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Abstract

The present paper investigates the planar flow past a circular cylinder for Reynolds numbers

between 1000 and 10,000. The flow is studied as a dynamical system, so the present investigation is

motivated by the presence of complex patterns, as the Reynolds number increases, in the force-time

signals when the system goes from the periodic to the chaotic regime. The 2D numerical simulations

were performed with a Lagrangian particle method called Diffused Vortex Hydrodynamics (DVH).

This computational approach allows high spatial resolutions with an accurate description of

different vortical scales shed in the flow field. Flow analysis was executed with the typical tools

used in the study of dynamical systems (i.e. Fourier spectra, Poincaré sections and phase space

maps) and is supported by discussion of the near and far wake topologies. During the transition

of the system from a regular to a chaotic regime, the lift time signal shows intermittent irregular

patterns.
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I. INTRODUCTION

In recent years the study of planar flow patterns past immersed bodies has gained a

renewed interest. Improvements in experimental technologies such as flowing soap film

apparatuses combined with the use of a high-speed camera and low-pressure sodium lamp,

allowed the visualization of complex interference patterns (see for example Fayed et al.

[18]). These kinds of devices are also widely used for the visualization of the planar flow

of the vortical wake of flapping foils (Schnipper et al. [35]) or of a flexible filament subject

to a forced vibration (Jia et al. [21]). In connection with the experimental investigations,

many numerical studies on planar flow past fixed, moving or deformable frontiers can be

found in the recent literature (see e.g. Badrinath et al. [1], Bose and Sarkar [5], Das et al.

[11], Krishnan et al. [23], Mandujano and Málaga [26], Reichl et al. [28], Ye et al. [42]).

Studies on these problems are motivated by a wide field of application. An example is

the free-surface flows at low Froude number and high Reynolds number (e.g. flow with a low

velocity/reference length ratio, such as the one generated by a moving ship in a harbour or by

bridge piers in slow currents as shown in Fig.1). These flows are essentially two-dimensional

because the vorticity dynamics affects mainly the air-water interface.

An extensive literature on the flow past a circular cylinder was produced during the last

century, exploiting theoretical and experimental approaches. In the last three decades the

adoption of different numerical strategies became a further tool of investigation.

One of the pioneering studies on this topic was carried out by Zdravkovich [43], which

offered fundamentals of the problem together with an overview of different methods of

analysis. A classification of the different flow fields obtained by varying the Reynolds

number (Re hereafter) highlighted various flow regimes. Despite the three-dimensional (3D)

nature of the flow field, similar classifications are also detectable in a two-dimensional (2D)

framework also for high Reynolds numbers. Some key mechanisms such as the drag crisis,

where the flow transition affects the boundary layer and the drag force sudden drops, are

also observed in 2D, although the drop is anticipated at Re=50,000 rather than at 300,000

as in 3D (see Singh and Mittal [36] or Durante et al. [14]). Similarly, the investigation of the

turbulence transition for the planar flow past a circular cylinder (Durante et al. [14]) led to

the identification of transition eddies in the shear layer during the intermediate sub-critical

regime at Re around 5 · 104, as in the 3D counterpart.
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FIG. 1: Left: wake shed by a ship model of length 2m and advancing in drift at 0.2m/s. Colours

are representative of the vertical component of the vorticity. Right: wake pattern of the tanker

Argo Merchant inclined about 45° to the current and leaking crude oil (NASA photograph) (see

[39]).

The present investigation follows recent studies on the planar flow past elliptic (Durante

et al. [16]) and NACA profiles (Durante et al. [15]), where typical tools of dynamical systems

analysis (i.e. Fourier spectra, Poincaré sections, phase maps and Lyapunov exponents) were

exploited to characterize different flow regimes.

Here, the transition of the planar flow past a circular cylinder in the Reynolds number

range 1000 − 10, 000 is investigated with a particular emphasis on the range 3000 − 4000,

where the flow is observed to pass from an almost regular to a chaotic regime. In the range

of Re 150− 1000, Jiang and Cheng [22] investigated the wake dynamics in order to quantify

the transition from primary to secondary vortex streets while in Dynnikova et al. [17], with

Re varying between 140 and 1000, the flow properties were explored with a vortex method.

In chaotic transition studies, the investigation is typically performed through the use of

the time signal of the transversal velocity obtained in some points of the near wake rather

than of the streamwise component, which is found to be noisy (see, for example, Pulliam

and Vastano [27] or Saha et al. [34]). A significant arbitrariness remains about the choice

of probe locations in the wake, which may lead to incorrect conclusions about the chaotic

transition of the system. In order to overcome this ambiguity, we prefer to consider the lift

force because it is independent of any specific location within the flow field. It is a global

quantity related to the vorticity momenta of the whole field (see e.g. Graziani and Bassanini
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[20]) and it oscillates roughly at half the frequency of the drag force.

In the present work the adoption of a recently developed Particle Vortex Method, called

Diffused Vortex Hydrodynamics (DVH), enabled the investigation of the vorticity dynamics

with a high level of accuracy and for long simulation times. This approach provides a detailed

description of the vortical part of the two-dimensional viscous isochoric flow field around

a body. The DVH numerical code, described in detail in Rossi et al. [30, 31], is coupled

with a packing algorithm (coming from Smoothed Particle Hydrodynamics, SPH), which

allows a regular distribution of the points around a solid surface, correctly enforcing the

no-slip boundary condition on the body. It is worth stressing that in the present approach

no subgrid-scale model is used because the numerical scheme is able to solve the entire

spectrum of the vorticity scales.

The paper is organized as follows: in section II the DVH model is briefly recalled and the

problem is outlined; in section III the periodic case at Re=1000 is described; in section IV

the modulating cases Re=2000 and Re=3000 are investigated; in section V the cases where

the intermittency patterns appear were described in detail; in section VI the chaotic cases

are shown, while in section VII the Lyapunov exponents and the averaged drag coefficients

are discussed. Finally, conclusions wrap up the article in section VIII.

II. SUMMARY OF THE NUMERICAL METHOD AND PROBLEM OUTLINE

A. The Diffused Vortex Hydrodynamics model

In this section a brief description of the adopted Particle Vortex Method is outlined.

The method is based on the viscous incompressible Navier-Stokes equations, rewritten in

vorticity form (also known as Helmholtz equations), in the two-dimensional domain Ω:

ρ
Dω(r, t)

Dt
= µ∆ω(r, t) with r ∈ Ω , t ∈ [0,+∞) (1)

where ω is the planar vorticity, D/Dt is the material time derivative and ρ and µ are the

density and the dynamic viscosity of the fluid.

Equation (1) is integrated in time according with the splitting technique described in

Chorin [6, 7], where the advection and the diffusion steps are separately considered at each

time instant.
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More specifically, the inviscid advective step is described by the Euler equation:

Dω(r, t)

Dt
= 0 (2)

followed by the diffusive equation:

ρ
∂ω(r, t)

∂t
= µ∆ω(r, t). (3)

In order to take into account the presence of a solid body, the vorticity generated on the

body contour is considered between the advection and the diffusion steps so that the no-slip

boundary conditions are correctly enforced.

According to Chorin [6], the vorticity field may be described as a discrete distribution of

point vortices:

ω(t, r) =
N∑
j=1

Γj(t) δε(r − rj) (4)

where δε is a positive smooth approximation of the Dirac function such that δε → 0 when

ε→ 0, also known as mollifier or kernel function (see also Rossi et al. [30]). Each Lagrangian

point rj associated with a specific circulation Γj is referred to as a vortex particle.

During the advective step, the velocity field is decomposed into three components:

u = u∞ + uω + u′, where u∞ is the free stream velocity, uω is the velocity induced by

the vortex particles, while u′ is the contribution to the velocity field coming from the body.

The velocity u is evaluated through a Fast Multiple Method (FMM) (see e.g. [10]) and

the vortices are then moved using a fourth order Runge-Kutta algorithm. From u′ it is also

possible to generate a new set of vortices on the body surface, enforcing the no-slip boundary

conditions exactly over its contour. The present formulation has several advantages:

i) it requires the discretization of the rotational region only of the flow field;

ii) the asymptotic boundary conditions are automatically satisfied;

iii) the vortex particles are moved in a Lagrangian way.

The diffusive step is carried out in accordance with the deterministic algorithm of Benson

et al. [3]: each vortex particle diffuses its vorticity on a “Regular Point Distribution” (RPD)

through a superposition of elementary solutions of the heat equation. This set of points

afterwards becomes the new set of vortex particles replacing the old ones. The use of RPDs
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during the diffusion process also prevents the excessive clustering or rarefaction of the vortex

particles and avoids remeshing procedures that are otherwise required (see e.g. Barba et al.

[2]). The RPDs are generated using the packing algorithm described in Colagrossi et al. [8],

allowing the arrangement of the points around complex contours by maintaining an almost

constant distance between them.

The present model is named Diffused Vortex Hydrodynamics (DVH). Since the RPDs are

sets of points regularly spaced without any topological connection the DVH scheme can be

considered a pure meshless methods. The DVH has been extensively validated and further

details can be found in Colagrossi et al. [9], Durante et al. [14], Giannopoulou et al. [19], Rossi

et al. [30, 31, 32, 33]. Thanks to the description in terms of vorticity (see equation 1), the

computational costs of the DVH are generally smaller if compared to classical mesh-based

methods. Moreover, the algorithm is further supported by an Adapt Particle Resolution

(APR) technique, which allows one to gradually scale down the particle size in the near-field

[30]. Using the APR, the whole wake is retained during the simulation time without the use

of an outflow boundary.

In the present study, long-time simulations were carried out, both due to the presence

of very long transients and the intermittency phenomena. During these time intervals, the

force time signal shifts from regular to irregular time behaviour. In order to assess those

changes in the flow dynamics, about 100 oscillations need to be taken into account. To the

authors’ knowledge, there are no studies in the literature dealing with long time simulations

in the Reynolds number range 1000 - 10,000.

B. CPU costs

The simulations were all performed on a Workstation equipped with 96 cores (Dual

Gold Intel© Xeon© 6252 processors 2.10 GHz), through an OpenMP parallel interface

programming. The CPU costs of the implemented algorithm for 2D cases are about 100µs

per vortex particle and per time iteration on a single core. It is worth stressing that, although

the analysis carried out in the present work is confined to a two-dimensional framework, the

fine spatial resolutions adopted, as well as the long-time evolution, determined demanding

computational costs. Indeed, to perform the 19 simulations presented here, each of them

with about 2 million vortices for 60,000 time iterations, the net computational cost, excluding
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the post processing, was about 2 months. This cost is aligned with other vortex particle

solvers and it is mainly affected by the Fast Multipole Method used for the solution of

the Poisson equation; indeed the largest number of used particles is of order 106 and the

allocated memory is not higher than 1 Gbyte. If a similar computation were performed for

an extension of the analysis in a 3D framework, it would require about 2 billion particles

considering the same spatial resolution as that adopted for 2D simulations. Hence, the CPU

costs remain nowadays prohibitive in terms of numerical resources.

C. Outline of the problem

In the present work the planar incompressible flow past a circular cylinder is considered.

The cylinder diameter c, as reference length, is set equal to 1. The numerical method adopted

is a meshless method, where open boundaries are implicitly assumed. The free stream U∞

grows from 0 to 1 in t∗r non-dimensional time units (t∗ = tU/c) in order to avoid numerical

instabilities, according to the time law used in Giannopoulou et al. [19] and recalled here:

U∞(t) =


U

2

[
1− cos

(
πt∗

t∗r

)]
t∗ ≤ t∗r

U t∗ > t∗r

t∗r = 2U/c (5)

where U is the stream velocity and c the cylinder diameter. The Reynolds number, the drag

and the lift coefficients are here defined as:

Re =
Uc

ν
, CD =

D
1
2
ρU2c2

, CL =
L

1
2
ρU2c2

where ρ and ν are the density and the kinematic viscosity of the fluid, respectively. The

forces D and L are the drag and lift acting on the cylinder, i.e. the force components along

and transverse to the free stream, respectively.

The vortex particle method’s accuracy strictly depends on the number of vortices

generated at every time step (see Rossi et al. [30]), which are in turn related to the Reynolds

number used in the simulations. With the increase in the Reynolds number from 1000 to

10, 000, the number of vortices per unit of length increases accordingly. In this way the

entire vorticity spectrum is resolved up to the diffusive scale.
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FIG. 2: Cylinder vorticity wake for for Re=1000 case at maximum lift.

III. NON-MODULATING CASE: RE=1000

The present analysis starts from the periodic case (shown in Durante et al. [14] and

Singh and Mittal [36]), in order to outline the strategy of investigation. At Re=1000 the

time signal of force, after a transient, becomes periodic (although non-monochromatic). The

regular vortex shedding, shown in figure 2, induces a regular pattern in the lift behaviour, as

evidenced in the left frame of figure 3. The low-frequency modulation, observed for higher

Reynolds numbers, is here absent. The vortex wake is characterized by distinct vortex

patches weakly interacting up to 20 diameters from the body surface. The Fourier transform,

plotted in figure 3 on the right of the force time signal, shows a discrete peak distribution

of the amplitudes. Each peak corresponds to the odd higher harmonics (indicated with

a red circle and the corresponding harmonic number) of the principal one (indicated with

1), thus suggesting that the lift signal is a periodic function with odd half-wave symmetry

(Sundararajan [37]). The high spatial resolutions achieved with the DVH approach allow a

very regular lift signal to be obtained, with the higher amplitudes of the spectrum correctly

placed at integer multiples of the fundamental one. This behaviour is typically associated

with a regular vortex shedding and it was also found for an ellipse with an aspect ratio of 0.4

and zero angle of attack in Durante et al. [16], but for a higher and wide Reynolds number

range (i.e. 3000 ≤ Re ≤ 10, 000).

The autocorrelation function of the lift signal, depicted in figure 4, shows a signal that is

highly self-correlated up to 100-120 time lags. In fact, it reveals behaviour that one would

expect from a periodic function (i.e. clear presence of a repeating pattern). By exploiting the

Wiener-Khinchin theorem (for further details see Wiener [40]), the power spectral density
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FIG. 3: Lift time signal at regime conditions and corresponding Fourier analysis for Re=1000 case.

The dominant and higher harmonics are highlighted with red circles.

FIG. 4: Autocorrelation function for Re=1000 case and corresponding PSD, where τ indicates the

non-dimensional time lag of the signal.

(PSD) was deduced from the autocorrelation function in the left frame of figure 4. The right

frame of the same figure explains how the signal power is distributed over the frequency

range, showing again that the shedding frequency (in this case f ∗ = fc/U ' 0.2355) is the

one mainly associated with the signal power.

The phase maps, or phase portraits, are geometric representations of the trajectories of a

dynamical system in the phase plane. In the present work, similarly to Durante et al. [15],

the phase space considered is the (CL, ĊL, C̈L), where the dot stands for the time derivative,

which was found to give an appropriate description of the system transition from regular

to chaotic regimes. Taking into account the section in which ĊL = 0, the plane (C̈L, CL)

with C̈L < 0 depicts the maxima of the lift signal, highlighting the bifurcations that occur

with the increase in the Reynolds number (see, for example, Durante et al. [15], Pulliam and

Vastano [27]).

In figure 5 the phase map and the Poincaré section for the Re=1000 case are depicted

in the top-left and bottom-right frames, respectively. In the top-right, a 3D representation

of the phase map is depicted using the time coordinate. This portrayal clarifies the time

behaviour of the phase map, as well as the contouring used for the corresponding curve
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FIG. 5: Phase map (top-left) and Poincaré section (bottom-right) for Re=1000 case. The 3D

plot of the phase map with the time axis is depicted top-right. The phase space is drawn bottom-

left. The phase map lines, as well as the Poincaré section dots, are contoured darker blue with

time.

(darker with time).

The phase map related to a periodic signal (the regime reported in figure 3) shows a

stable orbit, as expected, indicating a periodic trend of the forces acting on the cylinder.

It is worth stressing that this aspect is directly related to the integral of the first

momentum of the vorticity, as clarified in the next section. Although the whole vorticity

field plays a role in the force behaviour, the regular vortex shedding in the near and mean

wake seems to be more likely related to the periodic oscillation of the lift signal, whereas in

the far field the mutual interaction between the shed vortices may trigger the wake to move
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toward a chaotic condition.

The absence of a modulation in the lift signal makes its oscillations very similar, in such

a way that their amplitude, as well as their concavity, are almost identical. This is depicted

by the Poincaré section in the right frame of figure 5 that coherently shows one group of

clustered points related to the lift maxima.

In order to clarify the extraction of the Poincaré section, figure 5 is enriched with the 3D

plots of the curve (CL(t), ĊL(t)) with time, showing persisting stable orbits. In the same

figure, the 3D plot of the phase space highlights the Poincaré section plane ĊL = 0, C̈L < 0.

The intersection points, shown in the frame bottom-right, represent the locus of maxima

(here clustered in one point only).

IV. MODULATING CASES: RE=2000, 3000

By increasing the Reynolds number, a low-frequency modulation in the lift signal appears

and the wake dipoles start to strongly interact. The wakefields for Re=2000 and 3000 are

depicted in figure 6, where the dipoles shed in the wake are clearly distinguishable, as well

as their mutual interaction for x/c > 16 at Re=2000 and x/c > 11 at Re=3000, respectively.

For Re=3000 a thinner filamentation is visible during the formation of the first shed dipole.

When the vortex patches in the wakefield are arranged in a double row fashion, a stability

analysis is needed, as performed by Kurtulus [24], or Birkhoff [4] and recently Jiang and

Cheng [22], where the ratio between the vertical and horizontal distances of the vortices plays

the role of a key parameter. Although for low Reynolds numbers (∼ 100) this approach is

reasonable because of the wake configuration, where there are two rows of counter-rotating

vortical structures continuously shed in the flow field, in the present Reynolds number range

this investigation approach may be meaningless. Kurtulus [24] tried such an approach for

the flow past a NACA0012 profile at Re=1000, when the angle of attack varied from 0°

to 90°, but the slim shape of the profile is more suitable for triggering the vortical wake

separation in two rows of vortices, at least for low incidences. Since the cylinder is a blunt

body, the vortices interaction in the wake is more intense so the arrangement in two vortex

rows is rapidly lost when the Reynolds number increases. At Re=1000 this analysis leads to

a very low ratio between the transverse distance between vortex rows and the longitudinal

separation between vortex patches of the same circulation (h/l according with the definition
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FIG. 6: Cylinder vorticity wake for at maximum lift. Top Re=2000, bottom Re=3000.

of Kurtulus [24]), since the dipoles are practically aligned. Conversely, for the cases of

the present section, the wake is not stable at all, having a continuous drift upward and

downward similarly to the wake oscillator model investigated in the eighties by Tamura and

Matsui [38]. In that pioneering work, a simple mass-spring simplified approach, the wake

length variation due to the vortex shedding was able to predict the shedding frequency with

surprising accuracy (i.e. tU/c = 0.2). In figure 7 the oscillation of the wake is highlighted

for Re=2000, by drawing the lines connecting the vortex patches. This oscillation takes

place at a frequency significantly lower than the shedding one, so that a low frequency

modulation is expected. In figure 8, the lift time signals for Re=2000 and Re=3000 cases

are plotted, clearly revealing the force modulation. This latter is drawn with a dashed line

and superimposed to the lift signal.

In the Fourier transforms, reported in the side plots, the modulating frequency is around

0.0267 for Re=2000 and 0.02 for Re=3000, so that the periods of the modulations are 37.5

and 50, respectively. This analysis indicates that the modulation is more persistent for

increasing Reynolds number, although its amplitude tends to decrease from 0.37 to 0.22 in
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FIG. 7: Cylinder vorticity wake modulation at Re=2000.

the present example. The discrete peak arrangement of the spectrum still visible in the

Re=2000 case is almost lost in Re=3000: this means that the force time signal, although

periodic at first sight, is actually evolving toward a non periodic condition. The peaks at the

odd harmonics, similarly to the Re=1000 case, are found for Re=2000 and highlighted with

red circles in the top-right frame of figure 8. The modulation is related to the sub-harmonics

1/9, highlighted with a blue circle, whereas the other peaks of the spectrum are placed at

irrational multiples of the main frequency (green circles). In order to assess the reliability of

the present analysis, a comparison with a finite volume method solution is given in Appendix

B.

For Re=3000, there are only irrational peak frequency multiples.

The frequency of the carrier signal remains quite constant, slightly increasing from 0.240

in the Re=2000 case to 0.248 at Re=3000.

The autocorrelation functions, shown in figure 9, are very similar to the Re=1000 case,

revealing again highly correlated signals. The longer period of the modulation at Re=3000

makes the signal slightly less correlated for large time lags, as is visible in the same figure.
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FIG. 8: Lift time signal at regime conditions and corresponding Fourier analysis for Re=2000 (top)

and Re=3000 (bottom) cases. The low frequency modulation is superimposed with a dash line.

FIG. 9: Autocorrelation functions for Re=2000 (top) and Re=3000 (bottom) cases and

corresponding PSD. With τ the non-dimensional time lag of the signal is indicated.

The power spectral density shows a single peak corresponding to the frequency of the carrier

signals, similarly to the Re=1000 case discussed before. The presence of the modulation is

reflected in a scattering of the force orbits in the phase maps in the left frames of figure 10.

The thickness of the strips in which the orbits scatter is directly related to the intensity of

the modulation, appearing thicker for the Re=3000 case.

The orbits exhibited by the lift time signals can be interpreted as a condition that is still

far from a chaotic transition, where the map appears as a tangle of orbits (see Durante et al.
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FIG. 10: Phase map (left), 3D view of the map (center) and Poincaré section (right) for Re=2000

(top) and Re=3000 (bottom) cases. The phase map lines, as well as the Poincaré section dots,

are contoured darker blue with time.

[16], but some remarks may be immediately made.

The orbits at Re=2000 are almost regular and well described through simple convex

curves. The Poincaré section coherently shows a group of clustered points, weakly scattered

due to the presence of the modulation. Conversely, at Re=3000, the situation is more severe:

the orbits wiggle more during the time evolution because of the change in the concavity of

the lift signal. This effect is more evident in the Poincaré section (drawn on the right),

where the group of points corresponding to the lift maxima are more spread along the C̈L

axis, but less over the CL one. This is caused by a frequency modulation of the time signal;

indeed, from the Fourier spectra depicted in figure 8 at Re=3000 the spectrum does not

present sharp peaks unlike the Re=2000 case.

From the connection between the force on the body and the wake topology, as explained

in Graziani and Bassanini [20] and Riccardi and Durante [29], the lift is related to the
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vorticity field according to the relation:

L(t) = ρ

∫
Ω

dx x
∂ω(x, t)

∂t
(6)

where Ω is the fluid domain.

The relation (6) is founded on a Eulerian description of the flow field where the lift force

is related to the time derivative of the vorticity field first moment. In a Lagrangian fashion,

a singular distribution of the vorticity related to the vortex particle method is considered,

so that equation (6) becomes:

L(t) = ρ
d

dt

Nv(t)∑
j=1

xj(t) Γj(t)

 (7)

where xj and Γj are, respectively, the horizontal position and the circulation of the j−th

vortex particle among the Nv vortices at time t. It is worth noting that the vortex particle

number changes with time (i.e. Nv = Nv(t)), because the vortices are created on the body

surface at each time step and redistributed over a regular mesh during the diffusion step. The

increasing complexity of the vorticity field, coming from the filamentation and subsequent

mutual interaction, influences the vorticity time variation. In fact the departure of the lift

time signal from a regular periodic behaviour mainly depends on the vortex interaction, as

highlighted by the phase maps and Poincaré sections shown above.

V. CHAOTIC TRANSITION WITH INTERMITTENCY: RE=3100-4000

When the Reynolds number exceeds 3000, the shedding mechanism becomes more and

more complicated, as discussed also in Durante et al. [14], with large vortex structures

forming complex wake patterns. From Re=3100 to Re=4000 the force time signal shows

intermittent irregular patterns that depend on mutations in the shedding mechanism, or on

new arrangements of the near/medium wake.

A. Case Re=3100

Starting from the lowest Reynolds number case, figure 11 depicts the lift time signal, its

Fourier spectrum and some frames of the shedding mechanism. Despite the small increase in

the Reynolds number, compared to the Re=3000 case previously discussed, the lift appears
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FIG. 11: Different shedding mechanisms observed at Re=3100 referenced with the corresponding

number in vorticity fields. Top: vorticity fields at different non-dimensional times. Bottom: lift

time signal and corresponding Fourier spectrum; with red dots the shedding time instants depicted

on top frames and indicated with the corresponding number.

rather erratic with significant amplitude and frequency modulations, without exhibiting a

clear pattern of recurrence during time evolution.

The shedding frequency, after the increase recorded from Re=1000 to 3000 (0.235 to

0.248), decreases to f ∗ = 0.24. The spectrum is almost continuous without any pronounced

peak except at the shedding frequency. In spite of that, a small peak is found at f ∗ = 0.12,

revealing a persisting modulation at half of the carrier frequency.

In the upper frames of figure 11, different shedding mechanisms observed in the present

case are highlighted and referred to with the corresponding number. In the transient range
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FIG. 12: Example of the shedding pause at Re=3100. Top: the vorticity fields; bottom: the lift

(black solid) and drag (blue solid) time signals.

(not shown in the lower frame), where the stream velocity increases, the upper and lower

shear layers undergo an intense roll up that finally leads to the formation of two counter

rotating vortex patches. As usually observed, the vortices remain in a stable configuration

for a while, then they become unstable and the onset of the shedding phase takes place.

The interaction between the wrapped layers induces an intense strain which alternatively

leads to the detachment of vorticity. It is observed that the interaction can manifest with the

formation of vortex filaments (frames 2 and 3) or with the elongation and the 90° bending

of the wrapped shear layer (frames 4 and 5). More interesting is the unexpected pause time

range, to the authors’ knowledge never documented, where the shear layers are arranged

in a stable configuration without shedding. This condition is depicted in frame 6 of figure

11 and better highlighted in figure 12, where two time instants within the pause range

are depicted. When the pause appears, the wrapped shear layers form two stable counter

rotating vortices and the near dipoles depart from the cylinder. In the bottom frame of

figure 12, the same condition is illustrated in terms of force time signals. The lift remains

almost constant, although there is a slight increase caused by the downward arrangement of
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FIG. 13: Phase maps for different time ranges at Re=3100. Top: the lift time signal; the time

ranges considered (delimited with solid lines) are highlighted. Bottom: the corresponding maps.

For the sake of readability, the frames are numbered and the same numbers are indicated at the

corresponding time range. The maps are contoured darker with time (the contour ranges are

adapted to the corresponding interval).

the layers, whereas the drag, on the contrary, decreases by about 43%.

In figure 13 the phase maps related to different time ranges are depicted and the

corresponding ranges are delimited with vertical lines in the top frame of the same figure.

These time ranges were identified through a wavelet transform, as described in appendix

C. The regularity of the different intervals is also reflected on the phase maps and Poincaré
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FIG. 14: Autocorrelation function (on the left frame) and power spectral density (on the right

frame) for the case Re=3100. With τ the non-dimensional time lag of the signal is indicated.

FIG. 15: Poincaré sections for different time ranges at Re=3100. Small green diamonds: the full

set of maxima; black circles: the maxima of the periodic time ranges; red triangles: the maxima

of the irregular ones. For the sake of readability, the frames are numbered and the same numbers

are indicated in the corresponding time range.

section arrangements. The latter are drawn in figure 15. In order to improve clarity, the

whole set of signal maxima is indicated with small green diamonds. The black circles indicate

the subset falling within the regular time range, whereas red triangles are used for the

irregular ranges.
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In frame 1, the interval tU/c ∈ [36.6, 59.06] is considered. The map shows numerous

orbits, where the final two (wider) are almost superimposed, thus indicating a periodic

behaviour. In the second frame, two groups of orbits behave as in a doubling-period

bifurcation. This means that the system has not yet reached a stable configuration. This

can be also deduced from figure 16, where the top frame refers to the non-dimensional

instant tU/c=75.75. The wake is evidently widely extended, with dipoles shed upwards and

downwards, thus affecting the irregularity of the corresponding phase orbits. In this case,

the 90° bending of the wrapped shear layers is visible. Frame 1 of the Poincaré sections

depicted in figure 15 shows a group of points only slightly scattered along the C̈L direction,

thus showing the lack of a stable orbit and a small variation in terms of concavity of the

force time signal.

Frame 3 refers to the time interval [93.35, 121.58] where the solution exhibits almost

regular orbits slightly scattered because of the lift modulation, visible in the force time

signal shown in the top frame. This is also reflected in the compactness of the vorticity

wake visible in the middle frame of figure 16. As it can be deduced from frame 3 in figure

15, in addition to the lift variation in terms of peak modulation, a concavity variation is

also present so that the lift maxima are rather spread horizontally.

In frame 4, the shedding pause appears. The phase map related to this time interval

shows intricate orbits with numerous knots indicating an unstable condition which ends

with the pause event. Similarly, the Poincaré section spreads out along the CL axis, which

is the typical behaviour of the inception of a chaotic transition (see also Durante et al. [15]).

The situation changes again during the next time range, depicted by the phase map in

frame 5, where a stronger stability is regained. The time signal appears more regular and

the orbits are almost clustered. The set of points of the related Poincaré section (frame 5 of

figure 15) is dually bunched in a small area. Furthermore, the associated shedding (bottom

frame of figure 16) induces the development of a rather compact wake field.

In the last time interval investigated, a new instability appears with a double orbit phase

map (frame 6 of figure 13). Three higher peaks in the lift time signal (range 6), distanced

by a wider period, are responsible for the tight inner orbits found in the map. The Poincaré

section appears completely spread out, resembling a chaotic condition.

The autocorrelation function and the related PSD are depicted in figure 14. The left

frame shows that the signal loses correlation with increasing time lag, recovering a weakly
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FIG. 16: Vorticity far field for time instants falling in ranges 2, 3 and 5 of figure 13.

correlated condition (the function amplifies) when the lag exceeds a duration of tU/c=170,

thus indicating that the irregular intermittency strongly decorrelates the signal. For higher

Reynolds numbers, the autocorrelations are shown and discussed in Appendix A.

When the irregularity becomes more pronounced, the Fourier spectrum moves toward a

continuous arrangement, thus not permitting a clear identification of the shedding frequency.

The PSD allows one to isolate the frequency at which the power of the signal presents a

peak, making it possible to find the desired frequency. Obviously, as observed in figure 4

and 9, when the signal is periodic and the Fourier spectrum is peak-shaped, the frequency

associated to the highest amplitude is equal to the corresponding power spectrum peak. In
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the present case, as shown in the right frame of figure 14, a single spectrum peak is visible

at fc/U ' 0.25 whereas the Fourier spectrum shows two peaks at 0.24 and 0.12, as stressed

above. For higher Reynolds numbers, the situation becomes more intricate and the two

frequencies may differ significantly. At Re=8000, for example, a Fourier peak is absent,

whereas a PSD peak is clearly evident at 0.17.

In general, we can conclude that in this case, although a general regular pattern in

the force time behaviour cannot be found, a transition toward an irregular condition is

experienced but a chaotic condition is not attained. From the erratic intermittency of the

irregular ranges, it is reasonable to assume that a regime condition, where these instabilities

are no longer present, never appears.

B. Cases Re=3200 - Re=4000

In the present section, the Reynolds range 3200 − 4000 is investigated. Some

points/methodologies of the previous subsection are here reiterated. As pointed out above,

intermittency in the lift time behaviour is observed numerous times during the evolution

considered. This also occurs in the present range, where the system moves back and forth

between regular and irregular behaviours. Figures 17 and 18 show the time histories of the

present cases, with the separation of the different ranges by vertical solid lines. To better

grasp the different trends, figure 19 depicts the corresponding Poincaré sections evaluated

for each case. As evidenced, the black circles are the maxima of the periodic time ranges,

whereas the red triangles are the corresponding maxima of the irregular ranges.

It should be stressed that the black circles are more clustered when a modulating term

is weak or absent. In this case the section appears to be similar to the right frame of figure

5 for no modulation (i.e. Re=1000), or to the right frame in the top row of figure 10 for

weak modulation. In the case of severe modulation, the lift maxima are more scattered

horizontally if the modulation affects the concavity (e.g. FM: Frequency Modulation as

shown in the right bottom frame of figure 10 for Re=3000) and vertically if it affects the

amplitude (e.g. AM: Amplitude Modulation). If we refer to the lift time signals, it can

be immediately deduced that the irregular ranges incept without any predictable scheme

and do not follow a straight route as the Reynolds number increases, as seen in the case

of elliptic profiles, investigated in Durante et al. [16]. Conversely, more information is
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FIG. 17: From top to bottom: lift time signals and Fourier spectra for Reynolds numbers from 3200

(top) to 3500 (bottom). Different time ranges where specific behaviours are found are separated

with vertical solid lines. The irregular time ranges are highlighted in red.

conveyed by the Poincaré sections in figure 19. Generally, the periodic ranges show a weak

vertical scattering of maxima with respect to the non periodic ones. However, for Re=3300

and Re=3800 the lift maxima are tightly clustered horizontally as well, thus indicating a

limited frequency modulation of the signal during the periodic ranges (labelled 1 and 4,

respectively). For these cases, the periodic ranges of the signal are more similar to a genuine

periodic signal. Significantly wider horizontal dispersion in the periodic range is found in

the cases 3500, 3700, 3900 and 4000, thus indicating a frequency modulation.

With red symbols in the same figure, the maxima related to irregular ranges show a wide

dispersion in both directions. This is due to the presence of local sparse maxima related

to spurious irregular oscillations. The quantity and the scattering of these points varies

not-monotonically with the Reynolds number.
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FIG. 18: From top to bottom: lift time signals and Fourier spectra for Reynolds numbers from 3600

(top) to 4000 (bottom). Different time ranges where specific behaviours are found are separated

with vertical solid lines. The irregular time ranges are highlighted in red.

In order to quantify the departure of the dynamical system from a regular periodic

condition, the ratio between the number of irregular maxima Nirr over the total maxima NTot

was evaluated and is depicted in figure 20, where the density ρirr=Nirr/NTot is shown. This

frame highlights that the number of irregular maxima decreases for Re=3300 and Re=3800,

as previously observed. It is worth noting the decrease observed in the range 3600-3800 after

which a new increase appears, indicating that there is not a straight route toward a chaotic

condition, as also found in Durante et al. [15] for the flow past a NACA profile at varying
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FIG. 19: Poincaré sections for Reynolds numbers spanning from 3200 to 4000. Maxima related to

regular time ranges are represented with circles, irregular time ranges with red triangles.

angles of attack.

VI. CHAOTIC BEHAVIOUR: RE=5000-10,000

The range going from Re=5000 to 10,000 is characterized by a chaotic behaviour. As

shown on figure 21, the periodic ranges are almost absent in these cases, although a short one

is found for Re=6000. The Fourier spectra still show an amplitude area for f ∗ ≈ 0.18 for all

cases but Re=6000, where f ∗ ≈ 0.22, thus revealing that the shedding mechanism presents

a dominant frequency anyway. It must be stressed that the regular ranges are identified
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FIG. 20: Ratio between irregular number of maxima over the total maxima for Reynolds numbers

ranging from 3200 to 4000.

through the phase maps, when the orbits are regular closed curves and the related Poincaré

sections show almost clustered points. For the present cases, this procedure identifies one

range only for Re=6000, evidenced in the corresponding frame of figure 21. The related

Poincaré sections are depicted in figure 22 for all the Reynolds number cases investigated.

It is worth stressing that the irregular behaviour of the lift time signal is also associated to

the presence of local maxima for negative values of the force. While for Re=5000 and 6000,

the positive and negative CL maxima are rather separated in two distinguishable clusters,

for higher Reynolds numbers this distinction disappears and the section points are more

and more homogeneously scattered over the Poincaré plane. The presence of two groups of

maxima, also found for Re=3300 and Re=3600, suggests that the irregular ranges are the

mark of some instability that incepts when the shear layers (upper when lift is minimum,

lower when maximum) are detaching from the cylinder. Conversely, as discussed in Durante

et al. [14], at higher Reynolds numbers the effect of local strain makes the shear layers so

thin and their interaction so complex that already in the near wake the vorticity is shed over

a large spectrum of scales (see Fig. 11 of [14]). This behaviour implies that the shedding

becomes so chaotic that the force time signal follows the same route. Thanks to the formulae

(6) and (7), it can also be remarked that the chaotic behaviour of the force time signal is

the reflection not only of the near wake dynamics, but of the whole vorticity field. In fact,

as remarked in section III, the lift force depends on the time derivative of the first moment

of the vorticity, which is represented as an integral extended to the unbound set Ω.

A clear representation of the chaotic nature of the vorticity field at the highest Reynolds

number is given in figure 23, where the near and far wakes are depicted. As discussed in
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FIG. 21: From top to bottom: lift time signals and Fourier spectra for different Reynolds

numbers. From (top): 5000, 6000, 8000, 10,000 (bottom). The cases Re=7000 and Re=9000

were investigated but are not shown for the sake of readability. The irregular time ranges are

highlighted in red.

Durante et al. [14], although the presence of a large number of vortex scales appears in the

flow field without any regular shedding, the inverse cascade typical of a two-dimensional

vorticity field rearranges the wake in large dipoles, clearly visible in the left frame of figure

23.

VII. OVERALL CONSIDERATIONS

In the present section some overall considerations are addressed. In order to evaluate

the chaotic transition of the dynamical system, it is worth commenting on the maximum

Lyapunov exponent drawn in figure 24. From the pioneering work of Wolf et al. [41], given a
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FIG. 22: Poincaré sections for Reynolds number spanning from 5000 to 10,000. Maxima related

to regular time ranges are represented with circles, irregular time ranges with red triangles.

FIG. 23: Vorticity field for Re=10,000. The left frame depicts the far field at maximum lift, while

the right frame is a magnification of the near wake.

continuous dynamical system in an n-dimensional phase space, the long-term evolution of an

infinitesimal n-sphere of initial conditions is considered; the sphere becomes an n-ellipsoid

for the locally deforming nature of the flow. The i-th Lyapunov exponent is then defined in
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terms of the length of the ellipsoidal principal axis pi(t):

λi = lim
t→∞

1

t
log2

pi(t)

pi(0)

where this axis may expand or contract, thus corresponding to positive or negative

exponents.

Each positive exponent reflects a “direction” along which the system experiences the

repeated stretching and folding that decorrelates the nearby states on the attractor. When

the behaviour of the dynamical system is highly sensitive to the uncertainties on the initial

conditions, its long-time behaviour cannot be predicted: this is chaos.

The sign of the Lyapunov exponent provides a qualitative picture of a system dynamics:

positive values are related to systems going toward chaotic conditions, negative or zero values

are related to stable systems.

In the present work, the Wolf algorithm was applied in order to evaluate the Lyapunov

exponent related to the lift time signal for every Reynolds number investigated.

As remarked by Wolf himself, a time series that appears erratic might be chaotic, or it

might be multiply periodic, periodic with “noise”, or some form of pure noise. A defining

feature of chaos is that small changes in the state of a system will grow at an exponential

rate. The larger the positive exponent, the more chaotic the system; that is, the shorter

the time scale of system predictability. A system may possess any number of Lyapunov

exponents, but for it to be decleared as in chaos regime we only need to confirm that the

dominant (largest, or most positive) exponent is positive. Hence, it is particularly important

to estimate the dominant exponent. The Wolf algorithm is able to calculate the maximum

exponent, so that, if a system exhibits periodic behaviour, the corresping value will be zero

or near zero, neglecting negative values.

Together with the work of Wolf et al. [41], the algorithm and a user guide were released.

Some tips were offered, one of them was that the code is very sensitive to some parameters

to be fixed in the calculation set-up. Therefore the exponent value must be assumed to be

merely indicative so that, when a one-parameter investigation is performed, as in the present

work where the Reynolds number is the only parameter considered, the focus should be on

the exponents’ trend, rather than on their calculated value. The Wolf approach is based

on a Fixed Evolution Time (FET) algorithm that creates a multi-dimensional phase space

orbit from a one-dimensional time series by the delay reconstruction and the estimation of
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FIG. 24: Maximum Lyapunov exponents distribution for all the Reynolds numbers investigated.

The exponents are normalised with respect to the maximum value.

the dominant (largest positive) Lyapunov exponent by averaging the exponential rate of

divergence of short segments of the delayed reconstructed orbit.

By considering that a precise value of the exponent is meaningless, in figure 24 the maxima

Lyapunov exponents are normalized with the largest calculated value. For Re=1000 and 2000

they are near zero so that the system exhibits orbital stability or periodicity, as discussed in

sections III and IV. The exponent at Re=3000 is significantly greater than zero, indicating

that the system is moving toward a chaotic condition. It is also revealed by the scattering

observed in the corresponding Poincaré section (see figure 10). In the range 3000-4000, as

stressed in section V, an increase in the Reynolds number induces a non-straight route toward

chaos with minima reached at Re=3300 and Re=3800, which were the same minima found

for the ratio Nirr/NTot, shown in figure 20. It is worth stressing that a different strategy for

measuring the level of irregularity, by calculating the ratio between irregular maxima and

all the others, leads to the same trend as that observed with the Lyapunov exponent. An

asymptotic behaviour seems to be reached for higher Reynolds numbers, indicating that the

chaotic condition is definitely attained.

Finally, in order to complete the analysis, the mean drag coefficients, together with the

corresponding variance, are depicted in figure 25. The mean values vary slightly between 1.5

and 1.6, in agreement with figure 18 in Durante et al. [14], where the drag coefficients were

calculated for Reynolds numbers spanning from 20 to 10,000 and the drag crisis mechanism

was identified between Re=50,000 and Re=100,000. This work refines that calculated trend

in the range 1000 - 10,000.
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FIG. 25: Time averaged drag coefficient for the Reynolds numbers investigated. With error bars,

the variance associated to every time signal.

VIII. CONCLUSIONS

In the present work, the analysis of the two-dimensional flow past a circular cylinder

at Reynolds numbers varying from 1000 to 10,000 was performed. The numerical code

adopted in the present investigations is a vortex particle method, called Diffused Vortex

Hydrodynamics (DVH), which allows very detailed simulations and long evolution. In

analogy with Durante et al. [15], the lift time signal was considered because of the relation

between the force on the body and the vorticity field (see formula 6). From a fully periodic

behaviour, typical at low Reynolds numbers, the system moves toward a chaotic condition,

showing irregular patterns within a periodic time signal, which become even longer and

even more frequent up to a fully irregular (or chaotic) condition. The investigation was

carried out by considering a dynamical system subjected to one parameter variation (i.e.

the Reynolds number) and it exploits some classical tools adopted in this field: phase maps,

Poincaré sections and Lyapunov exponents. In particular, the Lyapunov exponents showed

an oscillating trend in the range 3000 - 4000 and an asymptotic behaviour for large Reynolds

numbers. The same flow characteristics were also found on the Poincaré sections, obtained as

planes in phase space for which the lift maxima are selected, where clustering and scattering

of points correspond to periodic or irregular ranges, respectively.
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Appendix A: Autocorrelation functions and PSD for Reynolds range 3200− 10, 000

In the present Appendix the set of autocorrelation functions and PSD related to the

Reynolds range 3200− 10, 000 is shown in figures 26 and 27.

If fi is the measurement of a random process at time ti, and f is the arithmetic average

of the data between t1 and tN , then the autocorrelation function is defined as:

ACF (τk) =

∑N−k
i=1 (fi − f)(fi+k − f)∑N

i=1(fi − f)2
(A1)

where τk is the data time lag (i.e. k (ti− ti−1)), the denominator is the variance of the data

multiplied by N and the data are assumed to be equally spaced.

As remarked in sections V and VII, the lift signal becomes less irregular for Re=3300

and Re=3800, so that a more regular and longer correlated function is expected. This is

shown in the lines (b) and (g) of figure 26. The autocorrelation for Re=3300 appears rather

regular, with a PSD peak higher than all the others shown in this section, about half of

the amplitude of the case Re=2000 (comparing it with figure 9), thus indicating a general

regularity of the shedding mechanism. Similarly, at Re=3700 and 3800, the signal appears

more correlated. At Re=3700 the correlation is observed for time lags up to 40, while the

higher correlation of the 3800 case is related to the longer periodic ranges observed and

discussed in section V B, which are also responsible for one of the minima in the Lyapunov

exponents trend, shown in figure 24.

When the Reynolds number increases, the autocorrelations become increasingly flat and

also the small correlation range observed for short time lags (i.e. the signal is sufficiently

regular to be self correlated for short time intervals) is almost absent. This means that the

irregularity is so strong that any possible correlation of the signal, even for short times, is

disrupted by the chaotic nature of the flow field.
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FIG. 26: Autocorrelation function (on the left frames) and power spectral density (on the right

frames) for cases from Re=3200 (top) to Re=3900 (bottom). With τ the non-dimensional time

lag of the signal is indicated.
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FIG. 27: Autocorrelation function (on the left frames) and power spectral density (on the right

frames) for cases from Re=4000 (top) to Re=10,000 (bottom). With τ the non-dimensional time

lag of the signal is indicated.

Appendix B: Comparison with a Finite Volume Method

In the present appendix, the cases Re=2000 and Re=10,000 are simulated with a Finite

Volume Method (FVM) and compared with the corresponding DVH ones. The comparison

was carried out in order to assess wether the analyses of the lift time behaviour, performed
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in the present paper, are independent of a specific numerical solver.

Unlike the DVH, the FVM works with a mesh-based approach and a multi-block

decomposition of the numerical domain (more details can be found in Di Mascio [12],

Di Mascio et al. [13]). The advective fluxes are discretized with an upwind third order

scheme, while the time integration exploits a pseudo-compressible approach.

Figure 28 sketches the multi-block grid used for the FVM simulations. The contour

plot is representative of the spatial resolution c/∆r characterizing the different zones of the

domain, where ∆r is the cubic root of the cell volume. The spatial resolution within the

circular block around the cylinder is comparable with the DVH one, whereas a trapezoidal

block is adopted for the wake region. The total number of cells is about 2,260,000.

At Re=2000 a long period modulation on the time history of the forces was evidenced

in section IV. As shown in figure 29, the same time behaviour is confirmed by the FVM

simulations. Next to the lift signals, the corresponding Fourier transforms are also depicted.

As pointed out in section IV, the spectrum peaks corresponding to integer multiples of the

shedding frequency (indicated with the number 1) are highlighted with a red dot. The

shorter peak at 1/9 of the shedding frequency corresponds to the long period modulation

and it is encountered in both simulations, as well as the irrational multiples of the main

frequency (green circles).

In figure 30 the vorticity fields obtained by the FVM and DVH are compared at minimum

lift conditions, showing a remarkable resemblance.

The chaotic behaviour of the Re=10,000 case is also recovered in the FVM simulation,

as can be seen in the time behaviour of the lift signals, shown in figure 31. Figure 32

sketches a comparison between the vorticity fields. Considering the greater complexity of

the solution to the highest Reynolds number studied, the solutions of the two solvers are

FIG. 28: Computational multi-block grid used for numerical simulations with FVM algorithm.
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FIG. 29: Flow past a circular cylinder at Re=2000: lift force comparison between DVH (top) and

FVM (bottom) together with the corresponding Fourier transforms (right frames).

FIG. 30: Flow past a circular cylinder at Re=2000: vorticity fields comparison between DVH (left)

and FVM (right).

still in satisfactory agreement.

Appendix C: A criterion for defining regular/irregular intervals

In the present appendix a formal criterion for the definition of the regular/irregular time

intervals based on the wavelet transform is given.

In the present work, a Morlet function is adopted with the symmetry parameter set to 3

and the time-bandwidth product equal to 60 (for more details see [25]). The modulus of the
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FIG. 31: Flow past a circular cylinder at Re=10,000: lift force comparison between DVH (top)

and FVM (bottom).

FIG. 32: Flow past a circular cylinder at Re=10,000: vorticity fields comparison between DVH

(left) and FVM (right).

wavelet coefficient is directly related to the amplitude of the time signal, in such a way that

for a periodic signal the maximum is attained in correspondence of the carrier frequency.

In figure 33 the contour plots of wavelet coefficient amplitudes for Re=1000, 3100 and

3200 are sketched.

As discussed in section III at Re=1000 the lift signal is periodic and the wavelet transform

returns a well defined banded contour (see top frame of figure 33). For Re=3100 and
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FIG. 33: Continuous wavelet transform with Morse wavelet for the lift signal at Re=1000 (top),

Re=3100 (center), Re=3200 (bottom). The contour lines correspond to 95% of the maximum

wavelet amplitude.

Re=3200, the time ranges where the maxima are attained are interspersed with other time

ranges where the contour plot of the coefficient is irregular.

Different frequency intervals are identified through the contour lines corresponding to
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95% of the maximum wavelet amplitude. Among those intervals the ones having a time

range containing at least four lift oscillations are classified as regular. In the middle and

bottom frames of figure 33 the different ranges are separated with vertical dash-dotted lines

and numbered as the time signals shown in section V.
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street breakdown preceding secondary vortex street formation. Physics of Fluids, 28(5):054101,

2016.

[18] M. Fayed, R. Portaro, A.-L. Gunter, H. A. Abderrahmane, and H. D. Ng. Visualization of

flow patterns past various objects in two-dimensional flow using soap film. Physics of Fluids,

23(9):091104, 2011.

[19] O. Giannopoulou, A. Colagrossi, A. D. Mascio, and C. Mascia. Chorin approaches revisited:

Vortex particle method vs finite volume method. Engineering Analysis with Boundary

Elements, 106:371–388, 2019.

[20] G. Graziani and P. Bassanini. Unsteady viscous flows about bodies: Vorticity release and

forces. Meccanica, 37(3):283–303, 2002.

[21] L. Jia, Q. Xiao, H. Wu, Y. Wu, and X. Yin. Response of a flexible filament in a flowing soap

film subject to a forced vibration. Physics of Fluids, 27(1):017101, 2015.

[22] H. Jiang and L. Cheng. Transition to the secondary vortex street in the wake of a circular

cylinder. J. Fluid Mech, 867:691–722, 2019.

[23] H. Krishnan, A. Agrawal, A. Sharma, and J. Sheridan. Near-body vorticity dynamics of a

square cylinder subjected to an inline pulsatile free stream flow. Physics of Fluids, 28(9):

41



093605, 2016.

[24] D. F. Kurtulus. On the unsteady behavior of the flow around NACA0012 airfoil with steady

external conditions at Re=1000. International Journal of Micro Air Vehicles, 7(3):301–326,

2015.

[25] J. M. Lilly and S. C. Olhede. Generalized morse wavelets as a superfamily of analytic wavelets.

IEEE Transactions on Signal Processing, 60(11):6036–6041, 2012.

[26] F. Mandujano and C. Málaga. On the forced flow around a rigid flapping foil. Physics of

Fluids, 30(6):061901, 2018.

[27] T. H. Pulliam and J. A. Vastano. Transition to chaos in an open unforced 2d flow. Journal

of Computational Physics, 105(1):133–149, 1993.

[28] P. Reichl, K. Hourigan, and M. C. Thompson. Flow past a cylinder close to a free surface.

Journal of Fluid Mechanics, 533:269, 2005.

[29] G. Riccardi and D. Durante. Elementi di fluidodinamica: Un’introduzione per l’Ingegneria.

Springer Science & Business Media, 2007.

[30] E. Rossi, A. Colagrossi, B. Bouscasse, and G. Graziani. The Diffused Vortex Hydrodynamics

method. Communications in Computational Physics, 18(2):351–379, 2015.

[31] E. Rossi, A. Colagrossi, and G. Graziani. Numerical Simulation of 2D-Vorticity Dynamics

using Particle Methods. Computers and Mathematics with Applications, 69(12):1484–1503,

2015.

[32] E. Rossi, A. Colagrossi, D. Durante, and G. Graziani. Simulating 2d viscous flow around

geometries with vertices through the diffused vortex hydrodynamics method. Computer

Methods in Applied Mechanics and Engineering, 302:147–169, 2016.

[33] E. Rossi, A. Colagrossi, G. Oger, and D. LeTouzé. Multiple bifurcations of the flow over stalled

airfoils changing the Reynold numbers. Journal of Fluid Mechanics, 846:356–391, 2018.

[34] A. K. Saha, K. Muralidhar, and G. Biswas. Transition and chaos in two-dimensional flow past

a square cylinder. Journal of engineering mechanics, 126(5):523–532, 2000.

[35] T. Schnipper, A. Andersen, and T. Bohr. Vortex wakes of a flapping foil. Journal of Fluid

Mechanics, 633:411–423, 2009.

[36] S. P. Singh and S. Mittal. Flow past a cylinder: shear layer instability and drag crisis.

International Journal for Numerical Methods in Fluids, 47(1):75–98, 2005.

[37] D. Sundararajan. Fourier Analysis-a Signal Processing Approach. Springer, 2018.

42



[38] Y. Tamura and G. Matsui. Wake-oscillator model of vortex-induced oscillation of circular

cylinder. In Wind Engineering, pages 1085–1094. Pergamon, 1980.

[39] M. Van Dyke and M. Van Dyke. An album of fluid motion, volume 176. Parabolic press

Stanford, 1982.

[40] N. Wiener. Time Series. M.I.T. Press, 1964.

[41] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents

from a time series. Physica D: Nonlinear Phenomena, 16(3):285–317, 1985.

[42] H. Ye, H. Wei, H. Huang, and X.-y. Lu. Two tandem flexible loops in a viscous flow. Physics

of Fluids, 29(2):021902, 2017.

[43] M. M. Zdravkovich. Flow around circular cylinders: Fundamentals, volume 1. Oxford

university press, 1997.

43


	I Introduction
	II Summary of the numerical method and problem outline
	A The Diffused Vortex Hydrodynamics model
	B CPU costs
	C Outline of the problem

	III Non-modulating case: Re=1000
	IV Modulating cases: Re=2000, 3000
	V Chaotic transition with intermittency: Re=3100-4000
	A Case Re=3100
	B Cases Re=3200 - Re=4000

	VI Chaotic behaviour: Re=5000-10,000
	VII Overall considerations
	VIII Conclusions
	 Acknowledgements
	A Autocorrelation functions and PSD for Reynolds range 3200-10,000
	B Comparison with a Finite Volume Method
	C A criterion for defining regular/irregular intervals
	 References

