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Global-scale parameters for 
ecological models
Gianpaolo Coro   1 ✉, Pasquale Bove1 & Kathleen Kesner-Reyes   2

This paper presents a collection of environmental, geophysical, and other marine-related data for 
marine ecological models and ecological-niche models. It consists of 2132 raster data for 58 distinct 
parameters at regional and global scales in the ESRI-GRID ASCII format. Most data originally belonged 
to open data owned by the authors of this article but residing on heterogeneous repositories with 
different formats and resolutions. Other data were specifically created for the present publication. The 
collection includes 565 data with global scale range; 154 at 0.5° resolution and 411 at 0.1° resolution; 
196 data with annual temporal aggregation over ~10 key years between 1950 and 2100; 369 data with 
monthly aggregation at 0.1° resolution from January 2017 to ~May 2021 continuously. Data were 
also cut out on 8 European marine regions. The collection also includes forecasts for different future 
scenarios such as the Representative Concentration Pathways 2.6 (63 data), 4.5 (162 data), and 8.5  
(162 data), and the A2 scenario of the Intergovernmental Panel on Climate Change (180 data).

Background & Summary
The Good Environmental Status of European Seas (GES)1 is the European goal of reaching the sustainably of 
stock and environment exploitation and no loss of biodiversity and ecosystem services. It is the primary goal of 
several European strategic frameworks such as the Marine Strategy Framework Directive (MSFD), the Maritime 
Spatial Planning Directive (MSP), the Green Deal and Blue Growth strategies, and the EU Biodiversity Strategy 
for 20302–7. This goal is challenging in the current context of increasing energy, food demand, and climate 
change. Scientific approaches that address GES require processing marine data of ecosystems to assess ecosys-
tem services, biodiversity, and stock status. They also require multi-disciplinary modelling approaches to extract 
valuable knowledge from the data6. Recently, international projects such as EcoScope8, have been fostering the 
shift from traditional “vertical” modelling approaches - focussing on one species, stock, or ecosystem service 
independently of the other - to “horizontal” approaches, which combine multi-species, environmental, and 
social dynamics9,10. However, these approaches require huge amounts of high-quality data to produce meaning-
ful knowledge11,12. In particular, environmental, geophysical, world-population, and marine-region data are cru-
cial to model species habitats13,14, understand the response and resilience of marine areas to climate change15–17, 
assess stock status and fisheries pressure on stocks18–20, and build ecosystem models21–24.

This paper describes an extensive data collection of harmonised and standardised global-scale parameters, 
with associated long-term forecasts under different greenhouse gas emission and societal development scenar-
ios. The collection aims at supporting ecological, ecosystem, and ecological-niche models within horizontal 
approaches to marine resource management.

Figure 1 summarises our workflow. We harmonised and standardised geospatial data from our own het-
erogeneous resources and publications that had newly produced or re-processed these data. Some data were 
previously available in custom formats (e.g., CSV or text files), which meant they were not as accessible as 
they could be. Additionally, we specifically produced other data to complement the collection. The primary 
sources involved were (i) environmental data produced for the AquaMaps ecological niche models, (ii) data 
from the Italian National Research Council (CNR) studies on marine science, Earth science, and epidemics 
that re-processed or newly produced open-access data based on other sources, and (iii) data produced by the 
Quantitative Aquatics (Q-quatics) non-governmental organisation for ecosystem and ecological models.

The complete list of environmental data with their primary and secondary sources is reported in Tables 1–4, 
grouped by resolution and parameter type. Data harmonisation consisted of correcting errors and aligning 
the data to the same coordinate grids, with either 0.1° or 0.5° resolutions. The format of the published data 
is ESRI-GRID ASCII. All data have a global-scale range but are also cut out on 8 European marine areas of 
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particular economic or ecosystem importance (focus regions), identified by the EcoScope European Project 
community of practice8. This specialisation aims to make the collection highly valuable for European and 
global-scale ecological niche models, ecological models, ecosystem models, environmental similarity analyses, 
and climate change studies, as also documented in the rest of the paper.

The earliest year involved in our collection is 1950. Forecasts are available for 2050 and 2100 under the 
Representative Concentration Pathway25 (RCP) scenarios 2.6 (63 data), 4.5 (162 data), and 8.5 (162 data), and 
the A2 Special Report on Emissions Scenarios26 (SRES) defined by the Intergovernmental Panel on Climate 
Change (IPCC) (180 data). These scenarios represent future greenhouse gas emission conditions and future 
societal development hypotheses. Temporal aggregation is annual for 196 data and monthly for 369 data  

Fig. 1  Conceptual flowchart of our data harmonisation, validation, and publication workflow.
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(from January 2017 to March or May 2021, depending on the parameter). With a temporal coverage of ~10 
years, between 1950 and 2100, our data are unsuited for running long-term continuous time series analyses. 
However, they are suited for creating long-term snapshots of ecological, environmental, and ecosystem mod-
els. Moreover, they allow for continuous time series analyses between 2016 and 2020 yearly (over 5 years, as 
demonstrated in this paper) and between 2017 and 2021 monthly (over 53 months), which are suited for finding 
evidence of inter-annual and inter-month variations and climate change-related variations14,27.

We checked the data against their primary sources for consistency. Moreover, we used a subset of annual 
data between 2016 and 2020, specifically created for this publication, to conduct a spatiotemporal analysis. This 
analysis confirmed similarities and discrepancies between the focus regions highlighted by independent studies 
(as indicated in the section “Technical Validation”), along with the parameters primarily responsible for the 
similarities.

Methods
This section explains all workflow steps depicted in Fig. 1.

Data.  As the first workflow step, we collected data from the primary sources listed in Tables 1–4, which 
included:

	 1.	 Historical annual environmental data used by the AquaMaps ecological niche models and additional infor-
mation attached to the AquaMaps authority files,

	 2.	 Re-processed or novel data attached to Italian National Research Council publications on marine science, 
Earth science, and epidemics,

	 3.	 Annual and monthly environmental data for the AquaMaps environmental parameters produced by the 
Quantitative Aquatics (Q-quatics) non-governmental organisation.

The data specifically produced for the present publication are the sea parameters reported in Table 1 with an 
asterisk. The re-distribution of the data was compliant with the primary and secondary source policies for the 
type of data re-processing we undertook. All data were globally distributed geospatial rasters; some were defined 
on marine areas only as that was appropriate for the ecological models of GES and EcoScope the datasets were 
used for. The data were defined on squared areas, with sides equal to the spatial resolution. Overall, the param-
eters involved were:

0.1° resolution - global scale data

Parameter name Description
Unit of 
measurement

Years or temporal 
aggregation Original File Format Primary source Secondary sources

Sea-bottom dissolved oxygen*
Average dissolved 
molecular oxygen at 
sea bottom

mmol m−3 2017,2018,2019,2020, monthly 
from Jan 2017 to May 2021 ESRI-GRID (ASC)

Produced by 
Q-quatics for this 
publication

Bio-ORACLE107,108 
and CMEMS45

Sea-bottom salinity* Average sea bottom 
salinity PSS 2017,2018,2019,2020, monthly 

from Jan 2017 to Mar 2021 ESRI-GRID (ASC)
Produced by 
Q-quatics for this 
publication

Bio-ORACLE107,108 
and CMEMS45

Sea-bottom temperature* Average temperature at 
sea bottom °C 2016,2017,2018,2019,2020 ESRI-GRID (ASC)

Produced by 
Q-quatics for this 
publication

Bio-ORACLE107,108 
and CMEMS45

Sea Net Primary Production*

Average sea surface 
primary production 
in a cell, re-processed 
from Bio-ORACLE 
data

mgC m−3 day−1 2017,2018,2019,2020, monthly 
from Jan 2017 to May 2021 ESRI-GRID (ASC)

Produced by 
Q-quatics for this 
publication

Bio-ORACLE107,108 
and CMEMS45

Sea Ice Concentration*
Average sea ice 
concentration ratio 
per cell

0–1 fraction
2016,2017,2018,2019,2020, 
monthly from Jan 2017 to 
May 2021

ESRI-GRID (ASC)
Produced by 
Q-quatics for this 
publication

Bio-ORACLE107,108 
and CMEMS45

Sea-surface Salinity* Average sea surface 
salinity PSS

2016,2017,2018,2019,2020, 
monthly from Jan 2017 to 
May 2021

ESRI-GRID (ASC)
Produced by 
Q-quatics for this 
publication

Bio-ORACLE107,108 
and CMEMS45

Sea-surface Temperature* Average temperature at 
sea surface °C

2016,2017,2018,2019,2020, 
monthly from Jan 2017 to 
May 2021

ESRI-GRID (ASC)
Produced by 
Q-quatics for this 
publication

Bio-ORACLE107,108 
and CMEMS45

Carbon dioxide flux at soil 
surface

Average monthly 
carbon dioxide flux at 
the soil surface

gC m−2 day−1 1979–2013 ESRI-GRID (ASC) Coro & Bove 
(2022)109

Copernicus 
Atmosphere 
Monitoring Service 
data110

Mean Air Surface Temperature
Average annual surface 
air temperature 
between 2000 and 2005

K 2000–2005 ESRI-GRID (ASC) Coro & Bove 
(2022)109 EnviDat111

Mean Precipitation
Average annual 
precipitation between 
2000 and 2005

kg m−2 s−1 2000–2005 ESRI-GRID (ASC) Coro & Bove 
(2022)109 EnviDat111

Table 1.  Data at 0.1° resolution at the global scale available in our repository, with indication of the related 
primary and secondary sources. The asterisks (*) indicate the data that were specifically produced for this article.
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	 1.	 Sea-bottom and sea-surface dissolved oxygen, salinity, and temperature
	 2.	 Sea net primary production
	 3.	 Sea ice concentration
	 4.	 Average, minimum, maximum sea depth
	 5.	 Average, minimum, maximum elevation
	 6.	 Distance of a square marine area from land and its fraction covered by water
	 7.	 The characterization of each data cell in terms of which Large Marine Ecosystem (LME), Exclusive Eco-

nomic Zone (EEZ), Marine Ecoregions of the World (MEOW), and Major Ocean Basins they belong to, 
and whether or not it sits in a Marine Protected Area (MPA)

	 8.	 Number of islands
	 9.	 Water area that lies within the shelf, slope, and abyssal zones
	10.	 Tidal range extension
	11.	 Coral density
	12.	 Estuary and seamount presence
	13.	 Carbon dioxide flux at soil surface
	14.	 Air surface temperature
	15.	 Precipitation
	16.	 Difference between air surface temperature and sea surface temperature
	17.	 World population density
	18.	 Sediment thickness
	19.	 Atmospheric concentration of methane and nitrous oxide
	20.	 Earth heat flow
	21.	 Distance from crust plates
	22.	 Earthquake density, depth, magnitude
	23.	 Groundwater resources

Marine parameters - 0.5° resolution global-scale data

Parameter name Description
Unit of 
measurement

Years or temporal 
aggregation

Climatic 
forecast 
scenarios Original File Format

Primary 
source Secondary sources

Sea-bottom dissolved 
oxygen

Average dissolved 
molecular oxygen 
at sea bottom

mmol m−3 2019, 2050, 2100
RCP 2.6, 
RCP 4.5, 
RCP 8.5

ESRI-GRID (ASC) AquaMaps 
HCAF V7112 Bio-ORACLE107,108

Sea-bottom salinity Average sea 
bottom salinity PSS 2019, 2050, 2100

RCP 2.6, 
RCP 4.5, 
RCP 8.5

ESRI-GRID (ASC) AquaMaps 
HCAF V7112 Bio-ORACLE107,108

Sea-bottom temperature
Average 
temperature at sea 
bottom

°C 2019, 2050, 2100
RCP 2.6, 
RCP 4.5, 
RCP 8.5

ESRI-GRID (ASC) AquaMaps 
HCAF V7112 Bio-ORACLE107,108

Sea Net Primary Production
Average sea 
surface primary 
production in 
a cell

mgC m−3 day−1 2019, 2050, 2100
RCP 2.6, 
RCP 4.5, 
RCP 8.5

ESRI-GRID (ASC) AquaMaps 
HCAF V7112 Bio-ORACLE107,108

Sea Ice Concentration
Average sea ice 
concentration 
ratio per cell

0–1 fraction 2019, 2050, 2100
RCP 2.6, 
RCP 4.5, 
RCP 8.5

ESRI-GRID (ASC) AquaMaps 
HCAF V7112 Bio-ORACLE107,108

Sea-surface salinity Average sea 
surface salinity PSS 2019, 2050, 2100

RCP 2.6, 
RCP 4.5, 
RCP 8.5

ESRI-GRID (ASC) AquaMaps 
HCAF V7112 Bio-ORACLE107,108

Sea-surface temperature
Average 
temperature at sea 
surface

°C 2019, 2050, 2100
RCP 2.6, 
RCP 4.5, 
RCP 8.5

ESRI-GRID (ASC) AquaMaps 
HCAF V7112 Bio-ORACLE107,108

Sea-bottom salinity - 
AquaMaps2016

Average sea 
bottom salinity PSS 1950,1999,2016,2050,2100 IPCC SRES 

A2 NetCDF Coro et al.17 AquaMaps HCAF 
V6113

Sea-bottom temperature - 
AquaMaps2016

Average 
temperature at sea 
bottom

°C 1950,1999,2016,2050,2100 IPCC SRES 
A2 NetCDF Coro et al.17 AquaMaps HCAF 

V6113

Net Primary Production - 
AquaMaps2016

Annual sea 
surface primary 
production in 
a cell

mgC m−2 day−1 1950,1999,2016,2050,2100 IPCC SRES 
A2 NetCDF Coro et al.17 AquaMaps HCAF 

V6113

Sea Ice Concentration - 
AquaMaps2016

Average sea ice 
concentration 
ratio per cell

0–1 fraction 1950,1999,2016,2050,2100 IPCC SRES 
A2 NetCDF Coro et al.17 AquaMaps HCAF 

V6113

Sea-surface salinity - 
AquaMaps2016

Average sea 
surface salinity PSS 1950,1999,2016,2050,2100 IPCC SRES 

A2 NetCDF Coro et al.17 AquaMaps HCAF 
V6113

Sea-surface temperature - 
AquaMaps2016

Average 
temperature at sea 
surface

°C 1950,1999,2016,2050,2100 IPCC SRES 
A2 NetCDF Coro et al.17 AquaMaps HCAF 

V6113

Table 2.  Data of marine parameters at 0.5° resolution at the global scale available in our repository, with 
indication of the related primary and secondary sources.
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Geophysical parameters - 0.5° resolution global-scale data

Parameter name Description
Unit of 
measurement

Years or temporal 
aggregation

Climatic 
forecast 
scenarios

Original File 
Format Primary source Secondary sources

Air Surface Temperature Average air temperature at 
the Earth surface K 1950,1999,2016,2050,2100 RCP 4.5, 

RCP 8.5 NetCDF Coro et al.17 NASA-NEX model 
ensemble114

Precipitation Average precipitation kg m−2 s−1 1950,1999,2016,2050,2100 RCP 4.5, 
RCP 8.5 NetCDF Coro et al.17 NASA-NEX model 

ensemble114

Difference between Air 
Surface Temperature and 
Sea Surface Temperature

Difference between average 
air temperature at the 
Earth surface and average 
temperature at the sea 
surface

°C 1950,1999,2016,2050,2100 RCP 4.5, 
RCP 8.5 NetCDF Coro et al.17

NASA-NEX model 
ensemble114, 
AquaMaps HCAF 
V6113

Gas concentration of 
methane (CH4)

Column-mean 
atmospheric dry mole 
fraction of methane (CH4)

10−9 mol−1 2019 ASCII Gridded 
(XYZ) Coro (2020)115

Copernicus 
Atmosphere 
Monitoring Service 
data116

Gas concentration of 
nitrous oxide (N2O)

Column-mean 
atmospheric dry mole 
fraction of nitrous oxide 
(N2O)

10−9 mol−1 2019 ASCII Gridded 
(XYZ) Coro (2020)115

Copernicus 
Atmosphere 
Monitoring Service 
data116

Minimum depth Minimum bathymetry m 2019 ESRI-GRID (ASC) AquaMaps 
HCAF V7112 ETOPO2117

Maximum depth Maximum bathymetry m 2019 ESRI-GRID (ASC) AquaMaps 
HCAF V7112 ETOPO2117

Mean depth Average bathymetry m 2019 ESRI-GRID (ASC) AquaMaps 
HCAF V7112 ETOPO2117

Elevation Min Minimum elevation above 
sea level m 2019 CSV AquaMaps 

HCAF V7112 ETOPO2117

Elevation Max Maximum elevation above 
sea level m 2019 CSV AquaMaps 

HCAF V7112 ETOPO2117

Elevation Mean Average elevation above 
sea level m 2019 CSV AquaMaps 

HCAF V7112 ETOPO2117

Elevation SD Standard deviation of 
elevation above sea level m 2019 CSV AquaMaps 

HCAF V7112 ETOPO2117

Elevation/Depth A global dataset of 
elevation and depth m 2019 NetCDF Coro & Trumpy 

(2020)118 ETOPO2117

Distance from land Distance of water cells to 
the nearest coastal cell km 2019 ESRI-GRID (ASC) AquaMaps 

HCAF V7112

Ocean Area
The area in the cell that is 
normally covered by sea 
water or permanent ice

km2 2019 CSV AquaMaps 
HCAF V7112

Ocean Basin Major ocean basins of the 
world (codes) — 2019 CSV AquaMaps 

HCAF V7112

Islands No
Number of coastal or 
oceanic islands contained 
in the cell

— 2019 CSV AquaMaps 
HCAF V7112

World Vector 
Shoreline 
database119

Area 0_20 Water area per cell from 0 
to 20 m depth km2 2019 CSV AquaMaps 

HCAF V7112 Tozer et al.120

Area 20_40 Water area per cell from 20 
to 40 m depth km2 2019 CSV AquaMaps 

HCAF V7112 Tozer et al.120

Area 40_60 Water area per cell from 40 
to 60 m depth km2 2019 CSV AquaMaps 

HCAF V7112 Tozer et al.120

Area 60_80 Water area per cell from 60 
to 80 m depth km2 2019 CSV AquaMaps 

HCAF V7112 Tozer et al.120

Area 80_100 Water area per cell from 80 
to 100 m depth km2 2019 CSV AquaMaps 

HCAF V7112 Tozer et al.120

Area Below 100 Water area per cell below 
100 m depth km2 2019 CSV AquaMaps 

HCAF V7112 Tozer et al.120

Shelf

The water area of the cell 
that lies within the shelf 
zone (0–200 m depth), 
based on min/max 
elevation and proportion 
in depth zone

km2 2019 CSV AquaMaps 
HCAF V7112

Slope

The water area of the cell 
that lies within the slope 
zone (>200–4000 m 
depth), based on min/max 
elevation and proportion 
in depth zone.

km2 2019 CSV AquaMaps 
HCAF V7112

Continued
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After the data collection phase, we harmonised all global-scale data from their primary sources’ geodetic 
systems to the same global-scale grid and projection, i.e., the WGS 84-EPSG:4326 geodetic system with equirec-
tangular projection. We set two square grids for the data, at 0.5° and 0.1° depending on the original resolutions. 
The original files had heterogeneous formats, from raw text (CSV, XYZ) to more structured formats (NetCDF, 

Geophysical parameters - 0.5° resolution global-scale data

Parameter name Description
Unit of 
measurement

Years or temporal 
aggregation

Climatic 
forecast 
scenarios

Original File 
Format Primary source Secondary sources

Abyssal

The water area of the 
cell that lies within the 
abyssal zone (>4000 m 
depth), based on min/max 
elevation and proportion 
in depth zone.

km2 2019 CSV AquaMaps 
HCAF V7112

Tidal Range Extent of tides in scaled 
discrete classes m 2019 CSV AquaMaps 

HCAF V7112 LOICZ Database121

Coral
Proportion of whole (even 
non-water) cell covered 
by corals

% 2019 CSV AquaMaps 
HCAF V7112

UNEP World Atlas 
of Coral Reefs122

Estuary Area covered by estuaries 
in the cell km2 2019 CSV AquaMaps 

HCAF V7112

Seamount
Number of known 
seamounts attributed to 
the cell

— 2019 CSV AquaMaps 
HCAF V7112

PWater Proportion of water in 
each cell % 2019 CSV AquaMaps 

HCAF V7112

Cell Area

The total area inside the 
cell in square kilometers, 
based on WGS84 and 
Miller cylindrical 
projection

km2 2019 CSV AquaMaps 
HCAF V7112

Sediment Thickness

Sediment thickness map 
obtained by combining 
high-resolution oceanic 
and tectonic maps with 
manually digitalised 
information

km 1997 NetCDF Coro & Trumpy 
(2020)118 Laske (1997)123

Earth heat flow

Global Heat Flow: heat 
flow distribution map 
that represents the 
underground thermal 
state mainly affected by 
deep geological processes 
(i.e. radioactive decay of 
elements, tectonic setting, 
conduction etc.)

mW m2 2013 NetCDF Coro & Trumpy 
(2020)118 Davies (2013)124

Distance from Earth 
Convergent Lines

Earth’s crust plates with 
subduction activity 
(convergent lines)

decimal degrees 2019 NetCDF Coro & Trumpy 
(2020)118

United States 
Geological Survey 
data125–127

Distance from Earth 
Diffuse Lines

Earth’s crust plates with 
same relative motion 
(diffuse lines)

decimal degrees 2019 NetCDF Coro & Trumpy 
(2020)118

United States 
Geological Survey 
data125–127

Distance from Earth 
Ridge Lines

Earth’s crust plates with 
ridges formation (ridge 
lines)

decimal degrees 2019 NetCDF Coro & Trumpy 
(2020)118

United States 
Geological Survey 
data125–127

Distance from Earth 
Transform Lines

Earth’s crust plates with 
mutual sliding in opposite 
direction (transform lines)

decimal degrees 2019 NetCDF Coro & Trumpy 
(2020)118

United States 
Geological Survey 
data125–127

Earthquake Density Average earthquake 
density number per cell 1900–2008 NetCDF Coro & Trumpy 

(2020)118

Centennial 
Earthquake Catalog 
data128,129

Earthquake Depths Average earthquake depths km 1900–2008 NetCDF Coro & Trumpy 
(2020)118

Centennial 
Earthquake Catalog 
data128,129

Earthquake Magnitudes Average earthquake 
magnitudes Ms 1900–2008 NetCDF Coro & Trumpy 

(2020)118

Centennial 
Earthquake Catalog 
data128,129

Groundwater Resources

Groundwater and recharge 
map that represents 
large sedimentary basins 
suited for groundwater 
exploitation

mW year−1 2011 NetCDF Coro & Trumpy 
(2020)118

World-wide 
Hydrogeological 
Mapping and 
Assessment 
Programme130

Table 3.  Data of geophysical parameters at 0.5° resolution at the global scale available in our repository, with 
indication of the related primary and secondary sources.
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ESRI-GRID). All files were first aligned to the same grid and checked for inconsistency and offset by compar-
ing each grid point with the expected original data value. Eventually, they were converted to the ESRI-GRID 
ASCII format (ASC)28. ESRI-GRID is a standard format approved by the Open Geospatial Consortium (OGC), 
a worldwide community that assesses standards and protocols to improve access to geospatial data. This format 
allows for inspecting the data with text processing software as well as visualising them with commonly used 
Geographic Information System (GIS) software (e.g., QGIS29, and ArcGIS30). The format is also the most fre-
quently accepted by ecological niche modelling and ecosystem modelling software (e.g, MaxEnt31 and Ecopath 
with Ecosim22,32–34) and most programming languages have libraries for parsing it35,36. In our harmonisation and 
standardisation workflow, one ASC file corresponds to one parameter in a specific year (or month) and location. 
This correspondence makes the files easily convertible into other formats (e.g., in NetCDF format through the 
GDAL software37). Overall, the ESRI-GRID ASCII format was optimal for our collection’s scope of supporting 
ecological and ecosystem models and climatic analyses.

All data were also cut out on 8 European marine areas of particular economic or ecosystem importance, 
identified by the EcoScope European Project community of practice. These areas (hereafter named focus regions) 
were:

	 1.	 The global-scale
	 2.	 The Adriatic Sea
	 3.	 The Aegean Sea
	 4.	 The Baltic Sea
	 5.	 The Bay of Biscay
	 6.	 The Black Sea
	 7.	 The Levantine Sea
	 8.	 The North Sea
	 9.	 The Western Mediterranean Sea

The areas were geographically identified according to the corresponding marine eco-region (Adriatic, 
Aegean, Baltic, Levantine, the North Sea) or International Hydrographic Organization region (Bay of Biscay, the 
Black Sea, Western Mediterranean Sea)38,39.

The temporal coverage of our data collection is of ~10 years within the period 1950–2100. Forecasts for 
2050 and 2100 are available under different greenhouse gas emission scenarios, i.e., RCP 2.6 (low emission),  
4.5 (medium emission), and 8.5 (high emission), although the RCP 2.6 scenario was not available for 2050. 
Moreover, some forecasts for the IPCC SRES A2 scenario (which hypothesises a future of independent, 
self-reliant nations with constantly increasing population and regionally diversified economic development, 
slow technological change, and worldwide use of nuclear energy) were also available and included in the 
collection.

Data harmonisation for text files was conducted through a dedicated Java process40 that managed the dif-
ferent formats, aligned the data to a resolution-specific grid, and finally produced one ASC file. As for primary 
sources with NetCDF and ESRI-GRID formats, we performed manual checking, alignment, and band extrac-
tion through QGIS. Conversion to ASC format was done through GDAL. No-data locations were all assigned a 
default −9999 value, specified in the ASC file header through the NODATA attribute, which makes it automat-
ically interpreted and used by GIS software for consumption and visualisation. Data with non-homogeneous 
resolution over longitude and latitude were homogenised through nearest-neighbour and bilinear interpolation 
separately, via QGIS. Earthquake and high-resolution temperature and precipitation data were left to their orig-
inal aggregated temporal range to represent an aggregated reference of a recent past.

World population and marine-region parameters - 0.5° resolution global-scale data

Parameter name Description
Unit of 
measurement

Years or temporal 
aggregation

Climatic 
forecast 
scenarios Original File Format Primary source Secondary sources

World population World population 
density persons per km2 2017 ESRI-GRID (ASC) Coro (2020)115

Center for International 
Earth Science Information 
Network (gpwv4)131

EEZ
Exclusive Economic 
Zone (EEZ) in which 
the cell falls

— 2019 CSV AquaMaps HCAF 
V7112 Marine Regions39

LME
Large Marine 
Ecosystem (LME) in 
which the cell falls

— 2019 CSV AquaMaps HCAF 
V7112 Marine Regions39

MEOW
Marine Eco-regions of 
the World (MEOW) in 
which the cell falls

— 2019 CSV AquaMaps HCAF 
V7112 Marine Regions39

MPA
Proportion of cell 
falling in a marine 
protected area

0–1 fraction 2019 CSV AquaMaps HCAF 
V7112

Table 4.  Data of world population and marine-region parameters at 0.5° resolution at the global scale available 
in our repository, with indication of the related primary and secondary sources.
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Newly produced data and time series analysis.  We conducted a spatiotemporal analysis on the focus 
regions to find evidence of similarities between parameter trends over the years. Then we checked for agreement 
with outputs of other studies as a further data validation. We focussed this analysis on a data collection subset 
containing newly produced data at 0.1° resolution, annually aggregated from 2016 to 2020 (Table 1). We selected 
these data because they were not previously explicitly validated in other publications, and were thus differentiated 
from the other data whose content was instead validated in other publications12,16,17,41–44.
The selected data were the following (Fig. 2):

	 1.	 Sea-surface temperature
	 2.	 Sea-bottom temperature
	 3.	 Sea-ice concentration
	 4.	 Sea-surface salinity
	 5.	 Sea-bottom salinity
	 6.	 Sea net primary production
	 7.	 Sea-bottom dissolved oxygen

These parameters are generally used by the AquaMaps ecological niche models41 that assume they include 
sufficient information to assess global species presence16. It is important to note that 2016 data were not available 
for sea-bottom salinity, sea net primary production, and sea-bottom dissolved oxygen.

We used ocean products from the Copernicus Marine Service45 to produce the new data for the seven envi-
ronmental parameters above. NetCDF data for mean monthly sea surface and bottom temperature, sea sur-
face and sea bottom salinity, and sea ice concentration were re-processed based on the Global Ocean 1/12° 
Physics Analysis and Forecast 001–024 monthly dataset46, that natively used the WGS 84-EPSG:4326 geodetic 
system and equirectangular projection and had 0.083° spatial resolution. Mean monthly data for net primary 
production and dissolved oxygen were obtained from two temporally complementary datasets: the Global 
Ocean Biogeochemistry Analysis and Forecast 001–028 monthly dataset47 (in WGS 84-EPSG:4326 geodetic 
system and projection) and the Global Ocean Biogeochemistry Hindcast 001–029 monthly dataset47 (in ETRS 
89-EPSG:4258 geodetic system and projection), both having a spatial resolution of 0.25°. Global monthly data 
for sea surface and bottom temperature, sea surface and bottom salinity, sea ice concentration were rasterized 
and resampled using the R-Terra package48, upscaling to 0.1° spatial resolution using bilinear interpolation. Net 
primary production and dissolved oxygen data were all reprojected to WGS 84-EPSG:4326 prior to rasterization 

Fig. 2  Comparison between the distributions of the environmental parameters used for time series and habitat 
analyses. The displayed maps have a global-scale 0.1° resolution.
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and resampled by downscaling to 0.1° spatial resolution using bilinear interpolation. We carried out this process 
only on one depth layer (either surface or bottom) for all parameters, except for sea bottom salinity and bottom 
dissolved oxygen. These two parameters required the resampling of up to 72 depth levels (0.5 m to 5902 m) per 
month, then extracting data at the maximum depth layer per 0.1° grid cell before compiling them into corre-
sponding monthly sea bottom salinity and sea bottom dissolved oxygen raster layers. We then used the resam-
pled monthly rasters to compute the annual means for each of the seven parameters. The annual mean data were 
saved as GeoTIFF and CSV formats and were manually inspected for exact correspondence through coordinate 
mapping in ArcGIS30. Cases where precedent resampling to 0.1° spatial resolution had yielded marginal rows 
(along 89.95°N or 76.95°S) or a marginal column (along 179.95°E) with missing data were resolved by copying 
parameter values directly from the neighboring row or column. This approach was considered reasonable in 
view of the spatial resolution of the data. The final outputs were exported as CSV files and underwent the data 
harmonisation and standardisation process depicted in Fig. 1.

To validate the data, annual average values per region were first extracted and visualised for each parameter 
to compare trends across all regions (section “Technical Validation”). Moreover, each region was characterised 
through its associated parameter time series. Average time series 0-lag cross-correlation was used for numeri-
cal comparison. Specifically, it was calculated per parameter across all focus regions, and per region across all 
parameters. These analyses highlighted general and regional parameter time series similarities. Confirmation of 
these similarities with that seen in other scientific studies was used to assess the reliability of the data in repre-
senting valid ecological macro-patterns.

Habitat representativeness score.  Parameter time series cross-correlation might indicate that two 
regions were subject to similar average parameter variations. This condition might correspond to similar habitats 
over time in geographically connected regions if the parameters have similar ranges and distributions. A species’ 
ecological niche is, mathematically, the space within a hyper-volume in a vector space of environmental param-
eters associated with the species’ proliferation. Understanding general habitat similarity between two regions is 
equivalent to assessing the similarity between the parameter hyper-volumes over the two regions, independently 
of the species. This assumption is reasonable if the involved parameter set is complete enough for ecological 
niche modelling. Correlated region-specific parameter time series do not necessarily indicate similar habitats, 
because parameter distributions’ similarity and geographic reachability are also required. Habitat similarity, 

Fig. 3  Folder structure of our data repository.
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which depends on annual parameters’ distributions, can also change over the years and is thus complementary 
information with respect to time series correlations. Habitat dissimilarity after a specific year, unnecessarily cor-
responding to lower time series cross-correlation, likely indicates that an abrupt event made two regions different.

We conducted habitat similarity analysis over the years between our focus regions to study these variations 
and search for confirmations in other studies. Specifically, we used the Habitat Representativeness Score (HRS)49 
to measure habitat similarity. HRS is an algorithm based on Principal Component Analysis (PCA)50 that meas-
ures the overall difference of the data distributions between two regions, across the largest data variance direc-
tions (principal components). HRS has been used to understand the principal environmental drivers of species 
presence in distant regions51 and to assess ecological survey completeness49. The algorithm works with two 
inputs: a reference region A and a test region B. As the output, it calculates a score interpretable as the represent-
ativeness of habitat B by habitat A (HRS(A, B)). Each region is characterised through vectors of environmental 
parameters. PCA is conducted on the reference region (A) vectors to extract major data variance axes (i.e., the 
principal components). An optional threshold, set on the principal components’ eigenvalues, can restrict the 
comparison to the largest variance axes. In our validation experiment, we selected components covering up to 
95% of the total data variance. Then, the normalised data frequency distribution of the vectors on each axis is 
calculated and subdivided into equal-frequency bins. The region B vectors are then projected onto the principal 
components of region A. The B parameter frequencies over the A principal components are calculated across 
the same bins estimated for A. Finally, the pairwise differences between the bin frequencies are calculated for 
all principal components. The HRS is the sum of these pairwise differences. Since bin frequencies sum to 1 on 
each axis, the HRS ranges from 0 to the number of principal components (N), with N representing completely 
different habitats and 0 perfect habitat similarity.

We calculated a pairwise HRS matrix to discover significant habitat similarities between the focus regions. 
However, HRS is an asymmetric function by construction because PCA conducted on region A and projected 
on B likely gives different results than PCA conducted on region B and projected on A. One possible estimation 
of the overall HRS between A and B is the mean between HRS(A,B) and HRS(B,A)52. This choice also makes the 
HRS matrix symmetric and facilitates the similarity analysis. Therefore, we used average HRS as the region-pair 
score. For each region, we standardised the scores by dividing the value by the total HRS range. We finally 
assessed as “similar” those region pairs emerging from the standardisation by more than 10%. We repeated this 
analysis for all annual data between 2016 and 2020 to study habitat similarity stability over the years between 
the focus regions. Finally, we verified evidence of the detected similarity stability and instability in other studies.

Fig. 4  Time series of average environmental parameter values per focus region. The reported parameters are 
those used for cross-correlation and habitat analyses and have 0.1° spatial resolution.
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Detecting major habitat similarity drivers.  Using PCA over the focus regions’ parameters allowed for 
consideration of the variables that primarily contributed to the largest principal components and thus to the 
HRS50,53. In particular, the PCA principal axes (eigenvectors) and their eigenvalues allow for defining loading 
vectors as = ⋅loading eigenvector eigenvalue . Each loading is a vector containing as many elements as the num-
ber of original environmental parameters, and there is one loading for every PCA axis. The loading vector ele-
ments represent the original environmental parameters’ contributions to the corresponding PCA axis (weights). 
Keeping only the major PCA axes (i.e., those with the largest eigenvectors) allows for the analysis to be focussed 
on the largest data variance and exclude noise. Average parameter weight across the loadings measures the aver-
age contribution to the principal components by each parameter and thus the contribution to the HRS. Therefore, 
the parameters with the largest average weights are the major drivers of the estimated HRSs and thus of the 
detected similarities. For the present loadings analysis, we selected the principal components covering up to 95% 
of the total data variance and the environmental parameters with a non-zero positive average weight.

Data Records
We made the data available on a public-access Figshare repository54. The collection is composed of 6 datasets. 
The principal datasets are “Environmental Geophysical Marine Socioeconomic parameters at 0.1° and 0.5° resolu-
tions” and “Monthly data at 0.1° resolution”. Internally, they are structured with a folder hierarchy that optimises 
search time for an ecological niche modelling expert (Fig. 3). The first dataset separates 0.5° and 0.1° spatial reso-
lution files in two main folders. The 0.5° resolution folder contains one sub-folder each for RCP 2.6, 4.5, and 8.5, 
the IPCC SRES A2 forecast scenario, and historical data (named HISTORICAL). Each sub-folder is organised by 
year. For example, the RCP 4.5, RCP 8.5, and IPCC SRES A2 folders contain the 2050 and 2100 sub-folders. The 
RCP 2.6 folder contains only the 2100 folder. The HISTORICAL data folder contains year-specific sub-folders 
from 1950 to 2019 and two additional folders for the 1900–2008 and 2000–2014 temporal aggregations. Each 
annual sub-folder contains one sub-folder for each focus region (9 total), which in turn contains the ESRI-GRID 
parameter files with the specific resolution, scenario, time reference, and region corresponding to the file path 
and the metadata. Each file name contains information to reconstruct the path. For instance, Sea-surface_tem-
perature_res_05_annual_years_2019_Clim_scen_historical_regional_Adriatic_Sea.asc indicates a file contain-
ing annual-aggregated sea-surface temperature data, at 0.5° resolution, in 2019, within the HISTORICAL data 
sub-set, and cut out on the Adriatic Sea. The 0.1° annual data root folder has the same structure as the 0.5° root 

Fig. 5  Characterisation of our focus regions through environmental parameters’ time series. The reported 
parameters are those used for cross-correlation and habitat analyses and have 0.1° spatial resolution.
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folder but contains only historical data. The years involved in our data collection are: 1950, 1997, 1999, 2011, 
2013, 2016, 2017, 2018, 2019, 2050, and 2100. Some files, e.g., those of gas concentration of methane and nitrous 
oxide, have a variant file with the “bilinear” attribute in the file name to indicate that bilinear interpolation was 
used instead of nearest neighbour to homogenise coordinate resolutions.

The adopted folder structure allows an ecological niche modelling expert to find aligned files in one folder 
and directly use them in modelling software like MaxEnt31, e.g., to quickly model a species’ distribution at a 0.5° 
spatial resolution in 2019 in the Adriatic.

The monthly dataset has a folder structure organised by parameter name. Each parameter folder contains 
one sub-folder for each year, which in turn contains monthly ESRI-GRID files. This structure is conceived to 
facilitate monthly parameter analyses.

The complete file collection contains 2132 files. Global-scale data are 565; 154 have 0.5°resolution and 411 
have 0.1° resolution. Among the 0.1° resolution data, 369 have a monthly aggregation and 196 an annual aggre-
gation. Forecasts are available for 2050 and 2100, and overall include 63 files for RCP 2.6 (only in 2100), 162 for 
RCP 4.5, 162 for RCP 8.5, and 180 for IPCC SRES A2.

Additional datasets in the collection (in the “Statistics, trends, HRS, PCA-loadings, and charts” and “File list 
and statistical properties” datasets) contain summary tables and charts with standard statistics (mean, standard 
deviation, geometric mean, log-normal standard deviation), cross-correlations, HRS estimates, and PCA load-
ings that we used for the technical validation. The Figshare repository also contains all R scripts, Java software 
links, and references to the programs used to conduct the technical validation (in the “Scripts and related soft-
ware” dataset).

Technical Validation
Consistency with respect to the original data.  Each produced ESRI-GRID file was defined on a regular 
spatial grid. Therefore, as a first consistency check, we exhaustively verified that all grid data corresponded to the 
expected original data. In particular, we systematically sampled from each ESRI-GRID file and pairwise checked 
if the samples corresponded, through coordinate mapping, to the expected values in the original dataset. As for 
interpolated coordinates, the nearest neighbour value in the original file was taken as the validation reference. 
This operation allowed us to detect conversion and misalignment errors, which we later adjusted for exact corre-
spondence with the original files. We conducted this operation with a specific Java-based program for text files40, 
and with QGIS and GDAL for NetCDF and ASC files. General content validation was also conducted by manually 
checking if the means, standard deviations, geometric means, and log-normal standard deviations (for posi-
tive-defined variables) of all files fell in the expected ranges. A summary table of statistics for all files is available 
in our repository55. The script for calculating this table is available in the “Scripts and related software” dataset54.

The quality of the data from our previous studies was already verified in the original publications (referred 
in Tables 1–4), and in other additional publications12,16,17,41–44. Therefore, we technically validated these files by 
checking their ESRI-GRID version consistency with the original files.

As for the newly generated data, we assessed their quality by searching for evidence of the inferred trends and 
similarities in other studies (explained in the following sections).

Time series cross-correlation analysis.  We produced two charts to visually summarise (i) the parameter 
time series over the focus regions and (ii) the focus regions’ characterisation in terms of parameter variations 
(Figs. 4, 5). Moreover, in Table 5, we summarised the parameter trends confirmed by other studies. For each 
parameter, we also reported the percentage of regions (over the total nine regions) for which we found stud-
ies confirming or explaining the trends. The parameter charts highlight an inconstant trend of sea-surface and 
-bottom temperature across the regions. Moreover, sea temperature had a general increasing trend at the global 
scale (more than linearly for sea-bottom temperature), which several other studies have confirmed in the last 
decades56,57. Net primary production presented a globally increasing trend, in agreement with other studies58,59, 
and an overall decreasing trend in the Adriatic, Aegean, and the Black Sea also highlighted by other studies14,60,61. 
Sea-bottom dissolved oxygen presented a non-linear global-scale decrease in 2020 in all regions, also confirmed 
by other studies62–64. Sea-surface and -bottom salinity had a globally decreasing trend in several regions, probably 

Parameter name Confirmed trends from other studies
Confirmation percentage 
across the regions

Sea-surface temperature Averagely increasing trend 56%

Sea-bottom temperature Averagely increasing trend 89%

Net primary production Averagely increasing trend, with local decrease in the Adriatic, Aegean, 
and the Black Sea 100%

Sea-bottom dissolved 
oxygen Global decreasing trend, with decrease in 2020 in all regions 100%

Sea-surface salinity Averagely decreasing trend, with increase in the Black Sea regions 67%

Sea-bottom salinity Averagely decreasing trend 56%

Sea ice concentration Averagely increasing trend up to 2019 and then decreasing; overall 
decrease in the North Sea and Black Sea regions 100%

Table 5.  Summary table of the trends observed in our data that agreed with other studies, and the percentage of 
regions (over the total 9 regions) for which we found trend confirmation in other studies.
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because of ice melting and climate change-related freshwater fluxes65–67. A salinity increasing trend occurred 
for the Black Sea, also observed by another study68. A significant sea ice concentration variation occurred in 
the Baltic Sea, with an increasing trend up to 2019 followed by a lower value in 2020, reflecting the global trend.  
A decrease occurred in the Black Sea and the North Sea. These observations agree with other studies69–72.

net primary 
production

sea-bottom 
dissolved oxygen sea-bottom salinity

sea-bottom 
temperature sea-surface salinity

sea ice 
concentration

sea-surface 
temperature

net primary 
production 0.5% −32% 5% −36% −3% 11%

sea-bottom 
dissolved oxygen 0.5% 19% −22% 0.3% −1% −37%

sea-bottom salinity −32% 19% 30% 65% 11% 11%

sea-bottom 
temperature 5% −22% 30% 24% −6% 64%

sea-surface salinity −36% 0.3% 65% 24% −6% 9%

sea ice 
concentration −3% −1% 11% −6% −6% −6%

sea-surface 
temperature 11% −37% 11% 64% 9% −6%

net primary 
production

sea-bottom 
dissolved oxygen sea-bottom salinity sea-bottom 

temperature sea-surface salinity sea ice 
concentration

sea-surface 
temperature

net primary 
production

(−)Global-scale, 
(−)Adriatic Sea, 
(−)Aegean Sea, (+)
Baltic Sea, (−)Bay 
of Biscay, (+)North 
Sea, (−)Western 
Mediterranean Sea

(−)Global-scale, 
(−)Adriatic Sea, 
(−)Aegean Sea, (+)
Baltic Sea, (−)Bay 
of Biscay, (−)Black 
Sea, (−)Levantine 
Sea, (+)North 
Sea, (−)Western 
Mediterranean Sea

sea-bottom 
dissolved oxygen

(−)Global-scale, 
(−)Baltic Sea, 
(−)Black Sea, 
(−)North Sea, 
(−)Western 
Mediterranean Sea

sea-bottom salinity

(−)Global-scale, 
(−)Adriatic Sea, 
(−)Aegean Sea, (+)
Baltic Sea, (−)Bay 
of Biscay, (+)North 
Sea, (−)Western 
Mediterranean Sea

(−)Global-scale, (+)
Adriatic Sea, (+)
Aegean Sea, (+)Bay 
of Biscay, (−)Black 
Sea, (+)Levantine 
Sea

(+)Global-scale, (+)
Adriatic Sea, (+)
Aegean Sea, (+)
Baltic Sea, (+)Bay 
of Biscay, (−)Black 
Sea, (+)Levantine 
Sea, (+)North 
Sea, (+)Western 
Mediterranean Sea

sea-bottom 
temperature

(−)Global-scale, (+)
Adriatic Sea, (+)
Aegean Sea, (+)Bay 
of Biscay, (−)Black 
Sea, (+)Levantine 
Sea

(+)Global-scale, (−)
Adriatic Sea, (+)
Aegean Sea, (+)
Baltic Sea, (+)Bay 
of Biscay, (+)Black 
Sea, (+)Levantine 
Sea, (+)North 
Sea, (+)Western 
Mediterranean Sea

sea-surface salinity

(−)Global-scale, 
(−)Adriatic Sea, 
(−)Aegean Sea, (+)
Baltic Sea, (−)Bay 
of Biscay, (−)Black 
Sea, (−)Levantine 
Sea, (+)North 
Sea, (−)Western 
Mediterranean Sea

(+)Global-scale, (+)
Adriatic Sea, (+)
Aegean Sea, (+)
Baltic Sea, (+)Bay 
of Biscay, (−)Black 
Sea, (+)Levantine 
Sea, (+)North 
Sea, (+)Western 
Mediterranean Sea

sea ice concentration

sea-surface 
temperature

(−)Global-scale, 
(−)Baltic Sea, 
(−)Black Sea, 
(−)North Sea, 
(−)Western 
Mediterranean Sea

(+)Global-scale, (−)
Adriatic Sea, (+)
Aegean Sea, (+)
Baltic Sea, (+)Bay 
of Biscay, (+)Black 
Sea, (+)Levantine 
Sea, (+)North 
Sea, (+)Western 
Mediterranean Sea

Table 6.  Pairwise cross-correlations between parameter time series (upper table) with the indication of the 
focus regions where the cross-correlations were significantly direct (+) or inverse (−) (lower table). Text style 
indicates overall significant direct (italics) or inverse (bold) correlations.

https://doi.org/10.1038/s41597-022-01904-3


1 4Scientific Data |            (2023) 10:7  | https://doi.org/10.1038/s41597-022-01904-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Global-scale Adriatic Sea Aegean Sea Baltic Sea Bay of Biscay Black Sea Levantine Sea North Sea

Western 
Mediterranean 
Sea

Global-scale −30% −24% 57% 36% 10% 11% 23% 50%

Adriatic Sea −30% 66% 0% −6% 22% 5% −7% −2%

Aegean Sea −24% 66% 11% −19% 16% 30% 7% −8%

Baltic Sea 57% 0% 11% 10% 17% 22% 50% 26%

Bay of Biscay 36% −6% −19% 10% −11% −6% 39% 45%

Black Sea 10% 22% 16% 17% −11% 9% −4% 0%

Levantine Sea 11% 5% 30% 22% −6% 9% 20% 24%

North Sea 23% −7% 7% 50% 39% −4% 20% 25%

Western 
Mediterranean 
Sea

50% −2% −8% 26% 45% 0% 24% 25%

Global-scale Adriatic Sea Aegean Sea Baltic Sea Bay of Biscay Black Sea Levantine Sea North Sea
Western 
Mediterranean 
Sea

Global-scale

(−)net primary 
production, 
(+)sea-bottom 
temperature, 
(−)sea-surface 
salinity, (−)
sea-surface 
temperature

(+)net primary 
production, 
(+)sea-bottom 
dissolved oxygen, 
(+)sea-bottom 
temperature, 
(+)sea ice 
concentration, 
(+)sea-surface 
temperature

(+)net primary 
production, 
(+)sea-bottom 
salinity, (+)
sea-surface 
temperature

(+)net primary 
production, (+)
sea-bottom 
salinity, (+)
sea-bottom 
temperature, 
(+)sea-surface 
salinity

Adriatic Sea

(−)net 
primary 
production, 
(+)sea-bottom 
temperature, 
(−)sea-surface 
salinity, (−)
sea-surface 
temperature

(+)net primary 
production, 
(+)sea-bottom 
dissolved oxygen, 
(+)sea-bottom 
salinity, (+)
sea-bottom 
temperature, 
(+)sea-surface 
salinity, (+)
sea-surface 
temperature

Aegean Sea

(+)net primary 
production, 
(+)sea-bottom 
dissolved oxygen, 
(+)sea-bottom 
salinity, (+)
sea-bottom 
temperature, 
(+)sea-surface 
salinity, (+)
sea-surface 
temperature

(−)net primary 
production, (+)
sea-bottom 
dissolved oxygen, 
(+)sea-bottom 
temperature, 
(+)sea-surface 
temperature

Baltic Sea

(+)net primary 
production, 
(+)sea-bottom 
dissolved 
oxygen, (+)
sea-bottom 
temperature, 
(+)sea ice 
concentration, 
(+)sea-surface 
temperature

(+)net primary 
production, 
(+)sea-bottom 
dissolved oxygen, 
(+)sea-bottom 
salinity, (+)
sea-bottom 
temperature, 
(+)sea-surface 
salinity, (−)sea 
ice concentration, 
(+)sea-surface 
temperature

Bay of Biscay

(+)net primary 
production, 
(+)sea-bottom 
dissolved oxygen, 
(−)sea-bottom 
salinity, (+)
sea-bottom 
temperature, 
(+)sea-surface 
temperature

(+)net primary 
production, (+)
sea-bottom 
dissolved oxygen, 
(+)sea-bottom 
salinity

Black Sea

Continued
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Averaging time series cross-correlations across the areas revealed overall similarities between the parameter 
trends. We highlighted direct and inverse correlations in the comparison matrix to study the significant similar-
ities. Specifically, we studied the direct and inverse correlations being at least moderate73, i.e., higher than 30% 
or lower than −30% (Table 6).
This analysis revealed the following time series similarities in the analysed time frame:

•	 Net primary production, on average, was inversely correlated with sea-bottom and -surface salinity, especially 
at the global scale and in the Adriatic, Aegean, Bay of Biscay, Black Sea, Levantine, and Western Mediterra-
nean. These observations agree with those of other studies;14,74–77

•	 Sea-bottom salinity was generally positively correlated with sea-surface salinity in most seas except for the 
Black Sea, due to peculiar deep and shallow thermohaline dynamics78. It was also positively correlated with 
sea-bottom temperature in the Adriatic, Aegean, Bay of Biscay, and Levantine, as can also be inferred by other 
studies79–82;

•	 Sea-bottom dissolved oxygen was inverse-correlated with sea-surface temperature at the global scale, and 
in the Baltic, Black Sea, North Sea, and Western Mediterranean, as inferable also by other studies;63,64,78,83–85

•	 Sea-ice concentration had no significant correlation with the other parameters.

Repeating the same analysis by focus region highlighted the following moderate73 correlations (Table 7):

•	 The global scale had similar trends to those of the Baltic Sea (because of a similar ice concentration trend), 
Bay of Biscay, and Western Mediterranean because they shared averagely increasing net primary production 
and temperature trends56–59. Conversely, the global scale had different trends with respect to those of the 
Adriatic due to different parameter signal-phases;14,86

•	 The Adriatic Sea time series were correlated with those of the Aegean Sea through similar trends of all 
parameters87;

•	 The Aegean Sea time series were correlated with those of the Levantine Sea through similar sea-bottom dis-
solved oxygen and sea-bottom and -surface temperature trends87;

•	 The Baltic time series were correlated with those of the North Sea through all parameters except sea-ice 
concentration88,89;

•	 The Bay of Biscay had similar trends to those of the North Sea and the Western Mediterranean through 
net primary production, sea-bottom dissolved oxygen, temperature (only for the North Sea), and sea-bot-
tom salinity (only for the Western Mediterranean) because of constant inter-connected water mass flow 
exchange90,91;

•	 The Black Sea had a standalone characterisation and non-significant cross-correlation with the other 
regions78;

Global-scale Adriatic Sea Aegean Sea Baltic Sea Bay of Biscay Black Sea Levantine Sea North Sea

Western 
Mediterranean 
Sea

Levantine Sea

(−)net primary 
production, 
(+)sea-bottom 
dissolved oxygen, 
(+)sea-bottom 
temperature, 
(+)sea-surface 
temperature

North Sea

(+)net primary 
production, 
(+)sea-bottom 
dissolved oxygen, 
(+)sea-bottom 
salinity, (+)
sea-bottom 
temperature, 
(+)sea-surface 
salinity, (−)sea 
ice concentration, 
(+)sea-surface 
temperature

(+)net primary 
production, 
(+)sea-bottom 
dissolved 
oxygen, (−)sea-
bottom salinity, 
(+)sea-bottom 
temperature, 
(+)sea-surface 
temperature

Western 
Mediterranean 
Sea

(+)net primary 
production, 
(+)sea-bottom 
dissolved 
oxygen, (+)sea-
bottom salinity

Table 7.  Average time series cross-correlations between focus regions (upper sub-table) with the indication 
of the environmental parameters on which the cross-correlations were significantly direct (+) or inverse (−) 
(lower table). Text style indicates overall significant direct (italics) or inverse (bold) correlations.
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The regions with higher cross-correlation were geographically connected regions that share sea-currents and 
partially overlap. Although the correlations generally do not correspond to habitat similarity, they might indicate 
similar area responses to inter-annual parameter variations and climate change17.

Highlight of pair habitat similarity over the years

2020

Adriatic Sea Aegean Sea Baltic Sea
Bay of 
Biscay Black Sea Levantine Sea North Sea

Western 
Mediterranean 
Sea

Adriatic Sea ✓

Aegean Sea ✓

Baltic Sea ✓

Bay of Biscay

Black Sea

Levantine Sea

North Sea ✓

Western 
Mediterranean 
Sea

2019

Adriatic Sea Aegean Sea Baltic Sea Bay of 
Biscay Black Sea Levantine Sea North Sea

Western 
Mediterranean 
Sea

Adriatic Sea ✓

Aegean Sea ✓

Baltic Sea ✓

Bay of Biscay

Black Sea

Levantine Sea

North Sea ✓

Western 
Mediterranean 
Sea

2018

Adriatic Sea Aegean Sea Baltic Sea Bay of 
Biscay Black Sea Levantine Sea North Sea

Western 
Mediterranean 
Sea

Adriatic Sea

Aegean Sea

Baltic Sea ✓

Bay of Biscay

Black Sea

Levantine Sea

North Sea ✓

Western 
Mediterranean 
Sea

2017

Adriatic Sea Aegean Sea Baltic Sea Bay of 
Biscay Black Sea Levantine Sea North Sea

Western 
Mediterranean 
Sea

Adriatic Sea

Aegean Sea

Baltic Sea ✓

Bay of Biscay

Black Sea

Levantine Sea

North Sea ✓

Western 
Mediterranean 
Sea

Table 8.  Habitat similarity highlights, based on the Habitat Representativeness Score algorithm, between 
the focus regions over the years. Checkmarks indicate significant habitat similarity; empty cells indicate non-
significant similarity.
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Habitat similarities.  To further explore if time-series cross-correlations were accompanied by habitat simi-
larities, we calculated HRSs between the focus regions. We used a re-implementation of the HRS algorithm92, also 
available as a Web tool93 on the D4Science e-Infrastructure94–98. The HRSs were calculated on annual parameters 
from 2017 to 2020 (Table 8). The comparison was not reported for 2016 because HRS could not be calculated 
for all parameters. The global scale was excluded from the focus regions because calculating the HRS against 
much smaller areas would not have been meaningful due to the incommensurable data variabilities. HRSs were 
categorised as similar/dissimilar based on the threshold described in the Methods section. Numerical details are 
reported in the “Statistics, trends, HRS, PCA-loadings, and charts” dataset on our Fisgshare repository54.

Adriatic Sea

2017 2018 2019 2020

Net Primary Production (77.1%) Net Primary Production (81.6%) Net Primary Production (74.3%) Net Primary Production (77.7%)

Sea-bottom temperature (22.9%) Sea-bottom temperature (18.4%) Sea-bottom temperature (25.7%) Sea-bottom temperature (22.3%)

Aegean Sea

2017 2018 2019 2020

Sea-bottom dissolved oxygen (31.7%) Sea-bottom dissolved oxygen (30.0%) Sea-bottom temperature (29.5%) Sea-bottom temperature (26.4%)

Sea-bottom temperature (23.5%) Sea-bottom temperature (22.8%) Sea-bottom dissolved oxygen (19.8%) Sea-bottom dissolved oxygen (21.5%)

Sea-surface salinity (19.3%) Sea-surface salinity (19.4%) Sea-surface salinity (19.4%) Sea-surface salinity (19.9%)

Sea-surface temperature (16.0%) Sea-surface temperature (18.5%) Sea-bottom salinity (17.6%) Sea-bottom salinity (18.1%)

Sea-bottom salinity (9.5%) Sea-bottom salinity (9.3%) Sea-surface temperature (13.7%) Sea-surface temperature (14.1%)

Baltic Sea

2017 2018 2019 2020

Sea-bottom temperature (31.6%) Net Primary Production (26.2%) Sea-bottom temperature (28.9%) Sea-bottom temperature (34.1%)

Sea-surface temperature (30.8%) Sea-bottom temperature (25.9%) Net Primary Production (25.5%) Sea-surface temperature (29.8%)

Net Primary Production (15.9%) Sea-surface temperature (17.2%) Sea-surface temperature (22.1%) Net Primary Production (24.7%)

Sea-surface salinity (8.5%) Sea-surface salinity (14.4%) Sea-bottom dissolved oxygen (11.3%) Sea-bottom dissolved oxygen (6.0%)

Sea-bottom salinity (6.7%) Sea-bottom salinity (12.2%) Sea-surface salinity (7.4%) Sea-surface salinity (4.0%)

Sea-bottom dissolved oxygen (6.4%) Sea-bottom dissolved oxygen (4.1%) Sea-bottom salinity (4.7%) Sea-bottom salinity (1.6%)

North Sea

2017 2018 2019 2020

Sea-bottom dissolved oxygen (83.3%) Sea-bottom dissolved oxygen (62.6%) Sea-bottom dissolved oxygen (63.9%) Sea-bottom dissolved oxygen (68.6%)

Net Primary Production (16.7%) Net Primary Production (37.4%) Net Primary Production (36.1%) Net Primary Production (31.4%)

Bay of Biscay

2017 2018 2019 2020

Sea-bottom dissolved oxygen (71.2%) Net Primary Production (51.2%) Net Primary Production (50.6%) Sea-bottom dissolved oxygen (91.6%)

Sea-bottom temperature (26.0%) Sea-bottom dissolved oxygen (47.2%) Sea-bottom dissolved oxygen (49.4%) Net Primary Production (8.4%)

Net Primary Production (2.9%) Sea-bottom temperature (1.7%)

Black Sea

2017 2018 2019 2020

Sea-bottom dissolved oxygen (42.3%) Net Primary Production (29.0%) Net Primary Production (40.9%) Sea-bottom dissolved oxygen (57.8%)

Net Primary Production (40.2%) Sea-bottom temperature (28.0%) Sea-bottom dissolved oxygen (35.6%) Sea-bottom temperature (41.5%)

Sea-bottom temperature (17.5%) Sea-bottom dissolved oxygen (26.7%) Sea-bottom temperature (23.5%)

Sea-surface temperature (16.3%)

Levantine Sea

2017 2018 2019 2020

Sea-bottom dissolved oxygen (55.2%) Sea-bottom dissolved oxygen (55.3%) Sea-surface temperature (46.4%) Sea-surface temperature (49.1%)

Sea-bottom temperature (44.8%) Sea-bottom temperature (44.7%) Net Primary Production (29.4%) Net Primary Production (28.9%)

Sea-bottom temperature (24.2%) Sea-bottom temperature (22.0%)

Western Mediterranean Sea

2017 2018 2019 2020

Net Primary Production (33.0%) Sea-surface temperature (38.7%) Sea-bottom temperature (30.9%) Sea-bottom temperature (34.5%)

Sea-bottom temperature (26.9%) Sea-bottom temperature (32.3%) Sea-surface temperature (24.2%) Sea-surface temperature (27.1%)

Sea-surface temperature (23.8%) Sea-bottom dissolved oxygen (16.9%) Net Primary Production (22.7%) Sea-bottom dissolved oxygen (20.8%)

Sea-bottom dissolved oxygen (16.3%) Net Primary Production (12.1%) Sea-bottom dissolved oxygen (22.3%) Net Primary Production (17.6%)

Table 9.  Contribution of the environmental parameters to the PCA loadings across the focus regions over 
the years. The Adriatic and Aegean seas and the Baltic and North Sea are grouped because of their habitat 
similarities. Years in italics indicate the years of habitat similarity, and bold-highlighted years indicate habitat 
dissimilarity. The parameters mainly responsible for habitat similarity/dissimilarity are highlighted in bold.
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The HRS table indicates that habitat similarity occurred between the Aegean and Adriatic Seas only in 2019 
and 2020 and between the North Sea and Baltic Sea from 2017 to 2020. These regions also have generally simi-
lar parameter trends and are geographically connected. Habitat dissimilarity between the Aegean and Adriatic 
seas in 2018 and 2017 corresponds to a known effect of an anticyclonic Bimodal Oscillating System regime that 
prevented eastern waters from entering the Adriatic in those years86,99–101. General habitat similarity between 
the North Sea and the Baltic Sea has also been highlighted by other studies, unless regime shifts occur102–104. 
This overall similarity is also demonstrated by the many fishery-targeted species living in both the areas, e.g., 
Gadus morhua, Limanda limanda, Platichthys flesus, Pleuronectes platessa, Scophthalmus maximus, Scophthalmus 
rhombus, and Solea solea.

As for the other focus regions, the similar time series trends in the previous section did not correspond to 
habitat similarity. Thus, these regions can present similar inter-annual parameter changes but dissimilar param-
eter distributions.

Habitat similarity drivers.  The extracted PCA loadings (Table 9) shed light on the parameters’ variability 
over the years and their contributions to HRSs. This analysis highlighted that the similarity between Adriatic and 
Aegean seas was mainly driven by the sea-bottom temperature distribution. In the Aegean Sea, this parameter had 
a higher weight in 2020 and 2019 than in 2018 and 2017, and its distribution resembled the one of the Adriatic 
Sea in 2020 and 2019. The parameter contribution rankings in 2018 and 2017 in the Aegean Sea changed with 
respect to 2020 and 2019, in correspondence of the anticyclonic Bimodal Oscillating System regime effect86,99–101.

Habitat similarity between the North Sea and the Baltic Sea over the years mainly depended on the net pri-
mary production and sea-bottom dissolved oxygen distributions. These two were the only shared parameters 
between the regions that contributed to the PCA loadings. Although the parameter contribution ranking over 
the years in the Baltic Sea was variable, the similarity was overall good because of similar net primary produc-
tion and sea-bottom dissolved oxygen distributions.

The parameter contribution rankings over the years across the other regions were variable. An abrupt change 
occurred in the Levantine Sea, where sea-bottom dissolved oxygen and temperature weights decreased from 
2018 to 2019 and the net primary production and sea-surface temperature weights increased contextually. These 
variations likely corresponded to a dissolved oxygen reduction (and variance reduction) in the region caused 
by the peculiar Levantine Sea thermohaline flux105. This flux is indeed characterised by dissolved oxygen being 
inversely correlated with sea-surface temperature and directly correlated with deep-layer temperature increase106.

Usage Notes
ESRI-GRID ASCII files can be visualised with GIS software, e.g., QGIS29, or ArcGIS30, by dragging and dropping 
files to the software interface.

Code availability
Software to transform text files into ESRI-GRID ASC files is openly available on the GitHub40. Software to calculate 
Habitat Representativeness Score and PCA loadings is also openly available on the GitHub92 and through a Web 
interface in the D4Science e-Infrastructure (RPrototypingLab VRE)93. R scripts to calculate cross-correlation and 
parameter statistics are available on our public Figshare repository54, in the “Script and Related Software” dataset.
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