10.2168/LMCS-12(4:2)2016

35. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer (2016).
https://doi.org/10.1007/978-3-319-47166-2 46

36. Ciancia, V., Belmonte, G., Latella, D., Massink, M.: A hands-on introduction to
spatial model checking using VoxLogicA – invited contribution. In: Laarman, A.,
Sokolova, A. (eds.) SPIN 2021. LNCS, vol. 12864, pp. 22–41. Springer (2021).
https://doi.org/10.1007/978-3-030-84629-9 2

37. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink,
M.: Spatio-temporal model checking of vehicular movement in public trans-
port systems. Int. J. Softw. Tools Technol. Transf. 20(3), 289–311 (2018).
https://doi.org/10.1007/s10009-018-0483-8

https://doi.org/10.1007/978-3-030-17462-0_16
https://arxiv.org/abs/2105.06194
https://arxiv.org/abs/2105.06194
https://doi.org/10.1007/978-3-030-78089-0_12
https://doi.org/10.1145/3055399.3055409
https://ojs.aaai.org/index.php/ICAPS/article/view/3460
https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.4230/LIPIcs.CALCO.2021.12
https://doi.org/10.1007/978-3-030-17465-1_14
https://doi.org/10.1007/978-3-662-49674-9_21
https://doi.org/10.1007/978-3-662-54577-5_23
https://doi.org/10.2168/LMCS-12(4:2)2016
https://doi.org/10.1007/978-3-319-47166-2_46
https://doi.org/10.1007/978-3-030-84629-9_2
https://doi.org/10.1007/s10009-018-0483-8

38. Ciancia, V., Latella, D., Massink, M., Paškauskas, R.: Exploring spatio-temporal
properties of bike-sharing systems. In: Proceedings of the Workshops at the 9th
IEEE International Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2015). pp. 74–79. IEEE (2015). https://doi.org/10.1109/SASOW.2015.17

39. David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer (2015). https://doi.org/10.1007/978-3-662-46681-0 16

40. Deniélou, P., Yoshida, N.: Multiparty session types meet communicating au-
tomata. In: Seidl, H. (ed.) Proceedings of the 21st European Symposium on
Programming (ESOP 2012). LNCS, vol. 7211, pp. 194–213. Springer (2012).
https://doi.org/10.1007/978-3-642-28869-2 10

41. Ehlers, R., Lafortune, S., Tripakis, S., Vardi, M.Y.: Supervisory control and reac-
tive synthesis: a comparative introduction. Discret. Event Dyn. Syst. 27(2), 209–
260 (2017). https://doi.org/10.1007/s10626-015-0223-0

42. Fan, C., Miller, K., Mitra, S.: Fast and guaranteed safe controller synthesis for
nonlinear vehicle models. In: Lahiri, S.K., Wang, C. (eds.) Proceedings of the
32nd International Conference on Computer Aided Verification (CAV’20). LNCS,
vol. 12224, pp. 629–652. Springer (2020). https://doi.org/10.1007/978-3-030-53288-
8 31

43. Farhat, H.: Web service composition via supervisory control theory. IEEE Access
6, 59779–59789 (2018). https://doi.org/10.1109/ACCESS.2018.2874564

44. Felli, P., Yadav, N., Sardina, S.: Supervisory control for behavior
composition. IEEE Trans. Autom. Control 62(2), 986–991 (2017).
https://doi.org/10.1109/TAC.2016.2570748

45. Forschelen, S.T.J., van de Mortel-Fronczak, J.M., Su, R., Rooda, J.E.: Application
of supervisory control theory to theme park vehicles. Discrete Event Dyn. Syst.
22(4), 511–540 (2012). https://doi.org/10.1007/s10626-012-0130-6

46. Gu, R., Jensen, P.G., Poulsen, D.B., Seceleanu, C., Enoiu, E., Lundqvist,
K.: Verifiable strategy synthesis for multiple autonomous agents: a scal-
able approach. Int. J. Softw. Tools Technol. Transf. 24(3), 395–414 (2022).
https://doi.org/10.1007/s10009-022-00657-z

47. Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under lo-
cal LTL specifications. Int. J. Robotics Res. 34(2), 218–235 (2015).
https://doi.org/10.1177/0278364914546174

48. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spa-
Tel: A novel spatial-temporal logic and its applications to networked sys-
tems. In: Proceedings of the 18th International Conference on Hybrid Sys-
tems: Computation and Control (HSCC 2015). pp. 189–198. ACM (2015).
https://doi.org/10.1145/2728606.2728633

49. Haghighi, I., Sadraddini, S., Belta, C.: Robotic swarm control from
spatio-temporal specifications. In: Proceedings of the 55th IEEE Confer-
ence on Decision and Control (CDC 2016). pp. 5708–5713. IEEE (2016).
https://doi.org/10.1109/CDC.2016.7799146

50. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: Stochas-
tic game verification with concurrency, equilibria and time. In: Lahiri, S.K.,
Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 475–487. Springer (2020).
https://doi.org/10.1007/978-3-030-53291-8 25

51. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2015). pp. 221–232.
ACM (2015). https://doi.org/10.1145/2676726.2676964

https://doi.org/10.1109/SASOW.2015.17
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/s10626-015-0223-0
https://doi.org/10.1007/978-3-030-53288-8_31
https://doi.org/10.1007/978-3-030-53288-8_31
https://doi.org/10.1109/ACCESS.2018.2874564
https://doi.org/10.1109/TAC.2016.2570748
https://doi.org/10.1007/s10626-012-0130-6
https://doi.org/10.1007/s10009-022-00657-z
https://doi.org/10.1177/0278364914546174
https://doi.org/10.1145/2728606.2728633
https://doi.org/10.1109/CDC.2016.7799146
https://doi.org/10.1007/978-3-030-53291-8_25
https://doi.org/10.1145/2676726.2676964

52. Lavaei, A., Khaled, M., Soudjani, S., Zamani, M.: AMYTISS: Parallelized au-
tomated controller synthesis for large-scale stochastic systems. In: Lahiri, S.K.,
Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 461–474. Springer (2020).
https://doi.org/10.1007/978-3-030-53291-8 24

53. Lehmann, S., Rogalla, A., Neidhardt, M., Reinecke, A., Schlaefer, A., Schupp, S.:
Modeling R3 needle steering in Uppaal. In: Dubslaff, C., Luttik, B. (eds.) Proceed-
ings of the 5th Workshop on Models for Formal Analysis of Real Systems (MARS
2022). EPTCS, vol. 355, pp. 40–59 (2022). https://doi.org/10.4204/EPTCS.355.4

54. Liu, Z., Wu, B., Dai, J., Lin, H.: Distributed communication-aware motion planning
for networked mobile robots under formal specifications. IEEE Trans. Control.
Netw. Syst. 7(4), 1801–1811 (2020). https://doi.org/10.1109/TCNS.2020.3000742

55. Loizou, S.G., Kyriakopoulos, K.J.: Automatic synthesis of multi-agent motion
tasks based on LTL specifications. In: Proceedings of the 43rd IEEE Con-
ference on Decision and Control (CDC 2004). pp. 153–158. IEEE (2004).
https://doi.org/10.1109/CDC.2004.1428622

56. Loreti, M., Quadrini, M.: A spatial logic for a simplicial complex model.
arXiv:2105.08708 (2021), https://arxiv.org/abs/2105.08708

57. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Inform. 57(1-2), 3–36 (2020).
https://doi.org/10.1007/s00236-019-00349-3

58. Ma, M., Bartocci, E., Lifland, E., Stankovic, J.A., Feng, L.: A novel spa-
tial–temporal specification-based monitoring system for smart cities. IEEE Internet
Things J. 8(15), 11793–11806 (2021). https://doi.org/10.1109/JIOT.2021.3069943

59. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
578–586. Springer (2018). https://doi.org/10.1007/978-3-319-96145-3 31

60. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of dis-
crete event processes. SIAM J. Control Optim. 25(1), 206–230 (1987).
https://doi.org/10.1137/0325013

61. van der Sanden, B., Reniers, M.A., Geilen, M., Basten, T., Jacobs, J., Voeten, J.,
Schiffelers, R.R.H.: Modular model-based supervisory controller design for wafer
logistics in lithography machines. In: Proceedings of the 18th International Confer-
ence on Model Driven Engineering Languages and Systems (MoDELS 2015). pp.
416–425. IEEE (2015). https://doi.org/10.1109/MODELS.2015.7338273

62. Shokri-Manninen, F., Vain, J., Waldén, M.: Formal verification of COLREG-
based navigation of maritime autonomous systems. In: de Boer, F.S., Cerone,
A. (eds.) SEFM 2020. LNCS, vol. 12310, pp. 41–59. Springer (2020).
https://doi.org/10.1007/978-3-030-58768-0 3

63. Sun, D., Chen, J., Mitra, S., Fan, C.: Multi-agent motion planning from signal
temporal logic specifications. IEEE Robotics Autom. Lett. 7(2), 3451–3458 (2022).
https://doi.org/10.1109/LRA.2022.3146951

64. Theunissen, R.J.M., van Beek, D.A., Rooda, J.E.: Improving evolvabil-
ity of a patient communication control system using state-based su-
pervisory control synthesis. Adv. Eng. Inform. 26(3), 502–515 (2012).
https://doi.org/10.1016/j.aei.2012.02.009

65. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Modeling and verification of evolving
cyber-physical spaces. In: Proceedings of the 11th Joint Meeting on Foun-
dations of Software Engineering (ESEC/FSE 2017). pp. 38–48. ACM (2017).
https://doi.org/10.1145/3106237.3106299

https://doi.org/10.1007/978-3-030-53291-8_24
https://doi.org/10.4204/EPTCS.355.4
https://doi.org/10.1109/TCNS.2020.3000742
https://doi.org/10.1109/CDC.2004.1428622
https://arxiv.org/abs/2105.08708
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1109/JIOT.2021.3069943
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1137/0325013
https://doi.org/10.1109/MODELS.2015.7338273
https://doi.org/10.1007/978-3-030-58768-0_3
https://doi.org/10.1109/LRA.2022.3146951
https://doi.org/10.1016/j.aei.2012.02.009
https://doi.org/10.1145/3106237.3106299

	An Experimental Toolchain for Strategy Synthesis with Spatial Properties

