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ABSTRACT
Edge computing promises to bring computation and storage close
to end-users, opening exciting new areas of improvement for appli-
cations with a high level of interactivity and requiring low latency.
However, these improvements require careful scheduling of ap-
plications in the correct Edge resource. This decision is generally
taken by considering multiple parameters, including the network
capabilities. In this paper, we discuss an approach that measures
latency and bandwidth between multiple clients and Edge servers.
The approach is based on recent Serverless computing technologies,
and it is meant as a support to take timely and correct scheduling
decisions in the Edge. We also provide the description of a proof of
concept implementation of the said approach.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • Net-
works→ Network performance analysis.
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1 INTRODUCTION
In the current technological landscape, Cloud Computing repre-
sents a popular landing space for a very large number of appli-
cations. Two core motivations drive cloud adoption. Firstly, the
cost-effectiveness for application providers that avoid buying and
operating hardware infrastructures sized for peak loads. Secondly,
the end-users enjoy cheaper and always-on services with light-
weight clients. However, several classes of applications are hard
to migrate to Cloud straightforwardly. For example, applications
that require high interactivity still resist the migration en-masse to
the Cloud due to the potential high latency from the clients to the
remote Cloud servers.

In this context, the Edge computing paradigm represents a con-
crete attempt to bring the Utility Computing paradigm [1] (i.e., the
idea of using and renting computing capacity as any other utility)
to a fully distributed, and often decentralised, dimension. Ideally,
end-users and application providers can take advantage of a per-
vasive and geographically sparse computing presence to offload
or run computing tasks. The realisation of this vision is currently
being approached by the academia with various research efforts
[2, 12, 17, 22]. A common trait of this effort is the necessity to
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Figure 1: Overview of our solution

https://orcid.org/0000-0003-3643-5404
https://orcid.org/0000-0002-8852-3062
https://orcid.org/0000-0001-8504-1503
https://orcid.org/0000-0003-4159-0644
https://orcid.org/0000-0002-7937-4157
https://orcid.org/0000-0002-1406-828X
https://doi.org/10.1145/3526059.3533622
https://doi.org/10.1145/3526059.3533622


have solid scheduling strategies to enable a computing continuum
that virtually ”follows” the users leaving a perception of consistent
performance and high Quality of Experience (QoE). Scheduling
decisions must be dynamic and adapt to the changes that stem from
the applications (e.g., the sudden execution of a specific function
that affects the QoE requirements) and the end-users (e.g., more
users from various locations access the application). In this context,
a scheduling decision has the duty to decide on which edge resource
to deploy a particular application service in order to, for example,
minimize the interaction latency with the end-user [6, 14, 15]. In
this case, interactive and low-latency applications, such as video
games, mixed and virtual reality, and voice-activated applications,
can arguably extract the most advantage from this approach.

However, scheduling strategies are usually as good as the data
which they are fed with. Besides the static computational character-
istics of the various edge nodes (i.e. RAM, CPU, storage), dynamic
values such as occupation and network performances are valuable
information for the edge scheduler to take correct and timely sched-
uling decision. Therefore, there is the need to properly monitor
and characterise computational edge resources, also in terms of
network capabilities.

In this context, we envision a lightweight approach based on the
Function-as-a-Service (FaaS) paradigm to measure and profile the
network status between an edge resource and potential end-user
devices (i.e., clients) The FaaS paradigm provides an on-demand
computing architecture where functions are the main actor [18].
FaaS approaches show key advantages for this task. From a client
perspective, it does not require the installation of complex or custom
additional services. A simple web access and basic functionalities is
all that is required. From the server perspective, it does not require
to setup a dedicated infrastructure, the performance footprint is low,
and the service can potentially scale with the number of clients.

In this paper, we provide a description of a service for the mea-
surement of latency and bandwidth between a FaaS server and
multiple client devices. The idea is to have a lightweight proce-
dure that is able to run even on edge servers of limited capacity
(e.g., ARM-based processors), typical of far-edge architectures [3].
We also show some initial observation from a proof of concept
implementation, which is composed by two clients and a server.

2 RELATEDWORK
Placing applications and services near the end-user to increase
responsiveness is one of the most advertised features of edge com-
puting [13]. Recent estimations report a reduction in latency in the
order of 30% for edge computing infrastructures when compared to
classical cloud ones [5] and that the number of users having very
low latency is essentially doubled when using edge infrastructures
[4]. Typically, placing applications near users has a geographical
connotation: bringing services in the geographical proximity of the
users to reduce the network latency between services and end-user
devices. However, as stated in [11], "Physical distance alone does
not always represent a good approximation of the propagation de-
lay, given the possible effects of routing inefficiencies." The same
work also reports that moving datacenters and applications close to
users is only a part of the solution, which also requires "continuous

monitoring [..] to quickly detect modifications and, when possible,
put in place countermeasures".

Therefore, tools and mechanisms that provide network monitor-
ing are often critical to driving cloud-edge application schedulers.
Several approaches have been proposed over the years. Typically,
prediction or interpolation mechanisms help avoid measuring all
point-to-point connections between all possible clients and servers.
Huang et al. [10] provides a general overview and identifies three
types of prediction solutions: (i) coordinate-based approaches, (ii)
path fitting approaches, and (iii) data-driven approaches. Our ap-
proach does not fit this classification, but it is a lightweight method
that can assist as an alternative for point-to-point measurements
in more complete solutions.

Among the most popular solutions, Gummadi et al. [8] propose
King, a tool that uses recursive DNS queries to estimate latency
between arbitrary hosts. Sharma et al. [19] present Netvigator, a
tool to estimate network proximity between clients and servers. It
uses a set of landmark nodes to avoid requiring to know the IPs of
the servers. Song et al. [20] describe a system to monitor network
capabilities that adapt the number of measurements according to
the server’s load. Their approach also measures only a small part
of the network to infer the entire network properties. Fu et al. [7]
suggest a distributed monitoring method for network properties.
They organize the nodes with a system of coordinates maintained
in a decentralized fashion.

More recent approaches use statistical and data-driven tech-
niques to measure latency and network properties indirectly. Zhang
et al. [21] design an indirect method that estimates the latency be-
tween two arbitrary nodes using the measurements from selected
clients near end nodes. Huang et al. [9] propose a data-driven pre-
diction approach by leveraging a tensor-based network to predict
distance with confidence intervals.

3 SERVERLESS SOLUTION
The conceptual overview of our solution is depicted in Figure 1.
We envision edge servers installed with a FaaS solution. Clients
call a specific REST API exposed by the FaaS service to trigger
the profiling of the network, which for the bandwidth consists of
the exchange of files of various dimensions. The profiling is re-
peated periodically to provide a historical overview of the main
network characteristics. The observed network characteristics are
both stored locally in the server (which may make them available
to any scheduler with additional interfaces not covered here), and
stored to end-user client devices. Clients requirements are mini-
mal: network connectivity, the ability to call a REST interface, and
some (minimal) storage to keep the files to be exchanged and the
measurement results.

3.1 Selection of the FaaS framework
For our network measurement service we were looking for several
specific requirements:

• Ease of installation. The service is supposed to be installed
in edge nodes of different kind and nature, possibly in co-
habitation with other services. Therefore a fast and easy
installation is a core requirement;



Input: End point of the FaaS server
Input: sizes: an array of different file dimensions (must start

with 0)
Input: waitingTime: time interval before subsequent

invocations
1 i = 0;
2 while true do
3 Upload a file of size: sizes[i % sizes.length] and

(𝑏𝑈𝑃 , 𝑏𝐷𝑂𝑊𝑁 )𝑖−1;
4 Download a file of size: sizes[i % sizes.length];
5 Save locally (𝑏𝑈𝑃 , 𝑏𝐷𝑂𝑊𝑁 )𝑖 ;
6 𝑖 = 𝑖 + 1;
7 Wait for waitingTime;
8 end

Algorithm 1: Client’s pseudocode

Server Client 1 Client 2
Location Pisa, Italy Pisa, Italy Catania, Italy
Dist. from server N/A 0 800 km
Architecture x86 VM x86
Operating System Ubuntu 20.04 Ubuntu 20.04 Windows 10
Network N/A Same server

network
Residential
Fiber-optic

Table 1: Machines used in the proof of concept implementa-
tion

• Lightweight execution footprint. Our system is also supposed
to run on machine with limited capacity, such as ARM-
equipped system-on-chips and mobile devices. In fact, we
were not necessarily searching for support to complete or-
chestration frameworks, such as Kubernetes.

• Monitoring facilities. In particular, monitoring facilities that
are already present in the framework. These facilities can
help in monitoring further aspects that can be taken into
account by the edge scheduler during the decision making
process.

• Support for dockerized functions. Containerized functions are
a de facto standard way to decouple the execution of some
services from a particular environment. In the context of
our services, this allow us to implement the measurements
functions without sticking to a particular technology or pro-
gramming language.

Many frameworks are currently available to deploy a FaaS Server-
less service. Among those, we performed a selection by analyzing
the literature to check what fit our requirements. Palade et al. [16]
performed a qualitative and quantitative analysis of four different
Serverless frameworks, namely Apache OpenWhisk1, OpenFaaS 2,
Kubeless 3, and Knative 4. According to our requirements, Knative
has been discarded due to some difficulties in the installation and

1https://openwhisk.apache.org/
2https://www.openfaas.com/
3https://github.com/vmware-archive/kubeless
4https://knative.dev/docs/

a limited support for several programming languages, and Open-
whisk due to the lacking of monitoring subsystems. Finally, since
we planned to work with Docker images, OpenFaas looked like
a good candidate. To further reduce the load footprint, we have
chosen faasd 5, a lightweight OpenFaaS implementation that does
not require Kubernets to work.

3.2 Client operations
The network characteristics measured between the server and a
client are the round trip time (RTT) and the bandwidth. We assume
that the client knows the end point of the server.

The measurement process (i.e. invocation of the echo function
on the server) is initiated by the client (see Algorithm 1). Firstly, it
initiates the dialog with the server by uploading a file. Once the
transfer is completed, the same file is sent back (still via the echo
function) from the server to the client. The client locally registers
the total transfer time, for both the upload and the download phases.
From the perspective of the server, the echo function implements
both the upload and download of the file.

This process is iterative. Each iteration is repeated after a fixed
time interval. At each iteration, the client sends to the server the
upload and download transfer time observed in the previous it-
eration (𝑏𝑈𝑃 and 𝑏𝐷𝑂𝑊𝑁 in the pseudocode). The server stores
these values in the local storage (see Section 3.3). Moreover, at each
iteration the size of the file is selected among a set of predefined
sizes. When the file size is 0, the RRT is measured.

3.3 Server Storage
FaaS is at its core a stateless paradigm. A storage module had to be
attached to the regular FaaS service for the network measurements
to be saved and potentially accessed at a later time by the edge
scheduling system. We implemented the storage as a MinIO service
6. MinIO is an object storage service that operates with the bucket
abstraction: a bucket is a data container that helps to categorize
and organize the object stored. For our purposes, we have created
a bucket for each unique client to store the information about
bandwidth and latency. The idea is for the server to have timeseries
of measurements that can be later used to perform statistics on the
behaviour of the network. Once a session of network measurements
has been performed (i.e. one invocation of the echo function), these
are saved in the corresponding client’s bucket in the JSON format.

The communication with the MinIO is realised through an addi-
tional Faas function that invokes the MinIO’s REST endpoint. This
allows for the writing of the data to proceed asynchronously with
respect to the main network measurement function.

3.4 Proof of concept implementation
We setup a proof of concept implementation of the approach using
the machines in Table 1. We have considered the following file sizes:
0, 5, 10, and 30 MBs. The invocation delay is set to 1 minute. We
run the client for 24 hours.

Results for bandwidth of Client 2 (file size > 0) are shown in
Figure 2. The results are pretty straightforward for a residential
fiber-optic network. The upload bandwidth is quite stable around

5https://github.com/openfaas/faasd
6https://min.io/
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Figure 2: Download (above) and upload (below) bandwidth observation from Client 2

a mean of about 1𝑀𝐵/𝑠 , a typical value for Italy. The download
bandwidth is more variable, with a mean of about 36𝑀𝐵/𝑠 and
some occasional valleys down to 8𝑀𝐵/𝑠 .

4 CONCLUSION
Having an updated profiling of the network characteristics between
clients and servers is a core requirement for the precise scheduling
of application in the edge computing continuum. In this paper we
presented the design of a client-initiated approach for the profiling
of the network capabilities between a FaaS server and a client. The
approach has been designed to be as lightweight as possible, to
support low-power architectures typical of the far edge. Futurework
includes the extensions of the testbed with more geographically
sparse nodes, and the development of specific interfaces for the
integration with start-of-the-art edge scheduler.
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