
Contract Automata Library

Davide Basile∗, Maurice H. ter Beek∗

Formal Methods and Tools lab
ISTI–CNR, Pisa, Italy

Abstract

Contract automata facilitate the specification, composition, and synthesis of
behavioural contracts, comprehending modalities and configurations. Contract
automata are supported by a software API called Contract Automata Library.
This paper accompanies the software artefact by discussing its architecture,
showing some usage examples and presenting recent improvements of the soft-
ware in terms of quality, availability, usability, and documentation.

Keywords: Service Composition, Controller Synthesis, Behavioural Contracts,
Software Quality

1. Introduction

Behavioural contracts [1] have been introduced to specify the behaviour of
services and to synthesise service compositions satisfying given formal proper-
ties [2–4]. This allows rigorous reasoning on the composite behaviour, as well
as improving the modularity, adaptability, and reusability of services.

Contract automata [5] are a dialect of Finite State Automata introduced to
model behavioural service contracts in terms of service offer actions and service
request actions, which need to match to achieve agreement among a compo-
sition of contracts. Modalities are used to indicate when an action must be
matched (necessary) and when it can be be withdrawn (permitted) in the syn-
thesised composition [6]. Composing contracts and synthesising a well-behaving
composition, usually by refining a spurious composition, are two of the main
functionalities supported by contract automata. The synthesis for contract au-
tomata builds upon results from supervisory control theory [7–9] for synthesising
the most permissive controller (mpc for short), duly revisited for synthesising
orchestrations and choreographies in [10]. Contract automata and their func-
tionalities are implemented in a software artefact, called Contract Automata
Library (CATLib), which is under continuous development.

∗First author, corresponding author
Email address: davide.basile@isti.cnr.it (Davide Basile)

Preprint submitted to Science of Computer Programming July 7, 2022

This paper accompanies the software artefact and it presents recent improve-
ments in the (open-source) software supporting the contract automata formal-
ism [11], following the guidelines of Science of Computer Programming ’s new
Software Track on Original Software Publications [12] (OSP). The software’s
purpose is to show the feasibility of the proposed theoretical approach, to aid
researchers experimenting with new developments in the theoretical framework
of contract automata, and to build applications and formal tools exploiting
this framework. A developer can exploit CATLib to instantiate contract au-
tomata and perform operations like composition and synthesis. An application
developed with CATLib is thus formally validated by-construction against well-
behaving properties from the theory of contract automata [5, 6, 10, 13]. An
example of an application developed using the library is provided in this paper
as well as details of the software’s architecture. We also discuss the software’s
evaluation in terms of quality and correctness. Indeed, one of the goals of the
research on behavioural contracts is to develop more reliable software applica-
tions. To do so, reliable implementations of these formalisms must also be made
available. We tackle this aspect by detailing the techniques and external services
that have been used to assess the quality and correctness of the implementation.

The software is currently used by the inventors and contributors of the con-
tract automata formalism. The public repository hosting the software has been
forked by other developers outside the organisation. The software is not in-
tended for commercial use. Some publications that have exploited the software
(including its earlier prototypes) are [5, 6, 10, 13–20]. The presented software
artefact is original and has not been published elsewhere.

Related Work. This paper accompanies the software artefact CATLib, whose
refactoring and redesign is discussed in [20]. CATLib was redesigned according
to principles of model-based systems engineering [21, 22] and of writing clean
and readable code [23, 24], which are known to improve reliability and under-
standability, and to facilitate maintainability and reuse. The software has more-
over been refactored using lambda expressions and Java Streams as available in
Java 8 [25, 26], exploiting parallelism. Experiments were conducted to show the
performance improvement (cf. [20, Table 1]). There are other repositories cur-
rently under development that exploit CATLib. CAT App [27] is a GUI front-end
of CATLib to visualise contract automata, edit them, and use main operations
(e.g., composition and synthesis). CAT App was developed by specialising the
BasicGraphEditor of the mxGraph library [28]. CARE [29] is a runtime environ-
ment to coordinate services implementing contract automata specifications.

Composition and orchestration of services via supervisory control theory is
an active research field [30–34], for which decidability has been studied ear-
lier [35]. Most of this body of work investigates fundamental aspects, without
providing implementations. CATLib (cf. Section 2) could be extended to also
support some of these proposals.

In the repository [36] of software accepted for the OSP track of Science of
Computer Programming, two of them concern choreographies of services [37, 38],
which share aspects with the choreography synthesis implemented in CATLib.

2

We note that no information about testing or code analysis is available in most
of the repositories of software artefacts in [36] (31 entries at the time of writ-
ing). Instead, CATLib follows a thorough process of automatic building, testing,
and analysis, based on [39], which is described in Section 5, providing more
confidence on the correctness and quality of our implementation, which is easily
accessible and verifiable through the public repository (cf. Figure 3).

Outline. This paper is organised as follows. We start by briefly describing the
contribution and innovation in Section 2. The software design and background
is presented in Section 3. Examples of usage of the library are described in
Section 4. The criteria for the software evaluation are discussed in Section 5.
Finally, Section 6 concludes the paper and discusses future work.

2. Contribution and Innovation

This software artefact is a by-product of scientific research on behavioural
contracts and implements results that have been previously formally specified
in several scientific publications (cf., e.g., [5, 6, 10, 13–20]).

From a recent survey in the transport domain [40] it has emerged that the
majority of studies on formal methods propose specification languages, models,
and their verification, whereas fewer focus on how to derive the finalised soft-
ware from the verified specification. Indeed, as reported in [41], behavioural
contracts/types are not yet a feature of mainstream programming languages.
This software artefact allows programmers to use contract automata to develop
more reliable applications. Section 4 shows a simple example of an application
derived from contract automata models.

The library has been designed to be easily extendable to support simi-
lar automata-based formalisms. Currently, synchronous communicating ma-
chines [42] are also supported by the library. The relation and translation be-
tween these two formalisms was studied in [13].

This software is the first to implement innovative choreography and orches-
tration synthesis algorithms, different from the standard controller synthesis
algorithm for supervisory control of discrete event systems [7–9]. The synthe-
sis of a controller, an orchestration, and a choreography are all different special
cases of a more abstract synthesis algorithm, formalised in [10] and implemented
in CATLib [20] using big data-like parallel operations of Java Streams. The algo-
rithms themselves exploit new notions of controllability [10] and compositional-
ity [5] of behavioural contracts. The software uses established technologies for
building, testing, documenting, and delivering high-quality source code.

3. Software Design

In this section, we describe the high-level structure of the library and we
provide some background on the theory of contract automata [5, 6, 10]. Apart
from this accompanying paper, the software artefact also includes another five

3

automaton operations requirementsconverters

I/O useon

Figure 1: High level package diagram

different artefacts containing fine-grained details of the implementation: (i) a
navigable interactive site visualising for all the packages their class diagram and
the relative documentation of all members [43]; (ii) a diagram report containing
all class diagrams of this library [44]; (iii) a library report describing all class
diagrams with documentation for each class and each member of a class [45];
(iv) the JavaDoc site available online [46], reporting all class diagrams and the
documentation for each class in the standard JavaDoc format (more on this
in Section 5.3); (v) a package report describing all packages and classes [47].
All these technical documents, the GitHub Page of the library, and its current
release are also permanently available at [48].

Figure 1 shows four of the eleven packages of CATLib and their relations.
The automaton package and its sub-packages implement the formal model.
Automata can be imported/exported using the package converters, operated
upon using the package operations that in turn uses the package require-
ments. All packages are prefixed by io.github.contractautomata.catlib.

The implementation of an automaton is under the package automaton and
its sub-packages contain the implementations of states, transitions, labels, and
actions of an automaton. We use the typewriter font for names of classes and
interfaces. The Automaton class implements the interface Ranked. The rank is
the number of atomic components contained in the automaton. When several
automata are composed (whose rank may be greater than one), the result is an
automaton with a rank that is the sum of the rank of the operands.

Label is the super class of labels, having a content that is a tuple of a generic
type. CALabel extends Label to implement labels of contract automata. Fol-
lowing [5, Definition 2.1], labels of contract automata are lists of actions of three
types: (i) offer: one action is an offer action and all the others are idle actions,
(ii) request: one action is a request action and all the others are idle actions,
(iii) match: two actions are matching (i.e., one is a request, the other an offer,
and their content is the same) and all the others are idle. Action is the super
class from which the other actions are inheriting. In contract automata, an ac-
tion can be either an OfferAction, a RequestAction, or an IdleAction (i.e., a
‘nil’ action). Actions are matchable and a request action matches an offer action
(and vice versa) if both have the same label. Actions can have an Address, in
this case implementing the interface AddressedAction. Actions with addresses
are AddressedOfferAction and AddressedRequestActions. These actions are
equipped with an address storing senders and receivers of actions. For two ad-
dressed actions to match, also their sender and receiver must be equal. Ad-
dressed actions are used to implement communicating machines, in which each

4

participant in the composition is aware of the other participants. Communicat-
ing machines are a known model of choreographies [42]. Also actions not having
an address may be used in contract automata: in this case the participants
are oblivious of the other partners, and the model assumes the presence of an
orchestrator in charge of pairing offers and requests [13].

The (abstract) super class of a state is AbstractState, where a state can be
initial or final and has a label. A BasicState implements an AbstractState of
a single participant, it has rank 1 and the label of the state cannot have further
inner components. A State implements an AbstractState with a rank: it is a
list of basic states. Transition is the super class for transitions, it has a source
state, a target state, and a label. ModalTransition extends Transition to
include modalities (cf. [6, Definition 9]). The modalities of contract automata
are permitted and necessary. A necessary transition has a label that must be
matched in a composition, whereas a permitted transition can be withdrawn.
Necessary transitions can be further distinguished between urgent and lazy,
where urgent is the classic notion of uncontrollability, while lazy is a novel
notion introduced in the context of contract automata. Lazy transitions can be
either controllable or uncontrollable, according to a given predicate evaluated
on the whole automaton to which this transition belongs.

The various operations that can be performed on automata are grouped
in the package operations. Projection (cf. [6, Definition 6]) is used to ex-
tract a principal automaton from a composed automaton. The main operations
are Composition (cf. [6, Definition 5]), to compose automata, and Synthesis

(cf. [10, Definition 5.1]), to refine an automaton to satisfy given predicates.
These two classes are further specialised to implement different compositions
and the synthesis of an orchestration, the choreography, and the most permis-
sive controller (cf. [10, Theorems 5.3-5.5]).

The requirements package groups some invariant requirements that can
be enforced in a contract automaton. The Agreement requirement (cf. [13, Def-
inition 17]) is an invariant requiring that each transition must not be a request:
only offers and matches are allowed. This means that all requests actions are
matched, and an agreement is reached. The StrongAgreement requirement
(cf. [13, Definition 7]) is an invariant allowing only matches. This means that
all request and offer actions of principals are matched.

The family package (not displayed in Figure 1) groups together the func-
tionalities that extend contract automata to product lines. Featured Modal
Contract Automata (FMCA) is the name of this extension. The class FMCA

implements this type of automata. The family of products is implemented by
the class Family. Each product is implemented by the class Product. Each fea-
ture of a product is implemented by the class Feature. Following [6, Definition
11], features are identified with the actions of the automaton, and each product
identifies a set of required actions (which must be reachable in the automaton)
and a set of forbidden actions (which must not be reachable in the automaton).

The import/export packages for the automata and product lines are not
reported, but their description is available in the cited technical documentation.

5

4. Examples of Usage of CATLib

This section shows some examples of usage of some functionalities of CATLib.
We use as case study the game tic-tac-toe. Another available case study is the
hotel reservation system we used in [6, 10]. It is described in [49], together
with a description of the .data format used to store contract automata. The
hotel reservation system features clients booking reservations from hotels with
intermediary brokers, and it is one of the classical service booking examples
that can be found in publications about formal methods for service-oriented
computing (cf., e.g., [5, 15, 38, 50–52]). The hotel reservation system case study
covers aspects of the initial modelling, while the implementation of a booking
application is out-of-scope. On the other hand, the tic-tac-toe case study, being
a much simpler application, also covers the implementation. It is described next.

4.1. Tic-tac-toe

The repository [53] contains the tic-tac-toe game example described in this
section. It serves two purposes: (i) it provides an example of modelling the game
with contract automata, and using the operations of composition and synthesis
to compute the strategy for the computer to never lose a game; (ii) it also
provides an example of how to use the automata to realise an application (the
game) whose control flow is internally orchestrated by the synthesised contracts.

This example showcases some of the benefits of using CATLib: the logic of
the computer playing against an opponent is synthesised automatically from
some initial requirements defined as contract automata (see below). These au-
tomata graphically depict the requirements, thus enhancing the documentation
(cf. Figure 2). Most importantly, the usage of this formalism guarantees that
the software is formally validated by-construction against well-behaving proper-
ties (e.g., an occupied position of the grid cannot be occupied again, a user can
always select a position which has not yet been occupied by the opponent, no
player can perform two consecutive moves, the computer never loses a game).
We note that if the implementation were programmed without exploiting the
facilities provided by the library (or any similar formal method), then more pro-
gramming and validation effort would be needed to guarantee such properties.

The synthesised strategy is most permissive: all plays in which the computer
ties or wins are part of the strategy. To keep this example as simple as possi-

[_0]

[X_0]
[!X_0]

[O_0]

[!O_0]

[Turn_Circle][Turn_Cross]

[?O_0] ... [?O_8]

[?X_0] ... [?X_8]

Figure 2: On the left: the automaton for filling position 0 of the grid with either O or X. On
the right: the automaton modelling the turns between players (for displaying purposes, each
transition represents a group of 9 transitions whose only difference is the suffix of the label,
going from 0 to 8). The images have been created with CATApp.

6

ble, no optimisation is performed to reduce the state space. In particular, the
total amount of configurations of the game is 5478. There are 3878 reachable
configurations in the strategy of player X and 2094 in the strategy of player O.

The executable class App.java is implemented exploiting the synthesised
strategies that are created in another executable class AppBuildStrategy.java.
App.java contains the game, whilst AppBuildStrategy.java is used to create
(offline) the strategies that are used by App.java to play the game. The used au-
tomata are defined or generated automatically inside AppBuildStrategy.java.
Inside the package grid, the class Grid.java provides methods to check if a
configuration is winning for some player or if it is a tie. This class also has
facilities to print at console the current configuration of the game, and to im-
port/export a configuration stored as label of a state of an automaton. Fi-
nally, inside the package symbols, the class Symbol.java and its sub-classes
Circle.java and Cross.java are used to store information about the repre-
sentation of each player.

Synthesis. The strategy synthesis is implemented in AppBuildStrategy.java.
Firstly, nine automata are instantiated, each one represents the typing of X or O
in a specific position. Each of these automata thus has three states (no symbol,
X, or O). The code below generates the nine automata:

//create a list of automata, one for each position, to write either X or O in that position
List<Automaton<String,Action,State<String>,ModalTransition<String, Action, State<String>,

CALabel>>> aut = IntStream.range(0, size).mapToObj(i -> {
State<String> cs_can = new State<>(List.of(new BasicState<>("_" + i, true, true)));
State<String> cs_cross = new State<>(List.of(new BasicState<>(Cross.cross+"_"+i,false,true)));
State<String> cs_circle = new State<>(List.of(new BasicState<>(Circle.circle+"_"+i,false,true)));
return new Automaton<>(Map.of(Cross.cross, cs_cross, Circle.circle, cs_circle)

.entrySet().stream().map(e -> new ModalTransition<>(cs_can,
new CALabel(1, 0, new OfferAction(e.getKey() + "_" + i)),
e.getValue(), ModalTransition.Modality.PERMITTED))

.collect(Collectors.toSet()));}).collect(Collectors.toList());

The one for position 0 is displayed in Figure 2 (left side). A further automaton
turns (depicted in Figure 2 (right side)) is necessary for enforcing turns between
X and O, where X is the first to move. This automaton has two states, one for
each turn. From each turn/state, there are nine outgoing transitions to the
other state. This further automaton is created using the code below (the lists
actionsCross and actionsCircle contain the action objects for X and O):

//creating an automaton requiring turns between X and O
State<String> cs_cross = new State<>(List.of(new BasicState<>("TurnCross", true, true)));
State<String> cs_circle = new State<>(List.of(new BasicState<>("TurnCircle", false, true)));
aut.add(new Automaton<>(Stream.concat(//add cross turn and circle turn transitions

actionsCross.stream().map(ac -> new ModalTransition<>(cs_cross, new CALabel(1, 0, ac),
cs_circle, ModalTransition.Modality.PERMITTED)),

actionsCircle.stream().map(ac -> new ModalTransition<>(cs_circle, new CALabel(1, 0, ac),
cs_cross, ModalTransition.Modality.PERMITTED))

).collect(Collectors.toSet())));

Next, the composition of these ten automata is computed, in which the re-
quests of turns are all matched by the offers of one of the other automata in
the composition, such that all transitions in the composition are matches be-
tween an offer and a request (i.e., the property of strong agreement is satisfied).

7

When computing the composition, the pruning predicate of the composition is
used both to avoid generating transitions not enjoying strong agreement and to
avoid generating transitions from states that are either winning or tying config-
urations. To check if a state is winning or tying, the class Grid.java is used: an
object is instantiated by passing as argument the state, and subsequently the
corresponding methods of Grid.java are invoked. The code below computes
and returns the composition:

MSCACompositionFunction<String> mcf = new MSCACompositionFunction<>(aut,
t -> { Grid m = new Grid(t.getSource().toString());

return new StrongAgreement().negate().test(t.getLabel()) || m.win() || m.tie();});
return mcf.apply(Integer.MAX_VALUE);

After that, depending on which player is selected, the composed automaton
is edited before starting the synthesis. Indeed, the synthesis algorithm formally
guarantees that the strategy has the maximal behaviour where a final state is
reachable, dangling states are never traversed, and uncontrollable transitions
are never blocked [6, 10, 20]. Accordingly, the moves of the opponent are firstly
changed to uncontrollable. Then, only the states where the selected player wins
or ties must be marked as successful. To do so, all states of the composition
are updated as non-final and a new unique final state is created. Transitions
are added from states of the composition where the selected player wins or ties
to this new final state. These transitions are labelled with either tie or win,
respectively. The code below synthesises and returns the strategy, in which
transitions contains the set of transitions updated as described above. We
refer to the class AppBuildStrategy.java for the full implementation.

MpcSynthesisOperator<String> mso = new MpcSynthesisOperator<>(l->true);
return mso.apply(new Automaton<>(transitions));

Using the Automata. The class App.java realises the game. The application al-
lows to play either O or X, and loads the corresponding strategy of the opponent.
After the game is over, it is possible to start a new play. The control flow is
orchestrated by the strategy automaton, which contains all the logic of the game
and which has been synthesised automatically. Basically, App.java concretises
the selection of one of the outgoing transitions from the current state.

The game starts from the initial state (an empty grid). Each state of the
automaton contains information on each position of the grid (empty, O, or X)
and whose turn is next. Indeed, these are the ten automata that have been
composed. Before selecting the next move, it is checked whether there is an
outgoing transition labelled with either tie or win (i.e., the game is over). If
this is not the case, depending on the turn, either the user will type the next
move or the computer will select the next move (one of the available outgoing
transitions from the current state). During her turn, the user is constrained to
insert only positions corresponding to one of the outgoing transitions from the
current state. After the transition has been selected (by either the computer or
the user), the current state is set to the target state of the transition and these
operations are repeated until the game is over. The synthesised automaton
also guarantees (by-construction) that it is not possible to assign an already

8

Phase Name

Continuous integration GitHub Actions
Build Maven
Testing JaCoCo, Coveralls, SonarCloud
Unit testing Mockito
Mutation testing PITest, Stryker
Analysis SonarCloud, IntelliJ, CodeQL, SpotBugs, Codiga, Codacy

Table 1: Frameworks and services used for evaluating CATLib

Figure 3: The GitHub repository badges (as of May 2022)

occupied position and that the user is never prevented from occupying some
position which has not been occupied yet. The main cycle is reported below.

currentState = strategy.getInitial(); /* the game starts from the initial state */
while(currentState!=null){ //the forward star is the set of possible next moves in the game

Set<ModalTransition<String,Action,State<String>,CALabel>> forwardStar =
strategy.getForwardStar(currentState);

//checking if a winning or tying state is reached, otherwise execute one turn
if (check(forwardStar)) { currentState=null; } else {

Symbol turn = (currentState.getState().get(9).getState().equals("TurnCross"))?
new Cross() : new Circle();

if (player.getClass().equals(turn.getClass()))
{ /* user turn */ currentState = insertPlayer(scan,forwardStar); }

else { /* computer turn */ currentState = insertOpponent(forwardStar); }
System.out.println(new Grid(currentState.toString()));/* printing the grid */ } }

5. Software Evaluation Criteria

This section discusses the software evaluation criteria based on the guidelines
of Science of Computer Programming ’s new Software Track on OSP [12]. We
detail services and frameworks that were adopted to build, test, and analyse
CATLib, which are summarised in Table 1. These tools provided data about,
e.g., code complexity and coverage, all of which are summarised in Table 2.

5.1. Building, Testing, and Code Quality

The phases of building, testing, and analysis are automatised following the
approach in [39] and using state-of-the-art services, as discussed below. Up-
to-date links are directly available in the repository of the software artefact as
badges, graphically depicting (as clickable buttons) the outcome of the corre-
sponding service (e.g., grade of code quality, compilation passed, percentage of
code coverage, and mutation testing), as shown in Figure 3.

5.1.1. Continuous Integration

The repository of CATLib is hosted on GitHub. We use a continuous integra-
tion approach, exploiting the GitHub Actions offered by GitHub to automatise

9

Source code Testing
Measure Value Measure Value

LOC 2519 Total unit tests 462
Total lines 5152 Total integration tests 105
Statements 947 Total tests 567
Functions 223 Unit tests (LOC) 4565
Classes 49 Integration tests (LOC) 1526
Comment lines 1139 Total tests (LOC) 6091
Comments (%) 31.1 Tests line coverage (%) 100
Lines to cover 1238 Tests branch coverage (%) 100
Conditions to cover 626 Total mutants 795
Cyclomatic complexity 630 Killed mutants 780
Cognitive complexity 287 Timed out mutants 12

Tests ran 1173
Tests run per mutation 1.48
Test suite strength (%) 99.6

Table 2: Statistics of evaluating CATLib: source code and testing

repetitive tasks. A .yaml workflow is followed to automatically build, test, and
analyse the software when triggered by given events (e.g., push, pull). The
CATLib workflow file can be inspected online at [54]. In case of failures dur-
ing one of the phases, the developers are notified via email and can fix the
problem to restore the repository to a version that is successfully built, tested,
and analysed. Currently, different services for code quality are used during the
workflow (more below). The workflow produces reports that are submitted to
the used services. In case of failure during one of the phases, the others will
be aborted. These phases are arranged to reduce the computation time in case
of failures. Spot-bugs analyses in a few seconds the code and thus is placed
first, in order to abort the build quickly in case bugs are introduced. After this
phase is completed, in parallel (i) the repository is built and tested, and (ii) mu-
tation testing is applied (more details on testing below). These two activities
are executed independently. A matrix of operative systems and Java versions
is used when building and testing. In particular, Windows, MacOS, and Ubuntu

virtual machines are used, with versions 11 and 17 of Java (the two most recent
long-term support versions). A final analysis phase is carried out requiring the
build and test phase to have been completed.

5.1.2. Testing

The source code is thoroughly tested using the JUnit framework. There are
currently 567 tests being executed at each update, of which 462 are unit tests
and the remaining 105 are integration tests. The total lines of code (LOC) of
the unit tests (measured with the Statistics plugin of IntelliJ) are 4565, whilst
1526 are the LOC of the integration tests, for a total of 6091 LOC of tests, used
to test the 2519 LOC of the source code (more below).

10

For unit testing, the Mockito framework is used to mock dependencies of the
classes under test. The mocks are used to simulate the behaviour of real objects
(e.g., it is possible to verify if a method has been invoked on a mock passed
as parameter, or to specify the value to be returned when a given method of a
mock is invoked, given certain parameters). In this case, a class is considered a
unit to be tested. During integration tests, the mocked classes are substituted
with the real classes. The integration tests use the Hotel Reservation case study
discussed in Section 4.

Concerning the test coverage, without counting the lines of comments (which
are around 30% of the total number of lines), the code base has 2519 LOC.
Of these, 1238 are lines to cover by tests (the other lines are, e.g., import
statements), and there are a total of 626 conditions to cover. The test suite has
100% line coverage and 100% branch coverage, i.e., all lines and branches are
tested. All tests except one are executed on all operative systems of the matrix.
The particular test that is not, covers a portion of code that is reachable by
throwing an exception when opening a file. Two separate tests are needed, one
for Windows and one for Unix systems. In Windows, the file is locked, whilst
the POSIX file permissions are removed in the other case.

This coverage is currently documented by two services. One is SonarCloud,
which is primarily used for code quality and is described below. The other is the
service coveralls.io and it can be inspected online (the link is available by
clicking on the corresponding badge in the repository, cf. Figure 3). Coveralls is
a web service tracking code coverage over time. The coverage data are submitted
to Coveralls after all tests have succeeded. The coverage report is generated
using JaCoCo Java Code Coverage Library, a free code coverage library for Java
that is integrated in the Eclipse and IntelliJ IDE (both used to develop CATLib).
JaCoCo computes the line coverage and branch coverage.

Covering all branches helped in finding some left-over parts of expressions
in the source code that always evaluated to either true or false (thus it was
impossible to cover the other case). Removing them has simplified the code.
However, code coverage is a necessary but not sufficient metric to increase con-
fidence on the reliability of the software. Another useful metric can be derived
using mutation testing (the authors gained prior experience with mutation test-
ing, cf., e.g., [55]). This is a technique to measure the strength of a test suite by
introducing artificial mutations in the source code that mimick bugs, so as to
check whether the test suite is capable of detecting them. Example of mutations
are: change the returned value of a method to null, change an expression in a
condition that always evaluates to true or to false or negate it, change compar-
isons of two values (e.g., swapping <= with <). A mutant which causes some
test to fail is called “killed”, whereas those undetected are called “live”.

To kill mutations, it is necessary to test many corner cases, which increases
the strength of the test suite and, as a consequence, the reliability of the system
under test. The strength of the test suite is measured as the number of detected
mutants over the number of total mutants. We used PITest (PIT), a state-of-
the-art tool for mutation testing for Java. Since no external web page or badge
is provided by PIT, we used a script to submit each newly generated report of

11

PIT to another mutation-testing service, called Stryker dashboard, to visualise
online the various mutations of the source code and statistics, and to provide a
badge for the repository (cf. Figure 3). During mutation testing, 795 mutants
are generated, of which 792 are detected (780 are killed by some test and 12 are
timed out), with 1173 tests ran (1.48 tests per mutation) reported by PIT.

Only three mutants survive, which are located in the family.converters

package. To kill one of these three mutants, we would need a test running
for more than one hour, which is not feasible. The other two are redundant
mutations (not mutating the source code behaviour) and could be removed
from PIT. Ignoring these redundant mutants, the strength of the test suite of
CATLib is thus ≈ 100%.

Finally, concerning the composition function (CATLib’s core functionality),
we also formalised the specification of the composition in second-order logic
which can be primitively expressed using Java Streams [56]. This is imple-
mented in the class CompositionSpecValidation (under the operations folder
of the integration tests), as an implementation of the BooleanSupplier func-
tional interface. In particular, this class is instantiated by passing as arguments
the operands of the composition and the computed result. The function will
evaluate to true if the result satisfies the conditions for being a composition of
the operands. This allows to test automatically if the implementation of the
composition satisfies its specification (cf. [6, Definition 5]), and there is no need
to use manually validated compositions as control in the tests (which we did
anyway as a redundant check).

5.1.3. Code Quality

We used a series of analysis tools to assess and grade the code quality. These
services perform automated code reviews and analysis of code quality trends over
time. They are used to automatically check if good coding practices have been
followed, or if known bugs or vulnerabilities are present in the code. They can
also detect design-patterns smells (e.g., god class, violation of encapsulation)
and code smells (e.g., too long functions). Some of these analysis tools provide
badges grading the quality of the source code, as well as online pages showing
the reports of the analysis with various statistics, accessible by clicking on the
corresponding badge (cf. Figure 3). CATLib is currently top graded by all the
used services, which are described now.

Firstly, we used the analysis tools as provided internally by the used IDEs
(IntelliJ and Eclipse). These allowed to clean the code from left-overs, e.g.,
unused variables or imports, as well as other good practices (e.g., avoid com-
menting source code, use method reference when possible).

We used SpotBugs in the first phase of the build workflow. SpotBugs is
a free software which uses static analysis to look for bugs in Java code. It is
well integrated with Maven and supports different extensions. We also used
the find-sec-bugs extension to search for potential security problems in the
software. In case some bug is spotted, the build fails. This tool highlighted
some external vulnerabilities that were fixed (e.g., opening a file whose name

12

comes from an input parameter without filtering the input). Spotbugs currently
reports zero bugs found in the implementation.

We used CodeQL, the code analysis engine developed by GitHub. Currently,
the analysis is performed during the analysis phase of the workflow. When
launched for the first time, a security threat was found in the FeatureIDE

import functionality, which was due to an unrestricted XML parsing of external
entities. Currently, no code scanning alerts are present in the repository.

During the workflow, also the SonarCloud analysis service is used, right after
the testing has been completed and reports have been submitted to Coveralls.
When first executed, the analysis reported some problems that have subse-
quently been fixed. For example, one problem, called catastrophic backtrack-
ing, was due to the regular expression parsing provided by Java. To fix this
problem, the regular expression library provided by Google has been adopted.
Some methods have been decomposed to reduce their cognitive complexity (see
below). Examples of other problems highlighted were methods with many pa-
rameters, code duplication, and commented code. Currently, there are zero
problems reported by this analysis tool.

SonarCloud also reports metrics about code coverage (described above), as
well as code complexity. For example, currently the source code scores 630
as cyclomatic complexity [57] and 287 as cognitive complexity [58]. The first
measures the number of independent paths in the software and it is a measure
of code testability (this number is close to the number of branches to cover in
the program). Cognitive complexity measures how difficult the control flow is to
understand. This measure is roughly a counter incremented each time a control
flow structure is encountered (e.g., if, for) and is incremented commensurated
with the level of nesting of control flow structures (e.g., a first-level structure
triggers an increment of 1, a second-level structure triggers an increment of 2,
and so on) [58]. Currently all methods of CATLib are scoring low cognitive and
complexity score.

Two other external services have been adopted, called Codiga and Codacy.
These are analysis tools similar to SonarCloud whose integration is completely
automatised once the rights to access the repository are provided, i.e., these tools
do not require to be manually inserted in the workflow, but they download and
analyse the source code when triggered by events like commits.

We note that these services may vary over time their offers, hence we refer
to the online documentation for up-to-date information.

5.2. Availability, Usability

Concerning availability, the source code is open and available in a public
GitHub repository under a GPLv3 license [59].

Regarding usability and ease of installation, since CATLib is an API written
in Java for developing applications using contract automata, we measure this as
the easiness of importing the library into a project. Examples of applications
created using the library are reported in Section 4.

As stated before, Maven is a build automation toolkit that automatically
resolves the dependencies of a Java project, and it is supported by CATLib.

13

The compiled binaries of the library (compiled in Java 11) were released in
the Maven Central Repository [60], which is the default repository used to
search for libraries by Maven. A release to the Maven Central Repository is
only allowed if the project meets certain quality requirements [61]. To use the
latest library version for a new project, it suffices to copy the dependency [49]
to the Maven file pom.xml of the project, and CATLib will automatically be
imported together with few dependencies, ready for use.

Concerning reproducibility, the library does not feature any specific exper-
iment to reproduce. However, the whole workflow of building, testing, and
analysing the source code is already completely automatised and reproduced
externally (comprehending also the results of the examples in Section 4) each
time a new update to the software is pushed. These tests are replicated in vari-
ous operating systems and Java versions. This increases the confidence that all
tests and analyses are replicable.

5.3. Documentation

The full JavaDoc documentation is accessible from the library’s GitHub

page [46] by clicking on the corresponding badge (cf. Figure 3) and from the
deployed artefact. A github.io documentation page of the project is available
online [49], explaining how to install and use the library through examples. As
already stated in Section 3, various documents and sites are available from the
repository providing information on the internal implementation (e.g., the class
diagrams and packages). This is important to allow other developers to extend
the library to their needs. Video tutorials and several examples of usage of the
various functionalities of the software have been developed over the years and
are available online [62].

6. Conclusion

We have presented CATLib, its design, usage examples, recent improvements
in terms of quality, availability, usability, reproducibility, and documentation.
These improvements have been assessed using established technologies from the
open-source community.

Future Work. We plan to apply CATLib to develop other tools and examples.
As mentioned in the Introduction as related work, a runtime environment called
CARE [29] is under development using CATLib, which currently supports orches-
trations. We also plan to implement a choreographed runtime environment,
real-time support as formalised in [63], and some examples of service applica-
tions. Only the orchestration synthesis supports configurations of products in
a product line. The investigation of techniques of decomposition (in the style
of choreography synthesis) equipped with variability is a matter of future re-
search. Furthermore, we plan to continue our initial investigation on the usage
of CATLib to solve multi-agent problems [64]. Finally, it would be interesting to
investigate behaviour-driven testing [65, 66] using CATLib.

14

CRediT author statement

D. Basile: (first author) Conceptualization, Visualization, Writing - Origi-
nal Draft, Software, Validation, Data Curation, Investigation. M.H. ter Beek:
Writing - Review & Editing, Visualization, Project administration, Funding Ac-
quisition.

Acknowledgements

Research funded by the MIUR PRIN 2017FTXR7S project IT MaTTerS
(Methods and Tools for Trustworthy Smart Systems). The authors would like
to thank the anonymous reviewers for their excellent suggestions that have im-
proved the paper considerably.

References

[1] M. Bartoletti, T. Cimoli, R. Zunino, Compliance in Behavioural Contracts:
A Brief Survey, in: C. Bodei, G. Ferrari, C. Priami (Eds.), Programming
Languages with Applications to Biology and Security, Vol. 9465 of LNCS,
Springer, 2015, pp. 103–121. doi:10.1007/978-3-319-25527-9_9.

[2] C. Peltz, Web Services Orchestration and Choreography, IEEE Comp.
36 (10) (2003) 46–52. doi:10.1109/MC.2003.1236471.

[3] A. Bouguettaya, M. Singh, M. Huhns, Q. Z. Sheng, H. Dong, Q. Yu, A. G.
Neiat, S. Mistry, B. Benatallah, B. Medjahed, M. Ouzzani, F. Casati,
X. Liu, H. Wang, D. Georgakopoulos, L. Chen, S. Nepal, Z. Malik, A. Er-
radi, Y. Wang, B. Blake, S. Dustdar, F. Leymann, M. Papazoglou, A Ser-
vice Computing Manifesto: The Next 10 Years, Commun. ACM 60 (4)
(2017) 64–72. doi:10.1145/2983528.

[4] M. H. ter Beek, A. Bucchiarone, S. Gnesi, Web Service Composition Ap-
proaches: From Industrial Standards to Formal Methods, in: Proceedings
of the 2nd International Conference on Internet and Web Applications and
Services (ICIW’07), IEEE, 2007, pp. 15:1–15:6. doi:10.1109/ICIW.2007.
71.

[5] D. Basile, P. Degano, G.-L. Ferrari, Automata for Specifying and Or-
chestrating Service Contracts, Log. Meth. Comp. Sci. 12 (4) (2016) 1–51.
doi:10.2168/LMCS-12(4:6)2016.

[6] D. Basile, M. H. ter Beek, P. Degano, A. Legay, G.-L. Ferrari, S. Gnesi,
F. Di Giandomenico, Controller synthesis of service contracts with variabil-
ity, Sci. Comput. Program. 187. doi:10.1016/j.scico.2019.102344.

[7] P. J. Ramadge, W. M. Wonham, Supervisory Control of a Class of Discrete
Event Processes, SIAM J. Control Optim. 25 (1) (1987) 206–230. doi:

10.1137/0325013.

15

http://dx.doi.org/10.1007/978-3-319-25527-9_9
http://dx.doi.org/10.1109/MC.2003.1236471
http://dx.doi.org/10.1145/2983528
http://dx.doi.org/10.1109/ICIW.2007.71
http://dx.doi.org/10.1109/ICIW.2007.71
http://dx.doi.org/10.2168/LMCS-12(4:6)2016
http://dx.doi.org/10.1016/j.scico.2019.102344
http://dx.doi.org/10.1137/0325013
http://dx.doi.org/10.1137/0325013

[8] B. Caillaud, P. Darondeau, L. Lavagno, X. Xie (Eds.), Synthesis and
Control of Discrete Event Systems, Springer, 2002. doi:10.1007/

978-1-4757-6656-1.

[9] M. A. Goorden, L. Moormann, F. F. H. Reijnen, J. J. Verbakel, D. A. van
Beek, A. T. Hofkamp, J. M. van de Mortel-Fronczak, M. A. Reniers, W. J.
Fokkink, J. E. Rooda, L. F. P. Etman, The Road Ahead for Supervisor
Synthesis, in: J. Pang, L. Zhang (Eds.), Proceedings of the 6th Interna-
tional Symposium on Dependable Software Engineering: Theories, Tools,
and Applications (SETTA’20), Vol. 12153 of LNCS, Springer, 2020, pp.
1–16. doi:10.1007/978-3-030-62822-2_1.

[10] D. Basile, M. H. ter Beek, R. Pugliese, Synthesis of Orchestrations and
Choreographies: Bridging the Gap between Supervisory Control and Co-
ordination of Services, Log. Methods Comput. Sci. 16 (2). doi:10.23638/
LMCS-16(2:9)2020.

[11] Repository of the Contract Automata Library, https://

web.archive.org/web/20220506113357/https://github.com/

contractautomataproject/ContractAutomataLib.

[12] Guidelines of Science of Computer Programming’s new Software track on
Original Software Publications, https://web.archive.org/web/20220506113513/https:

//www.journals.elsevier.com/science-of-computer-programming/call-for-software/

a-new-software-track-on-original-software-publications-science-of-computer-programming.

[13] D. Basile, P. Degano, G.-L. Ferrari, E. Tuosto, Relating two automata-
based models of orchestration and choreography, J. Log. Algebr. Meth.
Program. 85 (3) (2016) 425–446. doi:10.1016/j.jlamp.2015.09.011.

[14] D. Basile, P. Degano, G.-L. Ferrari, E. Tuosto, Playing with Our CAT and
Communication-Centric Applications, in: E. Albert, I. Lanese (Eds.), Pro-
ceedings 36th IFIP WG 6.1 International Conference on Formal Techniques
for Distributed Objects, Components, and Systems (FORTE’16), Vol. 9688
of LNCS, Springer, 2016, pp. 62–73. doi:10.1007/978-3-319-39570-8_5.

[15] D. Basile, F. Di Giandomenico, S. Gnesi, P. Degano, G.-L. Ferrari, Spec-
ifying Variability in Service Contracts, in: Proceedings of the 11th Inter-
national Workshop on Variability Modelling of Software-intensive Systems
(VaMoS’17), ACM, 2017, pp. 20–27. doi:10.1145/3023956.3023965.

[16] D. Basile, F. Di Giandomenico, S. Gnesi, FMCAT: Supporting Dynamic
Service-based Product Lines, in: Proceedings of the 21st International Sys-
tems and Software Product Line Conference (SPLC’17), Vol. 2, ACM, 2017,
pp. 3–8. doi:10.1145/3109729.3109760.

[17] D. Basile, M. H. ter Beek, F. Di Giandomenico, S. Gnesi, Orchestration of
Dynamic Service Product Lines with Featured Modal Contract Automata,
in: Proceedings of the 21st International Systems and Software Product

16

http://dx.doi.org/10.1007/978-1-4757-6656-1
http://dx.doi.org/10.1007/978-1-4757-6656-1
http://dx.doi.org/10.1007/978-3-030-62822-2_1
http://dx.doi.org/10.23638/LMCS-16(2:9)2020
http://dx.doi.org/10.23638/LMCS-16(2:9)2020
https://web.archive.org/web/20220506113357/https://github.com/contractautomataproject/ContractAutomataLib
https://web.archive.org/web/20220506113357/https://github.com/contractautomataproject/ContractAutomataLib
https://web.archive.org/web/20220506113357/https://github.com/contractautomataproject/ContractAutomataLib
https://web.archive.org/web/20220506113513/https://www.journals.elsevier.com/science-of-computer-programming/call-for-software/a-new-software-track-on-original-software-publications-science-of-computer-programming
https://web.archive.org/web/20220506113513/https://www.journals.elsevier.com/science-of-computer-programming/call-for-software/a-new-software-track-on-original-software-publications-science-of-computer-programming
https://web.archive.org/web/20220506113513/https://www.journals.elsevier.com/science-of-computer-programming/call-for-software/a-new-software-track-on-original-software-publications-science-of-computer-programming
http://dx.doi.org/10.1016/j.jlamp.2015.09.011
http://dx.doi.org/10.1007/978-3-319-39570-8_5
http://dx.doi.org/10.1145/3023956.3023965
http://dx.doi.org/10.1145/3109729.3109760

Line Conference (SPLC’17), Vol. 2, ACM, 2017, pp. 117–122. doi:10.

1145/3109729.3109741.

[18] D. Basile, F. Di Giandomenico, S. Gnesi, Enhancing Models Correct-
ness through Formal Verification: A Case Study from the Railway Do-
main, in: L. F. Pires, S. Hammoudi, B. Selic (Eds.), Proceedings of
the 5th International Conference on Model-Driven Engineering and Soft-
ware Development (MODELSWARD’17), SciTePress, 2017, pp. 679–686.
doi:10.5220/0006291106790686.

[19] D. Basile, M. H. ter Beek, S. Gnesi, Modelling and Analysis with Featured
Modal Contract Automata, in: Proceedings of the 22nd International Sys-
tems and Software Product Line Conference (SPLC’18), Vol. 2, ACM, 2018,
pp. 11–16. doi:10.1145/3236405.3236408.

[20] D. Basile, M. H. ter Beek, A Clean and Efficient Implementation of Chore-
ography Synthesis for Behavioural Contracts, in: F. Damiani, O. Dardha
(Eds.), Proceedings of the 23rd IFIP WG 6.1 International Conference on
Coordination Models and Languages (COORDINATION’21), Vol. 12717 of
LNCS, Springer, 2021, pp. 225–238. doi:10.1007/978-3-030-78142-2_

14.

[21] S. Tockey, How to Engineer Software: A Model-Based Approach, Wiley,
2019.

[22] K. Henderson, A. Salado, Value and benefits of model-based systems en-
gineering (MBSE): Evidence from the literature, Syst. Eng. 24 (1) (2021)
51–66. doi:10.1002/sys.21566.

[23] R. C. Martin, Clean Code, Prentice Hall, 2008.

[24] D. Boswell, T. Foucher, The Art of Readable Code, O’Reilly, 2011.

[25] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, D. Lea, Java Con-
currency in Practice, Addison-Wesley, 2006.

[26] R. Warburton, Java 8 Lambdas: Pragmatic Functional Programming,
O’Reilly, 2014.

[27] Repository of the Contract Automata Application, https:

//web.archive.org/web/20220329023850/https://github.com/

ContractAutomataProject/ContractAutomataApp.

[28] JGraphX, https://web.archive.org/web/20220302114658/https:

//jgraph.github.io/mxgraph/docs/manual_javavis.html.

[29] D. Basile, M. H. ter Beek, A Runtime Environment for Contract Automata
(2022). arXiv:2203.14122.

17

http://dx.doi.org/10.1145/3109729.3109741
http://dx.doi.org/10.1145/3109729.3109741
http://dx.doi.org/10.5220/0006291106790686
http://dx.doi.org/10.1145/3236405.3236408
http://dx.doi.org/10.1007/978-3-030-78142-2_14
http://dx.doi.org/10.1007/978-3-030-78142-2_14
http://dx.doi.org/10.1002/sys.21566
https://web.archive.org/web/20220329023850/https://github.com/ContractAutomataProject/ContractAutomataApp
https://web.archive.org/web/20220329023850/https://github.com/ContractAutomataProject/ContractAutomataApp
https://web.archive.org/web/20220329023850/https://github.com/ContractAutomataProject/ContractAutomataApp
https://web.archive.org/web/20220302114658/https://jgraph.github.io/mxgraph/docs/manual_javavis.html
https://web.archive.org/web/20220302114658/https://jgraph.github.io/mxgraph/docs/manual_javavis.html
http://arxiv.org/abs/2203.14122

[30] F. Atampore, J. Dingel, K. Rudie, A controller synthesis framework for
automated service composition, Discret. Event Dyn. Syst. 29 (3) (2019)
297–365. doi:10.1007/s10626-019-00282-0.

[31] H. Farhat, Web Service Composition via Supervisory Control Theory, IEEE
Access 6 (2018) 59779–59789. doi:10.1109/ACCESS.2018.2874564.

[32] M. Barati, R. St-Denis, Behavior Composition Meets Supervisory Control,
in: Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics (SMC’15), IEEE, 2015, pp. 115–120. doi:10.1109/SMC.
2015.33.

[33] P. Felli, N. Yadav, S. Sardina, Supervisory Control for Behavior Com-
position, IEEE Trans. Autom. Control 62 (2) (2017) 986–991. doi:

10.1109/TAC.2016.2570748.

[34] G. D. Giacomo, F. Patrizi, S. Sardiña, Automatic behavior composition
synthesis, Artif. Intell. 196 (2013) 106–142. doi:10.1016/j.artint.2012.
12.001.

[35] P. Balbiani, F. Cheikh, G. Feuillade, Composition of interactive Web ser-
vices based on controller synthesis, in: Proceedings of the IEEE Congress
on Services, Part I (SERVICES I 2008), IEEE, 2008, pp. 521–528. doi:

10.1109/SERVICES-1.2008.11.

[36] Repository of the Science of Computer Programming Original Software
Publications, https://web.archive.org/web/20220506113033/https:

//github.com/ScienceOfComputerProgramming/.

[37] M. Autili, A. D. Salle, F. Gallo, C. Pompilio, M. Tivoli, CHOReVO-
LUTION: Service choreography in practice, Sci. Comput. Program. 197.
doi:10.1016/j.scico.2020.102498.

[38] R. Guanciale, E. Tuosto, PomCho: A tool chain for choreographic design,
Sci. Comput. Program. 202. doi:10.1016/j.scico.2020.102535.

[39] L. Bettini, Test-Driven Development, Build Automation, Continuous Inte-
gration (with Java Eclipse and friends), Leanpub, 2019.
URL https://leanpub.com/tdd-buildautomation-ci

[40] A. Ferrari, M. H. ter Beek, Formal Methods in Railways: a Systematic
Mapping Study, ACM Comput. Surv.doi:10.1145/3520480.

[41] D. Kouzapas, O. Dardha, R. Perera, S. J. Gay, Typechecking protocols
with Mungo and StMungo: A session type toolchain for Java, Sci. Comput.
Program. 155 (2018) 52–75. doi:10.1016/j.scico.2017.10.006.

[42] J. Lange, E. Tuosto, N. Yoshida, From Communicating Machines to Graph-
ical Choreographies, in: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’15),
ACM, 2015, pp. 221–232. doi:10.1145/2676726.2676964.

18

http://dx.doi.org/10.1007/s10626-019-00282-0
http://dx.doi.org/10.1109/ACCESS.2018.2874564
http://dx.doi.org/10.1109/SMC.2015.33
http://dx.doi.org/10.1109/SMC.2015.33
http://dx.doi.org/10.1109/TAC.2016.2570748
http://dx.doi.org/10.1109/TAC.2016.2570748
http://dx.doi.org/10.1016/j.artint.2012.12.001
http://dx.doi.org/10.1016/j.artint.2012.12.001
http://dx.doi.org/10.1109/SERVICES-1.2008.11
http://dx.doi.org/10.1109/SERVICES-1.2008.11
https://web.archive.org/web/20220506113033/https://github.com/ScienceOfComputerProgramming/
https://web.archive.org/web/20220506113033/https://github.com/ScienceOfComputerProgramming/
http://dx.doi.org/10.1016/j.scico.2020.102498
http://dx.doi.org/10.1016/j.scico.2020.102535
https://leanpub.com/tdd-buildautomation-ci
https://leanpub.com/tdd-buildautomation-ci
https://leanpub.com/tdd-buildautomation-ci
http://dx.doi.org/10.1145/3520480
http://dx.doi.org/10.1016/j.scico.2017.10.006
http://dx.doi.org/10.1145/2676726.2676964

[43] CATLib navigable site with packages, classes and documentation, https:
//contractautomataproject.github.io/ContractAutomataLib/

site/index.htm, archived:https://web.archive.org/web/
20220506132409/https://contractautomataproject.github.io/

ContractAutomataLib/site/index.htm.

[44] CATLib technical report, https://web.archive.org/web/

20220506132802/https://contractautomataproject.github.io/

ContractAutomataLib/doc/CAT_Lib_doc.pdf.

[45] CATLib diagram report, https://web.archive.org/web/

20220506132717/https://contractautomataproject.github.io/

ContractAutomataLib/doc/CAT_Lib_diagrams.pdf.

[46] JavaDoc site of CATLib, https://web.archive.org/

web/20220506114228/https://javadoc.io/doc/io.github.

contractautomataproject/catlib.

[47] CATLib packages report, https://web.archive.org/web/

20220623151852/https://contractautomataproject.github.io/

ContractAutomataLib/doc/CATLib_Packages.pdf.

[48] CATLib Zenodo repository. doi:10.5281/zenodo.6704433.

[49] GitHub website of CATLib, https://web.archive.org/web/

20220623154208/https://contractautomataproject.github.io/

ContractAutomataLib/.

[50] M. H. ter Beek, S. Gnesi, N. Koch, F. Mazzanti, Formal Verification of
an Automotive Scenario in Service-Oriented Computing, in: Proceedings
of the 30th International Conference on Software Engineering (ICSE’08),
ACM, 2008, pp. 613–622. doi:10.1145/1368088.1368173.

[51] J. Abreu, F. Mazzanti, J. L. Fiadeiro, S. Gnesi, A Model-Checking
Approach for Service Component Architectures, in: D. Lee, A. Lopes,
A. Poetzsch-Heffter (Eds.), Proceedings of the Joint 11th IFIP WG 6.1
International Conference on Formal Methods for Open Object-based
Distributed Systems (FMOODS’09) and the 29th IFIP WG 6.1 Inter-
national Conference on FORmal TEchniques for Distributed Systems
(FORTE’09), Vol. 5522 of LNCS, Springer, 2009, pp. 219–224. doi:

10.1007/978-3-642-02138-1_15.

[52] M. H. ter Beek, F. Mazzanti, S. Gnesi, CMC–UMC: A Framework for the
Verification of Abstract Service-Oriented Properties, in: Proceedings of
the ACM Symposium on Applied Computing (SAC’09), ACM, 2009, pp.
2111–2117. doi:10.1145/1529282.1529751.

[53] Repository of tic-tac-toe realised with CATLib, https://

web.archive.org/web/20220506112805/https://github.com/

contractautomataproject/tictactoe.

19

https://contractautomataproject.github.io/ContractAutomataLib/site/index.htm
https://contractautomataproject.github.io/ContractAutomataLib/site/index.htm
https://contractautomataproject.github.io/ContractAutomataLib/site/index.htm
https://web.archive.org/web/20220506132409/https://contractautomataproject.github.io/ContractAutomataLib/site/index.htm
https://web.archive.org/web/20220506132409/https://contractautomataproject.github.io/ContractAutomataLib/site/index.htm
https://web.archive.org/web/20220506132409/https://contractautomataproject.github.io/ContractAutomataLib/site/index.htm
https://web.archive.org/web/20220506132802/https://contractautomataproject.github.io/ContractAutomataLib/doc/CAT_Lib_doc.pdf
https://web.archive.org/web/20220506132802/https://contractautomataproject.github.io/ContractAutomataLib/doc/CAT_Lib_doc.pdf
https://web.archive.org/web/20220506132802/https://contractautomataproject.github.io/ContractAutomataLib/doc/CAT_Lib_doc.pdf
https://web.archive.org/web/20220506132717/https://contractautomataproject.github.io/ContractAutomataLib/doc/CAT_Lib_diagrams.pdf
https://web.archive.org/web/20220506132717/https://contractautomataproject.github.io/ContractAutomataLib/doc/CAT_Lib_diagrams.pdf
https://web.archive.org/web/20220506132717/https://contractautomataproject.github.io/ContractAutomataLib/doc/CAT_Lib_diagrams.pdf
https://web.archive.org/web/20220506114228/https://javadoc.io/doc/io.github.contractautomataproject/catlib
https://web.archive.org/web/20220506114228/https://javadoc.io/doc/io.github.contractautomataproject/catlib
https://web.archive.org/web/20220506114228/https://javadoc.io/doc/io.github.contractautomataproject/catlib
https://web.archive.org/web/20220623151852/https://contractautomataproject.github.io/ContractAutomataLib/doc/CATLib_Packages.pdf
https://web.archive.org/web/20220623151852/https://contractautomataproject.github.io/ContractAutomataLib/doc/CATLib_Packages.pdf
https://web.archive.org/web/20220623151852/https://contractautomataproject.github.io/ContractAutomataLib/doc/CATLib_Packages.pdf
http://dx.doi.org/10.5281/zenodo.6704433
https://web.archive.org/web/20220623154208/https://contractautomataproject.github.io/ContractAutomataLib/
https://web.archive.org/web/20220623154208/https://contractautomataproject.github.io/ContractAutomataLib/
https://web.archive.org/web/20220623154208/https://contractautomataproject.github.io/ContractAutomataLib/
http://dx.doi.org/10.1145/1368088.1368173
http://dx.doi.org/10.1007/978-3-642-02138-1_15
http://dx.doi.org/10.1007/978-3-642-02138-1_15
http://dx.doi.org/10.1145/1529282.1529751
https://web.archive.org/web/20220506112805/https://github.com/contractautomataproject/tictactoe
https://web.archive.org/web/20220506112805/https://github.com/contractautomataproject/tictactoe
https://web.archive.org/web/20220506112805/https://github.com/contractautomataproject/tictactoe

[54] GitHub actions workflow of CATLib, https://web.archive.org/web/

20220506112704/https://github.com/contractautomataproject/

ContractAutomataLib/blob/main/.github/workflows/build.yml.

[55] D. Basile, M. H. ter Beek, S. Lazreg, M. Cordy, A. Legay, Static De-
tection of Equivalent Mutants in Real-Time Model-based Mutation Test-
ing: An Empirical Evaluation, Empir. Softw. Eng. (2022) doi:10.1007/
s10664-022-10149-y.

[56] Y. Cheon, Z. Cao, K. Rahad, Writing JML Specifications Using Java
8 Streams, Tech. Rep. UTEP-CS-16-83, University of Texas at El Paso,
https://scholarworks.utep.edu/cs_techrep/1095/ (2016).

[57] T. J. McCabe, A complexity measure, IEEE Trans. Softw. Eng. 2 (4) (1976)
308–320. doi:10.1109/TSE.1976.233837.

[58] G. A. Campbell, Cognitive complexity: an overview and evaluation,
in: Proceedings of the 2018 International Conference on Technical Debt
(TechDebt’18), ACM, 2018, pp. 57–58. doi:10.1145/3194164.3194186.

[59] GPLv3 license, https://web.archive.org/web/20220411011708/https:
//www.gnu.org/licenses/gpl-3.0.

[60] Maven Central repository of CATLib, https://web.archive.org/

web/20220506112950/https://repo1.maven.org/maven2/io/github/

contractautomataproject/catlib/.

[61] Maven Central repository requirements, https://web.archive.org/

web/20220116164841/https://central.sonatype.org/publish/

requirements/.

[62] Contract Automata tutorials playlist, https://web.archive.org/web/

20220506112602/https://www.youtube.com/playlist?list=PLory_

2tIDsJvZB2eVlpji-baIz0320TwM.

[63] D. Basile, M. H. ter Beek, A. Legay, Timed service contract automata,
Innovations Syst. Softw. Eng. 16 (2) (2020) 199–214. doi:10.1007/

s11334-019-00353-3.

[64] D. Basile, M. H. ter Beek, V. Ciancia, An Experimental Toolchain for
Strategy Synthesis with Spatial Properties, in: T. Margaria, B. Steffen
(Eds.), Proceedings of the 11th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA’22),
LNCS, Springer, 2022.

[65] J. F. Smart, BDD in Action: Behavior-Driven Development for the whole
software lifecycle, Manning, 2014.

20

https://web.archive.org/web/20220506112704/https://github.com/contractautomataproject/ContractAutomataLib/blob/main/.github/workflows/build.yml
https://web.archive.org/web/20220506112704/https://github.com/contractautomataproject/ContractAutomataLib/blob/main/.github/workflows/build.yml
https://web.archive.org/web/20220506112704/https://github.com/contractautomataproject/ContractAutomataLib/blob/main/.github/workflows/build.yml
http://dx.doi.org/10.1007/s10664-022-10149-y
http://dx.doi.org/10.1007/s10664-022-10149-y
https://scholarworks.utep.edu/cs_techrep/1095/
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1145/3194164.3194186
https://web.archive.org/web/20220411011708/https://www.gnu.org/licenses/gpl-3.0
https://web.archive.org/web/20220411011708/https://www.gnu.org/licenses/gpl-3.0
https://web.archive.org/web/20220506112950/https://repo1.maven.org/maven2/io/github/contractautomataproject/catlib/
https://web.archive.org/web/20220506112950/https://repo1.maven.org/maven2/io/github/contractautomataproject/catlib/
https://web.archive.org/web/20220506112950/https://repo1.maven.org/maven2/io/github/contractautomataproject/catlib/
https://web.archive.org/web/20220116164841/https://central.sonatype.org/publish/requirements/
https://web.archive.org/web/20220116164841/https://central.sonatype.org/publish/requirements/
https://web.archive.org/web/20220116164841/https://central.sonatype.org/publish/requirements/
https://web.archive.org/web/20220506112602/https://www.youtube.com/playlist?list=PLory_2tIDsJvZB2eVlpji-baIz0320TwM
https://web.archive.org/web/20220506112602/https://www.youtube.com/playlist?list=PLory_2tIDsJvZB2eVlpji-baIz0320TwM
https://web.archive.org/web/20220506112602/https://www.youtube.com/playlist?list=PLory_2tIDsJvZB2eVlpji-baIz0320TwM
http://dx.doi.org/10.1007/s11334-019-00353-3
http://dx.doi.org/10.1007/s11334-019-00353-3

[66] C. F. Snook, T. S. Hoang, D. Dghaym, M. J. Butler, T. Fischer, R. Schlick,
K. Wang, Behaviour-Driven Formal Model Development, in: J. Sun,
M. Sun (Eds.), Proceedings of the 20th International Conference on Formal
Engineering Methods (ICFEM’18), Vol. 11232 of LNCS, Springer, 2018, pp.
21–36. doi:10.1007/978-3-030-02450-5_2.

Current code version

Nr. Code metadata description
C1 Current code version v1.0.1
C2 Permanent link to code/repository

used for this code version
https://github.com/

contractautomataproject/

ContractAutomataLib

C3 Permanent link to Reproducible
Capsule

https://doi.org/10.24433/CO.

1575879.v1

C4 Legal Code License GPLv3
C5 Code versioning system used Git
C6 Software code languages, tools,

and services used
Java 11

C7 Compilation requirements, operat-
ing environments & dependencies

OpenJDK 11.0.12 (or compatible),
Apache Maven 3.6.0

C8 Link to developer documentation/
manual

https://

contractautomataproject.

github.io/

ContractAutomataLib

C9 Support email for questions davide.basile@isti.cnr.it

Table 3: Code metadata

21

http://dx.doi.org/10.1007/978-3-030-02450-5_2
https://github.com/contractautomataproject/ContractAutomataLib
https://github.com/contractautomataproject/ContractAutomataLib
https://github.com/contractautomataproject/ContractAutomataLib
https://doi.org/10.24433/CO.1575879.v1
https://doi.org/10.24433/CO.1575879.v1
https://contractautomataproject.github.io/ContractAutomataLib
https://contractautomataproject.github.io/ContractAutomataLib
https://contractautomataproject.github.io/ContractAutomataLib
https://contractautomataproject.github.io/ContractAutomataLib
mailto:davide.basile@isti.cnr.it

	Introduction
	Contribution and Innovation
	Software Design
	Examples of Usage of CATLib
	Tic-tac-toe

	Software Evaluation Criteria
	Building, Testing, and Code Quality
	Continuous Integration
	Testing
	Code Quality

	Availability, Usability
	Documentation

	Conclusion

