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Abstract. Sea observation through remote sensing technologies plays
an essential role in understanding the health status of marine fauna
species and their future behaviour. Accurate knowledge of the marine
habitat and the factors affecting faunal variations allows to perform pre-
dictions and adopt proper decisions. This is even more relevant nowadays,
with policymakers needing increased environmental awareness, aiming to
implement sustainable policies. There is a connection between the biogeo-
chemical and physical processes taking place within a biological system
and the variations observed in its faunal populations. Mesoscale phe-
nomena, such as upwelling, countercurrents and filaments, are essential
processes to analyse because their arousal entails, among other things,
variations in the density of nutrient substances, in turn affecting the bio-
logical parameters of the habitat. This paper concerns the proposal of
a classification system devoted to recognising marine mesoscale events.
These phenomena are studied and monitored by analysing Sea Surface
Temperature images captured by satellite missions, such as Metop and
MODIS Terra/Aqua. Classification of such images is pursued through
dedicated algorithms that extract temporal and spatial features from
the data and apply a set of rules to the extracted features, in order to
discriminate between different observed scenarios. The results presented
in this work have been obtained by applying the proposed approach to
images captured over the south-western region of the Iberian Peninsula.
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1 Introduction

Evaluating the impact of climate change on coastal marine ecosystems may be a
challenging task: near the coast, global drivers are modified by topography and
by local atmospheric and oceanographic circulation patterns.

In particular, Ekman dynamics and large-scale thermocline processes con-
trol the coastal upwelling occurring at the Eastern Boundary Upwelling Ecosys-
tems (EBUEs) [1,2]; winds directed towards the Equator drive upwelling, which
transports deeper, colder and nutrient-rich waters to the surface. As a result,
these areas host the most productive ecosystems in the global ocean [3], play-
ing a major role in the marine primary production and the worldwide fisheries.
Moreover, it was recently shown that upwelled water’s low long-term warming
rates may provide thermal refugia, stabilize changes in species distributions and
enhance local biodiversity [4].

According to related literature, more than 71% of coastal zones are experi-
encing a net heat gain due to global warming [5]. Yet, both positive and negative
trends were observed in different upwelling ecosystems [6]. Therefore, it is sur-
mised that every upwelling ecosystem reacts differently to the changing climate.

Among the world’s EBUEs, the Iberia/Canary Current System (ICCS) is one
of the least studied [7]. Despite a general circulation similar to other EBUEs, in
ICCS the discontinuity imposed by the Mediterranean Sea, combined with the
seasonality of the large-scale atmospheric circulation, has a profound impact on
the regional oceanography. The region’s continental shelf is characterized by a
large number of topographical features, such as prominent capes, promontories
and submarine canyons, whose spatial scales are tens to hundreds of kilome-
ters [8]. All the above highlight the importance of sub-seasonal temporal scales
and sub-basin spatial scales, which explain the observed oceanographic patterns.

The identification and cataloguing of upwelling regimes occurring in an
EBUE are important achievements towards the characterization of the system.
Traditionally this task has been performed subjectively by experts, analysing
Sea Surface Temperature (SST) maps of the area of interest. This procedure is
manageable if few tens or even hundreds of images are used, but it turns into an
unfeasible task as the number of scenes approaches thousands of images, that is
the typical order of magnitude when the purpose is to investigate climate-related
changes.

Nowadays, with the growing amount of remote sensing observations, auto-
mated techniques have been gaining momentum, using tools such as two-di-
mensional wavelet transforms [9], neural networks [10], or edge detection algo-
rithms [11]. A complete automation encompasses three main challenges: (1) the
presence of noise, mainly due to clouds and other atmospheric phenomena; (2)
the fact that gradients are weak and provide an excess of information, generat-
ing several unconnected borderlines and complicating the structure identification
task due to the fine edge detail; (3) the substantial morphological variation that
prevents from an accurate geometric representation and the absence of a valid
analytical model for the structures [12].
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The main objective of this work is to design and develop automatic methods
capable of accepting massive datasets of oceanographic SST imagery as input
and returning a classification of the images according to the different regimes
of observable upwelling patterns. The identification of a specific temperature
pattern is based on the extraction of quantitative features from the SST maps.
Indeed the emergence of a certain pattern is usually highly correlated with pecu-
liarities in the temperature spatial arrangement at time fixed (e.g. the presence
of abrupt variations in the temperature values within a certain neighbourhood),
as well as with the observation of specific temperature trends at fixed locations,
providing insights about the flowing of water masses between points at different
temperature values. In a previous work dedicated to this topic [13], a custom
visualisation tool was developed to extract and visualise the time series of the
SST signals related to a given number of fixed locations within an area of interest.
Based on this result, a novel step is introduced in the pipeline, with the objective
of processing the mentioned signal series to extract quantitative descriptors of
the signals trend. The computed quantities are finally used to fulfil the classifi-
cation task by implementing a set of rules that assign each set of time series to
a specific class according to the numerical values of the computed features.

The proposed method will be applied to the South Iberian region, contribut-
ing to understanding the formation of upwelling filaments and the effects of
climate change in this particular EBUE. In its current form, the metrics used
(e.g. the signal variation rate and its deviation from the mean value) are able to
identify different types of mesoscale features.

The paper is arranged as follows: Sect. 2 concerns a detailed description of the
employed dataset and the related ground truth classification; Sect. 3 thoroughly
reports on the developed processing pipeline and describes a relevant use case;
Sect. 4 concludes the paper by discussing the outcomes of this work and providing
a few considerations about future perspectives.

2 Materials

2.1 SST Satellite Data

The identification and classification of upwelling events in a marine ecosystem
have been performed by processing SST maps of an area of interest. These maps
are compiled using data coming from satellite missions. In particular satellite
data from the years 2009 to 2017 has been retrieved from two sources: EUMET-
SAT’s Metop programme [14] and NASA’s Aqua satellite [15].

Satellites of the Metop programme gather data through the Advanced Very
High Resolution Radiometer (AVHRR); the information is processed at level
L2P and binned in a single netCDF-4 file every 3 min, for a total of 480 images
per day covering the entire globe, with a spatial resolution of 1km at nadir and
an accuracy of 0.01 ◦C in the temperature measurement. We used data from the
satellite Metop-A for the period 2009–2016 and from Metop-B for 2017.

The satellite Aqua uses the Moderate Resolution Imaging Spectroradiometer
(MODIS) to gather data; the information is processed at level L2P and binned
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in a single netCDF-4 file every 5 min, for a total of 288 images per day covering
the entire globe, with a spatial resolution of 1km at nadir and a temperature
accuracy of 0.005 ◦C.

For both sources, only data covering the region of interest were downloaded.
In particular, points with latitude between 35 ◦ and 40 ◦ N and longitude between
12 ◦ and 6 ◦ W were considered, resulting in 2–3 images per day at most. More-
over, since the data capture task is often prone to failures in registering SST
values for areas that appear opaque (e.g. due to atmospheric events), a further
selection has been performed by discarding images containing less than the 15%
of the expected amount of data.

2.2 Types of Patterns

By looking at the SST images, four upwelling patterns have been identified:

1. a cold water filament going westwards, originating from the southward
upwelling jet that runs along the western coast of Portugal;

2. a cold water filament going southwards, extending over Cape St. Vincent the
upwelling jet mentioned above;

3. a clear stream of cool water running along the southern Iberian coast;
4. a warm countercurrent originating in the Gulf of Cádiz and running along

the southern Iberian coast, eventually reaching Cape St. Vincent and turning
northwards.

A more detailed description can be found in [13]. These four patterns will be
called E1, E2, E3 and E4 respectively. Pattern E3 may be further divided into
E3i, when the thermal gradient between the cool stream and the water in the
Gulf of Cádiz is small, mostly occurring during winter; and E3u, with a more
significant gradient. For our analysis we do not distinguish between these two
subpatterns. Figure 1 shows some examples of the described patterns.

Based on this classification, a dataset with labels E1–E4 assigned to the
corresponding SST maps has been provided by expert oceanographers. This
represents the ground truth for the subsequent SST analysis.

3 SST Analysis

The main goal of the method proposed for the analysis of SST time series is
to classify upwelling events exploiting the dynamic information contained in
the temperature patterns, observed over a given time window. To this aim, the
multiple SST signal sequences related to a given geographical area are extracted
from the corresponding netCDF files and arranged in a single 2D plot, namely
a spaghetti plot (see Fig. 2d). The resulting visualization allows for a direct and
clearer interpretation of the ensemble of the SST trends in the considered area
of interest. The software dedicated to this analysis has been developed within a
Python framework.
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Fig. 1. Mesoscale patterns in the south-western Iberian Peninsula (from [13]).

3.1 Spaghetti Plot Generation

The steps fulfilled to generate a spaghetti plot for a given geographical area A
are described below:

1. the rectangular area A selected on the SST map is split into a grid of NA

disjoint squares aj , each with fixed size (typically between 0.01 and 0.25
degrees in latitude/longitude):

A =
NA⋃

j=1

aj ;

2. at a given time t (recorded in the netCDF file) the mean value of the SST
signal is estimated by averaging the available nj SST values, located within
the corresponding aj :

μj(t) =
1
nj

nj∑

i=1

SSTi(t);

3. the previous step is repeated for each aj and for each t within the considered
time window, eventually returning NA time series of the averaged SST signal;

4. the spaghetti plot is finally generated by simultaneously plotting all the NA

signals within the same coordinate system.

Each square aj , and the corresponding averaged signal μj(t), is colour-coded
so that the differences in the signal trends observed in different squares can be
easily recognised by visual inspection. The reader can refer to [13,16] for further
information about the generation of the spaghetti plots.
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Figure 2 shows the case of an event classified as E3 in the ground truth,
together with the corresponding spaghetti plot. This will be exploited in the
following as a case study to describe step by step the implemented processing
stages and the corresponding output. The spaghetti plot has been computed
dividing the region of interest in squares of size 0.25 ◦ and considering a 15 days
window for the time range, with the last observation coinciding with the classified
event. The specified resolution values represent input parameters to the spaghetti
plot generation task. They have been set up through empirical considerations
after testing alternative values, and assessing that the mentioned choice achieves
a better agreement with the ground truth. Indeed, it can be noticed that the
temperature curves diverge and decrease, starting at times t beyond 8 September,
in agreement with the temperature trends of an E3 pattern.

3.2 Features Extraction

Based upon the ground truth dataset, the corresponding set of spaghetti plots
has been generated. The objective of the task described in this section is to
investigate the discriminating properties of a number of features extracted from
the signals. Generally speaking these features can be computed based on one
or more SST sequences belonging to the same spaghetti plot. The goal is to
define a set of rules to be applied to the extracted features, with the purpose of
identifying the class of the observed mesoscale pattern.

As mentioned before, a single curve pj in a spaghetti plot represents the spa-
tially averaged trend of the signal in the j-th square of the grid. It is represented
by the following array of n pairs, where n is the number of time samples:

pj = {(tm, μj(tm)) | m = 1, . . . , n}.

Notice that n is not a constant value: it depends on the quantity and quality
of the data actually exploitable in the netCDF file. Therefore, n can be con-
sidered as a reliability index, reflecting the confidence level associated with the
estimators described hereafter.

The following statistics are computed:

1. the temporal mean of pj ,

μ(pj) =
1
n

n∑

m=1

μj(tm);

2. the standard deviation of pj ,

σ(pj) =

√√√√ 1
n

n∑

m=1

(μj(tm) − μ(pj))2;

3. the linear regression coefficient θ(pj), defined as the slope of the straight line
that better fits the curve pj .
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Fig. 2. Event of 16 September 2016 at around 21:35 UTC. (a) SST map at the date
of the event; (b) detail of the SST in the reference area for the spaghetti plot (latitude
between 36.25 ◦ and 37 ◦ N, longitude between 9 ◦ and 8.25 ◦ W, resolution 0.25 ◦); (c)
reference grid; (d) generated spaghetti plot.

The three statistics are meant to describe in first approximation the local
behaviour of the SST in the square aj . Additional parameters, such as the
coefficients of the quadratic regression for the curve pj , have been taken into
consideration, but finally discarded since they don’t seem to capture the SST
trend, as their integration in the pipeline didn’t improve the classification per-
formance. Notice that the choice of the linear regression coefficient θ(pj) does
not imply that we assume a linear correlation between SST and time during an
upwelling event: that value is interpreted as a descriptor of the SST trend in the
square aj .

Figure 3 shows the statistics computed for the case study under investigation.
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Fig. 3. Computed statistics for the period between 2 and 16 September 2016.

3.3 Classification Rules

Considering a square aj in the area of interest, a score array (e1, e2, e3, e4),
with values ei normalized in [0, 1], is defined. The value ei represents a belief
index for the corresponding event Ei to have occurred inside aj at the end of
the considered time range. Each ei is obtained by applying a set of conditional
rules to the statistics described in Sect. 3.2, computed inside both aj and the
neighbouring squares. The rules are modelled on the a priori knowledge of the
oceanographic patterns, so that the score ei is increased (by a fixed amount) only
if the behaviour of the features μ, σ and θ, inside and in the neighbourhood of
the square a, matches the one observed in the case of an Ei pattern. A qualitative
description of these rules is reported below.

1. Increase e1 if:
(a) the SST trend θ(pj) inside aj is negative;
(b) inside the eastern neighbouring squares, the SST trend is lower than in

aj ;
(c) the SST average value μ(pj) inside aj is lower than SST in both the

northern and southern neighbouring squares.
2. Increase e2 if:

(1) the SST trend inside aj is negative;
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(2) inside the northern neighbouring squares, the SST trend is lower than in
aj ;

(3) the SST average value inside aj is lower than SST in both the eastern
and western neighbouring squares.

3. Increase e3 if:
(a) the SST trend in the neighbourhood of aj is negative;
(b) inside aj the SST trend and its average value are larger than in the north-

western neighbours, and smaller than in the south-eastern neighbours.
4. Increase e4 if:

(a) the SST trend in the neighbourhood of aj is positive;
(b) inside aj the SST trend and its average value are smaller than in the south-

eastern neighbours, and larger than in the north-western neighbours.

Additional considerations affect the final scores:

– if the SST variation σ(pj) is large (namely σ(pj) ≥ 1 ◦C), increase either e1,
e2 and e3 (if the SST decreases) or e4 (if the SST increases);

– if aj is globally either “cold” (in case of events E1, E2 and E3) or “warm”
(event E4) with respect to all the other squares in the area of interest, boost
the corresponding scores;

– if aj is too near the coast (i.e. less than 3 squares, that is circa 75 km away
from the coast), penalize (halve) the scores e1 and e2; if aj is too far from
the coast (i.e. more than 3 squares), penalize e3 and e4.

The application of the described classification rules to the case study is displayed
in Fig. 4, where the four scores have been computed for each square in the grid.

In order to classify aj , the maximum score em = max{e1, e2, e3, e4} is con-
sidered and, in case it is larger than a certain threshold (empirically decided),
the square is marked with the corresponding “Em” colour label. If none of the
scores exceeds the threshold, no label is assigned. Referring to our case study, the
final outcome of the classifier is shown in Fig. 5, representing a heatmap where
each square is labeled according to this rule, together with the percentage of the
available SST data.

4 Discussion and Conclusion

In this work, a methodology for the analysis of SST time series has been pro-
posed, with the objective of automating the classification of upwelling events by
exploiting the dynamic information observed in the SST patterns. This ongoing
study involves the analysis of large imagery datasets, using expert knowledge
to contour the positions of the mesoscale feature, and eventually aiming at its
characterisation.

The current results are promising and show patterns of differentiation among
different mesoscale events occurring in the analysed area. Throughout Sect. 3, we



Mesoscale Events Classification in Sea Surface Temperature Imagery 525

Fig. 4. Scores given to each square of the grid for each type of event.

Fig. 5. Labels given to each square of the grid, depending on their scores.
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presented a case study of an upwelling event that occurred on 16 September 2016
and was classified as type E3 by expert oceanographers. Looking at the map of
Fig. 5, we observe that the results of our analysis are aligned with the ground
truth, since the majority of the squares have been classified as “E3” (the blue
ones), and they are located within the geographical zone where events of type E3
are usually detected. Notably, the squares classified as E3 have a high reliability
value n, i.e. they feature a percentage of valid data higher than the other labelled
squares. Concerning the latter squares, the output of the classifier in those cases
apparently conflicts with the ground truth, but this can be explained by the fact
that around 16 September 2016, different types of SST events are observed (e.g.
an E1-type event occurs on 17 September). This indeed confirms the correctness
of the classification procedure that, employing a “time series based” approach
to the analysis, accordingly identifies multiple typologies of events that develop
within the considered time window in the neighbourhood of the main event.

The test and validation of the proposed algorithm are carried out and will
continue as part of the activities of the EU H2020 project NAUTILOS [17].

Acknowledgements. This paper is part of a project that has received funding from
the European Union’s Horizon 2020 research and innovation programme under grant
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