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Abstract

Sentiment quantification is the task of training, by means of supervised learning, estimators

of the relative frequency (also called “prevalence”) of sentiment-related classes (such as

Positive, Neutral, Negative) in a sample of unlabelled texts. This task is especially

important when these texts are tweets, since the final goal of most sentiment classification

efforts carried out on Twitter data is actually quantification (and not the classification of indi-

vidual tweets). It is well-known that solving quantification by means of “classify and count”

(i.e., by classifying all unlabelled items by means of a standard classifier and counting the

items that have been assigned to a given class) is less than optimal in terms of accuracy,

and that more accurate quantification methods exist. Gao and Sebastiani 2016 carried out a

systematic comparison of quantification methods on the task of tweet sentiment quantifica-

tion. In hindsight, we observe that the experimentation carried out in that work was weak,

and that the reliability of the conclusions that were drawn from the results is thus question-

able. We here re-evaluate those quantification methods (plus a few more modern ones) on

exactly the same datasets, this time following a now consolidated and robust experimental

protocol (which also involves simulating the presence, in the test data, of class prevalence

values very different from those of the training set). This experimental protocol (even without

counting the newly added methods) involves a number of experiments 5,775 times larger

than that of the original study. Due to the above-mentioned presence, in the test data, of

samples characterised by class prevalence values very different from those of the training

set, the results of our experiments are dramatically different from those obtained by Gao

and Sebastiani, and provide a different, much more solid understanding of the relative

strengths and weaknesses of different sentiment quantification methods.

1 Introduction

Quantification (also known as supervised prevalence estimation, or learning to quantify) is the

task of training (by means of supervised learning) a predictor that estimates the relative fre-

quency (also known as prevalence, or prior probability) of each class of interest in a set (here

often called a “sample”) of unlabelled data items, where the data used to train the predictor are
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a set of labelled data items [1]. (Throughout the paper we prefer the term “unlabelled text” to

the term “test text” because the former embraces not only the case in which we are testing a

quantification method in lab experiments, but also the case in which, maybe after performing

these experiments, we deploy our trained models in an operational environment in order to

perform quantification on the data that our application requires us to analyse.) Quantification

finds applications in fields (such as the social sciences [2], epidemiology [3], market research

[4], and ecological modelling [5]) that inherently deal with aggregate (rather than individual)

data, but is also relevant to other applications such as resource allocation [6], word sense dis-

ambiguation [7], and improving classifier fairness [8].

In the realm of textual data, one important domain to which quantification is applied is sen-
timent analysis [9, 10]. In fact, as argued by Esuli et al. [11], many applications of sentiment

classification are such that the final goal is not determining the class label (e.g., Positive, or

Neutral, or Negative) of an individual unlabelled text (for example, a blog post, a

response to an open question, or a comment on a product), but is that of determining the rela-

tive frequencies of the classes of interest in a set of unlabelled texts. In a 2016 paper, Gao and

Sebastiani [12] (hereafter: [GS2016]) have argued that, when the objects of analysis are tweets,

the vast majority of sentiment classification efforts actually have quantification as their final

goal, since hardly anyone who engages in sentiment classification of tweets is interested per se
in the sentiment conveyed by a specific tweet. We call the resulting task tweet sentiment quan-
tification [11, 11, 13].

It is well-known (see e.g., [1, 6, 14–21]) that solving quantification by means of “classify and

count” (i.e., by classifying all the unlabelled items by means of a standard classifier and count-

ing the items that have been assigned to a given class) is less than optimal in terms of quantifi-

cation accuracy, and that more accurate quantification methods exist. Driven by these

considerations, [GS2016] presented an experimental comparison of 8 important quantification

methods on 11 Twitter datasets annotated by sentiment, with the goal of assessing the

strengths and weaknesses of the various methods for tweet sentiment quantification. That

paper became then influential (at the time of writing, [GS2016] and paper [22], a shorter and

earlier version of [GS2016], have 134 citations altogether on Google Scholar) and a standard

reference on this problem, and describes what is currently the largest comparative experimen-

tation on tweet sentiment quantification.

In this paper we argue that the conclusions drawn from the experimental results obtained

in [GS2016] are unreliable, as a result of the fact that the experimentation performed in that

paper was weak. We thus present new experiments in which we re-test all 8 quantification

methods originally tested in [GS2016] (plus some additional ones that have been proposed

since then) on the same 11 datasets used in [GS2016], using a now consolidated and robust

experimental protocol. These new experiments (conducted on a set of samples that is at the

same time (a) 5,775 times larger than the set of samples used in [GS2016], even without count-

ing the experiments on new quantification methods that had not been considered in

[GS2016], and more varied than it) return results dramatically different from those obtained

in [GS2016], and give us a new, more reliable picture of the relative merits of the various meth-

ods on the tweet sentiment quantification task.

The rest of this paper is structured as follows. In Section 2 we discuss experimental proto-

cols for quantification, and argue why the experimentation carried out in [GS2016] is, in hind-

sight, weak. In Section 3 we present the new experiments we have run, briefly discussing the

quantification methods and the datasets we use, and explaining in detail the experimental pro-

tocol we use. Section 4 discusses the results and the conclusions that they allow drawing, also

pointing at how they differ from the ones of [GS2016], and why. Section 5 is devoted to con-

cluding remarks.
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We make all the code we use for our experiments available (see https://github.com/

HLT-ISTI/QuaPy/tree/tweetsent). Together with the fact that [GS2016] made available (in vec-

tor form) all their 11 datasets (see https://zenodo.org/record/4255764), this allows our experi-

ments to be easily reproduced by other researchers.

2 Experimental protocols for quantification

2.1 Notation

In this paper we use the following notation. By x we indicate a document drawn from a

domain X of documents, while by y we indicate a class drawn from a set of classes (also known

as a codeframe) Y ¼ fy1; :::; yjYjg. Given x 2 X and y 2 Y, a pair (x, y) denotes a document

with its true class label. Symbol σ denotes a sample, i.e., a non-empty set of (labelled or unla-

belled) documents drawn from X . By pσ(y) we indicate the true prevalence of class y in sample

σ, by p̂sðyÞ we indicate an estimate of this prevalence, and by p̂M
s
ðyÞ we indicate the estimate of

this prevalence obtained by means of quantification method M (consistently with most mathe-

matical literature, we use the caret symbol (^) to indicate estimation). Since 0� pσ(y)� 1 and

0 � p̂sðyÞ � 1 for all y 2 Y, and since
P

y2YpsðyÞ ¼
P

y2Y p̂sðyÞ ¼ 1, the pσ(y)’s and the

p̂sðyÞ’s form two probability distributions across the same codeframe.

By Dðp; p̂Þ we denote an evaluation measure for quantification; these measures are typically

divergences, i.e., functions that measure the amount of discrepancy between two probability

distributions. By L we denote a set of labelled documents, that we typically use as a training set,

while by U we denote a set of unlabelled documents, that we typically use for testing purposes.

We take a hard classifier to be a function h : X ! Y, and a soft classifier to be a function

s : X ! ½0; 1�jYj, where s(x) is a vector of jYj posterior probabilities (each indicated as Pr(y|x)),

such that
P

y2YPrðyjxÞ ¼ 1; Pr(y|x) indicates the probability of membership in y of item x as

estimated by the soft classifier s. By δσ(y) we denote the set of documents in sample σ that have

been assigned to class y by a hard classifier.

2.2 Why do we need quantification?

Quantification may be seen as the task of training, via supervised learning, a predictor that esti-

mates an unknown true distribution pσ, where pσ is defined on a sample σ and across the classes

in a codeframe Y ¼ fy1; :::; yjYjg, by means of a predicted distribution p̂s. In other words, in

quantification one needs to generate estimates p̂sðy1Þ; :::; p̂sðyjYjÞ of the true (and unknown)

class prevalence values psðy1Þ; :::; psðyjYjÞ, where
P

y2Y p̂sðyÞ ¼
P

y2YpsðyÞ ¼ 1. In this paper

we consider a ternary sentiment quantification task (an example of single-label multiclass
quantification) in which the codeframe is Y ¼ fPositive;Neutral;Negativeg, and where

these three class labels will be indicated, for brevity, by the symbols {�,�,�}, respectively. All

the 11 datasets discussed in Section 3.5 use this codeframe.

The reason why true quantification methods (i.e., different from the trivial “classify and

count” mentioned in Section 1) are needed is the fact that many applicative scenarios suffer

from distribution shift, the phenomenon according to which the distribution pL(y) in the train-

ing set L may substantially differ from the distribution pσ(y) in the sample σ of unlabelled doc-

uments that one needs to label [23, 24]. The presence of distribution shift means that the well-

known IID assumption, on which most learning algorithms for training classifiers are based,

does not hold; in turn, this means that “classify and count” will perform less than optimally on

samples of unlabelled items that exhibit distribution shift with respect to this training set, and

that the higher the amount of shift, the worse we can expect “classify and count” to perform.
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2.3 The APP and the NPP

There are two main experimental protocols that have been used in the literature for evaluating

quantification; we will here call them the artificial-prevalence protocol (APP) and the natural-
prevalence protocol (NPP).

The APP consists of taking a standard dataset (by which we here mean any dataset that has

originally been assembled for testing classification systems; any such dataset can be used for

testing quantification systems too), split into a training set L of labelled items and a set U of

unlabelled items, and conducting repeated experiments in which either the training set

prevalence values of the classes, or the test set prevalence values of the classes, are artificially

varied by means of subsampling (i.e., by removing random elements of specific classes

until the desired class prevalence values are obtained). In other words, subsampling is used

either to generate s training samples sL
1
� L; :::; sL

s � L, or to generate t test samples

sU
1
� U; :::; sU

t � U, or both, where the class prevalence values of the generated samples are

predetermined and set in such a way as to generate a wide array of distribution drift values.

This is meant to test the robustness of a quantifier (i.e., of an estimator of class prevalence val-

ues) in scenarios characterized by class prevalence values very different from the ones the

quantifier has been trained on. For instance, in the binary quantification experiments carried

out in [15], given codeframe Y ¼ fy1; y2g, repeated experiments are conducted in which

examples of either y1 or y2 are removed at random from the test set in order to generate

predetermined prevalence values for y1 and y2 in the samples sU
1
; :::; sU

t thus obtained. In

this way, the different samples are characterised by a different prevalence of y1 (e.g.,

psUi ðy1Þ 2 f0:00; 0:05; :::; 0:95; 1:00g) and, as a result, by a different prevalence of y2. This can

be repeated, thus generating multiple random samples for each chosen pair of class prevalence

values. Analogously, random removal of examples of either y1 or y2 can be performed on the

training set, thus bringing about training samples with different values of psLi ðy1Þ and psLi ðy2Þ.

This protocol has been criticised (see [25]) because it may generate samples exhibiting class

prevalence values very different from the ones of the set (L or U) from which the sample σ was

extracted, i.e., class prevalence values that might be hardly plausible in practice. As a result,

one may resort to the NPP, which consists instead of doing away with sample extraction and

directly using, as the samples for conducting the experiments, the test set U (or portions of it

obtained by subdividing it into bins) and the training set L that have been sampled IID from

the data distribution. In other words, no perturbation of the original class prevalence values is

performed for extracting samples. An example experimentation that uses the NPP is the one

reported in [25], where the authors test binary quantifiers on 52 × 99 = 5,148 samples. This

results from the fact that, in using the RCV1-v2 test collection, they consider the 99 RCV1-v2

classes and bin the 791,607 test documents in 52 bins (each corresponding to a week’s worth of

data, since the RCV1-v2 data span one year) of 15,212 documents each on average, and use the

resulting bins as the samples. However, it is not always easy to find test collections with such a

large amount of classes and annotated data, and this limits the applicability of the NPP. (It

should also be mentioned that, as Card and Smith [26] noted, the vast majority of the 5,148

RCV1-v2 test samples used in [25] exhibit very little distribution shift, which makes the testbed

used in [25] unchallenging for quantification methods).

The experimentation conducted by [GS2016] on tweet sentiment quantification is also an

example of the NPP, since it relies on 11 datasets of tweets annotated by sentiment from which

no extraction of samples at prespecified values of class prevalence was performed. For each

dataset, the authors use the training set L as the sample σL on which to train the quantifiers,

and the test set U as the sample σU on which to test them. However, what the authors of

[GS2016] overlooked is that, while in classification an experiment involving 11 different

PLOS ONE Tweet sentiment quantification

PLOS ONE | https://doi.org/10.1371/journal.pone.0263449 September 16, 2022 4 / 23

https://doi.org/10.1371/journal.pone.0263449


datasets probably counts as large and robust, this does not hold in quantification if only one
test sample per dataset is used. The reason is that, since the objects of quantification are sets
(i.e., samples) of documents in the same way that the objects of classification are individual

documents, testing a tweet sentiment quantifier on just 11 samples should be considered, from

an experimental point of view, a drastically insufficient experimentation, akin to testing a

tweet sentiment classifier on 11 tweets only.

As a result, we should conclude that the authors of [GS2016] (unintentionally) carried out a

weak evaluation, and that the results of that experimentation are thus unreliable. We thus re-

evaluate the same quantification methods that [GS2016] tested (plus some other more recent

ones) on the same datasets, this time following the robust and by now consolidated APP; in

our case, this turns out to involve 5,775 as many experiments as run in the original study, even

without considering the experiments on quantification methods that had not been considered

in [GS2016]).

It might be argued that the APP is unrealistic because it generates samples whose class preva-

lence values are too far away from the values seen in the set from where they have been extracted,

and that such scenarios are thus unlikely to occur in real applicative settings. However, in the

absence of any prior knowledge about how the class prevalence values are allowed or expected

to change in future data, the APP turns out to be not only the fairest protocol, since it relies on

no assumptions that could penalize or benefit any particular method, but also the most inter-

esting for quantification, since quantification is especially useful in cases of distribution shift.

Yet another way of saying this comes from the observation that, should we adopt the NPP

instead of the APP, a method that trivially returns, as the class prevalence estimates for every
test sample, the class prevalence values from the training set (this trivial method is commonly

known in the quantification literature as the maximum likelihood prevalence estimator –

MLPE), would probably perform well, and might even beat all genuinely engineered quantifi-

cation methods. The reason why it would probably perform well is that the expectations of the

class prevalence values of samples drawn IID from the test set coincide with the class preva-

lence values of the test set, and these, again by virtue of the IID assumption, are likely to be

close to those of the training set. In other words, the reason why MLPE typically performs well

when evaluated according to the NPP, does not lie in the (inexistent) qualities of MLPE as a

quantification method, but in the fact that the NPP is a weak evaluation protocol.

3 Experiments

In this section we describe the experiments we have carried out in order to re-assess the merits

of different quantification methods under the lens of the APP. We have conducted all these

experiments using QuaPy (see https://github.com/HLT-ISTI/QuaPy), a software framework

for quantification written in Python that we have developed and made available through

GitHub (see branch tweetsent).

3.1 Evaluation measures

As the measures of quantification error we use Absolute Error (AE) and Relative Absolute Error
(RAE), defined as

AEðp; p̂Þ ¼
1

jYj

X

y2Y

jp̂ðyÞ � pðyÞj ð1Þ

RAEðp; p̂Þ¼
1

jYj

X

y2Y

jp̂ðyÞ � pðyÞj
pðyÞ ð2Þ
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where p is the true distribution, p̂ is the estimated distribution, and Y is the set of classes of

interest (Y ¼ f�;�;�g in our case). (The sample σ on which we quantify is left implicit in

order not to overload the notation).

Note that RAE is undefined when at least one of the classes y 2 Y is such that its prevalence

in the sample σ is 0. To solve this problem, in computing RAE we smooth all p(y)’s and p̂ðyÞ’s
by means of additive smoothing, i.e., we compute

pðyÞ ¼
�þ pðyÞ

�jYj þ
P

y�Y
pðyÞ

ð3Þ

where pðyÞ denotes the smoothed version of p(y) and the denominator is just a normalising

factor (same for the p̂ðyÞ’s); following [6], we use the quantity � = 1/(2|σ|) as the smoothing

factor. We then use the smoothed versions of p(y) and p̂ðyÞ in place of their original non-

smoothed versions in Eq 2; as a result, RAE is now always defined.

The reason why we use AE and RAE is that from a theoretical standpoint they are, as it has

been recently argued [27], the most satisfactory evaluation measures for quantification. This

means that we do not consider other measures used in [GS2016], such as KLD, NAE, NRAE,

and NKLD, since [27] shows them to be inadequate for evaluating quantification.

3.2 Quantification methods used in [GS2016]

We now briefly describe the quantification methods used in [GS2016], that we also use in this

paper.

The simplest quantification method (and the one that acts as a lower-bound baseline for all

quantification methods) is the above-mentioned Classify and Count (CC), which, given a hard

classifier h, consists of computing

p̂CC
s
ðyiÞ ¼

jfx 2 sjhðxÞ ¼ yigj
jsj

¼

P
yj2Y

Ch
ij

jsj
ð4Þ

where Ch
ij indicates the number of documents classified as yi by h and whose true label is yj. CC

is an example of an aggregative quantification method, i.e., a method that requires the (hard or

soft) classification of all the unlabelled items as an intermediate step. All the methods discussed

in this section are aggregative.

The Adjusted Classify and Count (ACC) quantification method (see [6, 28]) derives from

the observation that, by the law of total probability, it holds that

PrðdðyiÞÞ ¼
X

yj2Y

PrðdðyiÞjyjÞ � PrðyjÞ ð5Þ

where δ(yi) denotes (see Section 2.1) the set of documents that have been assigned to class yi by

the hard classifier h. Eq 5 can be more conveniently rewritten as

P
yj2Y

Ch
ij

jsj
¼
X

yj2Y

Ch
ij

P
yx2Y

Ch
xj

� psðyjÞ ð6Þ

Note that the leftmost factor of Eq 6 is known (it is the fraction of documents that the classifier

has assigned to class yi, i.e., p̂CC
s
ðyiÞ), and that Ch

ij=
P

yx2Y
Ch

xj (which represents the disposition of

the classifier to assign yi when yj is the true label), while unknown, can be estimated by k-fold

cross-validation on L. Note also that pσ(yj) is unknown (it is the goal of quantification to
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estimate it), and that there are jYj instances of Eq 5, one for each yi 2 Y. We are then in the

presence of a system of jYj linear equations in jYj unknowns (the pσ(yj)’s); ACC thus consists

of estimating these latter (i.e., computing p̂ACC
s
ðyjÞ) by solving, by means of the known tech-

niques, this system of linear equations.

CC and ACC use the predictions generated by the hard classifier h, as evident by the fact

that both Eqs 4 and 6 depend on Ch
ij. Since most classifiers can be configured to return “soft

predictions” in the form of posterior probabilities Pr(y|x) (from which hard predictions are

obtained by choosing the y for which Pr(y|x) is maximised), and since posterior probabilities

contain richer information than hard predictions, it makes sense to try and generate probabi-

listic versions of the CC and ACC methods [29] by replacing “hard” counts Ch
ij with their

expected values, i.e., with Cs
ij ¼

P
ðx;yjÞ2s

PrðyijxÞ. If a classifier natively outputs classification

scores that are not probabilities, the former can be converted into the latter by means of “prob-

ability calibration”; see e.g., [30].

One can thus define Probabilistic Classify and Count (PCC) as

p̂PCC
s
ðyiÞ ¼

P
x2sPrðyijxÞ
jsj

¼

P
yj2Y

Cs
ij

jsj
ð7Þ

and Probabilistic Adjusted Classify and Count (PACC), which consists of estimating pσ(yj) (i.e.,

computing p̂PACC
s
ðyjÞ) by solving the system of jYj linear equations in jYj unknowns

P
yj2Y

Cs
ij

jsj
¼
X

yj2Y

Cs
ij

P
yx2Y

Cs
xj

� psðyjÞ ð8Þ

The fact that PCC is a probabilistic version of CC is evident from the structural similarity

between Eqs 4 and 7, which only differ for the fact that the hard classifier h of Eq 4 is replaced

by a soft classifier s in Eq 7; the same goes for ACC and PACC, as evident from the structural

similarity of Eqs 6 and 8.

A further method that [GS2016] uses is the one proposed in [31] (which we here call SLD,

from the names of its proposers, and which was called EMQ in [GS2016]), which consists of

training a probabilistic classifier and then using the EM algorithm (i) to update (in an iterative,

mutually recursive way) the posterior probabilities that the classifier returns, and (ii) to re-esti-

mate the class prevalence values of the test set, until mutual consistency, defined as the situa-

tion in which

psðyÞ �
X

x2s

PrðyjxÞ ð9Þ

is achieved for all y 2 Y.

Quantification methods SVM(KLD), SVM(NKLD), SVM(Q), belong instead to the “struc-

tured output learning” camp. Each of them is the result of instantiating the SVMperf structured

output learner [32] to optimise a different loss function. SVM(KLD) [25] minimises the Kull-

back-Leibler Divergence (KLD); SVM(NKLD) [33] minimises a version of KLD normalised by

means of the logistic function; SVM(Q) [34] minimises Q, the harmonic mean of a classifica-

tion-oriented loss (recall) and a quantification-oriented loss (RAE). Each of these learners gen-

erates a “quantification-oriented” classifier, and the quantification method consists of

performing CC by using this classifier. These three learners inherently generate binary quanti-

fiers (since SVMperf is an algorithm for learning binary predictors only), but we adapt them to

work on single-label multiclass quantification. This adaptation consists of training one binary

quantifier for each class in Y ¼ f�;�;�g by applying a one-vs-all strategy. Once applied to a
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sample, these three binary quantifiers produce a vector of three estimated prevalence values,

one for each class in Y ¼ f�;�;�g; we then L1-normalize this vector so as to make the three

class prevalence estimates sum up to one (this is also the strategy followed in [GS2016]).

3.3 Additional quantification methods

From the “structured output learning” camp we also consider SVM(AE) and SVM(RAE), i.e.,

variants of the above-mentioned methods that minimise (instead of KLD, NKLD, or Q) the

AE and RAE measures, since these latter are, for reasons discussed in Section 3.1, the evalua-

tion measures used in this paper for evaluating the quantification accuracy of our systems. We

consider SVM(AE) only when using AE as the evaluation measure, and we consider SVM

(RAE) only when using RAE as the evaluation measure; this obeys the principle that a sensible

user, after deciding the evaluation measure to use for their experiments, would instantiate

SVMperf with that measure, and not with others. (Quantification is a task in which deciding

the right evaluation measure to use for one’s application is of critical importance; in fact, [27]

argues that some applications demand measures such as AE, while the requirements of other

applications are best mirrored in measures such as RAE.) These methods have never been

used before in the literature, but are obvious variants of the last three methods we have

described.

We also include two methods based on the notion of quantification ensemble [18, 35]. Each

such ensemble consists of n base quantifiers, trained from randomly drawn samples of q docu-

ments each, where these samples are characterised by different class prevalence values. At test-

ing time, class prevalence values are estimated as the average of the estimates returned by the

base members of the ensemble. We include two ensemble-based methods recently proposed

by Pérez-Gállego et al. [35]; in both methods, a selection of members for inclusion in the final

ensemble is performed before computing the final estimate. The first method we consider is E

(PACC)Ptr, a method based on an ensemble of PACC-based quantifiers to which a dynamic

selection policy is applied. This policy consists of selecting the n/2 base quantifiers that have

been trained on the n/2 samples characterised by the prevalence values most similar to the one

being tested upon (where similarity was previously estimated using all members in the ensem-

ble). We further consider E(PACC)AE, a method which performs a static selection of the n/2

members that deliver the smallest absolute error on the training samples. In our experiments

we use n=50 and q=1,000.

We also report results for HDy [36], a probabilistic binary quantification method that views

quantification as the problem of minimising the divergence (measured in terms of the Hellin-

ger Distance) between two cumulative distributions of posterior probabilities returned by the

classifier, one coming from the unlabelled examples and the other coming from a validation

set. HDy looks for the mixture parameter α that best fits the validation distribution (consisting

of a mixture of a “positive” and a “negative” distribution) to the unlabelled distribution, and

returns α as the estimated prevalence of the positive class. We adapt the model to the single-

label multiclass scenario by using the one-vs-all strategy as described above for the methods

based on SVMperf.

ACC and PACC define two simple linear adjustments to be applied to the aggregated scores

returned by general-purpose classifiers. We also use a more recently proposed adjustment

method based on deep learning, called QuaNet [37]. QuaNet models a neural non-linear
adjustment by taking as input (i) all the class prevalence values as estimated by CC, ACC,

PCC, PACC, and SLD; (ii) the posterior probabilities Pr(y|x) for each document x and for each

class y 2 Y, and (iii) embedded representations of the documents. As the method for generat-

ing the document embeddings we simply perform principal component analysis and retain the
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100 most informative components. (Note that, since the datasets we use are available not in

raw form but in vector form, we cannot resort to common methods for generating document

embeddings, e.g., methods that use recurrent, convolutional, or transformer architectures that

directly process the raw text.) QuaNet relies on a recurrent neural network (a bidirectional

LSTM) to produce “sample embeddings” (i.e., dense, multi-dimensional representations of the

test samples as observed from the input data), which are then concatenated with the class prev-

alence estimates obtained by CC, ACC, PCC, PACC, and SLD, and then used to generate the

final prevalence estimates by transforming this vector through a set of feed-forward layers

(of size 1,024 and 512), followed by ReLU activations and dropout (with drop probability set

to 0.5).

3.4 Underlying classifiers

Consistently with [GS2016], as the classifier underlying CC, ACC, PCC, PACC, and SLD, we

use one trained by means of L2-regularised logistic regression (LR); we also do the same for E

(PACC)Ptr, E(PACC)AE, HDy, and QuaNet. The reasons of this choice are the same as

described in [GS2016], i.e., the fact that logistic regression is known to deliver very good classi-

fication accuracy across a variety of application domains, and the fact that a classifier trained

by means of LR returns posterior probabilities that tend to be fairly well-calibrated, a fact

which is of fundamental importance for methods such as PCC, PACC, SLD, HDy, and QuaNet.

By using the same learner used in [GS2016] we also allow a more direct comparison of results.

As specified above, the classifier underlying SVM(KLD), SVM(NKLD), SVM(Q), SVM

(AE), SVM(RAE), is one trained by means of SVMperf.

3.5 Datasets

The datasets on which we run our experiments are the same 11 datasets on which the experi-

ments of [GS2016] were carried out, and whose characteristics are described succinctly in

Table 1. As already noted at the end of Section 1, [GS2016] makes these datasets available

already in vector form; we refer to [GS2016] for a fuller description of these datasets.

Note that [GS2016] had generated these vectors by using state-of-the-art, tweet-specific pre-

processing, which included, e.g., URL normalisation, detection of exclamation and/or question

Table 1. Datasets used in this work and their main characteristics. Columns LTr, LVa, U contain the numbers of tweets in the training set, held-out validation set, and

test set, respectively. Column “Shift” contains the values of distribution shift between L� LTr

S
LVa and U, measured in terms of absolute error, columns pL(�), pL(�),

and pL(�) contain the class prevalence values of our three classes of interest in the training set L, while columns pU(�), pU(�), and pU(�) contain the class prevalence val-

ues for the unlabelled set U.

Dataset LTr LVa U Total Shift pL(�) pL(�) pL(�) pU(�) pU(�) pU(�)

GASP 7,532 1,256 3,765 12,553 0.0094 0.421 0.496 0.082 0.407 0.507 0.086

HCR 797 797 798 2,392 0.0630 0.546 0.211 0.243 0.640 0.167 0.193

OMD 1,576 263 787 2,626 0.0171 0.463 0.271 0.266 0.437 0.283 0.280

Sanders 1,847 308 923 3,078 0.0020 0.161 0.691 0.148 0.164 0.688 0.148

SemEval2013 9,684 1,654 3,813 15,151 0.0270 0.159 0.470 0.372 0.158 0.430 0.412

SemEval2014 9,684 1,654 1,853 13,191 0.1055 0.159 0.470 0.372 0.109 0.361 0.530

SemEval2015 9,684 1,654 2,390 13,728 0.0417 0.159 0.470 0.372 0.153 0.413 0.434

SemEval2016 6,000 2,000 2,000 10,000 0.0070 0.157 0.351 0.492 0.163 0.341 0.497

SST 2,546 425 1,271 4,242 0.0357 0.261 0.452 0.288 0.207 0.481 0.312

WA 1,872 312 936 3,120 0.0208 0.305 0.414 0.281 0.282 0.446 0.272

WB 3,650 609 1,823 6,082 0.0023 0.270 0.392 0.337 0.274 0.392 0.335

Average 4,988 994 1,851 7,833 0.0301 0.278 0.426 0.296 0.272 0.410 0.318

https://doi.org/10.1371/journal.pone.0263449.t001
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marks, emoticon recognition, and computation of “the number of all-caps tokens, (. . .), the

number of hashtags, the number of negated contexts, the number of sequences of exclamation

and/or question marks, and the number of elongated words” [GS2016, §4.1]; in other words,

every effort was made in [GS2016] to squeeze every little bit of information from these tweets,

in a tweet-specific way, in order to enhance accuracy as much as possible.

In the experiments described in this paper we perform feature selection by discarding all

features that occur in fewer than 5 training documents.

According to the principles of the APP, as described in Section 2.3, for each of the 11 data-

sets we here extract multiple samples from the test set, according to the following protocol. For

each different triple (p(�), p(�), p(�)) of class prevalence values in the finite set P = {0.00,

0.05, . . ., 0.95, 1.00} and such that the three values sum up to 1, we extract m random samples

of q documents each such that the extracted samples exhibit the class prevalence values

described by the triple. In these experiments we use m = 25 and q = 100. For each label y 2 {�,

�,�} and for each sample, the extraction is carried out by means of sampling without replace-

ment. (Here it is possible to always use sampling without replacement because each test set

contains at least q = 100 documents for each label y 2 {�,�,�}. If a certain test set contained

fewer than q = 100 documents for some label y 2 {�,�,�}, for that label and that test set it

would be necessary to use sampling with replacement.)

It is easy to verify that there exist |P|(|P| + 1)/2 = 231 different triples with values in P. (This

follows from the fact that, when pσ(�) = 0.00, there exist 21 different pairs (pσ(�), pσ(�)) with

values in P; when pσ(�) = 0.05, there exist 20 different such pairs; . . .; and when pσ(�) = 1.00,

there exists just 1 such pair. The total number of combinations is thus
P21

i¼1
i ¼ 21�22

2
¼ 231.)

Our experimentation of a given quantification method M on a given dataset thus consists of

training M on the training tweets LTr, using the validation tweets LVa for optimising the hyper-

parameters, retraining M on the entire labelled set L� LTr

S
LVa using the optimal hyperpara-

meter values, and testing the trained system on each of the 25 × 231 = 5,775 samples extracted

from the test set U. This is sharply different from [GS2016], where the experimentation of a

quantification method M on a given dataset consists of testing the trained system on one sam-

ple only, i.e., on the entire set U.

3.6 Parameter optimisation

Parameter optimisation is an important factor, that could bias, if not carried out properly, a

comparative experimentation of different quantification methods. As we have argued else-

where [38], when the quantification method is of the aggregative type, for this experimentation

to be unbiased, not only it is important to optimise the hyperparameters of the classifier that

underlies the quantification method, but it is also important that this optimisation is carried

out using a quantification-oriented loss, and not a classification-oriented loss.

In order to optimise a quantification-oriented loss it is necessary to test each hyperpara-

meter setting on multiple samples extracted from the held-out validation set, in the style of the

evaluation described in Section 3.5. In order to do this, for each combination of class preva-

lence values we extract, from the held-out validation set of each dataset, m samples of q docu-

ments each, again using class prevalence values in P = {0.00, 0.05, . . ., 0.95, 1.00}. Here we use

m = 5 and q = 100; we use a value of m five times smaller than in the evaluation phase (see Sec-

tion 3.5) in order to keep the computational cost of the parameter optimisation phase within

acceptable bounds.

For each label y 2 {�,�,�} and for each sample, the extraction is carried out by sampling

without replacement if the test set contains at least py�q examples, and by sampling with

replacement otherwise. (Unlike when extracting samples in the evaluation phase—see Section
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3.5, it is here sometimes necessary to use sampling with replacement because, in some dataset,

the validation set does not contain at least 100 documents per class).

In the experiments that we report in this paper, the hyperparameter that we optimise is the

C hyperparameter (that determines the trade-off between the margin and the training error)

of both LR and SVMperf; for this we carry out a grid search in the range C 2 {10i}, with i 2 [−4,

−3, . . ., + 4, + 5]. We optimise this parameter by using, as a loss function, either the AE mea-

sure (the corresponding results are reported in Table 2) or the RAE measure (Table 3). We

evaluate the former batch of experiments only in terms of AE and the latter batch only in

terms of RAE, following the principle that, once a user knew the measure to be used in the

evaluation, they would carry out the parameter optimisation phase in terms of exactly that

measure.

Hereafter, with the notation MD we will indicate quantification method M with the parame-

ters of the learner optimised using measure D.

4 Results

Table 2 reports AE results obtained by the quantification methods of Sections 3.2 and 3.3 as

tested on the 11 datasets of Section 3.5, while Table 3 does the same for RAE. The tables also

report the results of a paired sample, two-tailed t-test that we have run, at different confidence

levels, in order to check if other methods are different or not, in a statistically significant sense,

from the best-performing one.

An important aspect that emerges from these tables is that the behaviour of the different

quantifiers is fairly consistent across our 11 datasets; in other words, when a method is a good

performer on one dataset, it tends to be a good performer on all datasets. Together with the

fact that we test on a large set of samples, and that these are characterised by values of

Table 2. Values of AE obtained in our experiments; each value is the average across 5,775 values, each obtained on a different sample.

Methods tested in [GS2016] Newly added methods

CCAE ACCAE PCCAE PACCAE SLDAE SVM

(Q)AE
SVM

(KLD)AE
SVM

(NKLD)AE
SVM

(AE)AE
EðPACCÞAEPtr EðPACCÞAEAE HDyAE QuaNetAE

GASP 0.093 0.052 0.124 0.044 0.043 0.119 0.114 0.110 0.136 0.065 0.049 0.086 0.046

HCR 0.130 0.102 0.158 0.074 0.078 0.150 0.143 0.138 0.158 0.084 0.071† 0.070 0.099

OMD 0.114 0.086 0.126 0.067 0.055 0.141 0.124 0.139 0.116 0.084 0.075 0.119 0.087

Sanders 0.114 0.058 0.138 0.049 0.045 0.140 0.141 0.110 0.157 0.076 0.058 0.087 0.079

SemEval13 0.115 0.086 0.143 0.078 0.097 0.129 0.144 0.134 0.143 0.102 0.093 0.114 0.078‡

SemEval14 0.105 0.060 0.136 0.054 0.076 0.127 0.128 0.122 0.134 0.096 0.067 0.083 0.059

SemEval15 0.128 0.103 0.148 0.101† 0.104 0.143 0.150 0.145 0.144 0.114 0.112 0.105 0.098

SemEval16 0.146 0.147 0.171 0.118 0.102 0.167 0.154 0.165 0.178 0.131 0.132 0.167 0.103‡

SST 0.110 0.083 0.140 0.057 0.054 0.136 0.113 0.128 0.126 0.063 0.054‡ 0.097 0.069

WA 0.082 0.056 0.082 0.043 0.037 0.111 0.100 0.063 0.071 0.043 0.041 0.043 0.053

WB 0.077 0.043 0.083 0.035 0.032 0.106 0.084 0.103 0.069 0.048 0.041 0.044 0.046

Average 0.110 0.080‡ 0.132 0.065 0.066‡ 0.134 0.127 0.123 0.130 0.082‡ 0.072‡ 0.092† 0.074‡

Boldface indicates the best method for a given dataset. Superscripts † and ‡ denote the methods (if any) whose scores are not statistically significantly different from the

best one according to a paired sample, two-tailed t-test at different confidence levels: symbol † indicates that 0.001 < p-value <0.05 while symbol ‡ indicates that 0.05�

p-value. The absence of any such symbol indicates that p-value�0.001 (i.e., that the performance of the method is statistically significantly different from that of the best

method). For ease of readability, for each dataset we colour-code cells in intense green for the best result, intense red for the worst result, and an interpolated tone for

the scores in-between.

https://doi.org/10.1371/journal.pone.0263449.t002
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distribution shift across the entire range of all possible such shifts, this allows us to be fairly

confident in the conclusions that we draw from these results.

A second observation is that three methods (ACC, PACC, and SLD) stand out, since they

perform consistently well across all datasets and for both evaluation measures. In particular,

SLD is the best method for 7 out of 11 datasets when testing with AE, and for all 11 datasets

when testing with RAE. PACC also performs very well, and is the best performer for 3 out of

11 datasets when testing with AE. The fact that both ACC and PACC tend to perform well

shows that the intuition according to which CC predictions should be “adjusted” by estimating

the disposition of the classifier to assign class yi when class yj is the true label, is valuable and

robust to varying levels of distribution shift. The same goes for SLD, although SLD “adjusts”

the CC predictions differently, i.e., by enforcing the mutual consistency (described by Eq 9)

between the posterior probabilities and the class prevalence estimates.

By contrast, these results show a generally disappointing performance on the part of all

methods based on structured output learning, i.e., on the SVMperf learner. Note that the fact

that SVM(KLD), SVM(NKLD), SVM(Q) optimise a performance measure different from the

one used in the evaluation (AE or RAE) cannot be the cause of this suboptimal performance,

since this latter also characterises SVM(AE) when tested with AE as the evaluation measure,

and SVM(RAE) when tested with RAE.

CC and PCC do no perform well either. If this was somehow to be expected for CC, this is

surprising for PCC, which always performs worse than CC in our experiments, on all datasets

and for both performance measures. It would be tempting to conjecture that this might be due

to a supposedly insufficient quality of the posterior probabilities returned by the underlying

classifier; however, this conjecture is implausible, since the quality of the posterior probabilities

did not prevent SLD from displaying sterling performance, and PACC from performing very

well.

Table 3. Values of RAE obtained in our experiments; each value is the average across 5,775 values, each obtained on a different sample.

Methods tested in [GS2016] Newly added methods

CCRAE ACCRAE PCCRAE PACCRAE SLDRAE SVM

(Q)RAE
SVM

(KLD)RAE
SVM

(NKLD)RAE
SVM

(RAE)RAE
EðPACCÞPtrRAE EðPACCÞRAERAE

HDyRAE QuaNetRAE

GASP 2.850 0.512 3.490 0.722 0.337 3.835 3.260 3.461 3.411 2.361 1.402 0.644 4.270

HCR 3.982 1.942 4.151 1.332 0.454 4.939 4.236 4.197 4.041 2.169 1.990 0.517 4.214

OMD 3.495 0.884 3.776 0.552 0.469 4.578 3.844 4.481 3.295 2.479 1.840 0.881 2.296

Sanders 3.296 0.791 3.687 0.990 0.432 4.377 3.596 3.533 3.767 2.342 1.559 0.504 1.943

SemEval13 3.117 1.469 3.720 1.244 0.491 3.998 3.743 3.960 3.588 2.162 1.602 1.027 1.712

SemEval14 3.079 1.414 3.699 1.271 0.325 4.018 3.535 3.741 3.364 2.261 1.691 0.523 1.384

SemEval15 3.608 1.695 4.022 1.884 0.889 4.417 4.031 4.264 3.847 2.552 2.233 1.275 1.866

SemEval16 4.594 2.994 5.191 2.815 1.216 5.430 4.880 5.278 4.988 4.090 4.057 1.773 4.026

SST 4.207 0.972 4.226 1.042 0.534† 4.446 3.621 3.535 3.804 1.880 1.343 0.487 1.783

WA 2.493 0.540 2.706 0.512 0.313 3.503 2.814 1.431 1.739 0.948 0.825 0.587 1.280

WB 2.419 0.693 2.560 0.669 0.233 3.440 2.525 2.243 1.926 0.975 0.790 0.283 1.205

Average 3.376 1.264 3.748 1.185 0.518 4.271 3.644 3.648 3.434 2.202 1.757 0.773‡ 2.362

Boldface indicates the best method for a given dataset. Superscripts † and ‡ denote the methods (if any) whose scores are not statistically significantly different from the

best one according to a paired sample, two-tailed t-test at different confidence levels: symbol † indicates that 0.001 < p-value <0.05 while symbol ‡ indicates that 0.05�

p-value. The absence of any such symbol indicates that p-value�0.001 (i.e., that the performance of the method is statistically significantly different from that of the best

method). For ease of readability, for each dataset we colour-code cells in intense green for the best result, intense red for the worst result, and an interpolated tone for

the scores in-between.

https://doi.org/10.1371/journal.pone.0263449.t003
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Contrary to the observations reported in [35], the E(PACC)Ptr and E(PACC)AE ensemble

methods fail to improve over the base quantifier (PACC) upon which they are built. The likely

reason for this discrepancy is that, while Pérez-Gállego et al. [35] trained the base quantifiers

on training samples of the same size as the original training set (i.e., they use q = |L|), we use

smaller training samples (i.e., we use q = 1,000) in order to keep training times within reason-

able bounds (this is also due to the fact that the datasets we consider in this study are much

larger than those used in [35], not only in terms of the number of instances but especially in

terms of the number of features). (For instance, our datasets always have a number of features

in the tens or hundreds of thousands, while in their case this number if between 3 and 256.)

We now turn to comparing the results of our experiments with the ones reported in

[GS2016]. For doing this, for each dataset we rank, in terms of their performance, the 8 quanti-

fication methods used in both batches of experiments, and compare the rank positions

obtained by each method in the two batches. We only perform a qualitative comparison (i.e.,

comparing ranks) and not a quantitative one (i.e., comparing the obtained scores) because we

think that this latter would be misleading. The reason is that the evaluation carried out in the

[GS2016] paper and the one carried out here were run on different data. For example, on data-

set GASP and using AE as the evaluation measure, SVM(KLD) obtains 0.017 in [GS2016] and

0.114 in this paper, but these results are not comparable, since the above figures are (i) the

result of testing on just 1 sample (the unlabelled set) in [GS2016], and (ii) the result of averag-

ing across the results obtained on the 5,775 samples (extracted from the unlabelled set)

described in Section 3.5 in this paper. In general, for the same dataset and evaluation measure,

the results reported in this paper are far worse than the ones reported in [GS2016], because the

experimental protocol adopted in this paper is far more challenging than the one used in

[GS2016] since it involves testing on samples whose distribution is very different from the dis-

tribution of the training set.

The results of this comparison are reported in Table 4 (for AE) and Table 5 (for RAE).

Something that jumps to the eye when observing these tables is that our experiments lead to

conclusions that are dramatically different from those drawn by [GS2016]. First, SLD now

unquestionably emerges as the best performer, while it was often ranked among the worst per-

formers in [GS2016]. Conversely, PCC was the winner on most combinations (dataset, mea-

sure) in [GS2016], while our experiments have shown it to be a bad performer. Other methods

too see their merits disconfirmed by our experiments; in particular, ACC and PACC have

climbed up the ranked list, while all other methods (especially SVM(KLD)) have lost ground.

The reason for the different conclusions that these two batches of experiments allow draw-

ing is, in all evidence, the amounts of distribution shift which the methods have had to con-

front in the two scenarios. In the experiments of [GS2016] this shift was very moderate, since

the only test sample used (which coincided with the entire test set) usually displayed class prev-

alence values not too different from the class prevalence values in the training set. This is

shown in the last column of Table 1, where the shift between training set and test set (expressed

in terms of absolute error) is reported for each dataset; shift values range between 0.0020 and

0.1055, with an average value across all datasets of 0.0301, which is a very low value. In our

experiments, instead, the quantification methods need to confront class prevalence values that

are sometimes very different from the ones in the training set; shift values range between

0.0000 and 0.6666, with an average value across all samples of 0.2350. This means that the

quantification methods that have emerged in our experiments are the ones that are robust to

possibly radical changes in these class prevalence values, while the ones that had fared well in

the experiments of [GS2016] are the methods that tend to perform well merely in scenarios

where these changes are bland.
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This situation is well depicted in the plots of Figs 1 and 2. For generating these plots we

have computed, for each of the 11 × 5,775 = 63,525 test samples, the distribution shift between

the training set and the test sample, and we have binned these 63,525 samples into bins charac-

terised by approximately the same amount of distribution shift (we compute distribution shift

as the absolute error between the training distribution and the distribution of the test sample,

using bins of width equal to 0.05 (i.e., [0.00,0.05], (0.05,0.10], etc.). The plots show, for a given

quantification method and for a given bin, the quantification error of the method, measured

(by means of AE in the top figure and by means of RAE in the bottom figure) as the average

Table 5. Rank positions of the quantification methods in our RAE experiments, and (between parentheses) the rank positions obtained by the same methods in the

evaluation of [GS2016].

Methods tested in [GS2016]

CCRAE ACCRAE PCCRAE PACCRAE SLDRAE SVM(Q)RAE SVM(KLD)RAE SVM(NKLD)RAE

GASP 4 (5) 2 (4) 7 (3) 3 (2) 1 (6) 8 (8) 5 (1) 6 (7)

HCR 4 (4) 3 (2) 5 (1) 2 (3) 1 (7) 8 (8) 7 (5) 6 (6)

OMD 4 (6) 3 (3) 5 (1) 2 (2) 1 (8) 8 (7) 6 (4) 7 (5)

Sanders 4 (5) 2 (4) 7 (1) 3 (3) 1 (6) 8 (8) 6 (2) 5 (7)

SemEval13 4 (7) 3 (3) 5 (1) 2 (4) 1 (8) 8 (6) 6 (2) 7 (5)

SemEval14 4 (4) 3 (2) 6 (8) 2 (3) 1 (6) 8 (7) 5 (1) 7 (5)

SemEval15 4 (3) 2 (5) 5 (1) 3 (2) 1 (4) 8 (8) 6 (6) 7 (7)

SemEval16 4 (3) 3 (5) 6 (2) 2 (7) 1 (4) 8 (8) 5 (1) 7 (6)

SST 6 (3) 2 (5) 7 (1) 3 (6) 1 (2) 8 (7) 5 (4) 4 (8)

WA 5 (5) 3 (4) 6 (2) 2 (1) 1 (3) 8 (8) 7 (7) 4 (6)

WB 5 (2) 3 (4) 7 (1) 2 (3) 1 (5) 8 (6) 6 (8) 4 (7)

Average 4.4 (4.3) 2.6 (3.7) 6.0 (2.0) 2.4 (3.3) 1.0 (5.4) 8.0 (7.4) 5.8 (3.7) 5.8 (6.3)

Boldface indicates the best method in terms of average rank in our APP-based experiments, while underline is used to indicate the same for the NPP-based experiments

of [GS2016].

https://doi.org/10.1371/journal.pone.0263449.t005

Table 4. Rank positions of the quantification methods in our AE experiments, and (between parentheses) the rank positions obtained by the same methods in the

evaluation of [GS2016].

Methods tested in [GS2016]

CCAE ACCAE PCCAE PACCAE SLDAE SVM(Q)AE SVM(KLD)AE SVM(NKLD)AE

GASP 4 (5) 3 (3) 8 (2) 2 (1) 1 (6) 7 (8) 6 (4) 5 (7)

HCR 4 (5) 3 (2) 8 (1) 1 (3) 2 (7) 7 (8) 6 (4) 5 (6)

OMD 4 (6) 3 (3) 6 (1) 2 (2) 1 (8) 8 (7) 5 (4) 7 (5)

Sanders 5 (5) 3 (4) 6 (2) 2 (3) 1 (6) 7 (8) 8 (1) 4 (7)

SemEval13 4 (7) 2 (5) 7 (1) 1 (6) 3 (8) 5 (4) 8 (3) 6 (2)

SemEval14 4 (8) 2 (2) 8 (6) 1 (1) 3 (3) 6 (7) 7 (5) 5 (4)

SemEval15 4 (4) 2 (3) 7 (1) 1 (2) 3 (7) 5 (8) 8 (6) 6 (5)

SemEval16 3 (3) 4 (4) 8 (1) 2 (7) 1 (5) 7 (8) 5 (2) 6 (6)

SST 4 (2) 3 (5) 8 (1) 2 (8) 1 (3) 7 (6) 5 (4) 6 (7)

WA 5 (6) 3 (5) 6 (2) 2 (1) 1 (3) 8 (8) 7 (7) 4 (4)

WB 4 (2) 3 (4) 5 (1) 2 (3) 1 (5) 8 (6) 6 (8) 7 (7)

Average 4.1 (4.8) 2.8 (3.6) 7.0 (1.7) 1.6 (3.4) 1.6 (5.5) 6.8 (7.1) 6.5 (4.4) 5.5 (5.5)

Boldface indicates the best method in terms of average rank in our APP-based experiments, while underline is used to indicate the same for the NPP-based experiments

of [GS2016].

https://doi.org/10.1371/journal.pone.0263449.t004
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error across all samples in the same bin. The green histogram in the background shows instead

the distribution of the samples across the bins. (See more on this at the end of this section.)

The plots clearly show that, for CC, PCC, SVM(KLD), SVM(NKLD), SVM(Q), as well as

for the newly added SVM(AE) and SVM(RAE), this error increases, in a very substantial man-

ner as distribution shift increases. A common characteristic of this group of methods, that we

will dub the “unadjusted” methods, is that none of them attempts to adjust the counts resulting

from the classification of data items, thus resulting in quantification systems that behave rea-

sonably well for test set class prevalence values close to the ones of the training set (i.e., for low

values of distribution shift), but that tend to generate large errors for higher values of shift. The

obvious conclusion is that failing to adjust makes the method not robust to high amounts of

distribution shift, and that the reason why some unadjusted methods were successful in the

evaluation of [GS2016] is that this latter confronted the methods with very low amounts of dis-

tribution shift. In fact, it is immediate to note from Figs 1 and 2 that, when distribution shift is

between 0.020 and 0.1055 (the values of distribution shift that the experiments of [GS2016]

tackled – the region of Figs 1 and 2 between the two vertical dotted lines encloses values of

Fig 1. Performance of the various quantification methods, represented by the coloured lines and measured in terms of AE (lower is better), as a

function of the distribution shift between training set and test sample; the results are averages across all samples in the same bin, i.e.,

characterised by approximately the same amount of shift, independently of the dataset they were sampled from. The two vertical dotted lines

indicate the range of distribution shift values exhibited by the experiments of [GS2016] (i.e., in those experiments, the AE values of distribution shift

range between 0.020 and 0.1055). The green histogram in the background shows instead how the samples we have tested upon are distributed across the

different bins.

https://doi.org/10.1371/journal.pone.0263449.g001
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shift up to that level), the difference in performance between different quantification methods

is small.

In our plots, by contrast, methods ACC, PACC, SLD, along with the newly added HDy,

QuaNet, E(PACC)AE, and E(PACC)Ptr, form a second group of methods, that we will dub the

“adjusted” methods, since they all implement, in one way or another, different strategies for

post-processing the class prevalence estimations returned by base classifiers. The quantifica-

tion error displayed by the “adjusted” methods remains fairly stable across the entire range of

distribution shift values, which is clearly the reason of their success in the APP-based evalua-

tion we have presented here.

Fig 3 shows the estimated class prevalence value (y axis) that each method delivers, on aver-

age across all test samples and all datasets, for each true prevalence (x axis); results are dis-

played separately for each of the three target classes and for methods optimized according to

either AE or RAE. Note that the ideal quantifier (i.e., one that makes zero-error predictions)

would be represented by the diagonal (0,0)-(1,1), here displayed as a dotted line. These plots

support our observation that two groups of methods, the “adjusted” vs. the “unadjusted”, exist

(this is especially evident for the� and the� classes, where they originate two quite distinct

Fig 2. Performance of the various quantification methods, represented by the coloured lines and measured in terms of RAE (lower is better), as a

function of the distribution shift between training set and test sample; the results are averages across all samples in the same bin, i.e.,

characterised by approximately the same amount of shift, independently of the dataset they were sampled from. Unlike in Fig 1, for better clarity

these results are actually displayed on a logarithmic scale. The two vertical dotted lines indicate the range of distribution shift values exhibited by the

experiments of [GS2016] (i.e., in those experiments, the AE values of distribution shift range between 0.020 and 0.1055). The green histogram in the

background shows instead how the samples we have tested upon are distributed across the different bins.

https://doi.org/10.1371/journal.pone.0263449.g002
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bundles of curves), and show how the unadjusted methods fail to produce good estimates for

the entire range of prevalence values. As could be expected, all methods intersect approxi-

mately in the same point, which corresponds to the average training prevalence of the class

across all datasets (pL(�) = 0.278, pL(�) = 0.426, pL(�) = 0.296), given that all methods tend to

produce low error (hence similar values) for test class prevalence values close to the training

ones.

Fig 4 displays box-plot diagrams for the error bias (i.e., for the signed error between the esti-

mated prevalence value and the true prevalence value) for all methods and independently for

each class, as averaged across all datasets and test samples. The “adjusted” methods show lower

error variance, as witnessed by the fact that their box-plots (indicating the first and third quar-

tiles of the distribution) tend to be squashed and their whiskers (indicating the maximum and

minimum, disregarding outliers) tend to be shorter. Some methods tend to produce many out-

liers (see, e.g., ACC and PACC in the� class), which might be due to the fact that the adjust-

ments that those methods perform may become unstable in some cases. (This instability is well

known in the literature, and has indeed motivated the appearance of dedicated methods that

counter the numerical instability that some adjustments may produce in the binary case; see,

e.g., [6, 39].) Overall, PACC and SLD, the two strongest methods among the quantification

systems we have tested, seem to be also the methods displaying the smallest bias across the

three classes.

As a final note, the reader might wonder why, for certain well-performing methods, quanti-

fication error even seems to decrease for particularly high values of distribution shift (see e.g.,

ACC, PACC, SLD in Fig 1 or SLD and ACC in Fig 2). The answer is that quantification error

values for very high levels of shift are, in our experiments, not terribly reliable, because (as

clearly shown by the green histograms in Figs 1 and 2) they are averages across very few data

points. To see this, note that the values of AE range (see [27]) between 0 (best) and

2ð1 � miny2YpðyÞÞ
jYj

ð10Þ

(worst), which in our ternary case means 2

3
ð1 � 0Þ ¼ 0:�6 (because we indeed have test samples

in which the prevalence of at least one class is 0). However, there are many more samples with

extremely low AE values than samples with extremely high AE values; for instance, out of the

11 × 5,775 = 63,525 samples that we have generated in our experiments (see Section 2.3), there

are only 25 whose value of distribution shift is comprised in the interval ½0:60; 0:6�6�, while

there are no fewer than 3,300 whose value is comprised in the interval ½0:00; 0:0�6�, even if the

two intervals have the same width. To see why, note for instance that we can reach an AE value

of 0:�6 only when one of the classes in the training set has a prevalence value of 0 (see Eq 10),

while an AE value of 0 can be reached for all training sets. As a result, the average AE values at

the extreme right of the plots in Figs 1 and 2 (say, those beyond x = 0.55) are averages across

very few data points, and are thus unstable and unreliable. This does not invalidate our general

observations, though, since each quantification method we test displays, on the [0.00,0.55]

interval, a very clear, unmistakable behaviour.

4.1 Difference between systems and their statistical significance

Concerning the differences between rank positions in the experimentations of this paper and

of [GS2016] reported in Tables 4 and 5, we want to remark that they are just meant to provide

an additional, quick reading of how differently the methods perform in the two experimenta-

tions, and should not be considered a substitute of the original numerical results from which

they are obtained, as available from Tables 2 and 3.

PLOS ONE Tweet sentiment quantification

PLOS ONE | https://doi.org/10.1371/journal.pone.0263449 September 16, 2022 17 / 23

https://doi.org/10.1371/journal.pone.0263449


Fig 3. Estimated prevalence as a function of true prevalence according to various quantification methods. Results

are displayed separately for classes� (top),� (middle), and� (bottom), with methods optimized for according to AE

(left) and RAE (right).

https://doi.org/10.1371/journal.pone.0263449.g003
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Fig 4. Box-plots of the error bias (signed error). Results are displayed separately for classes� (top),� (middle), and� (bottom), with methods

optimized for according to AE (left) and RAE (right).

https://doi.org/10.1371/journal.pone.0263449.g004

PLOS ONE Tweet sentiment quantification

PLOS ONE | https://doi.org/10.1371/journal.pone.0263449 September 16, 2022 19 / 23

https://doi.org/10.1371/journal.pone.0263449.g004
https://doi.org/10.1371/journal.pone.0263449


While those differences are only qualitative in nature, we also want to investigate differ-

ences between systems from a quantitative way. We thus study, separately in our batch of

experiments and in the experiments of [GS2016], the extent to which the differences in perfor-

mance amongst methods (as quantified by differences in error scores, and not as differences of
rankings) are indeed significant (in a statistical sense) depending on the evaluation protocol.

The results of the pairwise comparisons (in terms of a two-sided Wilcoxon signed-rank test on

related paired samples) are reported in Tables 6 and 7, for AE and RAE, respectively.

Something that jumps to the eye is that the results derived from our experimentation tend

to be much more conclusive (in the sense of statistical significance) when it comes to judging

the superiority of one method over another. Indeed, all differences resulting from our experi-

ments, as reported in Table 6, turn out to be statistically significant at a very high level of confi-

dence, while no fewer than 75% of the comparisons obtainable from the results in [GS2016]

are inconclusive; in Table 7), instead, only 2 differences out of 56 turn out to be not significant

in our experiments (namely, the comparisons between PACC and ACC), while this happens in

34 cases out of 56 for the experiments of [GS2016]. After all, it is not surprising that a test of

statistical significance deems more significant the differences found for a set of experiments

based on 63,525 samples than for a set of experiments based on 11 samples.

Table 6. Pairwise comparisons, according to the Wilcoxon test, for the experiments run in this work (left) and the experiments from [GS2016] (right) when adopt-

ing AE as the evaluation measure. The symbol ‘>’ (resp. ‘<’) indicates that the method in the row is better than (resp., is worse than) the method in the column,

with a confidence level of 99%, while symbol ‘�’ indicates instead that the difference between the two is not significant. Symbols ‘�’ and ‘�’ are used in place of ‘>’

and ‘<’ when the differences in performance are found to be significant at a higher confidence level of 99.9%.

CC ACC PCC PACC SLD SVM

(Q)

SVM

(KLD)

SVM

(NKLD)

CC ACC PCC PACC SLD SVM

(Q)

SVM

(KLD)

SVM

(NKLD)

CC - � � � � � � � CC - � � � � � � �

ACC � - � � � � � � ACC � - � � � > � >

PCC � � - � � � � � PCC � � - � > � � >

PACC � � � - � � � > PACC � � � - � > � �

SLD � � � � - � � � SLD � � < � - � � �

SVM(Q) � � � � � - < � SVM(Q) � < � < � - � �

SVM(KLD) � � � � � � - � SVM(KLD) � � � � � � - �

SVM

(NKLD)

� � � � � � � - SVM

(NKLD)

� < < � � � � -

https://doi.org/10.1371/journal.pone.0263449.t006

Table 7. Pairwise comparisons, according to the Wilcoxon test, for the experiments run in this work (left) and the experiments from [GS2016] (right) when adopt-

ing RAE as the evaluation measure. The symbol ‘>’ (resp. ‘<’) indicates that the method in the row is better than (resp. is worse than) the method in the column,

with a confidence level of 99%, while symbol ‘�’ indicates instead that the difference between the two is not significant. Symbols ‘�’ and ‘�’ are used in place of ‘>’

and ‘<’ when the differences in performance are found to be significant at a higher confidence level of 99.9%.

CC ACC PCC PACC SLD SVM

(Q)

SVM

(KLD)

SVM

(NKLD)

CC ACC PCC PACC SLD SVM

(Q)

SVM

(KLD)

SVM

(NKLD)

CC - � � � � � � � CC - � � � > > � �

ACC � - � � � � � � ACC � - � � � � � �

PCC � � - � � � � � PCC � � - � > > � >

PACC � � � - � � � � PACC � � � - � � � >

SLD � � � � - � � � SLD < � < � - � � �

SVM(Q) � � � � � - � � SVM(Q) < � < � � - < �

SVM(KLD) � � � � � � - � SVM(KLD) � � � � � > - >

SVM

(NKLD)

� � � � � � � - SVM

(NKLD)

� � < < � � < -

https://doi.org/10.1371/journal.pone.0263449.t007
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5 Conclusions

A re-evaluation of the relative merits of different quantification methods on the tweet senti-

ment quantification task was necessary, due to the insufficient number of test samples which

[GS2016] used. We have shown that the experimentation previously conducted in [GS2016]

was weak, since the authors of [GS2016] overlooked the fact that the experimental protocol

they followed led them to conduct their evaluation on a radically insufficient amount of test

samples. We have then conducted a re-evaluation of the same methods on the same datasets

according to a robust and now widely accepted experimental protocol, which has lead to an

experimentation on a number of test samples 5,775 times larger than the one of [GS2016]. In

addition to these experiments, we have also tested some further methods, some of which had

appeared after [GS2016] was published. This experimentation was also necessary because

some evaluation functions (such as KLD and NKLD) that had been used in [GS2016] are now

known to be unsatisfactory, and their use should thus be deprecated in favour of functions

such as AE and RAE.

Due to the presence, in the test data, of samples characterised by class prevalence values

very different from those of the training set, the results of our re-evaluation have radically dis-

confirmed the conclusions originally drawn by the authors of [GS2016], showing that the

methods (e.g., PCC) who had emerged as the best performers in [GS2016] tend to behave well

only in situations characterised by very low distribution shift. (The test samples used in

[GS2016] were indeed all of this type.) On the contrary, when distribution shift increases,

other methods (such as SLD) are to be preferred. In particular, our experiments do justice to

the SLD method, which had obtained fairly bland results in the experiments of [GS2016], and

which now emerges as the true leader of the pack, thanks to consistently good performance

across the entire spectrum of distribution shift values.
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