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Abstract—A new methodology for effective definition and
efficient evaluation of dependability-related properties is proposed.
The analysis targets systems composed of a large number of
components, each one modeled implicitly through high-level
formalisms such as SPNs. Since the component models are
implicit, the reward structure that characterizes the dependability
properties has to be implicit as well. Therefore, we present a
new formalism to specify those reward structures. The focus
here is on component models that can be mapped to Stochastic
Automata with one or several absorbing states, so that the system
model can be mapped to a Stochastic Automata Network with
one or several absorbing states. Correspondingly, the new reward
structure defined on each component’s model is mapped to a
reward vector, so that the dependability-related properties of the
system are expressed through a newly introduced measure defined
starting from those reward vectors. A simple, yet representative,
case study is adopted, to show the feasibility of the method.

I. INTRODUCTION

Stochastic state-space model-based approaches are widely
used to perform dependability, performance or performability
analysis of complex systems. Generally, such systems are
composed of many components interacting with each other in
an intricate manner. This makes the model-based analysis very
challenging, both with respect to the definition of the overall
model, which must represent all the individual components
and their specific interdependencies, and the explosion of the
state-space [1]. Thus, highly expressive formalisms for the
definition of the model and high computational efficiency for its
solution are being increasingly addressed, and our contribution
goes in these directions.

Resorting to the popular modularity and compositionality
paradigm, system complexity and largeness are typically
managed through the composition of individual submodels,
which represent system components at the desired level of
abstraction [2]-[7]. Individual submodels can be defined
concisely by adopting a high-level formalism, and the resulting
overall model can then be obtained through composition
operators, such as the approaches based on named replication
of stochastic template models recently proposed in [8]-[11].

To tackle the state-space explosion, a successful research line
in the literature consists in representing and manipulating the
state-space implicitly, i.e., not listing the states, but describing
them through more complex data structures [12], [13]. However,
despite the great research effort, underway for decades, there
are still areas where improvements are very welcome, to
keep pace with the growing complexity of systems on the
one hand, and the need to maintain high accuracy of the

analysis on the other hand. This paper provides a contribution
in this research area, adopting Superposed SPN (SSPN) as high
level formalism, inspired to the Superposed GSPN (SGSPN)
proposed in [13], and focusing on strategies based on Kronecker
algebra [14]. SSPN is an extension of Stochastic Petri Net
(SPN) [15], where the interdependencies occurring among
submodels are captured through synchronization of transitions
and the underlying stochastic process is a Continuous Time
Markov Chain (CTMC) [16], [17]. It is a sufficiently general
and powerful formalism, suitable to the purpose of our study.
Through Kronecker algebra [14], interpreting the system model
as the transition-based synchronization of submodels allows to
map each high-level submodel to a Stochastic Automaton, and
then to manipulate implicitly the underlying low-level model
as a Stochastic Automata Network (SAN) [18].

So far, the community has focused almost exclusively on
implicit models, without considering the reward structure
defined on top of the system model, which is at the basis of
the evaluation of dependability, performance or performability
measures in classical model-based analysis [19], [20]. Reward
models have been widely used both at high-level, e.g., with
Stochastic Activity Networks [19], Generalized Stochastic Petri
Net (GSPN) [21] or Stochastic Reward Nets [22], and at
the level of CTMC, which is extended to a Markov reward
model [20], where a reward rate is attached to each state of
the CTMC and is represented by a reward vector.

Following the approach adopted in [19], a reward structure
can be defined on the SSPN model. The solution of the
SSPN model involves automatic generation and analysis
of the corresponding Markov reward model. Although the
underlying CTMC model is automatically generated starting
from a concise SSPN model, one major drawback can be the
largeness of its state-space [22].

Until recently, only descriptor matrices were available to
the modelers in the context of CTMC and there was no solid
numerical foundation onto which to develop the very idea of
the implicit reward vector. An implicit reward vector, defined
on top of an SAN and based on Kronecker algebra, and a
new numerical solution for the resulting Markov reward model
generated from an SSPN structured in submodels, are proposed
in [10]. Such solution addresses efficient evaluation of the
Mean-Time-To-Absorption in SSPN, but it is restricted to one
absorbing state only.

Targeting systems representable through a composition of
submodels, each one characterized by a small number of states



and of interactions with other submodels, this paper presents
three original developments. Their feasibility and effectiveness
are shown through a representative case study, which includes
component-based systems with multiple failure modes and
rather complex patterns of error propagation.

The first contribution is the definition of a high-level implicit
reward structure based on submodels (inspired by the explicit
one in [19]), given concisely in terms of the reward structure on
top of each SSPN submodel. Differently from the explicit one,
this new reward structure can be automatically transformed into
the implicit reward vector defined on top of the underlying SAN,
in an easy and direct way.

The second contribution is a strategy based on Kronecker
algebra to numerically solve an SAN reward model with
multiple absorbing states. Mathematical formulas are used
to express and numerically evaluate the k-moments (e.g.,
mean or variance) of instant-of-time or interval-of-time reward
variables [19] to absorbing state (i.e., for time going to
infinity). Examples of these measures are the Mean Time To
Failure (MTTF) and the variance of the time to failure, or the
conditional MTTF [23], [24], where one among multiple causes
of failure can be addressed (e.g., safe or unsafe shutdown,
imperfect coverage or exhaustion of employed redundancy
[23]).

The third contribution is the characterization of the relation
between the reward variables, defined through the implicit
reward structure proposed for the high-level SSPN model, and

the formulas proposed for the reward variables at level of SAN.

The outcome is that the Markov reward model and the formulas
used for the solution can be automatically generated from the
corresponding reward model and measures, concisely described
at level of SSPN.

The rest of the paper is structured as follows. Section II
introduces the reference modeling context and the measures of
interest considered in this paper at level of both stochastic Petri
net and Markov chain. The formulas for the explicit evaluation
of the measures at the Markov chain level are also included.
The derivation of the explicit formulas for the moments of the
accumulated reward to absorption is given in Appendix C. In
Section III, a new implicit reward structure based on submodels
at the stochastic Petri net level is proposed. Examples of reward
structures are then shown in Appendix F. Section IV presents
the expressions, based on the Kronecker Algebra, which directly
map the measures defined at the level of stochastic Petri net on
the level of Markov chain. The solution methodology proposed
to evaluate the measures is also included. To illustrate the
effectiveness of the proposed approach, Section V presents the
case study and its relevant measures, while the results of the
performance evaluation obtained by applying the proposed
solution method are discussed in Section VI. Section VII
reviews related works, while Section VIII draws conclusions
and outlines some future extensions. Finally, a few Appendices
are included, to detail mathematical developments as well as
the table of acronyms and symbols.

II. MODELING CONTEXT AND MEASURES OF INTEREST

In this section, the reference modeling context and the
measures of interest considered in this paper, at level of both
stochastic Petri net and Markov chain, are introduced. The
formulas for the explicit evaluation of the measures at Markov
chain level are also included.

A. Stochastic Petri net level

This paper considers a system model M with a finite
number of states, composed of n submodels Mj, ..., M,. The
submodels are defined using the SPN high-level formalism.
They are synchronized through transitions, forming an SSPN
network with a small number of interconnections.

A marking p of an SPN represents the state of the model
at a particular instant of time. It is a function p : P — N
describing the number of tokens in each place, where P is
the set of places and N is the set of nonnegative integers.
The notation #p is adopted instead of #(p, 1) to indicate the
number of tokens in place p in marking p [22], whenever the
marking i is clear from the context. A marking p € N” is
usually represented as a formal sum Zp #p-porasa |P|-
dimensional vector, where |...| denotes the size of a set. For
example, given P = {A,B,C}, u =2B+ C = (0,2,1) is
the marking with (#A = 0,#B =2, #C =1).

Let 8 € N¥ and 8(9) C N” be the reachability sets (i.e., the
sets of all the markings which are reachable from the initial
marking) of M and M;, respectively. Each submodel has a
small number of markings (i.e., |$()| is small) with at least one
absorbing marking. By definition, in an absorbing marking of
an SPN no transition of the SPN is enabled and the evolution
of the SPN has reached a final marking.

Each marking of an SPN corresponds to a state of the
underlying CTMC. Once the correspondence between markings
and states is defined, each marking is of the same type as the
corresponding state. This paper addresses only SPN models
for which the underlying CTMC satisfies the requirements of
the proposed solution method, as stated in Section II-B, where
the underlying CTMC class is characterized explicitly.

Figure 1 shows the general scheme of an SPN model, exem-
plified for the case where 4 places are explicitly represented
for each submodel M;: E;,W;, B; and C;. In particular, B;
and C; are used to represent the two absorbing markings
considered for each M; given by: (#B; = 1,#C; = 0)
and (#B; = 0,#C; = 1). The absorbing markings of the
overall SPN model correspond to those markings for which
all the submodels reached the absorbing marking, i.e., when
> (#B; +#C;) = n. A detailed example with one or
two absorbing markings for each M; is given by the SPN
models shown in Figures 3 and 4 for the case study described
in Section V-B.

Let A be the set of all absorbing markings (states) of the
model M, and B be a subset of absorbing markings with
B C A. Let Y, denote the random variable representing
the reward accumulated by the model M in transient states
until absorption into A. Let Y| be the conditional random
variable representing the reward accumulated by the model M



Fig. 1.
M, ..

General scheme of the SPN model composed of n submodels
., My, synchronized through (shaded) transitions.

in transient states until absorption into .4, given that the model
eventually absorbs into 5.

The measures of interest addressed in this paper are the
following performability (i.e., performance and dependability)
metrics defined on the SPN model M with absorbing states:

o The moments of Y., namely

Mi(Yee) = E[YL], M

in particular, the Mean Reward To Absorption (MRTA)
with MRTA = E[Y], the variance Var(Y.) =
E[Y2] — (E[YOO])2 and possibly an approximation of
order k of the distribution of Y.

o The conditional mean MRTA z = E[YOO|B], i.e., the
conditional mean reward to absorption, given that the
model eventually absorbs into B.

o mz(00), i.e., the probability that the model eventually
absorbs into 5.

This kind of measures is often taken as metrics (or as intermedi-
ate values useful to define metrics) of relevant reliability-related
properties [24]-[26].

When the absorbing markings represent an unrecoverable
failure and the accumulated reward is the time, then Y., and
Y5 reduce to the random variables T 4 and T 45, representing
the time to absorption into A and the time to absorption into
A given that the model eventually absorbs into 5, respectively.
Thus, important cases of the above metrics are the following:

o The mean time to failure MTTF = E[T4], and the
variance Var(Ty).

. MTTF| 5, 1.e., the conditional mean time to failure given
that the model eventually absorbs into 5.

MRTA |z and MTTF 5 are particularly important when there
is more than one absorbing state. This is the case, for example,
when it is required to discriminate among multiple causes of
failure, such as to distinguish between safe and unsafe shutdown
(in a safety critical system), or to distinguish a failure due to
imperfect coverage from a failure due to the exhaustion of
redundancy (in a fault-tolerant system) [23].

Following the approach proposed in [22], and focusing on
marking oriented reward (rate reward) structure, the reward is
defined at the SPN level by the function

R:N — R, 2

where R is the set of real numbers. For every u € 8, R(u)
is the (positive, negative or zero) reward obtained while the

model M is in the marking p. Let S C 8 be the set of reachable
markings of the SPN that includes only the elements having a
non-zero reward assignment.

Given an SPN model with a reward structure of this type,
the measures of interest, here specialized to the case of infinite
time, are specified in terms of the following reward variables,
inspired by those proposed in [19]: i) the interval-of-time
reward variable Y, ii) the conditional interval-of-time reward
variable Y5 and iii) the instant-of-time reward variable V.
Their formulation is as follows:

Yoo(R) = Rip) - J&, 3)
nES
Yaes(R) = Yoo (R) | \/ [I4 = 11, e
neB
Veo(R) =Y R(p) - 14, (5)
neS

where the vertical bar | in Equation (4) is the symbol for
conditional event, the symbol \/ is the logical operator “or”,
J}' is a random variable counting the total time the SPN
spends in the marking p during the interval of time [0,¢],
and I!' is an indicator random variable representing the event
[I}' = 1] that at time ¢ the SPN is in the marking p. Notice that
JE = [F If'dt. Moreover, J{' and I}' are random variables,
depending on the random event “the SPN is in the marking u
at time ¢”.

In the following, to simplify the notation, My z will be
used to denote My, (Yoo (R)).

Since there are absorbing markings in the model, the
measures of interest specified in terms of Equations (3) and (4)
can only be defined under the condition that the reward
associated to absorbing markings in Equation (3) is zero, i.e.,
R(p) =0V € A.

For a given B, defining

1 if pebB,
Rp) = 6
W) {O otherwise, ©
results in obtaining 7z (co) from Equation (5) as follows:
mp(00) = D P(Ik =1). @)

pneB

For a given BB and R, applying the definition of conditional
mean of a random variable, MRTA| 5 is obtained from Equa-
tions (4) and (7) as follows:

MRTA|5 = E[Y5(R)]
=E[Yu(R)| \/ 1% =1]]

(by definition)
(from Equation (4))

neB
_ E[Ysc(R)and V,,cgll% =1]] ®)
75(00) ’

being “the conditional expectation E[Y | B] of a random vari-
able Y given an event B” equal to F[Y and B|/P(B), where
B =V ,epll% = 1], and P(B) = mg(c0) from Equation (7).
The conditional expectation E[Yo(R) | V sl = 1]]



represents the mean reward accumated by the SPN until the
occurrence of the event \/ , .s[I% = 1], given that the event
has occurred, where the event is the absorption of the SPN
into any of the markings of the set B.

Notice that the formulas used in this section to define the
measures of interest are generic, since they do not take into
account the structure of the system in submodels. Moreover,
depending on the specific SPN and reward structure, the mea-
sures of interest may be defined only when the corresponding
formulas converge to a finite value, as time approaches infinity.

B. Markov chain level

The numerical solution requires generating the stochastic
process {X (t) € S, t > 0} underlying the SPN model. It is
a time-homogeneous continuous-time Markov chain (CTMC)
with discrete (finite) state space S = {1,2,. .., Nyeach }, Where
Nreach denotes the number of reachable states. To every marking
i € 8 of the SPN corresponds a state i € S of the CTMC.
Call @Q = [g;;] the Infinitesimal Generator matrix consisting
of the direct transition rates from state i to j, for i # j, and
Gii = — > jziQij» and mw(t) € R the state probability
vector at time ¢ such that >, m,(t) = 1 for every t > 0.

The states in S are partitioned into transient states 7 and
absorbing states A, i.e., S =T UA, with 7 # () and A # (.
It is assumed that the modeled system is in a working state
at t = 0, i.e., m;(0) = 0 for ¢ € A. For 7;(0), with i ¢

A, any probability value can be used. Hence, there can be
several transient states with initial positive probability less than
1, or a single initial transient state with probability 1. The
proposed solution method requires that the state space contains
no irreducible subset consisting of more than one state. But it
is not required that an absorbing state be reachable from every
transient state.

After relabeling the absorbing states as the last states, the
CTMC is represented through the infinitesimal generator matrix
as follows:

QT V1 | V2 Vg
Q- |0 0l0]0l 0] O ©)
0 olololo]| o |’
|0 ... 0l0]O0[0] 0 |

where Q- is the submatrix that contains the rates of transitions
among the transient states, n,,s = |.A4|, and v; are the column
vectors that contain the rates of transitions from transient states
to i€ A

Differently from the standard notation adopted in the per-
formance and dependability community, in this paper column
vectors (instead of row vectors) are employed to ease the
notation, so the state probability equation is expressed as:

dn’T (1)

7 wl(t)- Q.

(10)

In the following, e, denotes the s-th element of the standard
basis of R (where the value of m depends on the context), i.e.,
the column vector e, = (0,...,1,...,0)T with 1 at position
s, while e denotes the column vector with all the entries equal
to 1.

At Markov chain level, the reward column vector r =
(rys....rp,.. )" is obtained, for each state i € S, from the
SPN level reward function R as follows:

r; = R(pi) with p; € 8. (11)

Notice that, for the measure defined in Equation (3) (and
consequently for Equation (4) that is defined in terms of
Equation (3)), the proposed solution method requires that
r,=0Vie A

The vectors r and 7,(t) are the vector r and 7(t),
respectively, restricted to the transient states 7.

Given the reward vector r, the reward variable Y., can be
defined at Markov chain level as follows:

[ee] oo
Yoo(r) = / Tx(n)dt = / ! exdt
0 0

o0
:/ > orIidt=J-r,
0

seS

(12)

where J = (JL ..., =), In the following, the measures
of interest are expressed in terms of a matrix function of
Q, the vector mw(0) and the reward vector . This opens
up the possibility to derive expressions based on generic
reward vectors on the one hand, and to fully exploit implicit
representations of all the matrices and the vectors that are
involved in the computation (as shown in Section IV) on the
other hand. The formula for the moments my, , of Y, (r) can
be written as:

mir = K(=1) 77 (0)(Q7 ding(r7))* ' Q7 ey

The derivation of this formula is given in Appendix C. Actually,
Equation (13) can be evaluated explicitly solving k linear
systems to derive the solutions (1), ... a(®):

13)

1 —
Qre =1 , . (14)
Qrx) = diag(r)z~Y, fori=2,...,k,
and performing a dot product:
mer = kI(=1)*7LZ(0) - ™. (15)

This way, well-known issues related to numerical precision
when evaluating the moments of a random variable are
mitigated (although not entirely avoided because the linear
systems can be stiff).

A particular case of Equation (13), i.e., when the reward
accumulated in transient states is the time, is the formula used
to evaluate explicitly the moments of T'4. It can be easily
derived exploiting the Laplace transform, as done in Equations
(10) to (62) of [26]:

mi(Ta) = (-1 77 (0)Q7" (e — e).

where e , denotes the column vector e , = e..
A A seA€s

(16)
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Fig. 2. Classification of the models and reward structures on top of them
according to: explicit versus implicit representation and level of modeling
abstraction. Newly introduced definitions for reward structures are underlined
with a wavy line. The wavy arrow highlights one of the contributions of
Section IV-A: how to project reward structures from high-level to low-level
models.

Given the absorbing state a € A (generalizable to B C
A), the measure MRTA |, is obtained like in Equation (8) as
follows:

E[Ys(R) and X (co
7, (00)

)=al

MRTA |, = a7
Similarly (see Appendix D for details), the formulas to
evaluate explicitly E[Yo(R) and X (c0) = a] and 7, (c0) are:

E[Ys(R)and X (00) = a] = 77-(0) Q7" diag(r,) Q7' va,
(18)

To(00) = —72(0)Q7 v, (19)

The formulas for MRTA|z and mz(c0) can be easily
obtained by replacing v, with vz in Equations (18) and (19),
with v =), 5 Va.

As for the formulas of Section II-A, the ones above do
not take into account that the system model is structured
in submodels. Moreover, they are oriented to an explicit
representation of all the model states. Depending on the size
of the problem at hand, the explicit evaluation of the measures
of interest through the above equations could be impossible,
due to the state-space explosion problem. However, these
equations are the basis for deriving new formulas that exploit
the implicit representation of matrices and vectors, (i.e., not
listing the states, but describing them through more complex
data structures), then used by the new solution method to
overcome the state-space explosion. Moreover, in order to
support the automatic and direct generation of the implicit
expressions used at level of Markov chain to evaluate measures
of interest defined at level of stochastic Petri net, a new implicit
reward structure also needs to be introduced.

In the following, the terms explicit and implicit refer to
reward structures, formulas and solution methods that are
oriented to a direct representation of all the states of the model

or to a representation that does not list all the states, respectively.

The introduction of implicit reward structures and measures
takes advantage of the existence of already well-established
(explicit) reward alternatives, since correctness of the new
implicit-based solutions is performed through a mapping from
the former to the latter (see Appendices A and B for details).

To guide the reader, Figure 2 illustrates the classification and
notation adopted through the paper for the modeling formalisms
and the reward structures according to two categories: explicit
versus implicit representation and level of modeling abstraction.
The symbols (whose meaning will be described the first time
they are used) are grouped according to the sections where
they are defined. To distinguish between already published
concepts, such as those summarized in this section, from new
concepts and mapping introduced in this paper, underlined text
using the wavy line is adopted, as well as the wavy arrow
for the mapping. Other relevant information are not shown in
Figure 2, such as indicator random variables and measures
definition, because they follow the same symbolic code of the
reward structures.

Although the focus of this paper is on the implicit side
of the figure, relation with explicit formalisms is relevant,
both because they inspire/constrain the new developments (see
Section III-B) and because they are essential to verify —for
small models— the correctness of the new definitions and
solution method.

III. IMPLICIT REWARD MODEL AT LEVEL OF
STOCHASTIC PETRI NET

This section presents a new implicit reward structure based
on submodels (top right corner of Figure 2). The definitions
adhere to: same representation power of the reward structure in
Section II, reasonably simple translation to the corresponding
definitions of Section II to preserve semantics and enhance
models verification, direct correspondence with reward vectors
in Section IV-A and clear identification of parameters impacting
on the solution method performance (details in Section IV-B).

A. Implicit reward structure

The new reward R is defined in terms of the reward functions
7~2ij associated to the submodel M;. Informally, the non-zero
reward rate associated by R to a marking is given as the sum
of products of the rewards defined on the marking restricted
to the submodels.

Given a marking p intended as a formal sum, the marking
w restricted to M;, denoted ,u(i), can be derived as follows:

pD =" #p,p) - p, (20)
pEP;

The marking £(*) is also denoted as the projection of  on the
submodel M;.

Viceversa, given the markings p(1), ...
1 can be obtained as the formal sum:

p=> pu.
i

Likewise, each set of absorbing markings B can be defined
from the sets of absorbing markings B of M;, and viceversa,
denoting B the projection of B on M;:

B={u®+. . +pu™|puDecBDi=1,.. 0} (22
BY ={> #p,u)-p|peB (23)

pEP;

, 11" the marking

21



Let 7@? be the reward rate function associated to each
marking of the SSPN, with j = 1,...,np for a given n:

RN R.

The non-zero rewards defined by each RH for some marking
are summed by R to obtain the final reward associated to each
marking.

Let 7~€ij be a function of reward associated to the markings
of M;, with j =1,...,ny:

ﬁij‘ : NPi — R.

For ;) € NP, R;;(u™) is the reward attached to ().
For a given 7, each non-zero reward defined by RH for some
marking is obtained as:

RjN (1) = Hﬁij(u(“),

where (9 is the marking p restricted to M;, as defined
in Equation (20).

Let Sij be a set of markings of M, i.e., Sij «SON including
only the elements that deserve a non-zero reward explicitly
assigned via 7%7:]', being 0 the default value.

When 8;; # 0, the function R;; is explicitly defined for
each marking p(9):

- . if ue8;;
Ri . (z) — T, 179
J (1) { 0 otherwise,

(24)

(25)

where 7 € R and r # 0. -
When, for a given j, 8;; = 0, but 3k such that 8; # 0,
then it is assumed that the function R;; is defined by default

as follows:
_ ; 1 if p e 80,
Rij (") = {

. (26)
0 otherwise.

This ensures that the projection ;) of p on M, does not
impact on 7%“( ) in Equation (24), as shown in Appendix F.

Otherwise, if, for a given j, Sw =@ fori=1,...,n, thenit
is assumed by default that R;;(u?) = 0 for each u(” hence
R (1) = 0 for each pu.

Informally, the contribution of 7@? to the reward of the
overall SSPN for a given marking is obtained as the product
of the rewards that are either assigned explicitly or by default
through R;; to the marking restricted to each submodel.

The new reward R is defined in terms of 7~Qij through np
sums of functions RI:

27

Thus, the parameter ny is the number of 7@? functions used in
the definition of 7@(#), depending on the reward structure and
the SPN. Intuitively, ny represents the maximum number of
non-zero reward values that contribute to 7~3(u) for a specific
marking, i.e., the maximum amount of information that is

required to represent the reward attached to a specific marking.

In practice, to define a reward structure 7~€, it is enough to
define npy (i.e., one or more) reward contributions 7~2§I This
means to identify, for each 7@?, some set Sij of markings
restricted to a submodel, and to define explicitly some 7~€”
only for the elements of §;;. The convention is used that,
when 8;; # 0, then R;; is O for all the elements not explicitly
assigned, as shown in Equation (25), whereas when SZJ =0,
then 7~€ij is defined as shown in Equation (26). Given an SSPN
with an implicit reward structure, the implicit performance
variables are defined as follows:

Z/ ZHR” (Wi at, 28
/JES
Yoo 5(R) R) | \/ (29)
pneB
N ~ e
R) = > [IRuiL, (30)
pnEB § 4
~,,(7)
where I is the implicit indicator random variable represent-

ing the event that M; is in the marking () at time ¢, and I [
is the implicit indicator random variable defined as follows:

~ ~, (1) (n)
Im =TIk N (S

= (D ,
Notice that the domain of I!" is the state-space S ) of
M;. Also, in general the integral of the product f 111 ! is
different from the product of the integral [] [ I - =11 Jt“ ,

where Jt v is the random variable representing the total time
that M; is in the marking u(i) during the interval of time
[0,t]. Therefore, the definition of Y, (R) in Equation (28)
is not based on J as in Equation (3), but requrres the use

of the implicit indicator random variables I ), as detailed
in Appendix A. In addition, implicit rewards and measures
are defined directly on top of each submodel M;, skipping
the definition at level of the overall SSPN model. This is an
advantage in terms of modeling expressive power, when the
submodels can be defined by a single template model.

The measures of interest are implicitly defined as follows:

My, =E[Va(R)], 31)
MRTA|5 = E[Y.5(R)], (32)
75(00) = E[Vao (R)]. (33)

Notice that the reward structure, the performance variables
and the measures implicitly defined in Equations (27) to (33)
are different representations of the same reward structure,
performance variables and measures defined explicitly in Equa-
tions (1) to (5), (7) and (8). In particular, the implicit definition
of Equation (6), used in Equation (33), for a given B is

N ; 1 if u® e B,
Rir(n") = {

. (34)
0 otherwise,

for each i = 1,...,n, where B(*) is the projection of B, as
defined in Equation (23).



For a given SSPN model, at increasing values of n and of the
markings of each submodel, the efficiency of the methodology
proposed in Section IV-B strongly depends on the total number
m, with mpg > np, of non-zero reward values defined (as
product of values) for some marking by all the functions 7@?,
for j = 1,...,nr. Formally, the parameter my; is defined as

nr

mn =Y > (),

pog=1

(35)
with

0 otherwise.

if RI
%’(u){l £ Ry (k) #0,

Intuitively, myy represents the total number of non-zero reward
values that contribute to 7~€, i.e., the maximum amount of
information that is required to represent the specific reward
structure for the SPN at hand. Thus, the actual definition of
specific reward structures R should be based on the minimum
number of functions 7%? and on the minimum number of
occurrences of non-zero values explicitly obtained as product
of rewards defined by 7~Z” In practice, most of the measures
of interest can be defined by reward structures based only
on a few functions 7~€]H, as shown in the examples of reward
structures in Appendix F. The measures defined using reward
rates for which the value of mp is not low enough to apply
efficiently the methodology of Section IV-B are not of interest
for this paper.

B. Modeling power

Now, it can be shown that the new implicit reward structure
based on the function R has the same modeling power as the
explicit one based on R. Let n, = |§| denote the number of
non-zero reward values that are output of R. Given a function
R, it is always possible to define the functions 7~Qlj7 - 77~2nj,
with 5 = 1,...,ny and ny = n,, such that R(u) = R(u),
for each p € 8.

R can be rewritten as follows:

R) = {

if u=p,; €8
BaEaES (36)
0  otherwise,

where 7; € R\ {0} is a reward rate that does not depend on
the marking and p; is the j-th element of 8, j = 1,...,n,.
For example, given P, = {..., Wy, W5, ...} (the other places
are omitted for brevity), if r; = sin(#W1 + #Ws) when
#W1 < 3 and #W; < 3 then r; can be replaced by p non-
zero real numbers, one for each different combination of tokens
in W7 and Ws (intended as a formal sum), obtaining:
r;, = sin(0 + 1), for p;, = Wa,

r;, = sin(1+0),for p;, = Wi,

r;, = sin(3 +3),for p;, = 3W1 + 3Ws,

where sin(a + b) is replaced by the result obtained applying
the sin function to a + b.

One can then define 7~€ij,f0ri =1,...,nandj =1,...,nmq,
as follows:
Ru(uW) = vy, it p® = plV,

- , . : (37
Rij(,u(z)) =1, if = ,u(l),i =2,...

j >, 1,

where explicit reward assignments are considered for all the
submodels M, i.e.,

Siy={s” | nes}, (38)
where u;i) is p restricted to M;.
Hence, applying Equation (37) to Equation (24) yields
5 T, =y €S,
R (p) =< 7 ! 39
J (1) {O otherwise, (39)
being
5 5 Dy 5 2 5 n
RjH 1) = R (5") - R (5”) - R (115™)
=r;-1-...-1=r;,

From Equations (27) and (39) it is immediate to derive
the definition of R, which is equal to the definition given
in Equation (36) for R. This proves that R and R have the
same modeling power. Therefore, for a given model and some
given reward variables, the same measures of interest can be
modeled using both reward functions. In particular, the mapping
from Equation (28) to Equation (3) is trivial, and similarly is
the mapping from Equation (31) to Equation (1).

IV. IMPLICIT REWARD MODEL AND SOLUTION AT MARKOV
CHAIN LEVEL

As shown in the bottom right corner of Figure 2, this
section presents the implicit expressions based on the Kronecker
Algebra that directly map the rewards and measures defined at
the stochastic Petri net level to the corresponding ones at the
Markov chain level. In more detail, the develogments concern:
1) the definition of new shift matrices S** and S with respect
to [10] for dealing directly with the infinitesimal generator
matrix @ and the corresponding implicit matrix Q instead of
working with the transitions Q- among transient states; and
2) the formal definition of implicit and generic reward vectors
7, 7(0) and € 4. In particular, a new formulation is given for 7,
which has already been defined in [10], accordingly to the new
addressed measures. Then, in Section IV-B the Tensor-Trains
format to store matrices and vectors is first introduced, and
then it is shown how it is exploited in the solution methodology
proposed to evaluate the measures.

A. Implicit modeling through Kronecker Algebra

As shown in Figure 1, the SSPN model M under considera-
tion is described in terms of a certain number of interacting
submodels M;. The number n,., of reachable states in the
underlying Markov chain often depends exponentially on the
number of such submodels. This affects the computational com-
plexity of numerically dealing with such stochastic processes,
and is a phenomenon known as curse of dimensionality. Several
strategies have been proposed to overcome this difficulty, and



mostly rely on tensor representation of the data; we refer the
reader to the survey [27] for further details on this matter.

These approaches find representations of the infinitesimal
generator with a reduced set of parameters. Among these strate-
gies, referred to as implicit, the Kronecker based ones [14] fit
particularly well with the logical structure of the systems under
analysis and the properties of matrices and vectors described
in Section II-B. In the following, the SAN formalism [13],
[18] will be adopted.

Instead of studying directly the Markov chain underlying
the system model M, as done in Section II-B, exploring
the state-space S and addressing the Markov chain {X (t)},
here it is taken into account that the model M is structured
in n interacting submodels. Thus, the underlying Markov
chain is represented by {X(t) | t > 0}, where X(t) =
(XD (), ..., X)), {XO(t) e 0 } is the Markov chain
underlylng M and SO is the state-space of M.

Let S = SM x ... x 8 be the potential state-space!.
Notice that S includes the actual state- space S, i.e., there
exists an injection ® such that <I>(S) C S. In order to
define Q, the infinitesimal generator matrix of {X )}, trough
sums and products of Kronecker, {X (t)} is represented by
the SAN formalism [18] as a set of n stochastic automata

= {M,,...,M,} interacting through synchronization
transitions. Each M represents { X ()(¢)} as a (small) reachable
set of states S() and two types of transitions, which map
directly those of the corresponding high level model M;: local
transitions, which are local to M; and impact only on S, and
synchronization transitions, which can appear in, and 1mpact
on, more than one J\Zfi.

Also, following the SAN formalism, and under reasonable
conditions, it is possible to guarantee that the stochastic process
X(t ( ) Wthh spans S, is indistinguishable from X (¢). A®) =
{a1 ,a2 feen IAWI} C SO denotes the set of absorbing
states for the cham {(XD@#)}, A= AW x ... x A™ denotes
the set of potential absorbing states, and notice that ¢ (.A) = A
Exploiting the Kronecker product on two matrices A = [a;;] €
R™*™ and B € R"** defined as:

a1B  a12B a1, B
A ® B — : c Rmhxnk
am1 B amaB Gmn B

it is possible to express formally the implicit state probability
7(0) as:

7#(0) =7V 0) o 7P (0)®...@ 7™ (0),

imposing that Wj(-i)(O) =0if j € AD. Instead, Q, the implicit
infinitesimal generator matrix of {X (¢)}, is expressed in terms
of a compressed representation called descriptor matrix, as:

Q=R+W+A,

! Although we mention the space of potential states, adopted notation and
solution method do not distinguish reachable states from unreachable ones,
being based on both implicit vectors and implicit matrices.

where
R- R
i=1

ST is the set of all synchronization transitions, and R and
W are | S| x |S®)| matrices that represent, respectively, the
local contribution (i.e., Mi limited to the local transitions only)
and the synchronization contribution (i.e., the impact of each
synchronization transition on each M;). A is the diagonal
matrix defined as A = —diag((R + W)e)). The operator
@ is the Kronecker sum. A complete characterization can be
found in [14]. Also, the implicit reward column vector 7 =
(ry,...,7, )" is obtained from the explicit SPN level reward
function 7~2¢j, switching from sum of products of Equation (27)
to sums of Kronecker products as follows for each state s € S
with § = (s1,...,8n):

(40)

W = Z éW(E’i),

£€ST i=1

nri n
— § 7]
S15:-458n ®r51'

Fs=T (41)
j—1 =1
where, fixed ¢ and j,
R (@Y if @ = @ (1)
7:;73 ) Ry (') ifp . ps; € 8, (42)
i 0 otherwise,

where £\ is the s;-th element of ()

A clear correspondence is then established between f/t(ﬁ’,)
and V;(7), and Y;(R) and Y;(7), as detailed in Appendices A
and B. As in [10], if each X()(¢) has a single absorbing
state, then X (¢) has a single absorbing state. In addition, if
the absorbing state of X (?)(¢) is the last state in S(*) for each
i =1,...,n, then (because of the lexicographical ordering
dlctated by the Kronecker product) the absorbing state of
X (t) is the last state in S. This can be extended to the case of
multiple absorbing states, i.e., to a generic set A, with |.4] > 0.

Switching from explicit to implicit representation, the
implicit submatrix QT’ corresponding to the submatrix Q.-
used in Section II-B in the explicit expressions for the measures
of interest, is infeasible to be defined through a permutation
of the original matrix @ that switches the last states with the
states in A. Instead, the shift matrix SA, defined as:

Q(diag(e ) + 1),

where I is the identity matrix, is introduced so that

R

since the inverse of a block diagonal matrix is a block diagonal
matrix whose blocks are the inverse of those of the original
matrix. Then

~m'(0)(Q~5") " diag(r)
=~ (0)Q7 diag(r) +75(0) -0
= -1 (0)Q7 diag(r ).

SA = (43)

-1

(@-s%)"

(44)



Thus, applying Equation (44), Equations (13), (18) and (19)
can be rewritten by replacing w2 (0), Q1 and 7 with 7w (0),
Q — S* and r, respectively, obtaining:

my, = kl(=1)*xT — S Mdiag(r))* !
ke = K(=1)"m" (0)(Q — S )(Qd_:gg(A;)_lr 45)
E[Yoo(R) and X (c0) = a]
= 77 (0)(Q — S ding(r)(@ — 54) vy, O
m,(00) = —m7(0)(Q — §*) ! 47)

Introducing € = e®...®e, €4 =€ ) ®...@ e, and

observing that SA ¢ orresponds exactly to S*4, i.e.,
54 = Q- (diag(e 4))®- - -®diag(e 4 ) +HI®: - -®I), (48)

the implicit expressions of Equations (45) to (47) can be easily
defined replacing the explicit symbols with the corresponding
implicit ones and obtaining respectively:

My = KI(=1)*7T(0)((Q — 87) ' diag(#))"

ﬁ-a(oo) = _ﬁ'T(O)(Q - gA)ilééaa

where €, is the implicit vector corresponding to e, and Qéa =
(vT,0,...,0)T. Here, it can be appreciated the ability to define
€, implicitly in terms of Kronecker products because it directly

relates to the implicit indicator random variable IS . Particular
cases of Equations (49) and (50) are:
m(Ta) = (-D'7T(0)(Q - 8 (e —ey).  (52)
E[T4and X (o) = a] = 7#7(0)(Q — §4)72Qé,. (53)

The implicit formulas for MI{TA|B and 7z (00) can be easily
obtained by replacing €, (or the corresponding v,) with €,
(or wpg) in Equations (50) and (51), with €z = ZaeB €,

All the manipulations of this subsection preserve the Kro-
necker structure, and in particular the evaluation of Equa-
tions (45), (50) and (51) takes advantage of that.

B. Solution method

The computation method presented in [23], [26], [28] can
be easily generalized to the evaluation of Equations (45)
to (47), following an approach similar to that adopted to
evaluate Equation (13), which is based on the solution of
a chain of at least one linear system and then a dot product,
as shown in Equations (14) and (15). In order to adapt the
explicit computation of Equations (45) to (47) to implicitly
evaluate Equations (49) to (51) it is necessary to choose a
compressed representation of Q. 54, 7T7(0), 7, the implicit
solution vectors Z(*) and in general all the data structures
involved in the solution of the linear systems. In fact, the
product of sums of Kronecker products can be represented as
the sum of Kronecker products, but the number of addends

is so high that, in the long run, it soon becomes too large to
handle without compression.

For the computations in this paper the tensor trains repre-
sentation has been selected and adopted also for vectors as
detailed below, thus extending the tensor trains representation
proposed in [10]. Recalling that the potential state-space S is
the Cartesian product of the component state spaces S*) for
i =1,...,n, each vector u = (uq,.. .,u5‘) involved in the
solution of Equations (49) to (51) can be expressed in fensor
form, as an array w with n indices, such that uy, = u, . An
approximate low-rank representation for this tensor u, known
as a Canonic Polyadic Decomposition (CPD), is

~ A
Uy by, ™ E :“kl ®

JeT

~J
.. Uy,

where, for some finite index set Z, the minimal cardinality of
T is the tensor rank of the approximation of @. Unfortunately,
computing such approximation can be rather challenging, both
from the mathematical and numerical perspective [27].

Hence, several alternative low-rank formats have been
proposed over the years for tensors. In this work, the Tensor
Train (TT) format is considered [29]. A fast Tensor Train
Singular Value Decomposition (TT-SVD) [29] can be designed,
which allows to perform recompression of the tensors under
consideration after performing arithmetic operation. Thus,
iterative methods for solving linear systems are enabled in
this context. In particular, if the low-rank structure is preserved
throughout the computations, this format allows to avoid the
exponential complexity in the number of dimensions.

A tensor train representation of the tensor form of a vector
i is a collection of order 3 tensors A" of size Pi XN X Pit1
such that> p; = p, = 1, and

(1) (2)
Z Nl ka1, hl'/\/hl ko,hy

hi,o.hn—1

(n)
N n 17kn71'

(54
The tensors N are called carriages, hence the name fensor
train [29]. The tuple (pa,...,pn—1) is called the TT-rank of
the tensor u.

Similarly, matrices |S| x |S| can be represented as tensors
by subdividing the row and column indices. More precisely, a
matrix A € C™"nX"™"n can be viewed (up to permutmg
the indices) as a larger vector of the vector space Crix--xn,
This vector can be stored in the TT-format as described in (54).
Such an arrangement makes computing matrix-vector product
and matrix-matrix product relatively simple to implement; we
refer the reader to [29] for further details.

After each matrix-vector multiplication and vector-vector or
matrix-matrix addition, the TT-rank tends to grow and then
managing the data structure is more and more computationally
intensive. Likely, it is possible to round all the tensor trains,
applying the TT-SVD decomposition, so that the TT-rank is
made closer to the actual amount of information stored within
the tensors.

Uky,okn =

2In particular, ND and N are matrices, instead of order 3 tensors,
because they have one dimension with only 1 index.



It can be easily proved that any Kronecker sum with ¢
terms yields a tensor train vector of TT-ranks bounded by ¢
(component-wise). More specifically, the tensor rank (obtained
through the CPD decomposition) is always a component-wise
bound for the TT-ranks. Hence, to efficiently exploit this
structure one should make sure that in Equation (27) the
number np is not too large. Throughout the iterations, the
ranks are kept under control by repeatedly recompressing the
tensors using the TT-SVD decomposition, as described above.
The experiments have shown that the ranks tend to remain
bounded when the topology of the network is close to a linear
graph. This closely mimics the order of multiplication in the
carriages of the tensor train representation. It can be conjectured
that, in case of more complex topologies, it may be beneficial
to consider tensor representations obtained by constructing
carriages with indices multiplied with similar interconnections;
examples include tensor networks and the hierarchical Tucker
format. For further information on these more complex data-
structures, the reader is referred to [27].

The original explicit and implicit definitions of the shift
matrices S and S'A, as shown in Equations (43) and (48),
respectively, promote the adoption of a different solver with
respect to that used in [10], where a different definition of shift
matrix is proposed. In particular, among the two most known
linear system solvers already available for the tensor trains
(DMRG and AMEn), here AMEn [30] has been selected. AMEn
is an iterative optimization-based solver. In each iteration, it
selects one by one, back and forth, the n dimensions of the
problem and minimizes the residue in the selected dimension.
The key idea is to maintain the TT-ranks sufficiently small
during the iterations to allow AMEn to cover enough search
space. How small the TT-ranks should be depends on the
available RAM, while how many iterations are needed to reach
the desired precision depends on the model at hand. As for all
optimization methods, sometimes the procedure stagnates in a
local minimum and then no acceptable solution is obtained.

From the above description, model characteristics that are
expected to impact the performance of the method are:

MCI1: the number of submodels n. This corresponds to the
number of carriages in TT format for matrices and vectors
and has no direct effect on the TT ranks,

MC2: the number of synchronization transitions |S7|. The
TT-ranks can grow sensibly after an addition (even after
rounding), so the number of addends in Equation (40)
directly impacts on the memory footprint of the vectors,

MC3: the number mp of non-zero reward values that con-
tribute to R(x) in Equation (27). As for |ST|, additions
can lead to intractable TT-ranks,

MC4: the number of absorbing states |5| involved in condi-
tioned measures,

MCS: dimension and complexity (seen from the SVD point of
view) of R() and W (&9 in Equation (40). As it will be
discussed in Section VII, only if the memory occupancy
of Q is negligible with respect to that of the vectors the
method has chances to be useful in practice,

MC6: stiffness. Many solution methods can have troubles if

the ratio between the largest and smallest rate in the
infinitesimal generator matrix is large. This may arise
in dependability models, for example, when fault (error)
handling (recovery) rates are several orders of magnitude
(sometimes 108 times) larger than fault (error) occurrence
rates [31]. Stiffness impacts on TT rounding too.

The kind of system models, where the presented method is
expected to perform at best, is that with a large number of
simple submodels, where |ST| ~ n, the reward structures
involve small values of my (e.g., [10]) and only relatively few
of the absorbing states are of interest.

The implementation of the solution method has been written
in MATLAB [32] and is freely available.

V. CASE STUDY

To better understand how the method of Section IV-B
behaves, a parametric case study has been designed taking
into account realistic scenarios on the one hand, and the
possibility of varying those parameters that are expected to have
impact on the performance of the system analysis on the other
hand. In order to quantitatively assess the impact of the model
characteristics MC1-MC6 discussed above, the organization of
the case study accounts for submodels of increasing complexity,
two scenarios (each one characterized by different values of
|ST]), two reward structures (one for the time to absorption
and the other for a more general performability measure) and
a tunable B.

A. Case study description

The case study consists of a computer system composed of n
interconnected components Cy, ..., C,, properly functioning at
time 0, but that can be affected by erroneous status (caused by
software or hardware faults), and equipped with error detection
and recovery capabilities. Each component provides a certain
service, the correctness of which may depend on the (state)
information it receives from other components. Interconnections
between components can be logical or physical. An intercon-
nection is the ability to receive or send service state information.
The components are constrained to communicate only with
certain other components, for example for security reasons.
Error propagation consists of sending and receiving messages
with incorrect information, which makes the recipient’s state
inconsistent (erroneous) with the service it must provide.

In a properly functioning component C;, a fault occurs after
an exponentially distributed random time with rate A” and leads
to an erroneous component state. In a component C, exhibiting
an erroneous state, two random events can occur after an
exponentially distributed random time with rate A and A\FZ,
respectively: the manifestation of the error or the propagation
of the error to those components directly interconnected to it.
When the error manifests itself, a component C; may: 1) detect
the erroneous state, with coverage 7;, and attempt to recover
the correct state, or 2) not detect the erroneous state, with

3Code available at https:/github.com/numpi/kaes. Specifically, the AMEn
solver is amen_block_solve provided by the https:/github.com/oseledets/
TT-Toolbox.



probability 1 —mn);, and move into an unsafe state, corresponding
to a permanent failure of C; (service failure) denoted by F¢.
The recovery ends after an exponentially distributed random
time with rate )\ZR. It is successful with some coverage (;,
when C; returns to be properly functioning; otherwise, with
probability 1 — ¢;, C; moves in a safe state where the service
is stopped, corresponding to a permanent failure of C; denoted
by Fp. To further differentiate the components, we assume
that the first k& components Cq,...,Cx, with 0 < k < n, can
be affected by both Fp and F¢ failures. The remaining n — k
components can be affected only by Fp failures, i.e., n; =1

fori =k+1,...,n. The random times considered in each C;
are stochastically independent.
Let A; = hy,ha,... ks, and A; = {j1,J2,...,75} be,

respectively, the list of the ¢; indices of the components towards
which the error of €; can propagate and the list of the §;
indices of the components whose error can propagate to C;.
The topology of interactions among components is given by
the n x n adjacency matrix 7 = [T;;], where 7;; = 1 if
j € Ay, else T;; = 0. Thus, T defines an oriented graph that
represents how the n components depend on each other and
how they are connected to form the overall system.

Two system failure models are considered, thus originating
two different scenarios from the analysis point of view.

In Scenariol, the system continues to work after the
occurrence of Fo or Fp failures, although in a degraded
manner, until all components fail.

In Scenario2, F¢ is associated to the catastrophic failure
of the overall system, while Fp is considered a benign
failure of the component. The system continues to work even
after the occurrence of Fp failures, although in a degraded
manner, until the first 7 failure or until the Fp failure of
all components. Moreover in Scenario2, each C; is structured
in two stochastically independent units, each of which can
be affected by error, such that one or two erroneous states
may occur, be detected and recovered. Each unit behaves like
the individual component described above, but when an error
propagates to those components directly interconnected to it,
both units of these components move to an erroneous state.

This class of systems is sufficiently representative of some
real systems, for example a multi-service internet platform,
where components are grouped by different service providers
(banking, sales, transportation, etc.) so that not all components
can communicate with all the others, for reasons of security or
even existing physical interconnection. Another realistic exam-
ple could be an electrical system, where the components are
substations grouped by different operators that interact for the
control of the electrical network and therefore communications
between components are constrained by privacy reasons, so
not everyone can communicate with everyone else.

B. Models of the case study

The system of the case study is modeled through the SSPN
formalism. The overall model is obtained composing the
submodels M; for ¢ = 1,...,n, exploiting the transition-
synchronization approach, as dictated by the SSPN formalism.

The submodels for Scenariol and Scenario2 are depicted in
Figures 3 and 4, respectively.

#Di+#W;

Fig. 3. Scenariol: SSPN model M;. Pattern-filled transitions are synchro-
nized based on the topology.

Fig. 4. Scenario2: SSPN model M;. Shaded and pattern-filled transitions are
synchronization transitions, with the latter synchronized based on the topology.

In Figure 3, the places W; (initialized with one token), E;,
D;, B; and C; (initialized with no token) are local to M, and
represent the states where, respectively, ©; works properly (one
token in W;), C; is affected by an error (one token in E;), C;
has detected the error (one token in D);), an Fp (one token in
B;) and an F¢ (one token in C;) failure occurred.

The exponentially distributed transitions T'F;, T'D;, TW;
and T'B; are local to M; and represent, respectively: the time
to the occurrence of an error from the state where C; works
properly (i.e., W; = 1), the time to detect the error (when F; =
1), the time to recover from the erroneous state (when D; = 1)
and the time to the occurrence of Fp failure (when B; = 1).
The transitions TEF; and TEP;, with kK = 1,...,6; are
synchronization transitions used to synchronize the submodels
M;, i.e., to propagate the error that affects C; to its neighbors
and the error that affects each neighbor to C;. T'E'P; represents
the exponentially distributed time to the propagation of the
error to Cp,, with h € A,. TEP, is replicated in M; and My,
for each h € A;. In each Mj,, it exists a transition TEP;, with
Jx = 1, synchronized with T'E P;, that propagates the failure
occurred in M;. The transitions TEP;, foreach k =1,...,6;



represent the time to the propagation of the error from C;, to
C;. Each transition T EP;, is replicated in M; and M), with
jr € Ay. In each M; exists a transition TEP), with j, = h,
synchronized with T'E'P;, , that represents the error propagation
from C;, to C;.

A synchronized transition is enabled when it, and all the
transitions synchronized with it, have concession. As shown
in Figure 3, the transition T'E'P; has concession when there
is one token in the place E;. All the transitions T'EP;, , for
k=1,...,0;, always have concession, being the multiplicity
of each input arc equal to #D; or #W;, i.e., the number of

tokens in the corresponding input place D; and W;, respectively.

Thus, T E P; is enabled as soon as there is one token in £;. The
firing of T'E P; occurs simultaneously in M; and Mj,, for each
h € A;. In M;, the firing of T'EP; removes the token from E;
and adds one token to F/;, thus the erroneous state of M; does
not change. In M}, as shown in Figures 3 and 4 replacing 7
with h, the firing of TEP;, , with j; = 4, removes the token
from W}, or Dy, (if any, notice that 0 < #W), + #Dp, < 1)
and adds #W}, +# Dy, tokens to Ej,. Thus the error of C; only
propagates to the not yet failed Cp (#W), =1 or #Dy =1,
i.e., #Wpy 4+ #Djp, = 1), and without adding new tokens to E},
when the state of €, is already undetected erroneous, i.e., if
#En, =1 and #Wy+#D), = 0. The exponentially distributed
transition T'C}; is local to M; in Scenariol and represents the
time to the occurrence of the F¢ failure (when E; = 1).

In Figure 4 the place W, is initialized with 2 tokens,
representing the state in which both units of C; are working
correctly. Thus, compared to the model of Figure 3, the places
FE;, D; and B; can also contain 2 tokens. Transitions have a
transition rate that depends on the tokens in the input place,
as shown in Figure 4. Moreover, differently from Figure 3,
TC; is synchronized with T'C}, for h # i. Thus, the firing
of T'C}, occurs simultaneously with the firing of T'C; with
i # h, removing the tokens from D;, F; and W; and adding
one token to C;. The opposite happens for the firing of T'C;.
The inhibitor arc from C; disables T'C; after the first firing.

Notice that Scenariol and Scenario2 are characterized by
a different number of synchronization transitions and a different
number of absorbing states (reflecting model characteristics
MC2 and MC4, respectively).

C. Measures of interest

The definition of the measures of interest has been guided
by the objective of assessing: i) the ability of the approach to
cope with a good variety of analysis needs; ii) the utility of the
k-moments instead of just the mean and variance; and iii) the
efficiency of the model solution technique. To this purpose,
the measure evaluated for both case studies is:

M1: the first 4 moments of T4, exploited to compute MTTF,
Var(T4), skewness and kurtosis, useful to gain insights
on the “shape” of the distribution of 74 [33]. Here, the
reward structure is the one detailed in Appendix F3.

Additional measures, specific for the two scenarios, have

been also considered. In particular, for Scenariol, the MTTF

conditioned to the following configurations is evaluated:

SIM2: the first 4 moments of Y., where, similarly to the
example shown in Appendix F1, the reward structure is

Rij(p) =3, if #W; =1,i=j=1,...,n,
Rij(u) =1, if #D; =1, i=45=1,...,n,
Rij(p)=1,ifi#jandi,j=1,...,n,
i.e., in each component, the working state produces a gain
of 3, the error detection produces a gain of 1 and all the
other states produce no gain.
SIM3: MRTA, 3, where all components end up in Fg. It
is evaluated considering the reward structure detailed in
Appendix F3 and, labeling the first £ components as

the ones with two absorbing states, the indicator random
variables are defined by

BY ={u!) | #B; = 0, #C; = 1},
BY ={ul | #C; =1},

i=1,....k
i=k+1,...,n.
SIM4: k in Fp and n — k components in Fc. Here
BY ={D | #B; = 1, #C; = 0},
BY ={ul | #Ci =1},

i=1,...,k,
i=k+1,...,n.

S1MS5: MRTA‘ B, where 1 component moves to Fp and n —1
components move to F¢, namely among the & components
that can experience both F¢ and Fp only one ends up
in Fp. Here

BW =un_ {pu|#B;=1,#C;i =0, h=i
OI'#BZ:O,#Cl:].,h#Z},Z:L,k
BY = {u|#C;=1},i=k+1,...,n

S1IM6: 2 components move to Fp and n—2 components move
to F¢. Here, the indicator random variable is similar to

the one defined in SIMS, but there are () addends.

In Scenario2 the reward structures and indicator functions
are similar to those of Scenariol, so they are not listed. Of
course the interpretation is completely different. In particular:

S2M2: the first 4 moments of Y, where, in each component,
if there is at least a working subcomponent then the gain
is 3, if an error is detected then the gain is 1, otherwise
the gain is 0.

S2M3: there is a catastrophic failure before the components
can experience benign failure.

S2M4: all components end up in Fp, i.e., no catastrophic
failure.

S2MS5: before the catastrophic failure, exactly one component
experiences a benign failure.

S2M6: before the catastrophic failure, exactly two components
experience a benign failure.

VI. NUMERICAL EXPERIMENTS

Fixed one hour as the unit of measure for time, the
exponential distribution parameters of each M; have been
selected at random in the ranges: A € [0.45,0.55] (about
once every two hours), AP € [0.013,0.014] (about once every



72 hours), A¥ € [0.0015,0.0025] (about once every 21 days),
AEP €[0.013,0.017] (about once every 3 days), and (; = 0.2.

Regarding the parameters n and 7, first n has been chosen
equal to 3, and all M, have the same 7 that spans [0.99, 0.999];
then, n is increased from 3 to 20, and 7; is set to 0.995.
This parameters choice allows to account for the model’s
characteristics CM1 and CM6 (increasing number of models
and stiff models, being the ratio between largest and smallest
rate in  more than 10%).

In order to enhance consistency among the results, the
topology for n = 20 has been first generated (7 is depicted
in Figure 5) and then the topologies for 6 < n < 19 are
extracted from that one (upper left submatrices of 7). In order
to keep the number of synchronizations low, and guarantee that
the topology is connected for all n, 7 is almost tridiagonal.
Although artificial, having to adapt it to different numbers of
components, the proposed topology is sufficiently varied and
complex to represent real systems, as already discussed when
describing the case study.

Fig. 5. Topology for n = 20.

An important role is expected to be played by k because
it impacts on the number of absorbing states and then, in
particular for Scenariol, on the probability of entering in one
of them. If this probability is smaller than the required precision,
then AMEn is expected to have troubles finding the correct
solution. In order to consider models that are increasingly
difficult to be solved, k£ has been chosen directly proportional
to n. For the figures and tables shown in this section, k = n /2.

The computations have been performed on a node of a cluster
with two Intel(R) Xeon(R) CPU ES5-2650 v4 @ 2.20GHz
processors each. The processes have been limited to 19 GB of
RAM and 4 threads each, with a time limit of 48 hours.

Since the focus of the evaluation is to assess the performance
of the method, among all the analyses carried out to study
Scenariol and Scenario2 only a selection is discussed here.

A. Evaluation results

In Figure 6, M1 is shown for Scenariol at increasing of
n. As expected, the MTTF increases, and it is interesting that
also its variability increases. Figure 6b shows that the left tail
of T4 is longer and, at increasing of n, the asymmetry of the
distribution increases. Kurtosis decreases, i.e., the propensity
to produce outliers decreases. The 4 moments of 7T 4 present
a sort of “regularization”, and in particular E[T4] increases
and tends to stabilize while Var(74) is a little more shaky, as
expected considering the influence of the topology. The results
confirm also the role of node 14 that, by inspection of Figure 5,
can be identified as a “turning point” in the topology.

Results obtained for S2M2 are further elaborated for eval-
uating skewness and kurtosis that are shown in Figure 7 for
Scenario2, for n=3 and at increasing of 7. In particular, it can
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Fig. 6. Scenariol: (a) values of E[T 4] and Var(7T 4), and (b) skewness and
kurtosis, for n = 0.995 at increasing of n.
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Fig. 7. Scenario2: (a) values of E[Yoo(R)] and Var(Yoo(R)), and (b)
skewness and kurtosis, for n = 3 at increasing of 7.

be observed that 1 has a great impact on }700(7%), not only on

E[Y4(R)] but also on the distribution shape.

B. Performance of the method

Time related indicators are shown in Tables I and III, while
Table II is related to the evaluation of the TT-ranks. Overall,
they are representative of the efficiency of the proposed solution
method, and the reported values confirm the expected behavior.

Notice that the evaluation of my(T4) and my(Yoo(r))
requires the solution of 1,2,3 or 4 linear systems of huge
dimension and AMEn is either able to solve them all within
the defined timeout, or it is not able to find a solution already
for the first linear system. For SIM2, 7 is

T=TReR...e+eRTR...e+...+eR...0eF,

where 7 = (3,0,1,0,0). It can be proven that 7 has TT-rank
bounded by 2 (see Appendix E). This favourably impacts on
the performance of the method. Actually, in the performed
computations, the max TT-rank of the solution vector is 22, a
small value as expected.

In the numerical evaluations reported in Table I, for n greater
than 14, AMEn was not able to converge because it remains
trapped in a region characterized by a large error.

The computations for SIM3-6 deserve special comments.
In particular, in SIM3 the TT-ranks are expected to remain
low, in SIM4-S1M6 the TT-ranks are expected to be slightly
larger because of the increasing complexity of the indicator
random variable. Similarly for S2M4-S2M6 compared to S2M3.
Table II confirms the expectation, so AMEn easily explores
the search space even for models with a huge state-space.
Table III, read by column, shows that as n increases the time



TABLE I
WALL-CLOCK TIME (IN SECONDS) REQUIRED TO EVALUATE THE FIRST 4
MOMENTS OF Yoo (7) (M2) AT INCREASING OF n. THE VALUE O INDICATES
A TIME BELOW 1 SECOND.

TABLE 111
WALL-CLOCK TIME (IN SECONDS) REQUIRED TO EVALUATE
S1M3-6 AND S2M3-6 AT INCREASING OF n.
THE VALUE 0 INDICATES A TIME BELOW 1 SECOND.

Scenariol Scenario2 Scenariol Scenario2
n | m1 e ms i m1 M2 M3 M4 n | SIM3 SIM4 SIM5 SIM6 | S2M3 S2M4 S2M5 S2M6
3 1 0 0 0 1 0 1 1 3 1 1 1 0 1 1 1 1
4 1 0 0 0 3 16 29 42 4 1 1 1 1 3 32 12 64
5 1 1 1 1 16 127 264 412 5 1 1 1 1 48 271 279 523
6 1 3 5 8 28 193 476 704 6 1 2 2 3 197 736 449 1328
7 2 11 23 35 16 266 775 954 7 2 2 3 4 251 1222 709 2175
8 4 25 63 101 41 421 821 1707 8 2 7 5 13 370 1970 841 4421
9 5 42 114 182 284 578 1229 2073 9 2 10 7 19 542 3790 898 7706
10 | 12 80 196 321 340 704 1553 2505 10 2 31 19 55 627 8215 1737 11048
11 | 20 119 361 648 409 898 2188 3924 11 7 58 31 110 798 9617 3178 14525
12 | 75 199 523 956 464 1054 2127 4868 12 7 181 57 172 634 14645 4895 21654
13 | 35 273 1674 12490 | 526 1610 2809 5075 13 13 329 7 411 561 17489 6278 32455
14 | 550 3561 7526 13062 | 1313 2452 5572 10436 14 | 70 13634 568 3714
15 261 1672 10811
16 175 1052 12359
17 | 186 1410 35767
TABLE II 18 | 876
MAX TT-RANK REQUIRED TO EVALUATE 19 | 870
S1M3-6 AND S2M3-6 AT INCREASING OF 7. 20 | 1212

Scenariol Scenario2
n S1M3 S1M4 S1IM5 SIM6 | S2M3 S2M4 S2M5 S2M6
3 7 7 7 7 9 12 12 12
4 13 15 14 15 25 49 30 50
5 13 17 16 17 30 68 46 62
6 15 24 18 20 40 86 68 78
7 17 20 21 22 40 89 66 76
8 18 31 23 31 42 90 65 78
9 19 31 24 33 41 104 58 85
10 18 41 26 37 44 135 67 86
11 | 26 38 28 34 41 132 59 76
12 23 48 33 36 34 135 56 72
13 129 52 33 42 33 128 52 65
14 37 98 48 63
15 | 41 59 68
16 39 56 73
17 | 44 53 80
18 | 58
19 | 56
20 | 59

to convergence of AMEn increases, but in a complex way that
is not easy to predict. It is also evident that Scenariol and
Scenario?2 differ in terms of characteristics MC2 and MCS5,
being the latter more complex than the former. An important
role is played by k. If a higher value of k is considered, e.g.,
k = 3/4 - n, then the max TT-rank remains almost the same
but AMEn is slower for all n and has troubles finding solutions
starting from n = 18 in Scenariol.

Notice that, even though the computations required for SIM3
(Table III) are quite similar to those of the second moment
of M2 (Table I), AMEn performs differently, confirming that
an optimization-based solver can be highly sensitive to the
problem at hand.

C. Final considerations

As a form of validation of the new solution method,
comparisons with alternative techniques have been carried
out, for tractable system configurations. As an example, for
n = k = 4, S can be explicitly constructed and stored in
memory because |S| is equal to 5% = 625 for Scenariol
and 10* + 2% = 10016 for Scenario2. This allowed to verify
that the results obtained with the presented implicit approach
and those obtained with the classical explicit approach are in
agreement up to the desired numerical error*.

As n increases, the explicit representation of Q becomes
infeasible, promoting the adoption of the implicit descriptor
matrix Q but typically the solution vector remains explicit
in currently available solutions (see Section VII on related
work). For the considered case study, when n = 14 each
vector requires about 11 Gigabytes for Scenariol and when
n = 10 about 19 Gigabytes for Scenario2. When n = 16,
for Scenariol, each vector requires about 280 Gigabytes,
and when n = 17 it is unfeasible to store vectors explicitly,
since each one requires about 1.2 Petabytes. Thus, the method
presented here is —to the best of the authors’ knowledge—
the only one able to evaluate the defined measures of interest.
It needs also to be recalled that literature studies on implicit
representations mostly focus on availability analysis, differently
from the reliability perspective taken in this paper.

It has also been checked that, for large models, specific
entries of the reward vector 7, that are expected to be (non)zero
and can be evaluated exploiting Kronecker product properties,
actually match the expectations.

4Both the spantree method provided by https:/github.com/numpi/kaes
and the analytical solvers of Mobius [34] have been exercised.



VII. RELATED WORK

Modularity and composability are well established concepts
within the modeling community. They require adequate for-
malisms to be applicable in practice, both from the modeling
and solution perspectives. To this purpose, many approaches
have been proposed, resulting in a vast and scattered literature.
In this section, the focus will be only on those papers that show
a direct link with the work developed in the previous sections,
according to the following organization in four subtopics.

A. Implicit model as joint submodels trough Kronecker Algebra

Considering the explicit-implicit axis of Figure 2, in this
paper the focus has been on the descriptor matrix (Kronecker
product) approach formulated a few decades ago (e.g., in [12],
[13]), and for which there was active research for several
years, as documented in the survey in [14]. Two key aspects
distinguish this paper from previous work: i) the relationship
between the system model and the synchronization of its parts,
ii) the properties of the infinitesimal generator matrix.

Concerning point i), the approach in the literature has been to
first define the system model, exploiting high level formalisms
as in [35]-[37], then cut it into pieces (not necessarily related
to the system logical architecture), each one transformed into
an SAN, and finally solved. Instead, here the focus is on system
components and their modeling, possibly exploiting template
models, so the approach is reversed. Since current trend in
modeling large systems is to rely on template based modeling
and related compositional operators (e.g., [8], [9]), the proposed
approach is more suitable.

Related to point ii), the vast majority of the papers assumes
an (implicit) irreducible infinitesimal generator matrix, since
their Markov chains derive from availability or performance
models. Instead, here the focus is on CTMC with absorbing
states that derive from reliability models, so the infinitesimal
generator matrix is reducible. This triggered the new definition
of the shift matrix (Equation (43)) to cope with matrix
invertibility.

B. Implicit matrices and vectors

Initial studies on implicit representations focused on an
implicit representation of matrices and explicit representation
of vectors. However, this requires clever implementations
of the matrix-vector product, as in the shuffle, slice and
split algorithms [38] implemented in PEPS®, or strategies
implemented in Nsolve® [39]. As pointed out in [14], [40],
the main limitation of working with explicit vectors is that,
for models with huge state-space, the memory occupancy
of the vectors supersedes that of the matrices, making the
solution infeasible in practice. None of the available mitigation
strategies, such as storing data on hard drives and load small
chunks of them only when needed [41], [42], seem to be
able to balance memory with computation time for very large
models. This triggered studies on strategies to deal with implicit
representation of the solution vector.

Shttp://www-id.imag fr/Logiciels/peps
Shttps://Is4-www.cs.tu-dortmund.de/download/buchholz/Programs/Nsolve

Representing (Y as the sum of Kronecker products, in
analogy to Equation (41), through the steps of Equation (14)
is infeasible because the addends double after a matrix-vector
multiplication. To the best of the authors’ knowledge, so far
only two representations have been exploited to address this
issue: Tucker decomposition, at the moment only exploited
for irreducible @ produced by availability or performance
models [43], and Tensor Trains or matrix product states, for
irreducible @ first employed in [44] and for reducible @
in [10]. The first strategy helps to reduce the complexity
in case of components with a large number of states, but
does not solve the curse of dimensionality: the storage is still
exponential in the number of components. The latter, instead,
along with similar strategies such as the hierarchical Tucker
decomposition [45], [46], reduces the complexity of most
arithmetic operations to be linear in the number of components,
and polynomial in the tensor-train-rank, which is often bounded
in practice. Only recently the dependability community started
exploring descriptor vectors. In [44] the same symbolic vector
representation of this paper [29] is employed together with
standard numerical solvers, such as AMEn [30].

In this paper a new systematic way to implicitly define reward
vectors is introduced, moving from the simple one defined in
[10]. In addition to the obtained higher computational efficiency,
this extension is needed to determine higher moments of the
random variable the measures of interest are based on.

C. Other forms of “implicit” representation

In the literature, several other approaches to implicit rep-
resentation have been proposed. Among them, variants of
the multi-valued decision diagrams as data structure and
the saturation algorithm [47], [48] to explore the state-space
are the most commonly investigated. Also, combinations of
Multi Decision Diagrams and Kronecker Algebra have been
successfully exploited, such as matrix diagram presented in
[36], implemented (together with other strategies) in the Meddly
library” and exploited by several tools, such as SMART? [40]
and GreatSPN® [49]. However, notice that in such approaches
the vectors are stored explicitly, so they experience the already
discussed issues.

D. Formalisms to express reward structures

Concerning the measures of interest, this paper adapted the
perspective of the work in [19], to the implicit definition of
rewards, focusing on, and generalizing, a specific class of
measures: the (Conditional) MTTF as worked out in [23], [24].

Other approaches have been extensively investigated in
the literature. A highly impacting line of research is the
definition of Continuous Stochastic Logic (CSL) started in
[50] within the context of model checking, where not only
single states are considered, but also paths are addressed.
Popular tools, such as PRISM'® and Storm!', implement

7https://github.com/asminer/meddly.git
8https://github.com/asminer/smart.git
“https://github.com/greatspn/SOURCES..git
10https://www.prismmodelchecker.org
https://www.stormchecker.org



extensions of this temporal logic. In particular, they allow
to define both conditional probabilities and cumulative reward
till absorption on submodels, hence many of the measures
addressed in this paper are expressible in the CSL formalism.
However, the concept of implicit solution vector is not yet
available in techniques for the solution of CSL models, and the
representation of the reward vector is not exploited at level of
boosting efficiency of the model solution. Moreover, to the best
of the authors’ knowledge, there is no direct way of expressing
higher moments of the random variable of interest (indirectly,
this is always possible, but cumbersome). It is expected that
the approach in this paper can stimulate the related community
to develop similar extensions.

The template-based metamodel approach presented in [9]
also allows to define rewards on submodels, but again there
is no characterization of such representation with direct
exploitable benefit at level of solvers’ performance.

VIII. CONCLUSIONS AND FUTURE WORK

This paper addressed implicit reward structures definition
in the context of Markov Reliability modeling. The major
achievements are: i) the definition of a high-level implicit
reward structure based on submodels, given concisely in terms
of the reward structure on top of each SSPN submodel; ii) a
technique based on Kronecker algebra and Tensor Trains to
numerically solve a SAN reward model with multiple absorbing
states, deriving formulas to express and assess the k-moments of
instant-of-time or interval-of-time reward variables to absorbing
states; iii) the characterization of the relation that allows the
automatic generation of the Markov reward model and the
formulas used for the solution from the corresponding reward
model and measures, concisely described at level of SSPN. The
effectiveness of the proposed approach has been demonstrated
on a rather sophisticated case study, considering a variety of
scenarios and measures of interest. Both the dimension of
the system under analysis and the performance of the method
reached interesting levels. Of course, to better consolidate such
outcomes, a more extensive evaluation campaign considering
other system configurations would be desirable, planned as
next step of this study.

Moving from the current developments, extensions are fore-
seen in several directions. Among the most immediate subject
of future work there is the exploration of the SGSPN [13]
formalism to describe the submodels and their interactions,
adopting the approach proposed in [28] to synchronize imme-
diate transitions. Moreover, methods to ensure that the model
at level of Petri net meets the requirements of the solution
method are worth investigating. Deepening the study of how
to tune the parameters of the approach (mainly, the truncation
parameter) is also relevant to pursue.

Recently, the evaluation of performability measures has been
recasted to the evaluation of bilinear forms characterized by
matrix functions [51], where matrices and vector are treated ex-
plicitly. Trying to merge the contribution of this paper with the
theory of matrix function appears an interesting investigation,
enlarging the perspective on implicit representation.

The focus of this paper is on Reliability models (CTMC
with absorbing states), but the contribution of Section III can
be adapted to define reward and measures for Availability
and Performance models (CTMC with irreducible infinitesimal
generator matrix).

Another extension would be to consider more general models.
In this respect, it is relatively straightforward to apply the
method presented here to semi-Markov models, following [52],
since the DTMC structure is untouched (only the sojourn
time can be generally distributed). Also Markov Regenerative
Processes [26] can be considered, but the adoption of the results
discussed here is more challenging.

Another promising research line is to extend the proposed
approach in the context of probabilistic model checking.

Finally, in this paper the standard Kronecker algebra has
been adopted, but the theory of SAN has already considered a
generalized Kronecker algebra in which the rate of synchroniza-
tion transition can be a function of components’ state variables,
following a given order among components. So, it would be
interesting to investigate how to adapt the proposed solution
method to address this generalization.
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APPENDIX

A. Deriving formulas for Vo (7%) and Yo (73)

The implicit formulation of Equation (5) is

VR =S R - T

HES i=1

being the logic AND represented through the product of the
indicators in each submodel. Then, expanding R (i) as in



Equation (27), it is obtained

nmo n n

) = 3 (TR t) - T1
pes  j=li=1 pale}
~ 3 (T Ru™) -T2
pes j=1 i=1 bl
=35 (TTRu®) I “m)v (55)
peS j=1 i=1

that proves Equation (30). To obtain Equation (28) just notice

that
=S ru- [T

HES

where the integral of the product of the indicators is the sojourn
time. The final step for obtaining the formula consists in
exploiting the linearity of the integral.

B. Verifying correspondence between high and low level
rewards

Embedding X () (¢) into RISI through the Kronecker product
e, ®---®e, ,for §=(s1,...,5,) €8, it is possible to

S1
T
® esn) :

write:

where 7 is defined in Equation (41) and the same reasoning on
the AND of indicators of Appendix A applies. Thus, exploiting
well known properties of the Kronecker product,

= Y S @)

]l

> IIiree

s1€SM) ... 5,€8(M) i=1

Vi) = (

b

..... Sn J
- > Il
S81,..,8n J =1

that is equal to Equation (55), taking advantage of Equation (42).

For ?OO(F) the same reasoning of Appendix A applies.

C. Moments of Yoo (1)
Applying the matrix function theory to Equation (9) yields:

el@r wi | ws Wy,
i - [T g |
0 ... o]0 oo 1

~(56)
where w, = Q7'(e!97 — I)v, for a € A. From the
requirement that r equals to zero on A, it follows that
w7 (0)e'Qr = wX(0)e!Q7r . Then, recalling Equation (12)

and E[Y = [ Y (r) dP, swapping the order of integra-
tion and knowrng the formal solution of Equation (10), it is
possible to write:

E[Yoo(r)] _//Oooe)T((t)mdtdIP’
—/()m(/eﬁ(t)dp> ~rdt—/oooﬂ'T(t)~rdt

= / 77(0)e'%rdt = —nL(0)QF r .
0
Notice that w, has no role in the computation of E[Yy(r)],
but it is important for my (Yoo(r)) when k£ > 1. The argument
for the second moment of Y, (7) is the same as the one for
k > 1, so in the following it is assumed that k = 2.

By a change of variable, the integral ([ f (t)drt)2 can
be rewritten as ([ f(t)dt) - ([ f(s)ds) and then as
J f(t)f(s)dtds. This enables swapping the expected value
and the 1ntegral over dtds as for the expected value of Y, (7),
obtaining from Equation (12):

ma (Yoo (1)) = 15:[(/oo rX(t)dtﬂ

/ / Tx(t)rx( )]dtdS

In the upper right Cartesian plane, where coordinates
t,s > 0, the regions {(¢,s)[t > s} and {(¢,s)|s > t} are
indistinguishable from the point of view of 7y (47 x(5) because
this expression remains unchanged under the reflection with
respect to the line ¢ = s. Thus:

r)) = 2// E[rx)rx(s)] dtds.
{(t,8)s>t}

Exploiting the Markov property and the homogeneity of the
CTMC, ¢ may be considered as the new origin of time, which
allows to compute the probability of being in a given state at

time s — ¢ as:
P{X(s—t)=7,X(0)=i}= eZ-Te(S‘”QeJ

and then
2 m()
Hence, mg(Yoo(r)) may be expressed as

mo(Yoo(r)) = /000 w(t)(/too els7Qp ds)dt,

where w(t) = 77 (0)e!?diag(r). Solving the integrals with
the help of Equation (56) yields:

ma (Yoo (1)) = 277-(0)Q7 " diag(r) Q77

For k > 2 the reasoning is the same, but with the addition of
two observations:

Elrxwrx(s)) = r,P{X(s—1t)=4,X(0) = i}rj

T (s—t)Q
Te (& ejrj



« Every time an integral of this kind is solved, a multiplica-
tive factor —1 has to be considered. This explains the
presence of the factor (—1)* in Equation (13).

o Counting the reflections that leave r X(t) T X (1) UD-
changed, which are k!, justifies the factorial in Equa-
tion (13).

D. Evaluate MRTA|,

The closed formula for MRTA |, can be derived following a
path similar to the one adopted to obtain mo (Yoo (7)) starting
from E[Y,,(7)]. In particular:

E[Ys(R) and X (c0) = d]

:/0 > P{X(u) =k, X(t) = a} du
k

t
=n1(0) / ¢"Qdiag(r)e* "9 due,,
0
and, exploiting Equation (56), to

(o) | e i) du
0

S+ A
0 ]e“’

where

t
&= / Q7 diag(r1) Q7 e "9y, du,
0

¢
®= —/ e“QTdiag(rT)Q}lva du.
0

For t — oo it is easy to observe that & goes to zero and &

goes to erldiag(rT)erlva. Then, Equation (18) is proved.
A proof of Equation (19) can be found in [26], but an easier

derivation (based on Equation (56)) is the following:

. — tim T —1(,tQr_ _
tlg(r)lcﬂa(t) tlifgoﬂ'T(O)QT (e"97—I)v,

Notice that the reasoning presented in [26] for deriving the
formula for MTTF|, cannot be easily generalized to address
MRTA|,. Therefore, the related developments presented in this
paper are original.

E. TT-ranks bound for some relevant vectors

It can be proven that, for any vector #, vectors of the form
r=rReR..Qe+eRrx..Qe+...+tex®.. e+

where e is the vector of all ones, have TT-ranks bounded by
2. Indeed, if the TT-ranks are (p1,...,pn—1), then

Ph = rank(ril7-~7ih;ih+1=--<773n,)7 h=1,...,n—1,

where the indices denote the reshaping of the vector 7 in a
matrix where the first h indices are grouped as row indices,
and the rest as column indices [29, Theorem 2.1]. Each addend
defining 7 appears as a rank 1 term uv? in Tir o inging1seins
where either u or v is equal to e. Hence, this matrix has rank
bounded by 2.

F. Examples of reward and measures

All the examples presented in this Appendix are based on
the SPN scheme shown in Figure 1.

—72(0)QF v,

1) Marking-dependent reward rate: An example of marking-
dependent reward rate with n;y = 1, used to evaluate the reward
obtained accumulating the number of tokens in the places Wy
and Fj1, is given by:

7311(11) =#E, + #Wy,

where an explicit reward assignment is only considered for
the submodel My, ie., 811 = {u | #E1 = e, #W; =
w, ¥ e,w € N} and Si1 = 0 for i = 2,...,n. In this case,
from Equations (25), (26) and (57) it is derived that:

. 1 o
7’%11(/”’(1)) = #El + #Wl lf M( ) E 811’
0 otherwise.

(57)

~ ) 1 if u® ¢ 8@
R“(M(Z)):{ tH < ’Z'ZQ...,TL.

0 otherwise.
(58)

Hence, applying Equation (58) to Equations (24) and (27)
yields:

. ﬁn()_ #E, +#Wp if pes,
K 0 otherwise,

being

Ri' (1)
= Rn(u(l)) ~R21(u(2)) o

In this example, the value of m depends on the number of
tokens # F; and #W; that can be assigned to the places F;
and W, respectively, for each marking of the SPN.

2) Minimal conditional accumulated time to absorption
between two submodels: Another example of reward rate with
mm = n = 1, used to evaluate the minimal conditional
accumulated time MR~TA‘ p to absorption between the two
submodels M; and M conditioned by the event that one of
the two submodels reached the absorbing marking, is given by
the following definition:

Rur (™) = #Ey + #Wy.

Ri(pD) =1, if #B; = 0,#C; =0, i=1,...n, (59)

where explicit reward assignments are only considered for all
submodels, i.e., 8;1 = {/L(i) | #B; = 0,#C; = 0}. In this
case, from Equations (24) to (27) and (59) it is derived that:
R(p) = Ri' (1)
1 i #B; =0,#C; =0, Vi=1,...,n,
0 otherwise,

being, for each p such that #B; = 0,#C; =0, Vi=1,...,n:

RY (1)
— Ru(/t(l)) . 'Rm(u("))
=1.-...-1=1.

To obtain B, which represents the event that one of the
two submodels M; and M; reached the absorbing marking,



is enough to apply Equation (22) to B(*) and B\) defined as
follows:
BY = {u) | #B; = 1,#C; = 0 or #B, = 0,#C; = 1},
BY = (D) | #B; = 1,#C; =0 or #B; = 0,#C; = 1}.
3) Accumulated time to absorption of the last among all
the submodels: Of particular interest is the example of reward
rate with ny = 2, used to evaluate the moments M, 7 = of

the accumulated time to absorption of the last among all the
submodels, that is given by:

R (p) =1,

Riz(pM) = =1, if #B; = 1,#C1 = 0,

Riz(uV) = —1, if #B; = 0, #C1 =1,

Rio(pV) =1, if #B; = 1, #C; =0, i=2,...,n,
Ria(uV) =1, if #B; = 0,#C; =1, i =2,...,n,

(60)

where explicit reward assignments are considered for My, i.e.,
S11 = 8M, and for all the submodels M;, i.e., S;5 = {,u(i) |
#B, =1, #C; =0o0r #B; =0,#C; =1} fori=1,...,n.

In this case, from Equations (24) to (26) and (60) it is derived
that:

. 1 ifpues

RI = ’ 61
1 () {O otherwise, ©1)

- —1 if p ey,

RY(n) = 62
2 () { 0 otherwise, ©2)

being, for each p € §:
R () = Ru(u) .- R (™) =1+ 1= 1,

and, for each u € So:

RE (1) = Raz(pV) - Rao(u®) -+
=11 1=—1,

R ( M(") )

where p() € 8;5,i =1,...,n, and 83 = U {u® | u® € 8;5}
is the set of markings for which all submodels have reached
an absorbing state.

Hence, applying Equations (61) and (62) to Equation (27)
yields:

1 if u=S§,
—1 if p e 8y,
0 otherwise,

R(u) = (63)

where

« for each marking that satisfies the first case condition, the
SPN can be in any marking,

« for each marking that satisfies the second case condition,
all submodels M; have reached an absorbing state (one
token in B; or in C;),

« the third case condition includes the markings for which
there is at least one submodel that has not reached an
absorbing state.

The mean time to absorption of the last among all the
submodels is evalutated by M, =~ = E[Yo(R)]. In fact,

considering that Y = Y, then applying Equation (63) to Equa-
tion (3) and the definition of mean of random variable yields:

E[Yoe(R)] = E[Yu(R)] = E[ Y R(n) - J]

HES
=> R(u) E[J4]
HES
=>"1-E[J4]+ Y —1-E[J%] (from Equation (63))
HES HESs
= Y EULl+ Y EUL]- D E[JL]
ne8\82 HES2 HES2
= Y E[J4), (64)
nES\ 82

Equation (64) expresses the total time the SPN is in all markings
such that there is at least one submodel that has not reached
an absorbing state during [0, co], obtained as the difference
between:
« the total time the SPN is in all reachable markings during
0, oc].
« the total time the SPN is in all markings such that all
submodels have reached an absorbing state during [0, oc].
Informally, since the reward variable is defined in Equa-
tion (3) by summing up the reward obtained for each marking,
the reward obtained at each instant of time is:
o 7@(#) =1,ifpe S\Sg, i.e., there is at least one submodel
that has not reached an absorbing state, or
. 7@(”) =1-1=0,if p €8, C8, ie., all submodels
have reached an absorbing state.
Therefore, the accumulated reward is the time to absorption of
all submodels.

G. Acronyms and Symbols

CTMC Continuous Time Markov Chain

GSPN Generalized Stochastic Petri Net

MRTA Mean Reward To Absorption

MTTF Mean Time To Failure

SAN Stochastic Automata Network

SGSPN Superposed GSPN

SPN Stochastic Petri Net

SSPN Superposed SPN

TT Tensor Train

TT-SVD Tensor Train Singular Value Decomposition

a Absorbing state

A Set of all absorbing markings (states) of M

A Set of all potential absorbing states of M;

AL Set of all absorbing states restricted to M;

B Subset of absorbing states

MRTA 5 Conditional mean reward to absorption given
that the model eventually absorbs into B

MR~TA‘ B Implicit notation for MRTA |5

MTTF 5 Conditional mean time to failure given that the

model eventually absorbs into B



i

Gi
diag(r)
e e

€i,€;

M;, M;

M. r
Moz,

Mg, Mg r

1, 1
n

T

ni

mm

[zs
Treachs Tlabs
P

N
#(p, 1), #p
p, P

m(t), 7(t)

3
\‘l
=

]
S =
83

wcn?\_]i?@
s [l

Coverage of the error detection in C;
Coverage of the error recovery in C;
Diagonal matrix D = [d;;] such that d;; = r;
Column vector of all ones, and corresponding
implicit vector

i-th element of the standard basis R"~=h and
corresponding implicit element

Permanent failure of C; when error recovery
fails

Permanent failure of C; when an erroneous
status is not detected

Identity matrix

Indicator random variable representing the
event that the SPN is the marking p at time ¢
Random variable counting the total time the
SPN spends in the marking p during the
interval of time [0, t]

System model at Petri net level, and underlying
implicit SAN model

i-th SPN model, and underlying implicit SAN
model

Explicit k-moment at Petri net level

Implicit k-moment at Petri net level

Explicit and implicit k-moment at Markov
chain level

Marking of M, and marking restricted to M;
Number of system submodels

Number of reachable states of S(*)

Number of 7@? functions used in the definition
of R()

Total number of non-zero reward values defined
by all the functions 7@?

Cardinality of §

Number of reachable and absorbing states
Set of all functions p: P — N

Number of tokens in place p in marking p
Generic place of M and set of all places of M
State probability vector at time ¢, and corre-
sponding implicit vector

Vector 7r(t) restricted to the transient states T
Probability that M eventually absorbs into B
Implicit notation for 7z (co)

Generator and descriptor matrix

Submatrix of @) restricted to transient states
Explicit and implicit reward at Petri net level
Set of all reachable markings of M

Subset of § including only markings with non-
zero rewards attached

Reward associated to the marking of M; con-
tributing as a factor to 7%11

Addend contributing to R

Explicit and implicit reward vector at Markov
chain level

Vector r restricted to the transient states 7~
Shift matrix and corresponding descriptor
Reachable states of M;

ST
T,S,S
Ta
TT-rank

Voos Voo

Set of all synchronization transitions
Transient, reachable and potential states

Time to absorption

Positive integers po, ..., pnp—1 such that p; X
n; X pi+1 1s the size of the order 3 tensor N (i),
fori=2,...,n—1

Instantaneous reward variable at infinite time,
and corresponding implicit notation

Column vector with the rates from the transient
states to the i-th absorbing state

Markov chain underlying the SPN model
Solution of the ¢-th linear system QT:c(i) =
diag(r)z~Y with Qz(V) =r

Implicit Markov chain underlying the SPN
Reward accumulated in transient states until
absorbtion, and corresponding implict notation
Conditional reward accumulated until absorb-
tion given that some absorbing markings B are
reached, and corresponding implict notation



