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Abstract— Sea observation through remote sensing technologies plays an 

essential role in understanding the health status of the marine coastal 

environment, its fauna species and their future behaviour. Accurate knowledge 

of the marine habitat and the factors affecting faunal variations allows us to 

perform predictions and adopt proper decisions. This paper concerns the 

proposal of a classification system devoted to recognising marine mesoscale 

events. These phenomena are studied and monitored by analysing Sea Surface 

Temperature imagery. Currently, the standard way to perform such analysis 

relies on experts manually visualising, analysing, and tagging large imagery 

datasets. Nowadays, the availability of remote sensing data has increased so 

much that it is desirable to replace the labour-intensive, time-consuming and 

subjective manual interpretation with automated analysis tools. The results 

presented in this work have been obtained by applying the proposed approach 

to images captured over the southwestern region of the Iberian Peninsula. 
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1 INTRODUCTION 

To achieve a broader understanding and evaluation of the sea environment, an 

improvement in marine observation is required. Among all the relevant 

underlying processes in such a differentiated biological system, mesoscale 

events such as upwelling, countercurrents and filaments are of particular interest 

and constitute the subject of our analysis. These events, which transport deeper, 

colder and nutrient-rich waters to the surface, and affect the biological 

parameters of the habitat, enhancing the local biodiversity [7], can be observed 

by analysing Sea Surface Temperature (SST) recorded in remote sensing 

imagery. 

Identifying and categorising upwelling regimes occurring in a marine 

ecosystem is an essential achievement for its characterisation. The main 

objective of this paper is to propose a method for performing an automatic 

classification of images in place of the usual manual one completed by experts. 

When the number of images approaches the thousands, i.e. the typical order of 

magnitude having the goal to investigate long term and climate-related changes, 

the manual procedure is not manageable anymore. The method is applied to the 

Iberia/Canary Current System (ICCS), one of the least studied among the 

upwelling ecosystems [1]. Despite a general circulation similar to others, in 

ICCS we have diverse factors having a profound impact on the whole region. 

The method proposed in this work is based on implementing an automatic 

procedure for classifying large datasets of images according to the different 

regimes of observable upwelling patterns. Such classification consists of several 



stages: starting from the extraction of quantitative features from a region of 

interest in the SST maps, proceeding to the characterisation of specific 

temperature patterns, which are correlated with the water flows between 

geographical points at different temperatures. The latter stage is performed by 

applying a set of rules to the computed features, which enable the assignment 

of a final class label to the considered region. This method follows and 

completes the preliminary analysis performed in [4] and [6]. 

The paper is arranged as follows: Section 2 provides a description of the 

employed dataset and the related ground truth classification; Section 3 reports 

on the pipeline used in our methods and describes a study case; Section 4 

concludes the paper by discussing the outcomes of this work and providing a 

few considerations about future perspectives. 

 

2 MATERIALS 

For the purposes of this work, SST data captured by Metop-A/B (EUMETSAT) 

and Aqua (NASA) have been collected and processed. Only data covering the 

region of interest were downloaded for each source (whose respective details 

are reported in Table 1). In particular, points with latitude between 35° and 

40° N and longitude between 12° and 6° W were considered, resulting in 2–3 

images per day at most. 

 
Table 1. Data specifications 

Satellite Sensor Type Spatial 
Resolution (km) 

Temperature 
Resolution (°C) 

Metop-A/B [3] AVHRR 1 10−2 
Aqua [2] MODIS 1 5 · 10−3 

 



Expert oceanographers have preliminarily inspected the collected data to 

identify recurring SST patterns based on the detection of relevant mesoscale 

features (water filaments, upwelling jets and countercurrents). This way, it was 

possible to identify four prevailing patterns, named E1–E4 (see [6] for a detailed 

description). Furthermore, each image was labelled according to the observed 

pattern, returning a ground truth dataset that could be used as a reference for the 

classifier implementation. 

 

3 SST ANALYSIS 

In order to better analyse the different types of upwelling patterns, SST data are 

retrieved from the sources described in the previous section and arranged in a 

spaghetti plot, which is a simultaneous representation of the different SST 

trends for a given geographical area and a time interval. It is obtained by first 

dividing the considered area into a grid of small squares (whose size may be 

equal to or larger than the image spatial resolution). Then, for each square, the 

SST spatial average value is computed for each time sample in the dataset 

falling within the considered time window. Finally, the obtained ensemble of 

averaged SSTs is plotted versus time within the same diagram. 

Figure 1 shows an example of an event classified as E4 in the ground truth 

and the spaghetti plots corresponding to the selected areas. Events of type E4 

are characterised by the presence of a warm countercurrent originating in the 

Gulf of Cádiz and running along the southern Iberian coast, eventually reaching 

Cape St. Vincent (see Figure 1c). A cold water filament going westwards is also 

recognisable (see Figure 1b), which is a pattern typical for events of type E1. In 

this case, the squares’ size and the time interval are 0.25° and 15 days 

respectively (notice that the ground truth event occurs at the end of the time 



window). After several tests, these specific values have been chosen since they 

return a better agreement between the results and the ground truth. 

 

A spaghetti plot is then processed to extract statistical features, which 

depend on the SST signal in each square and its neighbourhood. These features 

Figure 1. Event of 7 October 2017 at around 21:00 UTC. (a) SST map at the date of the event; (b) detail 

of the SST in the reference area for spaghetti plot I (latitude between 37.25° and 38° N, longitude between 

10.75° and 10° W); (c) detail of the SST in the reference area for spaghetti plot II (latitude between 36.5° 

and 37.25° N, longitude between 8.75° and 8° W); (d) reference grid for both plots (dimension of squares 

0.25°); (e,f) generated spaghetti plots. 



are later used to classify the considered area, which is then associated with one 

of the four mesoscale patterns. 

Let 𝑎𝑎 be a square in the grid. As said, we have a temporal series of spatial 

SST averages in 𝑎𝑎, say 𝜇𝜇𝑖𝑖, computed at times 𝑡𝑡𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛. Notice that 𝑛𝑛 may 

change from square to square, since it depends on the number of SST values 

captured by the sensor. In fact, the SST recording may fail for some parts of the 

area of interest (e.g. due to interfering clouds disturbances). Because of these 

considerations, the number of samples 𝑛𝑛  can be considered as an index of 

reliability for the classification of the square 𝑎𝑎. The statistics features computed 

for 𝑎𝑎 are: 

1. the temporal mean 𝜇𝜇(𝑎𝑎), defined as the mean of the values 𝜇𝜇𝑖𝑖; 

2. the standard deviation 𝜎𝜎(𝑎𝑎), defined as the standard deviation of the 

values 𝜇𝜇𝑖𝑖; 

3. the linear regression coefficient 𝜃𝜃(𝑎𝑎), defined as the slope of the straight 

line that better interpolates the values (𝑡𝑡𝑖𝑖, 𝜇𝜇𝑖𝑖). 

The values 𝜇𝜇, 𝜎𝜎 and 𝜃𝜃 are computed for every square in the grid. Then, a set of 

rules is applied to obtain, for each square 𝑎𝑎 , an array of four scores 

(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4), with 𝑒𝑒𝑗𝑗 ∈ [0,1]. The value 𝑒𝑒𝑗𝑗 represents a belief index for the 

event of type E𝑗𝑗 to have occurred inside 𝑎𝑎 at the end of the considered time 

interval. The implementation of the rules is a crucial component for the 

classifier. Indeed, they are handcrafted so that the score 𝑒𝑒𝑗𝑗 is boosted only if the 

behaviour of the features 𝜇𝜇, 𝜎𝜎 and 𝜃𝜃, inside and in the neighbourhood of the 

square 𝑎𝑎, matches the one observed in the case of an E𝑗𝑗 pattern. 

The classification of a square is finally completed by considering the 

maximum score 𝑒𝑒𝑚𝑚 = max{𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4}: if 𝑒𝑒𝑚𝑚  is above a certain threshold, 



empirically defined, then the square is labelled “E𝑚𝑚”; otherwise no label is 

assigned. Figure 2 represents a heatmap with the classification results to the 

event of Figure 1, with each square coloured with the corresponding 

classification label. Also, each square is labelled with the numerical percentage 

of the related SST data, which is proportional to the 𝑛𝑛 value, as discussed above. 

 

 

4 DISCUSSION AND CONCLUSION 

In this work, a methodology for classifying of upwelling events based on the 

analysis of SST time series has been proposed. Preliminary tests proved that the 

proposed method succeeds in classifying different mesoscale events. A few 

considerations can be pointed out concerning the presented case study 

(Figure 1). First, it is worth remarking that the labelling returned by the 

classifier agrees with the ground truth: among the squares located in the area 

where E4 events usually occur, those that fulfilled the previously mentioned 

data abundance constraints have been labelled accordingly (Figure 2). Second, 

the proposed method extracts features that, as previously discussed, take into 

account not only the SST final observation, corresponding to the ground truth 

Figure 2. Labels given to each square of the grid, depending on their scores. 



label, but also the SST variations captured in the preceding time window. This 

is the reason behind the presence of squares classified differently from E4, in 

apparent conflict with the ground truth. Since the proposed approach considers 

the SST signal over an extended range of time, it is reasonable that more than 

one label is assigned, in agreement with the multiple observed mesoscale events. 

It is even more so considering that inside the presented case study’s dataset, 

different ground truth labels have been assigned to images captured very close 

in time. For example, on 6th October, two distinct events are observed: one 

classified as E1 in the ground truth approximately at 10:00 UTC, and a second 

one around 21:20 UTC classified as E4. 

The test and validation of the proposed algorithm are carried out and will 

continue as part of the activities of the EU H2020 project NAUTILOS [5]. 
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