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Abstract 

This report summarized the activities carried out to define, train and validate Deep Learning models 

for the classification of medical imaging data. 

The issue of unbalanced datasets was faced by applying some data augmentation techniques, based 

on transformation of the original images. Such techniques were compared to verify their impact in a 

frame where object morphology is relevant. 

Multimodal deep learning models were defined to exploit the information contained in heterogeneous 

imaging data and cope with data distribution imbalance. 

To verify the inner functioning of the deep learning models, the LIME algorithm was applied, thus 

checking that the regions that contribute to the classification were the real meaningful ones. 

The case study used to was the categorization of prostate cancer aggressiveness based on Magnetic 

Resonance Imaging (MRI) data. The aggressiveness was determined, as a ground truth, via tissue 

biopsy and expressed with a score from 2 to 10 known as Gleason Score, which is obtained as the 

sum of two values, each one from 1 to 5, associated with the two most common patterns in the tumor 

tissue histological sample. 

 

 

 

1. Introduction 

Computer-aided diagnosis (CAD) is an important research field within medical imaging, which aims 

to support the radiologist's work in information quantification, in new biomarkers discovery or in 

diagnostic analysis, exploiting the wealth of information contained in imaging data. In oncology, a 

typical example is given by the differentiation of neoplastic lesions from benign ones or by estimating 

the aggressiveness of malignant lesions. In this sense, with the development of deep learning, medical 

image classification has made significant progress. Training deep learning models usually requires 

many samples belonging to different classes. However, in many clinical cases, it can be difficult to 

collect a balanced dataset either because of the low prevalence or the low incidence of clinically 

significant tumors versus indolent ones. 
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The work aimed to solve the problem of imbalanced datasets in the automated identification of 

neoplastic lesions, evaluating the application of different data augmentation techniques. The goal was 

to understand the impact these have in a context, such as the biomedical one, where image 

morphology is particularly important. 

Secondly, the work focused on the interpretation of neural networks to understand the classification 

criterion and on this basis decide whether it is possible to trust predictions. Here, the LIME (Local 

Interpretable Model-agnostic Explanations) [1] algorithm was used, which intuitively highlights the 

image parts that increase the probability that it belongs to a certain class. The aim was to assess 

whether the tumor lesion is also contained within these regions and therefore if it is relevant for 

classification purposes. 

Finally, to increase the information content provided to the model, enhancing its generalization 

capabilities, a multimodal neural network was also created, which consists of several branches that 

process multiparametric images in parallel, combining the extracted information to make predictions. 

These three aspects were studied by choosing prostate cancer as an application case, which is a typical 

disease example that leads to the generation of unbalanced datasets as the number of diagnoses falls, 

mostly, in a class of low-severity tumors. The work was conducted for classifying prostate Magnetic 

Resonance Imaging (MRI) data based on tumor aggressiveness, using each case’s severity value as 

ground truth. The severity is determined via tissue biopsy and expressed with a score from 2 to 10 

known as Gleason Score, which is obtained as the sum of two values, each one from 1 to 5, associated 

with the two most common patterns in the tumor tissue histological sample. 

 

 

2. Related work 

In recent years, several works have been proposed that aim to classify MRI prostate images based on 

tumor aggressiveness using a deep learning approach. In most cases, the classification is limited to a 

distinction between indolent and clinically significant tumors while only a few attempts to classify 

images into different Gleason Scores. The following subsections summarized the most notable of 

them, by distinguishing the type of classification end-point. 

 

2.1 Binary classification 

Minh Hung Le et al. [2] exploit a transfer learning approach to realize a multimodal network that 

carries out the classification by merging the T2W and ADC images information. An architecture 

belonging to the state of the art is proposed on each branch of the network. In particular, the VGG- 

16, GoogleNet and ResNet networks are compared. Furthermore, to increase the small size of the 

dataset, various data augmentation techniques are tested, among which rigid and non-rigid geometric 

transformations. 

Abraham and Nair [3] classify images using a Sparse Autoencoder (SAE) in combination with a 

Random Forest classifier. In this case, in addition to the T2W and ADC images, the information of 

the DW images is also exploited. Furthermore, to increase the size of the dataset the ADASYN [4] 

methodology is used. 

Finally, Yuan et al [5] uses a multimodal Convolutional Neural Network (CNN) that extracts the 

features respectively from axial T2W, sagittal T2W and ADC images. Also in this case, a transfer 

learning approach is exploited, implementing AlexNet network in each branch of the multimodal 

neural network. Moreover, a similarity constraint between the images in the cost function is added, 

which describes the relationship between the features within the same category. 
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2.2 Multi-label classification 

Abraham and Nair [6] classify multi-parametric MRI (mpMRI) images by extracting features from 

T2W, ADC and DW volumes, using VGG -16 network in combination with an Ordinal Class 

Classifier (OCC), which allows for considering among the classification criteria, also the ordering of 

the various groups based on the level of tumor aggressiveness. 

 

 

3. Method 

3.1 Data selection and organization 

Data have been provided by Careggi University Hospital and include mpMRI scans (axial plane), 

T2W images and ADC maps. The images were acquired on 85 patients for a total of 103 cases, 

considering that the same patient may have multiple lesions. From each patient's set of slices, only 

those containing the lesion were selected. This operation led obtaining 245 T2W images and 239 

ADC maps. Since the number of acquisitions collected was particularly small, as well as unbalanced 

in the different aggressiveness levels, there would not have been enough examples to train the 

network to recognize all the Gleason Score values. For this reason, images were divided into two 

macro-groups: Low Grade (LG) and High Grade (HG). In particular, the LG class includes all cases 

with a GS ≤ 3 + 4, while the HG one those with a GS ≥ 4 + 3. This way, 165 LG images and 80 HG 

T2W images, and 159 LG and 80 HG ADC maps were obtained. 

 

 

3.2 Neural network implementation 

The network was developed in the scientific programming environment Spyder, using Python 3.7 

language and the deep learning library Pytorch. The choice of the number, the type, the succession 

of the layers within the network, as well as the parameters and the number of epochs, was guided by 

the creation of a network with the best classification performance possible and, above all, to avoid 

overfitting. For this reason, the network was developed with few layers and adopting techniques as 

dropout, batch normalization and early stopping. 
 
 

 
 

Figure 1: Convolutional neural network architecture 

 

 

3.3 Input optimal size determination 

To keep the network’s focus on the tumor lesion, an appropriate function was also created, which cut 

out the images while keeping the tumor in the center. To determine what the optimal size was, several 

training tests were carried out, varying the size of the cutout to understand how much the surrounding 

structures affected performance. The size that provides the best performance was found to be 64x64 

pixels in T2W images, and 44x44 pixels in ADC maps. 
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Figure 2: (a) Original image (b) Cropped image around the tumor lesion 

 

 

3.4 Augmented datasets generation 

At this point, augmented datasets were generated by applying the following data augmentation 

techniques to the original images: rotation, vertical flip, horizontal flip, translation, perspective 

transformation, scaling and shear. Each technique was applied to both the minority class and to both 

classes. In the first scenario, the dataset balancing was achieved, while in the second one the dataset 

was kept unbalanced but with a greater number of examples. In this way, two augmented datasets 

were obtained for each applied geometric transformation, both for T2W images and ADC maps. 
 

 

Figure 3: (a) Rotated image (b) Vertically flipped image (c) Horizontally flipped image 

 

 

Then, also an augmented dataset was generated using both rotated and horizontally flipped images, 

to evaluate the combination of more types of augmentation techniques. 

 

 

3.5 Training 

Each dataset was then used to train the network. To make the results more robust, the k-fold Cross 

Validation statistical technique was used, choosing k=5. According to this, each dataset was divided 

into five groups, of which, in rotation, one was used as a test set and the other four as training plus 

validation. Five training sessions were carried out for each dataset and, for each of them, the following 

metrics were evaluated: specificity, sensitivity, total accuracy, and the Area Under the ROC Curve 

(AUC). Furthermore, the confusion matrix as well as the training and validation loss and accuracy 

were plotted. 
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3.5.1 Results 

Below are the average results obtained on the five trainings for each data augmentation technique 

implemented, comparing the case in which it is applied to minority class’s images only with the one 

in which it is applied to those of both classes. In Table 1, the results provided by training the network 

with only T2W images are reported, while in Table 2 those with only ADC maps. 

 

 
Table 1: Comparison between the average results obtained with the two approaches for the network trained with T2W images only 

 

 Data augmentation 

approach 

Specificity Sensitivity Total 

accuracy 

AUC 

Rotation LG - HG 93,6% 87,2% 91,4% 0.97 

 HG only 81% 89,6% 83,8% 0.94 

Vertical flip LG - HG 89,8% 79,8% 86,4% 0.92 

 HG only 84,2% 84,4% 84,2% 0.91 

Horizontal flip LG - HG 93% 82,2% 89,4% 0.94 

 HG only 76,2% 89,8% 80,6% 0.93 

Translation LG - HG 83,4% 80,8% 82,6% 0.92 

 HG only 88,8% 82,2% 86,6% 0.94 

Perspective 

transformation 

LG - HG 87% 83,4% 85,8% 0.93 

HG only 75% 93,4% 81% 0.95 

Scale LG - HG 91,4% 69,8% 84,2% 0.90 

 HG only 63% 93,4% 73% 0.91 

Shear LG - HG 90% 82% 87,4% 0.92 

 HG only 90,8% 88,6% 89,8% 0.94 

Rotation + Horizontal 

flip 

LG - HG 80,4% 89,8% 83,4% 0.91 

HG only 73,8% 91% 79,4% 0.91 

 

 

 

Table 2: Comparison between the average results obtained with the two approaches for the network trained with ADC maps only 

 

 Data augmentation 

approach 

Specificity Sensitivity Total 

accuracy 

AUC 

Rotation LG - HG 88,2% 90,8% 88,8% 0.95 

 HG only 87,4% 89,6% 88,2% 0.96 

Vertical flip LG - HG 89,4% 73,2% 84% 0.93 

 HG only 89,6% 87,2% 88,6% 0.96 

Horizontal flip LG - HG 87,8% 87% 87,4% 0.93 

 HG only 78,2% 93,4% 83,2% 0.92 

Translation LG - HG 90,8% 88,2% 89,8% 0.94 
 HG only 82% 88,6% 84% 0.94 
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Perspective 

transformation 

LG - HG 85,8% 73,4% 81,6% 0.89 

HG only 81,8% 92,2% 85,2% 0.95 

Scale LG - HG 88,8% 86,2% 87,8% 0.95 

 HG only 83,2% 88,4% 84,8% 0.93 

Shear LG - HG 87,2% 85,8% 86,6% 0.93 

 HG only 75,6% 92,2% 81,2% 0.94 

Rotation + Horizontal 

flip 

LG - HG 92,6% 92,2% 92,2% 0.96 

HG only 74,2% 87,4% 78,6% 0.92 

 

 

 

The best results were achieved, for T2W images, using the dataset augmented by applying rotation to 

both classes, which provides a specificity of 93,6%, a sensitivity of 87,2%, a total accuracy of 91,4% 

and an AUC of 0.97. For ADC maps, instead, vertical flip applied to the minority class only provides 

the best performance, giving a specificity of 89,6%, a sensitivity of 87,2%, a total accuracy of 88,6% 

and an AUC of 0.96. 

3.6 Neural network interpretation 

At this point, the single network’s classification criterion was investigated by applying LIME 

algorithm. LIME highlights the image parts that increase the probability that it belongs to a certain 

class. In this way, one can determine whether the tumor lesion is contained within these regions and 

therefore whether it is relevant for the classification purpose. 

For each test set, the average percentage of images in which the tumor is correctly displayed, 

compared to the total of correctly classified images was evaluated. In this way, a percentage value for 

each augmentation technique, both on the minority class only and on both classes has been obtained, 

in order to understand if and how the various techniques affect the network’s ability to correctly 

visualize the lesion. 
 

Figure 4: (a) Prostate T2W image with highlighted lesion (b) Part of the image that is most considered by the network according to 

LIME algorithm 

 

 
 

3.6.1 Results 

In Table 3 and Table 4, for each data augmentation technique, the average percentage of T2W images 

and ADC maps respectively in which the tumor is correctly visualized by the network compared to 

the total of images correctly classified is reported. The comparison is made, for both the augmentation 

approaches, against the result obtained with the non-augmented dataset. 
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Table 3: Percentage of T2W images in which the tumor is correctly displayed for each data augmentation technique following both the 

augmentation approaches 

 

 Data 

augmentation 

approach 

Average percentage of images correctly displayed by 

the network 

Not augmented dataset  63% 

 
LG - HG 57% 

Rotation HG only 62% 

 
LG - HG 70% 

Vertical flip HG only 60% 

 
LG - HG 56% 

Horizontal flip HG only 67% 

 
LG - HG 59% 

Translation HG only 59% 

 
LG - HG 62% 

Perspective 

transformation 
HG only 64% 

 LG - HG 65% 

Scale HG only 60% 

 
LG - HG 63% 

Shear HG only 57% 

Rotation + Horizontal 

flip 

LG - HG 71% 

HG only 56% 

 

 

 
 

Table 4: Percentage of ADC maps in which the tumor is correctly displayed for each data augmentation technique, following both the 

augmentation approaches 

 

 Data 

augmentation 

Average percentage of images correctly displayed by 

the network 

Not augmented dataset  85% 

 
LG - HG 78% 

Rotation HG only 77% 

 
LG - HG 86% 

Vertical flip HG only 69% 

 
LG - HG 75% 

Horizontal flip HG only 75% 

 
LG - HG 73% 

Translation HG only 79% 
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 LG - HG 73% 

Perspective 

transformation 
HG only 72% 

 LG - HG 78% 

Scale HG only 69% 

 
LG - HG 78% 

Shear HG only 75% 

Rotation + Horizontal 

flip 

LG - HG 78% 

HG only 73% 

 

The dataset in which the tumor lesion is most correctly displayed was found to be the one augmented 

by vertical flipping applied to both classes, in which the network, both for T2W images and ADC 

maps, correctly displays the tumor in a larger number of images with respect to the non-augmented 

dataset. For T2W images, 70% was correctly visualized, compared to 63% obtained with the non- 

augmented dataset, while in ADC maps 86% versus 85%. 

 

 

3.7 Multimodal neural network implementation 

The information contained in the two image modes was then combined in the multimodal network, 

which consists of two branches that process the T2W image and the ADC map in parallel for the same 

acquisition slice. The same architecture used for the separate classification of T2W and ADC images 

has been re-proposed on the two branches, to which is added a common fully connected layer that, 

after the features concatenation, makes the prediction. This approach, besides providing a complete 

characterization of the tumor lesion, also makes it possible to compensate for the limited size of the 

dataset, providing the network with a double amount of information. 
 
 

 
Figure 5: Multimodal network architecture 
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3.7.1 Results 

Table 5 shows the average results achieved by applying the multimodal network to each augmented 

dataset on the minority class only and on both classes. 

 

 
Table 5: Comparison between the two approaches for the multimodal network 

 

Dataset 
Data augmentation 

approach 
Specificity Sensitivity 

Total 

accuracy 
AUC 

Rotation LG - HG 92% 87% 89,8% 0.95 

 HG only 94,4% 85,6% 90,2% 0.95 

Vertical flip LG - HG 90% 89,4% 89% 0.95 

 HG only 91,4% 85,8% 89,4% 0.96 

Horizontal flip LG - HG 88,4% 84,8% 87,4% 0.96 

 HG only 85% 93,4% 87,6% 0.95 

Translation LG - HG 88,4% 94,8% 90,6% 0.96 

 HG only 83,8% 89,8% 85,8% 0.96 

Perspective 

transformation 

LG - HG 88,8% 93,2% 89,4% 0.95 

HG only 87% 93,4% 89% 0.96 

Scale LG - HG 94% 67,2% 85% 0.92 

 HG only 92,6% 89,8% 91,6% 0.97 

Shear LG - HG 92,6% 78,2% 87,6% 0.92 

 HG only 92,2% 87,2% 90,2% 0.95 

Rotation + Horizontal 

flip 

LG - HG 89,4% 82% 86,8% 0.95 

HG only 95,2% 87% 92,2% 0.98 

 
 

In this case, the best results were obtained on the augmented dataset using the combination of rotation 

and horizontal flipping to both LG and HG classes, which provides a specificity of 95.2%, a 

sensitivity of 87%, a total accuracy of 92.2% and an AUC of 0.98. 

 

 

3.8 Testing the networks with PROSTATEX-2 dataset 

Ultimately, it was also interesting to validate the networks on a completely unknown dataset, 

consisting of images acquired with a different protocol with respect to the one the models were trained 

on. For this purpose, both the single and the multimodal networks were tested on images of the open 

source dataset of PROSTATEx-2 challenge. Only the images containing peripheral tumors were 

selected, which is the only kind the networks were trained on, obtaining a total of 43 LG and 6 HG 

images. 



10 
 

  

Figure 6: Images from PROSTATEx-2 challenge dataset. (a) T2W image (b) ADC map 

 

 
 

The LIME algorithm was also applied, in order to understand if the results obtained with Careggi’s 

dataset are also confirmed by the PROSTATEx-2 one. 

 

 
3.8.1 Results 

Below, for each of the five networks trained using a specific data augmentation technique, applied 

both to the minority class only and to both classes, the one that provided the best results and their 

values are reported. Table 6, Table 7, and Table 8 consider the network trained on T2W images 

only, on ADC maps only and the multimodal network respectively. 

 

 
Table 6: Best results obtained for each data augmentation technique by testing the network on the T2W PROSTATEx-2 image dataset 

 

Dataset 
Data augmentation 

approach 
Specificity Sensitivity Total accuracy AUC Training 

Not - 55% 66% 57% 0.66 1 

augmented  (24/43) (4/6)    

dataset       

Rotation LG - HG 32% 83% 38% 0.60 5 

  (14/43) (5/6)    

 HG only 25% 83% 32% 0.66 3 

 (11/43) (5/6)    

Vertical flip LG - HG 76% 50% 73% 0.62 2 

  (33/43) (3/6)    

 HG only 37% 66% 40% 0.65 2 

 (16/43) (4/6)    

Horizontal LG - HG 62% 50% 61% 0.55 1 

flip  (27/43) (3/6)    

 HG only 39% 66% 42% 0.64 1 
 (17/43) (4/6)    
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Translation LG - HG 65% 66% 65% 0.67 2 

  (28/43) (4/6)    

 HG only 58% 50% 57% 0.63 1 

 (25/43) (3/6)    

Perspective LG - HG 65% 66% 53% 0.65 1 

transformati 

on 

 (28/43) (4/6)    

HG only 53% 50% 53% 0.54 3 

  (23/43) (3/6)    

Scale LG - HG 41% 83% 46% 0.74 4 

  (18/43) (5/6)    

 HG only 25% 83% 34% 0.62 3 

 (11/43) (5/6)    

Shear LG - HG 51% 83% 55% 0.67 4 

  (22/43) (5/6)    

 HG only 44% 66% 46% 0.64 3 

 (19/43) (4/6)    

Rotation + LG - HG 44% 66% 46% 0.60 5 

Horizontal 
 (19/43) (4/6)    

flip       

 HG only 44% 66% 46% 0.60 5 

 (19/43) (4/6)    

 

 

 

Table 7: Best results obtained for each data augmentation technique by testing the network on the ADC PROSTATEx-2 image dataset 

 
 

Dataset 
Data augmentation Specificity Sensitivity 

Total
 AUC Training 

 approach   accuracy  

Not augmented  76% 16% 69% 0.39 2 

dataset  (33/43) (1/6)    

 
LG - HG 55% 33% 53% 0.43 2 

Rotation  (24/43) (2/6)    

 HG only 34% 66% 38% 0.42 5 

  (15/43) (4/6)    

 
LG - HG 44% 33% 42% 0.35 3 

Vertical flip  (19/43) (2/6)    

 HG only 27% 66% 32% 0.34 1 

  (12/43) (4/6)    

 
LG - HG 48% 33% 46% 0.42 3 

Horizontal flip  (21/43) (2/6)    
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 HG only 11% 66% 18% 0.34 4 

 (5/43) (4/6)    

LG - HG 58% 50% 57% 0.47 4 

Translation  (25/43) (3/6)    

 HG only 72% 16% 65% 0.47 4 

  (31/43) (1/6)    

 
LG - HG 72% 16% 26% 0.45 2 

Perspective  (31/43) (1/3)    

transformation HG only 18% 50% 22% 0.34 5 

  (8/43) (3/6)    

 
LG - HG 83% 0% 73% 0.37 3 

Scale  (36/43) (0/6)    

 HG only 39% 33% 38% 0.27 2 

  (17/43) (2/6)    

 
LG - HG 30% 83% 36% 0.37 3 

Shear  (13/43) (5/6)    

 HG only 11% 66% 18% 0.35 3 

  (11/43) (4/6)    

Rotation + LG - HG 39% 50% 40% 0.41 3 

Horizontal flip  (17/43) (3/6)    

 HG only 0% 100% 12% 0.29 1 

  (0/43) (6/6)    

 

 

 

 
 

Table 8: Best results obtained for each data augmentation technique by testing the multimodal network on the PROSTATEx-2 dataset 

 

Dataset 
Data augmentation 

approach 
Specificity Sensitivity 

Total 

accuracy 
AUC Training 

Not augmented 

dataset 

 72% 

(31/43) 

66% 

(4/6) 

71% 0.79 4 

  
LG - HG 

 
58% 

(25/43) 

 
83% 

(5/6) 

 
61% 

 
0.82 

 
2 

Rotation 
    

HG only 41% 

(18/43) 

83% 

(5/6) 

46% 0.71 1 

Vertical flip LG - HG 27% 

(12/43) 

66% 

(4/6) 
32% 0.69 1 

 HG only 44% 

(19/43) 

66% 

(4/6) 

46% 0.71 3 
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Horizontal flip LG - HG 53% 

(23/45) 

100% 

(6/6) 

59% 0.74 4 

 HG only 34% 

(15/43) 

100% 

(6/6) 

42% 0.70 3 

Translation LG - HG 55% 

(24/43) 

83% 

(5/6) 

59% 0.80 1 

 HG only 25% 

(11/43) 

83% 

(5/6) 

32% 0.79 3 

Perspective 

transformation 

LG - HG 55% 

(24/43) 

83% 

(5/6) 

59% 0.72 3 

 HG only 37% 

(16/43) 

83% 

(5/6) 

42% 0.83 1 

Scale LG - HG 79% 

(34/43) 

50% 

(3/6) 

75% 0.72 5 

 HG only 27% 

(12/43) 

83% 

(5/6) 

36% 0.73 3 

Shear LG - HG 65% 

(28/43) 

83% 

(5/6) 

67% 0.77 1 

 HG only 60% 

(26/43) 

66% 

(4/6) 

61% 0.70 2 

Rotation + 

Horizontal flip 

LG - HG 67% 

(29/43) 

100% 

(6/6) 

71% 0.78 5 

 HG only 32% 

(14/43) 

100% 

(6/6) 

40% 0.69 3 

 

Regarding the interpretation aspect, Table 9, and Table 10 show the average percentages of the 

correctly displayed images with respect to the total amount of the correctly classified ones, for T2W 

images and ADC maps respectively. 

 

 
Table 9: Percentage of T2W images from PROSTATEx-2 dataset in which the tumor is correctly displayed for each data augmentation 

technique, following both the augmentation approaches 

 

 Data augmentation 

approach 

Average percentage of images correctly 

displayed by the network 

Not augmented dataset  64% 

 
LG - HG 53% 

Rotation HG only 69% 

 
LG - HG 58% 

Vertical flip HG only 60% 
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 LG - HG 53% 

Horizontal flip HG only 67% 

 
LG - HG 61% 

Translation HG only 71% 

 
LG - HG 59% 

Perspective 

transformation 
HG only 62% 

 LG - HG 48% 

Scale HG only 50% 

 
LG - HG 52% 

Shear HG only 52% 

Rotation + Horizontal 

flip 

LG - HG 61% 

HG only 61% 

 

 

 

Table 10: Percentage of ADC maps from PROSTATEx-2 dataset in which the tumor is correctly displayed for each data augmentation 

technique, following both the augmentation approaches 

 

Dataset 
Data augmentation 

approach 

Average percentage of images correctly 

displayed by the network 

Not augmented dataset  100% 

 
LG - HG 88% 

Rotation HG only 74% 

 
LG - HG 81% 

Vertical flip HG only 69% 

 
LG - HG 91% 

Horizontal flip HG only 78% 

 
LG - HG 79% 

Translation HG only 78% 

 
LG - HG 84% 

Perspective 

transformation 
HG only 90% 

 LG - HG 94% 

Scale HG only 89% 

 
LG - HG 100% 

Shear HG only 78% 

Rotation + Horizontal 

flip 

LG – HG 85% 

HG only 67% 
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The best classification performance was provided by applying the multimodal network to the 

augmented dataset with only the rotation applied to both LG and HG classes. Results include a 

specificity of 58%, a sensitivity of 83%, a total accuracy of 61% and an AUC of 0.82. The case of 

augmented dataset with horizontal flipping and rotation to both classes should also be mentioned, 

which in the face of a lower AUC (0.78) provides a perfect sensitivity (100%) and good specificity 

(67%). 

For what concerns LIME algorithm application instead, the results obtained with Careggi’s dataset 

were not confirmed by PROSTATEx-2 dataset. In fact, in this case the augmentation technique that 

most increases the network’s ability of visualizing the tumor lesion is the translation applied to the 

minority class only for T2W images, and the shear applied to both classes for ADC maps. 

 

 

4. Conclusion 

The aim of the work was to develop and interpret neural models that correctly classify datasets 

characterized by an imbalance between classes, evaluating different data augmentation techniques to 

understand the impact these have in the biomedical context. A single network that separately classifies 

T2W and ADC images was initially tested, and its decision criterion was investigated using LIME 

algorithm. Subsequently, a multimodal network was implemented, which combines the two image 

modalities to increase generalization capabilities. 

Relying on the results, no data augmentation technique absolutely prevails over the others, since much 

depends on the application context. However, in most cases, the best results are obtained with the 

rotation technique alone or combining it with the horizontal flipping, applied to both classes. On the 

other hand, these techniques are also those that, by examining the results obtained with the LIME 

algorithm, in most cases worsen the network’s ability to correctly visualize the tumor. The techniques 

that, instead, increase this ability are the vertical flipping applied to both classes for both T2W images 

and ADC maps in Careggi’s dataset, and translation applied to HG class only, and shear applied to 

both classes, for T2W images and ADC maps respectively in the PROSTATEx-2 dataset. 

In any case, it can be stated that the multimodal network, compared to the single network, is the one 

that provides the best classification performance, as well as generalization, obtaining good results 

also on the PROSTATEx-2 dataset. 

Ideas for future developments may concern: experimentation of different balancing techniques; 

training with datasets including images belonging to different acquisition protocols; repetition of the 

experiments using a larger dataset; use of other architectures for classification; modification of the 

LIME algorithm in order to apply it to multimodal networks. 
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