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A B S T R A C T

Behavioral variant frontotemporal dementia (bvFTD) is a neurodegenerative syndrome whose clinical diagnosis
remains a challenging task especially in the early stage of the disease. Currently, the presence of frontal and
anterior temporal lobe atrophies on magnetic resonance imaging (MRI) is part of the diagnostic criteria for
bvFTD. However, MRI data processing is usually dependent on the acquisition device and mostly require
human-assisted crafting of feature extraction. Following the impressive improvements of deep architectures,
in this study we report on bvFTD identification using various classes of artificial neural networks, and present
the results we achieved on classification accuracy and obliviousness on acquisition devices using extensive
hyperparameter search. In particular, we will demonstrate the stability and generalization of different deep
networks based on the attention mechanism, where data intra-mixing confers models the ability to identify the
disorder even on MRI data in inter-device settings, i.e., on data produced by different acquisition devices and
without model fine tuning, as shown from the very encouraging performance evaluations that dramatically
reach and overcome the 90% value on the AuROC and balanced accuracy metrics.
1. Introduction

Frontotemporal lobar degeneration is the second most frequent
cause of early onset dementia [1]. Behavioral variant of frontotemporal
dementia (bvFTD) represents the most frequent phenotype [2,3] and
is associated with progressive behavioral impairment and changes in
personality [4]. In the past years, evidences of frontotemporal atrophy
on Magnetic Resonance Imaging (MRI) have been proposed as a useful
biomarker to improve the specificity of bvFTD diagnosis, often difficult
due to the clinical overlap with other neurodegenerative conditions
and/or psychiatric disorders.

Several machine learning techniques have been applied to distin-
guish bvFTD from healthy controls (HC) using MRI-based features to
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define new imaging biomarkers in diagnostic criteria. Although these
investigations showed moderate or high accuracy in the identification
of bvFTD patients, however, most of these studies were conducted in
small samples [5] and only one work considered an independent vali-
dation cohort [6], limiting the generalizability of the results. Moreover,
the input features used in the classification models are often obtained
by non-trivial images analyses making difficult to translate the results
into clinical practice.

Deep learning overcomes some limitations about the preprocessing
steps dealing with raw or semi-raw data and enable to explore the
complexity of sample as much as possible. Recent findings suggest that
the problem of differential diagnosis in the field of neurodegenerative
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disease [7–9] can be solved using deep network architectures thanks to
its capability to explore MRI features in terms of major depth, width
and inter-layer connections of the networks, extracting hierarchical
features that represent different levels of abstraction in a data-driven
manner.

In this work, we study the potentiality of different preprocessing
pipelines and deep network architectures for bvFTD identification. By
analyzing the input 3D image only, we show that deep networks, espe-
cially the kind that intra-mix image features, offer significant outcomes
and insights to bvFTD identification, providing a methodology able
to reach and overcome the 90% value in both AuROC and balanced
accuracy in inter-device generalization settings, i.e., on data produced by
different acquisition devices and without model fine tuning.

In summary, our contributions are:

• the analysis of volume cropping, voxel normalization, and per-
ROI processing on the performance of machine learning pipelines,

• the comparison of several deep learning models, from simple
baselines to modern attention-based and data intra-mixing archi-
tectures, for classification from MR imaging, and

• the inspection of generalization capabilities and convergence sta-
bility among different runs and hyperparameter setups using
datasets coming from multiple acquisition scanners.

We start by introducing previous works in Section 2, then we
overview the schema of deep networks we used in Section 3. In Sec-
tion 4 the datasets are presented, while in Section 5 we show our
approach to the problem and discuss our experiments in Section 6.
Results are reported in Section 7, and conclude in Section 8 with an
insight on future directions.

2. Related work

Machine learning techniques based on morphometric analysis have
been widely used in order to find diagnostic biomarkers for bvFTD
showing great potential as demonstrated by several recent scientific
developments [5,10,11]. In particular, Moller et al. [6] and Mayer
et al. [12] applied support vector machine (SVM) classification to
predict diagnosis of bvFTD with high accuracy, respectively 85% in a
whole brain setting on a separate test set for the first paper and of up to
84.6% in a ROI approach focusing on frontotemporal, insular regions,
and basal ganglia in comparison with the whole brain approach. Bachli
et al. [13] used a logistic regression classifier based on multimodal
features such as cognitive scores (executive functions and cognitive
screening) and brain atrophy measures (VBM from fronto-temporo-
insular regions in bvFTD) to identify the most relevant characteristics
in predicting the incidence of bvFTD respect to normal subjects. Test-
ing the algorithm on different cohorts, they achieved an accuracy of
up to 90%. A multimodal computational approach was also used by
Donnelly-Kehoe et al. [14] to identify patients with bvFTD by analyzing
sMRI and resting-state functional connectivity from 44 patients with
bvFTD and 60 healthy controls (across three imaging centers with
different acquisition protocols). The approach used by the authors
achieved classification accuracy of 91% across all centers by exploiting
site normalization, native space feature extraction, and a random forest
classifier.

Despite the optimal results obtained with classical machine learning
model, the existing techniques of differential diagnosis of bvFTD rely
on some manual preprocessing of data like features extraction and
selection expert-dependent. In the recent years some researchers have
tried new implementations with deep learning approach that allows to
overcome these problems in the differential diagnosis of neurodegener-
ative diseases [15–19]. Specifically, Gong et al. [20] used a lightweight
fully convolutional neural network architecture to predict age from
brain MRI scans in the Predictive Analytic Challenge (PAC) 2019. The
dataset consisted of label-known training/validation datasets (2638
2

subjects in total) and a ‘‘true’’ test set of 660 subjects whose labels were t
unknown to the competition participants. Spasov et al. [7] presented a
novel deep learning architecture aiming at identifying mild cognitive
impairment (MCI) patients who have a high likelihood of developing
AD within 3 years. In this work, the developed deep learning pro-
cedures combined structural MRI, demographic, neuropsychological,
and APOe4 genetic data as input measures. The convolutional neural
network (CNN) employed fewer parameters than other deep learn-
ing architectures which significantly limited data-overfitting (550,000
network parameters, which is orders of magnitude lower than other
network designs). Basaia et al. [8] presented a CNN with similar aim us-
ing combination of two database (an international database (ADNI) and
your institutional set) to validate the results. Their approach provided
a powerful tool for the automatic individual patient diagnosis along the
AD continuum. Deep learning techniques have been also applied by Hu
et al. [9] to solve the differential diagnosis problem of FTD and AD. In
this study, the authors trained a deep neural network directly using
raw T1 images (from two publicly available databases, i.e., the ADNI
and the NIFD) to classify FTD, AD and corresponding NCs (normal
controls), yielding an accuracy of 91.83% based on the most common
T1-weighted sequence.

The work we present here offers very encouraging outcomes on the
subject of bvFTD identification, with results that reach and dramatically
overcome the 91.0% value of AuROC and balanced accuracy in inter-
device generalization settings, that is, on data produced by different
acquisition devices and without any fine-tuned training of the proposed
models.

3. Classification and deep network architectures

The problem of identifying the presence of bvFTD disease from a
set of MR images is what is called a classification task. In Computer
Science, the topic of classification consists in assigning a certain label
to a particular input instance. Due to its complexity, this task is one
of the most studied problems to which artificial intelligence research,
and in particular the machine learning branch, have been involved
since its beginning. Although lot of working solutions that rely on
human-crafted features extracted from input data have been proposed
(e.g., support vector machines [21,22] or random forests [23]), we
decide to focus our study on the de-facto superior performance hereby
shown by deep artificial neural networks [24], exploiting their ability
to learn more accurate representations from raw data.

In general, the proposed methods follow the standard binary clas-
sification pipeline : first the data is preprocessed (e.g., ad-hoc and
statistical normalization), then feed to a specific classifier (in our case,
a neural network), from whose output the final data label is extracted
(e.g., by thresholding). In our scenario, we consider three-dimensional
input images representing the patient’s head volume, each regularly
structured as a 3D grid of volume elements, or voxels, as an analogy to
pixels in 2D images.

As shown in Section 6.1, we take into account several architectures,
from simple regressors to more complex solutions like convolutional or
attention-based networks, as introduced hereafter.

Logistic regressor. As baseline, we consider binary logistic regression
directly from voxels in which we model the following relation:

𝑝(𝑦 = bvFTD|𝑋) = LinReg(𝑋,𝛩) = 𝜎

(

∑

𝑣∈Vol
𝑤𝑣𝑥𝑣 + 𝑏

)

, (1)

here
{

𝑥𝑣
}

𝑣∈Vol = 𝑋 ∈ R𝐷×𝐻×𝑊 is the input volume, 𝛩 =
{

𝑤𝑣, 𝑏
}

re the model parameters, and 𝜎 is the sigmoid function. In the neural
etwork framework, this model can be seen as a single-neuron, single-
ayer network (e.g., perceptron) with sigmoid activation operating on

he array of the flattened volume voxels.
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Multi-Layer Perceptron (MLP). Multi-layer networks are the foundation
f deep representation learning, as building a hierarchy of representa-
ions improves the ability to express and learn high-level patterns in
ata [25,26]. Multi-Layer Perceptron (MLP) models consist of multiple
ayers of perceptrons interleaved with non-linear activations; the last
ayer can be adapted to produce the desired output — 𝑝(𝑦 = bvFTD|𝑋)
n our scenario. Formally,

(𝑦 = bvFTD|𝑋) = MLP(𝑋,𝛩) = 𝜎(𝐰𝑜 ⋅ 𝐡(𝐿) + 𝑏𝑜) (2)

𝐡(𝑖) = 𝜎(𝑊 (𝑖)𝐡(𝑖−1) + 𝐛(𝑖)) , 𝑖 ∈ [1, 𝐿] (3)

𝐡(0) = 𝑋 , (4)

here 𝐿 is the network depth i.e. number of layers, 𝛩 = {𝑊𝑖,𝐛𝑖,𝐰𝐿, 𝑏𝐿}
re the model parameters, 𝐡𝑖 is the output of the 𝑖th layer, 𝜎 is a
on-linear function applied element-wise, and 𝑋 is the input.

D convolutional network. Convolutional networks are multi-layer deep
etworks particularly suitable for modeling spatial local properties
n data. Indeed, they shine in recognition tasks with grid-structured
ata like images, audio, video, and also volumetric data [27]. For
olumetric data, networks comprise 3D convolutions — an operation
e can summarize as a sliding-window dot product between a small
× 𝑘 × 𝑘 cubic kernel and the input volume. Each 3D convolution

pplies multiple kernels and thus produces a multi-channel volume
ollecting the results for each kernel and for each kernel position in
he input space. A 3D convolutional network is defined as a cascade of
D convolution layers interleaved with non-linear activation functions.
ormally,

(𝑦 = bvFTD|𝑋) = ConvNet3D(𝑋,𝛩) = 𝜎(𝐰𝑜 ⋅𝐇(𝐿) + 𝑏𝑜) (5)

𝐇(𝑖) = 𝜎(Conv3D(𝐇(𝑖−1), 𝜃(𝑖))) , 𝑖 ∈ [1, 𝐿] (6)

𝐇(0) = 𝑋 , (7)

here 𝑋 is the input volume, 𝜃(𝑖) are the weights of the 𝑖th convo-
utional layer, 𝐇(𝑖) is the 𝑖th intermediate volume, and 𝐰𝑜, 𝑏𝑜 are the
eights of the final linear layer.

ision transformer. As occur in natural language processing (NLP),
dentifying dependencies among words in a phrase is a key requirement
or understanding the underlying semantic. To this end, researchers
ried to express this interconnection by introducing the concept of re-
urrent processing within neural architectures, especially for sequence
nalysis with Recurrent Neural Networks [28] and Long short-term
emory [29]. However, passing state between successive computation

locks amplified the gradient vanishing issue, thus reducing depen-
ency propagation. To solve this problem, the attention mechanism
as introduced in the form of an encoder–decoder network called
ransformer [30]. In the encoder part, the idea is to enrich every
tem (e.g., words or tokens) of the input sequence with information
oming from all other items. This context augmentation is provided by
sequential group of encoding blocks. More in detail, every input 𝑛-

imensional token 𝑡𝑖 will first produce query, key, and value vectors with
earned linear operations:

=
⎡

⎢

⎢

⎣

𝑡1
⋮
𝑡𝑘

⎤

⎥

⎥

⎦

, 𝑄 = 𝑋𝑊 𝑄, 𝐾 = 𝑋𝑊 𝐾 , 𝑉 = 𝑋𝑊 𝑉 .

Then, the attention matrix is calculated as

ttention(𝑄,𝐾, 𝑉 ) = softmax
(

𝑄𝐾𝑇
√

𝑛

)

𝑉 ,

where the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 output represents the scaled 𝑠𝑐𝑜𝑟𝑒 matrix of all
possible token pairs. By translating from NLP to image processing,
Dosovitskiy et al. [31] extrapolated the encoder part and designed the
Vision Transformer (ViT), an architecture that reinterprets the concept
of image tokens [32] by translating it on a sequence of embedded
image patches obtained by partitioning the image into a uniform grid of
3

s

rectangular pixel cells, which are then used to feed the network. Given
the generalization introduced by patches, this procedure can naturally
be extended to any number of input dimensions (i.e., 3 in our context).

MLP-mixer. Starting from the idea of patches introduced with ViT, the
MLP-Mixer architecture [33] begins with tokens partitioned from the
input, and conveys them on a set of cascaded layers that, basically,
intermix the data as it occurs in cross attention modules. Differently
from convolutional and attention mechanisms, the MLP-Mixer uses only
multi-layer perceptrons layers to operate on tokens directly and across
them. In particular, each layer is composed of two MLPs, where the first
processes each token independently, and the second intermixes previ-
ous output in a linear operation. Amongst them, layer normalization
and residual skips keep controlling the gradient flow:

𝑈∗,𝑖 = 𝑋∗,𝑖 +𝑊2𝜎(𝑊1𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋)∗,𝑖), for 𝑖 = 1...𝐶

𝑌𝑗,∗ = 𝑈𝑗,∗ +𝑊4𝜎(𝑊3𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋)𝑗,∗), for 𝑗 = 1...𝑆

here 𝑆 is the number of the partitioning patches of the input im-
ge, and 𝐶 is their channel dimensionality after token projection. The
omplexity of the network is linear with the number of input patches,
s opposed to the quadratic complexity of the transformer architec-
ure. This network typology proved to be surprisingly efficient in both
uality, touching the state of the art generated by convolutional and
ttention models, and quantity, by generating a significative speed-up
n throughput.

MLP. By following the observation that a static parametrization intro-
uced by an MLP can represent arbitrary functions, the gMLP architec-
ure [34] simplifies the complex structure of a transformer by replacing
he attention mechanism with a linear operation on a spatial input
rojection. The model structure is similar to the vision transformer
nd the MLP-Mixer, that is, a series of identical (but with independent
eights) encoder blocks enclosed by an input tokenization and an
utput classifier. Each encoding block is composed as

= 𝜎(𝑋𝑈 ), 𝑍̃ = 𝑠(𝑍), 𝑌 = 𝑍̃𝑉 ,

here 𝑋 ∈ R𝑛×𝑑 is the input, 𝜎 is an activation function, and 𝑠 is the
patial gating unit, defined as

(𝑍) = 𝑍1 ⊙ (𝑊𝑍2 + 𝑏)

ith ⊙ indicating element-wise multiplication, and 𝑍1, 𝑍2 represent
wo independent partition of 𝑍 along the channel dimension.

.1. A note on data intra-mixing

In general, we can classify logistic regressor, MLP, and 3D convo-
ution networks as whole-data models, that is, architectures where data
s computed as a single lump in the processing pipeline. On contrast,
isual Transformer, MLP-Mixer, and gMLP partition data (spatially
nd/or per-channel) in so called patches. By putting patches in rela-
ion to each other (e.g., the attention mechanism [30]), Dosovitskiy
t al. [31] demonstrated that the model can achieve state-of-the-art
erformances in classification tasks. We call this kind of interleaving
s data intra-mixing, as referred to internal correlation of single data
arts.

. Multiple source datasets

One of the main goal of our research was to identify a deep learning
odel that was robust enough to identify bvFTD from data coming from

ifferent acquisition devices, so we focused our gathering of exemplars
o two separate patient databases, each working with different MR

canners.
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Table 1
Datasets and splits. We used the balanced average metric to counter the imbalanced
ratio of ill and healthy patients. Statistical information is extracted from patients data
at the source level.

FTLDNI CMND

Train Test Train Test

N◦ HC 60 50 13 11
bvFTD 30 20 16 14

Age (Years) HC 62.4±7.7 63.2±7.1 63.21±5.91
bvFTD 61.3±7.5 61.3±6.8 68.23±7.65

Sex (% Female) HC 0.7 0.4 0.6
bvFTD 0.7 0.6 0.6

Participants. Data used in the preparation of this study were obtained
from two different MRI datasets: the Frontotemporal Lobar Degenera-
tion Neuroimaging Initiative (FTLDNI) database (for up-to-date infor-
mation on participation and protocol, please visit [35]), and the Center
for Neurodegenerative Diseases and the Aging Brain (CMND) database
from the Department of Clinical Research in Neurology - University of
Study ‘‘Aldo Moro’’ - Bari at Pia Foundation of Cult and Religion ‘‘Card.
G.Panico’’.

The goals of the FTLDNI, funded through the National Institute of
Aging, are to identify neuroimaging modalities and methods of analysis
for tracking frontotemporal lobar degeneration (FTLD) and to assess
the value of imaging versus other biomarkers in diagnostic roles. From
this database we included 110 healthy controls (HC) and 50 bvFTD
patients who had a valid structural T1-weighted MR images collected
only at University of California, San Francisco (UCSF), the largest
recruiting center, in order to avoid potential bias derived from different
imaging protocol. MR images were acquired on a 3T Siemens Trio Tim
system equipped with a 12-channel head coil at the UCSF Neuroscience
Imaging Center, including whole-brain three-dimensional T1 MPRAGE
(TR/TE = 2300/2.9 ms, matrix = 240 × 256 × 160, isotropic voxels =
1 mm, slice thickness = 1 mm).

The second cohort was recruited between 2017 and 2019 at the
CMND center. The dataset included 29 patients with bvFTD, diagnosed
according to Rasckoscky [4] and 24 control subjects with valid MR
images acquired on a 3T scanner (Philips Ingenia 3T) in the sagittal
plane using a Fast-Field Echo (FFE) T1-weighted sequence. The FFE
parameters were empirically optimized for gray-white contrast, with
repetition time = 8.2 ms, echo time = 3.8 ms, flip angle = 8◦, resolution

256 × 256, slices = 200 and thickness = 1 mm.
The datasets have been stratifiedly split into subsets for training and

est. Demographic information was reported in (Table 1). Before final
raining, we tuned model hyperparameters with a 5-fold evaluation
rocess.

. Method

Prior to classification, the structural MR imaging data were pre-
rocessed with default settings of the CAT12 toolbox (Structural Brain
apping Group, Jena University Hospital, Jena, Germany), includ-

ng corrections for bias-field inhomogeneities, segmentation into gray
atter (GM), white matter, and cerebrospinal fluid, followed by spa-

ial normalization to the DARTEL template in MNI space (voxel size:
.5 mm 𝑥 1.5 mm 𝑥 1.5 mm). Normalized images were modulated to
uarantee that relative volumes were preserved following the spatial
ormalization procedure. Next, for Voxel-Based-Morphometry (VBM)
urpose, the preprocessed GM data were smoothed with an 8 mm full-
idth-half-maximum (FWHM) isotropic Gaussian kernel. An optimal
ray matter mask was also generated from all smoothed images using
he SPM12 Masking toolbox and the Luo–Nichols anti-mode method of
utomatic thresholding [36].

The 3D T1-weighted image for each subject were also segmented
sing the ROI analysis tool of CAT12 to extract regional masks, and a
4

r

Table 2
Region definitions. Regions in the first line (Whole Brain and Frontotemporal)
concern single-input processing, while the following lines describe regions used in
per-ROI processing approaches.
Region vol. shape Region vol. shape

Whole Brain 121 × 145 × 121 Frontotemporal 97 × 96 × 92

Frontal Left (𝐹𝐿) Frontal Right (𝐹𝑅)

lAntOrbGy 14 × 21 × 16 rAntOrbGy 14 × 21 × 16
lCbr+Mot 14 × 30 × 32 rCbr+Mot 15 × 29 × 35
lCenOpe 25 × 24 × 22 rCenOpe 25 × 21 × 22
lFroOpe 22 × 18 × 20 rFroOpe 21 × 18 × 18
lFroPo 24 × 9 × 34 rFroPo 25 × 10 × 33
lInfFroGy 23 × 19 × 23 rInfFroGy 23 × 17 × 27
lInfFroOrbGy 22 × 21 × 19 rInfFroOrbGy 22 × 18 × 18
lMedFroCbr 12 × 28 × 12 rMedFroCbr 10 × 27 × 12
lMedOrbGy 17 × 39 × 19 rMedOrbGy 18 × 39 × 20
lMedPrcGy 17 × 17 × 31 rMedPrcGy 16 × 16 × 31
lMidFroGy 27 × 50 × 56 rMidFroGy 26 × 49 × 54
lParOpe 29 × 17 × 13 rParOpe 24 × 16 × 16
lPosOrbGy 19 × 20 × 19 rPosOrbGy 18 × 19 × 19
lPrcGy 44 × 34 × 56 rPrcGy 44 × 34 × 55
lRecGy 10 × 29 × 15 rRecGy 10 × 29 × 16
lSCA 10 × 11 × 19 rSCA 10 × 12 × 19
lSupFroGy 21 × 56 × 63 rSupFroGy 22 × 56 × 61
lSupMedFroGy 12 × 29 × 47 rSupMedFroGy 14 × 31 × 50

Subcortical Left (𝑆𝐿) Subcortical Right (𝑆𝑅)

lCau 8 × 28 × 21 rCau 9 × 28 × 20
lPut 13 × 23 × 16 rPut 13 × 23 × 16
lTha 16 × 23 × 17 rTha 16 × 22 × 16

Temporal Left (𝑇𝐿) Temporal Right (𝑇𝑅)

lAntIns 16 × 30 × 28 rAntIns 16 × 28 × 27
lFusGy 27 × 41 × 34 rFusGy 21 × 41 × 35
lInfTemGy 33 × 50 × 36 rInfTemGy 34 × 49 × 38
lPla 22 × 24 × 23 rPla 17 × 22 × 22
lPosIns 12 × 23 × 28 rPosIns 12 × 23 × 29
lSupTemGy 24 × 44 × 33 rSupTemGy 25 × 42 × 32
lTem 24 × 21 × 15 rTem 20 × 21 × 20
lTemPo 33 × 20 × 35 rTemPo 33 × 18 × 36
lTemTraGy 20 × 17 × 12 rTemTraGy 19 × 17 × 13

frontotemporal mask was created merging 60 Region-Of-Interest (ROI)
from the Neuromorphometrics atlas (supplementary table SX) [37].

As stated before, our goal is to harness deep learning to build a
predictor for bvFTD starting from voxel data coming from MRI. Given
an input volume 𝑋, we model the probability of this volume belonging
to the positive (bvFTD) group:

𝑝(𝑦 = bvFTD|𝑋) = 𝑓 (𝑋,𝛩) , (8)

here 𝑓 is learnable model parametrized by 𝛩.
We investigated several variations of the preprocessing pipeline

epicted in Fig. 1. We use two different preprocessed brain images as
nput for our models: normalized gray matter volumes (named wm),

and modulated normalized gray matter volumes (named mwp). For each
input volume, we explore three different setting for the definition of
the voxels involved in the classification task: (i) whole-brain analysis
in which all voxels in the gray matter volumes are considered as input
to the network, (ii) a customized voxel-based analysis in which voxels
belonging to the brain regions commonly affected in bvFTD are used
as input to the network (named frontotemporal mask), and (iii) ROI
analysis (see Table 2) in which each brain region associated with
bvFTD neurodegeneration is considered as an independent input to the
network. When ROI analysis is used, we modified our model such that
the final prediction was obtained by fusing the information coming
from each of the 60 regions independently processed. Formally,

𝑝(𝑦 = bvFTD|𝑋) = 𝜎
(

𝐰𝑜
[

𝑓 (1)(𝑋(1))|...|𝑓 (𝑛)(𝑋(𝑛))
]

+ 𝐛𝑜
)

, (9)

here 𝑓 (𝑖)(𝑋(𝑖)) is the output of the subnetwork applied to the 𝑖th
olume region, [⋅|⋅] indicates concatenation, and {𝐰𝑜,𝐛𝑜} are the pa-

ameters of a linear projection that fuses the subnetwork’s outputs.
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Table 3
AuROC (%, mean±std) on FTLDNI and CMND datasets. None = Whole Volume; FT = Frontotemporal Masking; ROI = Per-ROI Processing (see Fig. 1).

Data kind wm mwp

Data crop None FT ROI None FT ROI

Whitening ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Trained on FTLDNI train split — Tested on FTLDNI Test Split

Logistic regressor 93±1 74±11 93±0 67±19 94±0 93±1 63±19 51±2 55±8 50±0 91±5 95±2

MLP 94±1 94±1 92±2 93±1 95±1 91±6 73±20 77±21 87±10 95±0 91±8 96±0

ConvNet3D 82±5 93±1 89±3 94±1 89±3 86±2 92±6 93±4 96±1 96±1 95±0 93±3

ViT 78±4 88±2 90±2 85±1 94±0 95±1 82±0 90±1 89±0 95±0 96±0 95±0

MLP-Mixer 86±4 83±11 93±1 90±3 95±0 95±1 93±3 95±1 95±1 95±1 95±0 95±0

gMLP 89±6 85±2 94±2 90±1 95±1 95±1 97±1 89±4 95±2 94±1 95±1 95±0

Trained on FTLDNI train split — Tested on whole CMND

Logistic regressor 88±1 65±10 88±0 64±19 86±2 83±3 58±14 50±1 57±8 51±2 86±7 90±4

MLP 88±0 88±1 85±5 86±4 86±2 85±3 73±19 72±15 85±8 91±1 88±7 92±1

ConvNet3D 64±3 72±2 79±2 83±3 65±3 64±2 88±3 88±1 86±2 90±1 91±1 87±2

ViT 71±2 74±2 84±4 85±2 85±3 87±2 83±0 88±0 84±0 88±0 90±2 91±1

MLP-Mixer 72±6 71±3 78±3 76±7 85±3 87±1 84±5 81±4 85±2 87±2 94±0 91±1

gMLP 77±5 73±7 84±3 82±2 84±2 88±1 82±4 81±5 87±1 87±1 93±2 92±1

Trained on CMND train split — Tested on CMND Test Split

Logistic regressor 74±13 59±10 73±1 63±10 80±3 82±5 71±17 77±9 77±16 66±15 24±4 90±6

MLP 63±18 75±4 46±8 48±15 81±4 80±5 27±33 21±16 17±6 22±14 89±4 90±5

ConvNet 3D 45±2 73±8 41±5 78±8 57±4 66±6 82±17 91±2 44±42 92±3 93±2 90±6

ViT 43±10 77±2 46±17 77±4 78±6 81±3 57±34 87±1 37±32 85±2 94±1 92±1

MLP-Mixer 66±8 64±13 58±6 61±14 74±7 74±6 82±9 77±10 80±7 78±5 97±1 91±2

gMLP 73±6 73±6 59±9 58±12 78±4 80±6 89±2 87±2 82±9 89±2 94±2 93±2

Trained on CMND train split — Tested on whole FTLDNI

Logistic regressor 77±15 64±13 81±1 65±18 85±3 83±2 73±19 78±9 85±19 67±17 28±9 88±4

MLP 58±21 75±8 47±9 56±17 88±1 84±2 36±24 30±10 23±5 25±8 92±1 91±5

ConvNet 3D 36±3 43±4 45±8 75±8 68±4 67±2 73±22 91±2 48±36 94±1 94±1 90±4

ViT 41±10 74±2 47±15 78±1 87±2 91±1 59±30 84±1 42±32 91±0 90±1 91±1

MLP-Mixer 69±5 62±8 73±6 70±7 86±2 88±2 80±2 84±5 91±2 88±3 95±1 91±1

gMLP 80±4 75±6 79±5 70±8 88±2 90±2 81±2 77±1 85±1 88±2 95±1 91±1
Fig. 1. Preprocessing Pipelines. In (a) the whole volume is taken as input. In (b) and
c) regions are defined with fixed 3D binary masks: region volumes are cropped to
heir 3D bounding boxes, and the voxels outside the masked region(s) are cropped or
et to zero. We name these three configurations as None, FT, and ROI, respectively.

6. Experiments

As preliminary step, we assessed fronto-temporal brain atrophy of
bvFTD respect to HC with a VBM analysis on smoothed GM images(see
Supplementary Figure). We used different network architectures, from
5

the simplest to more complex and modern ones, and conducted several
experiments based on different settings mostly related to extensive hy-
perparameter search for model configurations and data preprocessing,
as described in the following.

6.1. Network types

We investigated the six architectures introduced in Section 3,
namely Logistic Regressors, MultiLayer Perceptrons, 3D Convolutional
Networks, Visual Transformer, MLP-Mixer, and gMLP. In the following,
we describe the implementation details of each tested architecture, as
summarized in Fig. 2.

Logistic regression. This model is composed by a single linear projection
from the voxel values to the logit (log-odds of the input belonging to
the positive group).

In the ROI configuration, each region undergoes a separate linear
projection with one output. The 60 outputs are concatenated and
projected by an additional linear layer with sigmoid activation to obtain
the final score.

Multi-layer perceptron. For MLPs, we adopt two hidden layers (𝐿 = 2
in Eq. (2)) with ReLU activations and with 100 and 50 output neurons
respectively. The network processes the flattened array of voxels and
produces the score using a single-output layer with sigmoid activation.
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Table 4
Metrics (%, mean± std) of best performing configurations (in terms of balanced accuracy) for each model and data kind. Boldface values indicates the highest values obtained
among models for a specific metric.

(a) Trained on FTLDNI train split — Tested on FTLDNI Test Split

Data Model Crop Whiten Sensitivity Specificity Bal. Accuracy AuROC

wm

Logistic regression FT ✗ 90.00±0.00 95.60±0.89 92.80±0.45 93.48±0.26
MLP FT ✓ 90.00±0.00 94.40±1.67 92.20±0.84 93.46±0.62
ConvNet 3D FT ✓ 86.00±2.24 95.60±4.34 90.80±1.10 93.70±0.63
Transformer ROI ✓ 93.00±2.74 92.00±3.74 92.50±1.27 94.64±0.74
MLP-Mixer ROI ✗ 91.00±4.18 96.80±1.10 93.90±1.71 94.54±0.38
gMLP ROI ✓ 94.00±2.24 94.80±1.79 94.40±1.14 95.36±0.61

mwp

Logistic regression ROI ✓ 94.00±2.24 96.80±4.15 95.40±1.88 94.55±2.05
MLP ROI ✓ 95.00±0.00 100.00±0.00 97.50±0.00 95.68±0.11
ConvNet 3D ROI ✗ 95.00±0.00 99.60±0.89 97.30±0.45 95.40±0.39
Transformer ROI ✗ 92.00±2.74 98.80±1.10 95.40±1.56 95.56±0.30
MLP-Mixer ROI ✗ 92.00±2.74 98.80±1.79 95.40±0.65 95.22±0.16
gMLP None ✗ 93.00±2.74 99.20±1.10 96.10±1.56 96.56±1.13

(b) Trained on FTLDNI train split — Tested on whole CMND

Data Model Crop Whiten Sensitivity Specificity Bal. Accuracy AuROC

wm

Logistic regressor FT ✗ 91.33±1.83 74.17±1.86 82.75±0.81 88.25±0.32
MLP None ✗ 88.00±2.98 81.67±3.73 84.83±0.37 88.03±0.42
ConvNet 3D FT ✓ 78.00±10.95 80.00±6.85 79.00±3.64 83.43±3.17
Transformer ROI ✓ 80.00±4.08 90.83±3.49 85.42±2.34 86.56±1.66
MLP-Mixer ROI ✓ 76.00±5.96 91.67±5.10 83.83±2.23 87.06±1.43
gMLP ROI ✓ 81.33±6.91 87.50±9.77 84.42±2.14 87.75±0.86

mwp

Logistic regressor ROI ✓ 82.67±6.41 91.67±7.22 87.17±2.44 89.75±3.69
MLP FT ✓ 88.67±2.98 90.00±3.73 89.33±0.91 91.36±0.94
ConvNet 3D ROI ✗ 88.67±3.80 90.00±3.73 89.33±0.70 91.19±0.59
Transformer ROI ✓ 83.33±8.16 93.33±7.57 88.33±2.59 91.19±0.85
MLP-Mixer ROI ✗ 83.33±6.67 95.83±5.10 89.58±1.93 93.56±0.32
gMLP ROI ✗ 92.00±1.83 90.00±3.73 91.00±2.53 92.56±2.15

(c) Trained on CMND train split — Tested on CMND Test Split

Data Model Crop Whiten Sensitivity Specificity Bal. Accuracy AuROC

wm

Logistic regressor ROI ✓ 85.71±8.75 80.00±13.48 82.86±4.90 81.95±5.00
MLP ROI ✓ 75.71±6.39 83.64±11.85 79.68±2.83 79.87±4.90
ConvNet 3D FT ✓ 91.43±5.98 69.09±13.79 80.26±5.37 77.53±8.09
ViT ROI ✓ 82.86±10.83 72.73±11.13 77.79±3.41 81.04±3.16
MLP-Mixer ROI ✓ 67.14±18.63 80.00±14.94 73.57±3.99 74.03±5.70
gMLP None ✗ 81.43±8.14 72.73±11.13 77.08±2.64 73.25±6.48

mwp

Logistic regressor ROI ✓ 92.86±8.75 81.82±12.86 87.34±4.46 89.81±5.96
MLP ROI ✓ 95.71±3.91 83.64±11.85 89.68±4.41 90.00±4.61
ConvNet 3D ROI ✗ 97.14±3.91 81.82±9.09 89.48±4.05 92.99±1.86
ViT ROI ✗ 90.00±9.58 87.27±10.37 88.64±1.66 93.64±1.48
MLP-Mixer ROI ✗ 94.29±9.31 90.91±6.43 92.60±2.77 96.75±0.80
gMLP ROI ✗ 98.57±3.19 85.45±4.98 92.01±1.97 94.42±2.08

(d) Trained on CMND train split — Tested on whole FTLDNI

Data Model Crop Whiten Sensitivity Specificity Bal. Accuracy AuROC

wm

Logistic regressor ROI ✗ 79.20±5.02 80.00±7.79 79.60±3.18 85.49±2.97
MLP ROI ✗ 75.20±4.60 87.82±3.67 81.51±1.29 87.64±1.21
ConvNet 3D FT ✓ 66.00±13.64 80.55±9.01 73.27±5.18 75.38±8.29
ViT ROI ✓ 86.80±5.22 84.00±5.36 85.40±2.17 90.72±0.78
MLP-Mixer ROI ✓ 80.40±9.84 83.45±7.88 81.93±2.74 87.65±1.71
gMLP ROI ✓ 82.80±3.63 86.55±4.61 84.67±1.94 90.22±1.68

mwp

Logistic regressor ROI ✓ 82.00±4.24 85.82±6.08 83.91±4.78 88.14±3.58
MLP ROI ✗ 90.00±3.74 84.36±5.91 87.18±1.64 91.67±0.98
ConvNet 3D FT ✓ 88.80±3.03 91.64±4.33 90.22±1.28 94.39±0.97
ViT FT ✓ 82.80±4.38 90.36±4.10 86.58±0.64 91.49±0.34
MLP-Mixer ROI ✗ 89.60±4.77 89.64±4.15 89.62±0.90 94.68±0.81
gMLP ROI ✗ 86.80±3.63 92.55±5.43 89.67±1.20 95.01±0.78
t
t

In the configuration using ROIs, we instead set the number of
ntermediate outputs of hidden layers to 100 and 10, thus obtaining
600-dimensional final representation (10 × 60 ROIs) after concate-

nation. A final linear layer with sigmoid activation produces the final
score from this concatenated representation.

3D convolutional network. We build the model with 3 convolutional
ayers (𝐿 = 3 in Eq. (5)) with number of kernels 16, 64, and 256,
espectively. All kernels are 3 × 3 × 3 with stride of 1 × 1 × 1. To lower

the memory footprint, we first downsample the input volume using a
2 × 2 × 2 average pooling operation. After each convolutional layer,
6

t

the output is downsampled using a 3D max-pool operation that reduces
its spatial extents, and then the ReLU activation is applied element-
wise. The last output is mean-pooled over the three spatial dimensions,
obtaining a single vector representation of the input volume with a
number of dimensions equals to the number of kernels of the last
convolution output. Finally, a linear layer with sigmoid activation
produces 𝑝(𝑦 = bvFTD|𝑋). During training, we apply 3D spatial dropout
o the output of the last convolutional layers with a probability of 0.5;
his randomly set to zero the entire volume related to each kernel in
he layer and helps avoiding kernel co-adaptation and overfitting.
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Table 5
Performance metrics of the SVM with different data preprocessing pipelines. None = Whole Volume; FT = Frontotemporal Masking. For the AuROC, we report confidence intervals
in gray.

Data kind wm mwp

Data crop None FT None FT

Whitening ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Trained on FTLDNI train split — Tested on FTLDNI Test Split

AuROC 94.3 [88.9–99.0] 94.3 [88.9–99.0] 96.2 [91.9–100] 96.2 [91.9–100] 96.0 [91.0–100] 96.0 [91.0–100] 95.9 [91.0–100] 95.9 [91.0–100]
Balanced accuracy 91.4 91.4 93.9 93.9 92.5 92.5 92.5 92.5
Sensitivity 85 85 90 90 85 85 85 85
Specificity 97.8 97.8 97.8 97.8 100 100 100 100

Trained on FTLDNI train split — Tested on whole CMND

AuROC 93.2 [85.7–100] 93.2 [85.7–100] 93.7 [86.6–100] 93.7 [86.6–100] 95.5 [89.5–100] 95.5 [89.5–100] 95.8 [89.0–100] 95.8 [89.9–100]
Balanced accuracy 68.3 66.7 65.0 63.3 78.3 78.3 71.7 71.7
Sensitivity 36.7 33.3 30.0 26.7 56.7 56.7 43.0 43.3
Specificity 100 100 100 100 100 100 100 100

Trained on CMND train split — Tested on CMND Test Split

AuROC 86.4 [70.8–100] 86.4 [70.8-100] 85.1 [68.9–100] 85.1 [68.9–100] 91.5 [79.1–100] 91.5 [79.1–100] 91.5 [79.1–100] 91.5 [79.1–100]
Balanced accuracy 80.2 80.2 74.7 74.9 83.8 83.8 83.8 83.8
Sensitivity 78.6 78.6 85.7 85.7 85.7 85.7 85.7 85.7
Specificity 88.1 88.1 63.6 63.6 81.8 81.8 81.8 81.8

Trained on CMND train split — Tested on whole FTLDNI

AuROC 93.4 [89.6–97.1] 93.4 [89.6–97.1] 94.6 [91.3–97.9] 94.6 [91.3–97.9] 89.5 [84.6–94.3] 89.5 [84.6–94.3] 93.9 [90.4–97.5] 93.9 [90.4–97.5]
Balanced accuracy 83.9 63.3 85.1 54.7 81.7 81.7 85.1 85.1
Sensitivity 86 98 94 98 70 70 76 76
Specificity 81.9 28.6 76.2 11 93.3 93.3 94.3 94.3
Fig. 2. Architectures of the evaluated networks. Starting from the simple Logistic Regressor (a), we explored various neural models, considering the Multi-Layer Perceptron (b), 3D
Convolution (c), and the more recent Visual Transformer (d), MLP-mixer (e), and gMLP (f). In each case, the input 3D medical image is flattened or tokenized before entering the
actual network. For region-based classification, each network is replicated (with an independent set of weights) after region extraction, and their output is then linearly processed
for the final classification label (g).
The ROI configuration differs as follows. No initial input downsam-
ple is performed, and max pooling is applied only once after the first
convolutional layer, as ROI volumes are smaller and can be processed
without downsampling. We set the number of kernels in convolutional
layers to 32, 64, and 10, respectively, to obtain a 600-dimensional final
representation after concatenation as in the MLP model.

ViT, MLP-mixer, gMLP. Similarly to the Vision Transformer, we ex-
ploited the same patch-based tokenization to build a general 𝑛-
dimensional classifier to be applied on our three-dimensional MRI
input. In our implementations of ViT, MLP-Mixer, and gMLP architec-
tures, each module begins with a tokenizer part, where we used a volu-
7

metric patch of size 163, each linearly embedded in 128-dimensional to-
ken. Then follows the encoder part, composed of architecture-
dependent encoding layers, finishing the module with a classifier made
of dense layers. In each architecture we used a Gaussian Error Linear
Units (𝐺𝐸𝐿𝑈) activation function. In our ROI implementation, the
above architectures are replicated for each region, extending the output
to 8 dimensions, each then concatenated and fed through a 𝑅𝑒𝐿𝑈
non-linearity before the single-output linear layer. Note that per-ROI
modules have independent weights.

The ViT encoder consisted of 8 layers, in which each multi-head at-
tention submodule is composed of 8 heads of size 32 and a residual con-
nection, followed by a feed-forward submodule with a 256-dimensional
hidden layer and a gated non-linearity.
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The MLP-Mixer architecture is composed of 12 encoding layers, with
a 4× token expansion factor.

The gMLP architecture similarly has the encoding part made of 12
encoding layers, with a 4× token expansion factor, and a final survival
probability of 0.99.

Due to their analogy in explicit data intra-mixing, we call this group
of networks as transformer-based models.

6.2. Training and testing sets

We train and tune our networks on one dataset (FTLDNI or CMND),
and validate them on the other dataset. First, we perform hyper-
parameters optimization via grid search using 5-fold cross-validation
on the train split of the train dataset; we keep the hyperparameter
setting that maximizes the mean balanced accuracy over the 5 test
folds, and we refit the model on the entire train set with the selected
hyperparameters. Then, we select the optimal threshold that maximizes
the balanced accuracy on the test split of the train dataset. Finally, we
make predictions on the test dataset using the fitted model and the
optimal threshold found. This procedure ensures a fair evaluation of the
model performance, as it minimizes the risk of overfitting both model’s
parameters and the threshold value to the target dataset.

6.3. Support vector machine

For comparative purpose, we use the Pattern Recognition for Neu-
roimaging Toolbox (or PRoNTo) [38] to perform a binary SVM analysis
to classify bvFTD respect to controls. In particular, in the training
step smoothed GM images on the train dataset are treated as spatial
patterns and a statistical learning model are used to identify statistical
properties of the data that can be used to discriminate between the two
groups of subjects [6]. We train a binary SVM to classify patients with
bvFTD versus control subjects with leave-one out cross-validation and
to construct voxel-wise discrimination maps. These maps of weights
contain the model parameters learned by the SVM. Diagnostic predic-
tion in the independent prediction set (the other dataset) is performed
as follows: single-subject smoothed GM densities is multiplied by the
model weights computed from the linear SVM. The integral of this
product define the class, which could be predicted by using the optimal
threshold found on the train set. SVM approach was also used as
classification method considering as input different images obtained in
the preprocessing pipeline.

7. Results

The conducted experiments were evaluated according to the most
common metrics and performance measurements, revealing interesting
behavior according to network architecture complexity.

Evaluation metrics. We evaluate our models using common metrics for
binary classification evaluation, that is, the Area under the ROC curve
(AuROC) as a threshold-independent metric, and the specificity (SS),
sensitivity (SP) and balanced accuracy (Bal Acc) using the optimal
threshold according to Youden’s J statistic.

Networks performances. We report metrics for each combination of
data source (wm, mwp), data crop (None, FT, ROI, see Fig. 1), data
whitening (i.e., subtracting mean and dividing by standard deviation
of the voxel distribution), and model, for a total of 72 configurations.
For each metric, we report mean and standard deviation over 5 runs,
training in total 360 models. Table 3 reports the mean AuROC for each
configuration obtained on the FTLDNI test set and on the CMND set. In
Table 4, we instead report metrics of the best performing configurations
per data type and per model. Of note, SVM classification task reported a
training AuROC over FTLDNI dataset of 95.5%, sensitivity of 90.0% and
specificity of 96.4%. Diagnostic prediction in the independent CMND
set of bvFTD and HC achieved an AuROC of 85.8% with sensitivity of
8

Fig. 3. CMND: Pearson Correlation Coefficients among predictions of various
transformer-based models. 𝑇 = ViT, m = MLP-Mixer, g = gMLP. For each configuration,
we report 5 runs with randomly initialized weights. Note that when ROI processing
is used, predictions tend to highly correlate independently from the model or random
weight initialization used.

73.3% and specificity of 100%. The classification performances of SVM
for each combination of data source are reported in Table 5. Although
SVM classification approaches reported AuROC values similar to those
observed using deep network architectures, lower sensitivity, speci-
ficity, and accuracy values were observed in SVM-based classifications
compared to other models. This was more evident when diagnostic
predictions were performed in the independent cohort of bvFTD and
controls, suggesting that SVM has a lower generalization ability than
other classifiers.

7.1. Discussion

The aim of this study was to investigate the diagnostic capability
of different deep network architectures based on structural MRI in
differentiating bvFTD patients from healthy controls. Our models were
trained on a publicly available dataset and validated on a separated set
to evaluate the generalizability of the achieved results. Respect to con-
ventional machine learning investigations based on structural MRI data,
deep learning methods showed higher performances in bvFTD classifi-
cation [6,12]. Moreover, our structural-based framework demonstrate
a comparable predictive power respect to the most recent works that
combined morphometric features with clinical outcomes or functional
connectivity information [13,14].

The results of our experimental analysis provided several insights
on data, models, and the overall task.

Among the tested models, transformer-based models (ViT, MLP-
Mixer, and gMLP) tend to be the most performing ones, overcoming
the 90% AuROC value consistently in the best data processing config-
urations (per-ROI analysis of mwp data). They also appear more stable
across runs and different data preprocessing, whereas simpler mod-
els may not converge or converge to sub-optimal solutions achieving
higher standard deviation of metric values (see Table 3). Moreover,
transformer-based models are the most promising models in terms
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Table 6
AuROC (mean±std) of Macro-ROI input combinations (gMLP on modulated and whitened
ata trained on FTLDNI and tested on CMND). Macro-ROIs aggregate the left and right
ides of the frontal (F), subcortical (S), and temporal (T) regions.

𝐹𝐿 𝐹𝑅 𝑆𝐿 𝑆𝑅 𝑇𝐿 𝑇𝑅 AuROC

1 Region

✓ 92±1
✓ 89±1

✓ 85±1
✓ 81±3

✓ 88±2
✓ 84±1

2 Regions

✓ ✓ 92±0
✓ ✓ 91±0
✓ ✓ 92±1
✓ ✓ 91±1
✓ ✓ 91±1

✓ ✓ 90±1
✓ ✓ 90±0
✓ ✓ 90±0
✓ ✓ 89±1

✓ ✓ 83±2
✓ ✓ 88±1
✓ ✓ 86±1

✓ ✓ 87±1
✓ ✓ 84±1

✓ ✓ 87±1

3 Regions

✓ ✓ ✓ 92±0
✓ ✓ ✓ 92±1
✓ ✓ ✓ 92±1
✓ ✓ ✓ 91±1
✓ ✓ ✓ 91±0
✓ ✓ ✓ 91±1
✓ ✓ ✓ 91±1
✓ ✓ ✓ 91±1
✓ ✓ ✓ 90±1
✓ ✓ ✓ 91±0

✓ ✓ ✓ 90±1
✓ ✓ ✓ 91±1
✓ ✓ ✓ 89±1
✓ ✓ ✓ 91±1
✓ ✓ ✓ 90±1
✓ ✓ ✓ 90±1

✓ ✓ ✓ 87±2
✓ ✓ ✓ 86±1
✓ ✓ ✓ 88±1

✓ ✓ ✓ 88±0

4 Regions

✓ ✓ ✓ ✓ 92±0
✓ ✓ ✓ ✓ 92±1
✓ ✓ ✓ ✓ 92±0
✓ ✓ ✓ ✓ 92±1
✓ ✓ ✓ ✓ ✓ 92±1
✓ ✓ ✓ ✓ ✓ ✓ 92±0
✓ ✓ ✓ ✓ ✓ ✓ 90±0
✓ ✓ ✓ ✓ ✓ ✓ 90±1
✓ ✓ ✓ ✓ ✓ ✓ 92±0
✓ ✓ ✓ ✓ ✓ ✓ 90±0
✓ ✓ ✓ ✓ ✓ ✓ 90±1
✓ ✓ ✓ ✓ ✓ ✓ 90±1
✓ ✓ ✓ ✓ ✓ ✓ 90±1
✓ ✓ ✓ ✓ ✓ ✓ 90±1
✓ ✓ ✓ ✓ ✓ ✓ 87±1

5 Regions

✓ ✓ ✓ ✓ ✓ ✓ 92±1
✓ ✓ ✓ ✓ ✓ ✓ 92±1
✓ ✓ ✓ ✓ ✓ ✓ 92±0
✓ ✓ ✓ ✓ ✓ ✓ 92±1
✓ ✓ ✓ ✓ ✓ ✓ 91±1
✓ ✓ ✓ ✓ ✓ ✓ 90±1

All ✓ ✓ ✓ ✓ ✓ ✓ 91±1

of generalization abilities; whereas all the models can surpass the
90% values on most metrics on test data coming from the same MRI
9
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Table 7
Computational complexity of compared models in terms of floating point operations
(FLOPs) and number of parameters.

Data crop None FT ROI

FLOPs Params FLOPs Params FLOPs Params

Logistic Reg. 4.2M 2.1M 1.7M 856.7k 2.3M 1.1M
MLP 424.6M 212.3M 171.4M 85.7M 227.8M 113.9M
ConvNet 3D 45.3k 471.0k 16.9k 471.0k 678.0k 3.4M
ViT 973.9M 468.6k 282.0M 443.8k 3.2G 142.0M
MLP-Mixer 2.7G 41.5M 1.1G 8.2M 2.6G 128.0M
gMLP 8.2G 9.4M 2.6G 5.2M 5.5G 268.8M

machine used for training (Table 4a and c), the best performance
when testing on data from different MRI machines is mostly achieved
by transformer-based models (Table 4b and d). Among them, ViT
and gMLP models offer a better overall performance than the MLP-
Mixer (one-sided paired 𝑡-test on AuROC values, 𝑝-value = 0.005 and
0.007 respectively), whereas there is no significant difference among
the former. Multi-layer perceptrons also offer comparable performance
while being less stable to parameter initialization, and convolutional
models suffer the most from data shift. Linear logistic regressors often
do not converge on less curated data.

Processing ROIs independently (Crop = ROI) tends to provide supe-
ior performance than processing the whole volume (Crop = {None,
T}) where simpler models (Logistic Reg., MLP) get confused more
asily. However, the performance boost is payed with an increased
odel size and computational cost (see Table 7). Per-ROI processing

lso adds stability to model training as shown in Fig. 3. We observed
strong correlation between predictions across different models and

cross multiple training runs when using per-ROI processing. This oc-
urs also when using unmodulated (wm) data. On the other hand, when
rocessing whole volumes, correlation between predictions of different
odels tends to decrease, sometimes even between different training

uns of the same model. We deem that the per-ROI processing pipeline,
dopting multiple submodels per ROI, balances the local convergence
f each submodule and reduces the risk of global overfitting. Table 6
hows how the AuROC changes for the best model (gMLP on modu-
ated and whitened data) when using different configurations of ROIs
nside macro-regions. Note that ROIs in the frontal area lead to most
erformant classifiers. When processing whole volumes, frontotemporal
asking (FT) should be adopted. As expected, modulated data (Kind
mwp) tend to increase performances in all models but the simpler

nes (Logistic Reg., MLP) where we deem cleaner data, together with its
carcity, increase chances of overfitting. Obtaining high performances
AuROC > 85%) can be achieved also with unmodulated data (Kind

wm) but is more dependent on the specific data processing (in
articular the data crop) used. Concerning data whitening, no strong
attern emerges, as performance only slightly improves or degrades
epending on the specific configuration considered.

We deem the attention-based processing in transformer-like archi-
ectures, i.e., building finer representations by comparing different
D parts of the input, can facilitate the learning of more scanner-
ndependent features and improve the generalization of classifiers,
specially in multiple source settings. Our experiments support this
rend, but further validation with additional data sources should be
arried out in future work.

. Conclusion

In our work, we investigated several neural network architectures
ith the purpose of creating a robust and generalizable model that was
ble to identify patients affected by behavioral variant frontotemporal
ementia (bvFTD) from medical imaging data obtained by different
cquisition devices. We considered the Frontotemporal Lobar Degener-

tion Neuroimaging Initiative (FTLDNI) as primary dataset on which
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we performed training and testing, and the Center for Neurodegen-
erative Diseases and the Aging Brain (CMND) dataset as source to
validate the generalizability of the model without performing any fine
tuning. We considered different architectures, from the simple logistic
regressor to three-dimensional convolution networks and the latest
vision transformers with its similar variants. In general, we found that
all architectures perform well in the bvFTD identification task with both
dataset, but the transformer-based ones are the most stable in terms
of weight initialization conditions, consistently reaching and exceeding
the 91.0% for AuROC and balanced accuracy values. These results
let us validate that overall data intra-mixing (i.e., as it emerges from
the attention mechanism and its variants) is a principal component in
imaging classification.

We plan to further dig into the most recent attention-based archi-
tectures, trying to define a model able to intra-mix data in linear-time
complexity using learned intermediate representations or frequency
analysis [39], as well as extending the systems robustness by testing
them on future-available imaging datasets.
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