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Abstract

Conditionals are useful for modelling, but aren’t always sufficiently expressive

for capturing information accurately. In this paper we make the case for a form

of conditional that is situation-based. These conditionals are more expressive

than classical conditionals, are general enough to be used in several application

domains, and are able to distinguish, for example, between expectations and

counterfactuals. Formally, they are shown to generalise the conditional setting

in the style of Kraus, Lehmann, and Magidor. We show that situation-based

conditionals can be described in terms of a set of rationality postulates. We then

propose an intuitive semantics for these conditionals, and present a representa-

tion result which shows that our semantic construction corresponds exactly to

the description in terms of postulates. With the semantics in place, we proceed

to define a form of entailment for situated conditional knowledge bases, which

we refer to as minimal closure. It is reminiscent of and, indeed, inspired by,

the version of entailment for propositional conditional knowledge bases known

as rational closure. Finally, we proceed to show that it is possible to reduce the

computation of minimal closure to a series of propositional entailment and sat-

isfiability checks. While this is also the case for rational closure, it is somewhat

surprising that the result carries over to minimal closure.
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1. Introduction

Conditionals are at the heart of human everyday reasoning and play an

important role in the logical formalisation of reasoning. They can usually be

interpreted in many ways: as necessity [2, 3], as presumption [4, 5, 6], norma-

tive [7, 8], causal [9, 10], probabilistic [11, 12, 13], counterfactual [14, 15], and

many others. Two very common interpretations, that are also strongly intercon-

nected, are conditionals representing expectations (‘If it is a bird, then presum-

ably it flies’), and conditionals representing counterfactuals (‘If Napoleon had

won at Waterloo, the whole of Europe would be speaking French’). Although

they are connected by virtue of being conditionals, the types of reasoning they

aim to model differ somewhat. For instance, the first example above assumes

that the premises of conditionals are consistent with what is believed, while the

second example assumes that those premises are inconsistent with an agent’s

beliefs. That this point is problematic can be made concrete with an extended

version of the (admittedly over-used) penguin example.

Example 1.1. Suppose we know that birds usually fly, that penguins are birds

that usually do not fly, that dodos were birds that usually did not fly, and that do-

dos do not exist anymore. As outlined in more detail in Example 3.1 later on, the

standard preferential semantic approach to representing conditionals [5] is lim-

ited in that it allows for two forms of representation of an agent’s beliefs. In the

one, it would be impossible to distinguish between atypical (exceptional) entities

such as penguins, and non-existing entities such as dodos (they are equally ex-

ceptional). In the other, it would be possible to draw this type of distinction, but

at the expense of being unable to reason coherently about counterfactuals—the

agent would be forced to conclude anything and everything from the (nowadays

absurd) existence of dodos.

In this work we introduce a logic of situated conditionals to overcome pre-

cisely this problem. The central insight is that adding an explicit notion of
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situation to standard conditionals allows for a refined semantics of this enriched

language in which the problems described in Example 1.1 can be dealt with ad-

equately. It also allows us to reason coherently with counterfactual conditionals

such as ‘Had Mauritius not been colonised, the dodo would not fly’. That is,

counterfactuals can be inconsistent with the premise of a conditional without

lapsing into inconsistency. Moreover, it is possible to reason coherently with

situated conditionals without needing to know whether their premises are plau-

sible or counterfactual. In the case of penguins and dodos, for example, it allows

us to state that penguins usually fly in the situation where penguins exist, and

that dodos usually fly in the situation where dodos also exist, while being un-

aware of whether or not penguins and dodos actually exist. At the same time,

it remains possible to make classical statements, as well as statements about

what necessarily holds, regardless of any plausible or counterfactual premise.

The remainder of the paper is organised as follows. Section 2 outlines the

formal preliminaries of propositional logic and the preferential semantic ap-

proach to conditionals on which our work is based. Section 3 is the heart of the

paper. It describes the language of situated conditionals, furnishes it with an

appropriate and intuitive semantics, and motivates the corresponding logic by

way of examples, formal postulates, and a formal representation result. With

the basics of the logic in place, Section 4 defines a form of entailment for it

that is based on the well-known notion of rational closure [5]. As such, it plays

a role that is similar to the one that rational closure plays for reasoning with

conditionals—it is a basic form of entailment on which other forms of entailment

can be constructed. Section 5 shows that, from a computational perspective,

the version of entailment we propose in the previous section is reducible to clas-

sical propositional reasoning. Section 6 reviews related work, while Section 7

concludes and considers future avenues to explore. Longer proofs are presented

in the appendix.
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2. Formal background

In this paper, we assume a finite set of propositional atoms P and use p, q, . . .

to denote its elements. Sentences of the underlying propositional language are

denoted by α, β, . . ., and are built up from the atomic propositions and the

standard Boolean connectives in the usual way. The set of all propositional

sentences is denoted by L.

A valuation (alias world) is a function from P into {0, 1}. The set of all

valuations is denoted U , and we use u, v, . . . to denote its elements. Whenever

it eases presentation, we represent valuations as sequences of atoms (e.g., p)

and barred atoms (e.g., p), with the usual understanding. As an example, if

P = {b, f, p}, with the atoms standing for, respectively, ‘being a bird’, ‘being a

flying creature’, and ‘being a penguin’, then the valuation bfp conveys the idea

that b is true, f is false, and p is true.

With v 
 α we denote the fact that v satisfies α. Given α ∈ L, with

JαK def= {v ∈ U | v 
 α} we denote its models. For X ⊆ L, JXK def=
⋂

α∈XJαK. We

say X ⊆ L (classically) entails α ∈ L, denoted X |= α, if JXK ⊆ JαK. Given a

set of valuations V , sent(V ) indicates a sentence characterising the set V . That

is, sent(V ) is a propositional sentence satisfied by all, and only, the valuations

in V .

2.1. KLM-style rational defeasible consequence

A defeasible consequence relation |∼ is a binary relation on L. Intuitively,

(α, β) ∈|∼, which is usually represented as the statement α |∼ β, captures the

idea that “β is a defeasible consequence of α”, or, in other words, that “if α, then

usually (alias normally, or typically) β”. The relation |∼ is said to be rational [4]
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if it satisfies the well-known KLM postulates below:

(Ref) α |∼ α (LLE)
|= α↔ β, α |∼ γ

β |∼ γ

(And)
α |∼ β, α |∼ γ

α |∼ β ∧ γ
(Or)

α |∼ γ, β |∼ γ

α ∨ β |∼ γ

(RW)
α |∼ β, |= β → γ

α |∼ γ
(RM)

α |∼ β, α 6|∼ ¬γ

α ∧ γ |∼ β

The merits of these postulates have been addressed extensively in the liter-

ature [4, 16] and we shall not repeat them here.

A suitable semantics for rational consequence relations is provided by ordered

structures called ranked interpretations.

Definition 2.1 (Ranked Interpretation). A ranked interpretation R is a

function from U to N ∪ {∞}, satisfying the following convexity property: for

every u ∈ U and every i ∈ N, if R(u) = i, then, for every j s.t. 0 ≤ j < i, there

is a u′ ∈ U for which R(u′) = j.

For a given ranked interpretation R and valuation v, we denote with R(v)

the rank of v. The number R(v) indicates the degree of atypicality of v. So the

valuations judged most typical are those with rank 0, while those with an infinite

rank are deemed so atypical as to be implausible. We can therefore partition

the set U w.r.t. R into the set of plausible valuations Uf

R

def= {u ∈ U | R(u) ∈ N},

and implausible valuations U∞
R

def= U \ Uf

R
. (Throughout the paper, we shall use

the symbol f to refer to finiteness.) With JiKR, for i ∈ N ∪ {∞}, we indicate

all the valuations with rank i in R (we omit the subscript whenever it is clear

from the context).

Assuming P = {b, f, p}, with the intuitions as above, Figure 1 below shows

an example of a ranked interpretation.

Let R be a ranked interpretation and let α ∈ L. Then JαKf
R

def= Uf

R
∩ JαK,

and minJαKf
R

def= {u ∈ JαKf
R
| R(u) ≤ R(v), for all v ∈ JαKf

R
}. A defeasible

consequence relation α |∼ β can be given an intuitive semantics in terms of

ranked interpretations as follows: α |∼ β is satisfied in R (denoted R 
 α |∼ β)
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∞ pbf pbf

2 pbf

1 pbf pbf

0 pbf pbf pbf

Figure 1: A ranked interpretation for P = {b, f, p}.

if minJαKf
R
⊆ JβK, with R referred to as a ranked model of α |∼ β. In the

example in Figure 1, we have R 
 b |∼ f, R 
 ¬(p → b) |∼ ⊥, R 
 p |∼ ¬f,

R 6
 f |∼ b, and R 
 p ∧ ¬b |∼ b. It is easily verified that R 
 ¬α |∼ ⊥

iff Uf

R
⊆ JαK. Hence we frequently abbreviate ¬α |∼ ⊥ as α. Two defeasible

consequences α |∼ β and γ |∼ δ are said to be rank equivalent iff they have the

same ranked models — that is, if for every ranked interpretation R, R 
 α |∼ β

iff R 
 γ |∼ δ.

The correspondence between rational consequence and ranked interpreta-

tions is formalised by the following representation result.

Theorem 2.1 (Lehmann & Magidor, 1992; Gärdenfors & Makinson, 1994). A

defeasible consequence |∼ is rational iff there is a ranked interpretation R such

that α |∼ β iff R 
 α |∼ β.

2.2. Rational closure

One can also view defeasible consequence as formalising some form of (de-

feasible) conditional and bring it down to the level of statements. Such was the

stance adopted by Lehmann and Magidor [5]. A conditional knowledge base C

is thus a finite set of statements of the form α |∼ β, with α, β ∈ L. As before,

in knowledge bases we shall also abbreviate ¬α |∼ ⊥ with α. As an example,

let C = {b |∼ f, p→ b, p |∼ ¬f}. Given a conditional knowledge base C, a ranked

model of C is a ranked interpretation satisfying all statements in C. As it turns

out, the ranked interpretation in Figure 1 is a ranked model of the above C.

It is not hard to see that, in every ranked model of C, the valuations bfp and
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bfp are deemed implausible—note, however, that they are still logically possi-

ble, which is the reason why they feature in all ranked interpretations. Two

conditional knowledge bases are rank equivalent iff they have exactly the same

ranked models.

An important reasoning task in this setting is that of determining which con-

ditionals follow from a conditional knowledge base. Of course, even when inter-

preted as a conditional in (and under) a given knowledge base C, |∼ is expected

to adhere to the postulates of Section 2.1. Intuitively, that means whenever

appropriate instantiations of the premises in a postulate are sanctioned by C,

so should the suitable instantiation of its conclusion.

To be more precise, we can take the defeasible conditionals in C as the

core elements of a defeasible consequence relation |∼C . By closing the latter

under the preferential rules (in the sense of exhaustively applying them), we

get a preferential extension of |∼C . Since there can be more than one such

extension, the most cautious approach consists in taking their intersection. The

resulting set, which also happens to be closed under the preferential rules, is

the preferential closure of |∼C , which we denote by |∼C
PC . It turns out that

the preferential closure of |∼C contains exactly the conditionals entailed by C.

(Hence, the notions of closure of and entailment from a conditional knowledge

base are two sides of the same coin.) The same process and definitions carry over

when one requires the defeasible consequence relations also to be closed under

the rule RM, in which case we talk of rational extensions of |∼C . Nevertheless,

as pointed out by Lehmann and Magidor [5, Section 4.2], the intersection of

all such rational extensions does not, in general, yield a rational consequence

relation: it coincides with preferential closure and therefore may fail RM. Among

other things, this means that the corresponding entailment relation, which is

called rank entailment and defined as C |=R α |∼ β if every ranked model

of C also satisfies α |∼ β, is monotonic and therefore it falls short of being a

suitable form of entailment in a defeasible reasoning setting. As a result, several

alternative notions of entailment from conditional knowledge bases have been

explored in the literature on non-monotonic reasoning [17, 18, 19, 20, 21, 22, 23],
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with rational closure [5] commonly acknowledged as the ‘gold standard’ in the

matter.

Rational closure (RC) is a form of inferential closure extending the notion

of rank entailment above. It formalises the principle of presumption of typi-

cality [17, p. 63], which, informally, specifies that a situation (in our case, a

valuation) should be assumed to be as typical as possible (w.r.t. background

information in a knowledge base).

Multiple equivalent characterisations of RC have been proposed [5, 24, 18,

25, 26], and here we rely on the one by Giordano and others [21]. Assume an

ordering �C on all ranked models of a knowledge base C, which is defined as

follows: R1 �C R2, if, for every v ∈ U , R1(v) ≤ R2(v). Intuitively, ranked

models lower down in the ordering correspond to descriptions of the world in

which typicality of each situation (valuation) is maximised. It is easy to see

that �C is a weak partial order. Giordano et al. [21] showed that there is a

unique �C-minimal element. The rational closure of C is defined in terms of this

minimum ranked model of C.

Definition 2.2 (Rational Closure). Let C be a conditional knowledge base, and

let RC
RC be the minimum element of �C on ranked models of C. The rational

closure of C is the defeasible consequence relation |∼C
RC

def= {α |∼ β | RC
RC 


α |∼ β}.

As an example, Figure 1 shows the minimum ranked model of C = {b |∼

f, p → b, p |∼ ¬f} w.r.t. �C. Hence we have that ¬f |∼ ¬b is in the rational

closure of C (but note it is not in the preferential closure of C).

Observe that there are two levels of typicality at work for rational closure,

namely within ranked models of C, where valuations lower down are viewed as

more typical, but also between ranked models of C, where ranked models lower

down in the ordering are viewed as more typical. The most typical ranked

model RC
RC is the one in which valuations are as typical as C allows them to be

(the principle of presumption of typicality we alluded to above).

Rational closure is commonly viewed as the basic (although certainly not
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the only acceptable) form of non-monotonic entailment, on which other, more

venturous forms of entailment can be and have been constructed [17, 27, 28, 22,

23].

3. Situated conditionals

We now turn to the heart of the paper, the introduction of a logic-based

formalism for the specification of and reasoning with situated conditionals. For

a more detailed motivation, let us consider a more technical version of the

penguin-dodo example introduced in Section 1.

Example 3.1. We know that birds usually fly (b |∼ f), and that penguins are

birds (p → b) that usually do not fly (p |∼ ¬f). Also, we know that dodos were

birds (d → b) that usually did not fly (d |∼ ¬f), and that dodos do not exist

anymore. Using the standard ranked semantics (Definition 2.1), we have two

ways of modelling the information above.

The first option is to formalise what an agent believes by referring to the

valuations with rank 0 in a ranked interpretation. That is, the agent believes α

is true iff ⊤ |∼ α holds. In such a case, ⊤ |∼ ¬d means that the agent believes

that dodos do not exist. The minimal model for this conditional knowledge base

is shown in Figure 2 (left). The main limitation of this representation is that all

exceptional entities have the same status as dodos, since they cannot be satisfied

at rank 0. Hence we have ⊤ |∼ ¬p, just as we have ⊤ |∼ ¬d, and we are not

able to distinguish between the status of the dodos (they do not exist anymore)

and the status of the penguins (they do exist and are simply exceptional birds).

The second option is to represent what an agent believes in terms of all

valuations with finite ranks. That is, an agent believes α to hold iff ¬α |∼ ⊥

holds. If dodos do not exist, we add the statement d |∼ ⊥. The minimal model

for this case is depicted in Figure 2 (right). Here we can distinguish between

what is considered false (dodos exist) and what is exceptional (penguins), but we

are unable to reason coherently about counterfactuals, since from d |∼ ⊥ we can

conclude anything about dodos.
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∞ U \ (J0K ∪ J1K ∪ J2K)

2 pdbf pdbf pdbf

1 pdbf pdbf pdbf pdbf

0 pdbf pdbf pdbf

∞ U \ (J0K ∪ J1K ∪ J2K)

2 pdbf

1 pdbf pdbf

0 pdbf pdbf pdbf

Figure 2: Left: minimal ranked model of the KB in Example 3.1 satisfying ⊤ |∼ ¬d. Right:

minimal ranked model of the KB expanded with d |∼ ⊥.

A situated conditional (SC for short) is a statement of the form α |∼γ β,

with α, β, γ ∈ L, which is read as ‘given the situation γ, β usually holds on

condition that α holds’. Formally, a situated conditional |∼ is a ternary relation

on L. We shall write α |∼γ β as an abbreviation for 〈α, β, γ〉 ∈ |∼. To provide

a suitable semantics for SCs, we define a refined version of the ranked inter-

pretations of Section 2 that we refer to as epistemic interpretations. A ranked

interpretation can differentiate between plausible valuations (those in Uf

R
) but

not between implausible ones (those in U∞
R

). In contrast, an epistemic interpre-

tation can also tell implausible valuations apart. We thus distinguish between

two classes of valuations: plausible valuations with a finite rank, and implausi-

ble valuations with an infinite rank. Within implausible valuations, we further

distinguish between those that would be considered as possible, and those that

would be impossible. This is formalised by assigning to each valuation u a tuple

of the form 〈f, i〉, where i ∈ N, or 〈∞, i〉, where i ∈ N ∪ {∞}. The f in 〈f, i〉 is

meant to indicate that u has a finite rank, while the ∞ in 〈∞, i〉 is intended to

denote that u has an infinite rank, where finite ranks are viewed as more typical

than infinite ranks. Implausible valuations that are considered possible have an

infinite rank 〈∞, i〉, where i ∈ N, while those considered impossible have the

infinite rank 〈∞,∞〉, where 〈∞,∞〉 is taken to be less typical than any of the

other infinite ranks.

To capture this formally, let Rk def= {〈f, i〉 | i ∈ N} ∪ {〈∞, i〉 | i ∈ N ∪ {∞}}

denote henceforth a set of ranks. We define the total ordering � over Rk as

follows: 〈x1, y1〉 � 〈x2, y2〉 if x1 = x2 and y1 ≤ y2, or x1 = f and x2 =∞, where

i <∞ for all i ∈ N.
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Definition 3.1 (Epistemic Interpretation). An epistemic interpretation E

is a total function from U to Rk for which the following convexity property

holds: ( i) for every u ∈ U and every i ∈ N, if E (u) = 〈f, i〉, then, for all j

s.t. 0 ≤ j < i, there is a uj ∈ U s.t. E (uj) = 〈f, j〉, and ( ii) for every u ∈ U and

every i ∈ N, if E (u) = 〈∞, i〉, then, for all j s.t. 0 ≤ j < i, there is a uj ∈ U

s.t. E (uj) = 〈∞, j〉.

Observe that the version of convexity satisfied by epistemic interpretations

is a straightforward extension of the convexity of ranked interpretations (Defini-

tion 2.1). Figure 3 depicts an epistemic interpretation in our running example.

〈∞,∞〉 Jp ∧ ¬bK ∪ Jd ∧ ¬bK

〈∞, 1〉 pdbf pdbf

〈∞, 0〉 pdbf pdbf

〈f, 2〉 pdbf

〈f, 1〉 pdbf pdbf

〈f, 0〉 pdbf pdbf pdbf

Figure 3: Epistemic interpretation for P = {b, d, f, p}.

Casini et al. [29] have a similar definition of epistemic interpretations, but

they do not allow for the rank 〈∞,∞〉.

We let Uf

E

def= {u ∈ U | E (u) = 〈f, i〉, for some i ∈ N} and U∞
E

def= {u ∈ U |

E (u) = 〈∞, i〉, for some i ∈ N}. Note that U∞
E

does not contain valuations

with rank 〈∞,∞〉. We let minJαKE
def= {u ∈ JαK | E (u) � E (v), for all v ∈

JαK}, minJαKf
E

def= {u ∈ JαK ∩ Uf

E
| E (u) � E (v), for all v ∈ JαK ∩ Uf

E
}, and

minJαK∞
E

def= {u ∈ JαK ∩ U∞
E
| E (u) � E (v), for all v ∈ JαK ∩ U∞

E
}.

Observe that epistemic interpretations are allowed to have no plausible valua-

tions (Uf

E
= ∅), as well as no implausible valuations that are possible (U∞

E
= ∅).

This means it is possible that E (u) = 〈∞,∞〉 for all u ∈ U , in which case

E 
 α |∼γ β, for all α, β, γ. Epistemic interpretations also allow for the case

where all valuations are possible (that is, either plausible, or implausible but
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possible). This corresponds to the case where an epistemic interpretation does

not have any valuation with rank 〈∞,∞〉.

Armed with the notion of epistemic interpretation, we can provide an intu-

itive semantics to situated conditionals.

Definition 3.2 (Satisfaction of Situated Conditionals). Let E be an epistemic

interpretation. We say E satisfies the situated conditional α |∼γ β, denoted as

E 
 α |∼γ β and often abbreviated as α |∼E
γ β, if







minJα ∧ γKf
E
⊆ JβK, if JγK ∩ Uf

E
6= ∅;

minJα ∧ γK∞
E
⊆ JβK, otherwise.

Intuitively, satisfaction of situated conditionals works as follows. If the situ-

ation γ is compatible with the plausible part of E (the valuations in Uf

E
), then

α |∼γ β holds if the most typical plausible models of α∧ γ are also models of β.

On the other hand, if the situation γ is not compatible with the plausible part

of E , i.e., all models of γ have an infinite rank, then α |∼γ β holds if the most

typical implausible (but possible) models of α ∧ γ are also models of β.

An immediate corollary of Definition 3.2 is that the rational conditionals

defined in terms of ranked interpretations can be simulated with SCs by setting

the situation to ⊤.

Definition 3.3 (Extracted Ranked Interpretation). For an epistemic interpre-

tation E , we define the ranked interpretation RE extracted from E as

follows: for u ∈ Uf

E
, RE (u) = i, where E (u) = 〈f, i〉, and RE (u) = ∞ for

u ∈ U \ Uf

E
.

Corollary 3.1. Let E be an epistemic interpretation. Then RE

 α |∼ β iff

E 
 α |∼⊤ β.

Proof. Assume E 
 α |∼⊤ β. Then, by definition, we have minJα∧⊤Kf
E
⊆ JβK if

Uf

E
6= ∅, and minJα∧⊤K∞

E
⊆ JβK otherwise. If the former is the case, then, by the

construction of RE , we have minJαKf
RE ⊆ JβK, and therefore RE


 α |∼ β. If,

instead, the latter holds, then JαKf
E
= ∅, from which it follows that JαKf

RE = ∅,

12



and therefore RE

 α |∼ β. For the other direction, assume RE


 α |∼ β. If

JαKf
RE = ∅, then, from the construction of RE , we have JαKf

E
= ∅, from which

we get E 
 α |∼⊤ β. If JαKf
RE 6= ∅, then, since minJαKf

RE ⊆ JβK, we must have

minJαK∞
E
⊆ JβK, too. From the latter it follows that minJα ∧ ⊤K∞

E
⊆ JβK, and

therefore E 
 α |∼⊤ β.

The principal advantage of situated conditionals and their associated en-

riched semantics in terms of epistemic interpretations is that they allow us to

represent different degrees of epistemic involvement, with the finite ranks (the

plausible valuations) representing the expectations of an agent. So ⊤ |∼⊤ α

being true in E indicates that α is expected. What an agent believes to be true

is what is true in all the valuations with finite ranks. That is, the agent believes

α to be true iff E 
 ¬α |∼⊤ ⊥. It is also possible to reason counterfactually. We

can express that dodos would not fly, if they existed, in a coherent way. We can

talk about dodos in a counterfactual situation or context, for example assum-

ing that Mauritius had never been colonised (mc): the conditional d |∼¬mc ¬f is

read as ‘In the situation of Mauritius not having been colonised, the dodo would

not fly’. Moreover, we can reason coherently with a situated conditional, not

even knowing whether its premises are plausible or counterfactual. To do so, it

is sufficient to introduce statements of the form α |∼α β. If α is plausible, this

conditional is evaluated in the context of the finite ranks, exactly as if α |∼⊤ β

were being evaluated. On the other hand, if α |∼⊤ ⊥ holds, α |∼α β will be

evaluated referring to the infinite ranks. So, in the case of penguins and dodos,

p |∼p ¬f and d |∼d ¬f express the information that penguins usually do not fly

in the situation of penguins existing, and that dodos usually do not fly in the

situation of dodos existing, regardless of whether the agent is aware of penguins

or dodos existing or not. In contrast, a statement such as d |∼⊤ ¬f cannot be

used to reason counterfactually about dodos, once we are aware that they do

not exist (that is, d |∼⊤ ⊥): given the latter, once we consider all the interpre-

tations satisfying ⊤ (that is, all the interpretations) our reasoning about dodos

would be trivial, since we would be able to conclude everything about dodos,
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that is, we would be able to conclude d |∼⊤ α for any proposition α. Also,

note that it is still possible to impose that something necessarily holds. The

conditional α |∼α ⊥ holds only in epistemic interpretations in which all models

of α have 〈∞,∞〉 as their rank. The following example illustrates these claims

more concretely.

Example 3.2. Consider the following rephrasing of the statements in Exam-

ple 3.1. ‘Birds usually fly’ becomes b |∼⊤ f. Defeasible information about pen-

guins and dodos are modelled using p |∼p ¬f and d |∼d ¬f. Given that dodos

don’t exist anymore, the statement d |∼⊤ ⊥ leaves open the existence of dodos in

the infinite rank, which allows for coherent reasoning under the assumption that

dodos exist (the situation d). Moreover, information such as dodos and penguins

necessarily being birds can be modelled by the conditionals p ∧ ¬b |∼p∧¬b ⊥ and

d ∧ ¬b |∼d∧¬b ⊥, relegating the valuations in Jp ∧ ¬bK ∪ Jd ∧ ¬bK to the rank

〈∞,∞〉. Figure 3 (below Definition 3.1) shows a model of these statements.

Next we consider the class of situated conditionals from the perspective of

a list of situated rationality postulates in the KLM style. We start with the

following ones:

(Ref) α |∼γ α (LLE)
|= α↔ β, α |∼γ δ

β |∼γ δ

(And)
α |∼γ β, α |∼γ δ

α |∼γ β ∧ δ
(Or)

α |∼γ δ, β |∼γ δ

α ∨ β |∼γ δ

(RW)
α |∼γ β, |= β → δ

α |∼γ δ
(RM)

α |∼γ β, α 6|∼γ ¬δ

α ∧ δ |∼γ β

Observe that they correspond exactly to the original KLM postulates, except

that the notion of situation has been added.

Definition 3.4 (Basic Situated Conditional). An SC |∼ is a basic situated

conditional (BSC, for short) if it satisfies the situated rationality postulates.

An immediate corollary of this definition is that for a BSC with the situa-

tion γ fixed, |∼γ is a rational conditional. We then get the following result.
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Theorem 3.1. Every epistemic interpretation generates a BSC, but the con-

verse does not hold.

The reason why the converse of Theorem 3.1 does not hold is that the struc-

ture of a BSC is completely independent of the situation γ referred to in the

situated KLM postulates. As a very simple instance of this problem, observe

that BSCs are not even syntax-independent w.r.t. the situation. That is, we

may have α |∼γ β but α 6|∼δ β, where γ ≡ δ. To put it another way, a BSC is

simply a rational defeasible consequence relation with the situation playing no

role whatsoever in determining the structure of the BSC. To remedy this, we

require BSCs to satisfy the following additional postulates:

(Inc)
α |∼γ β

α ∧ γ |∼⊤ β
(Vac)

⊤ 6|∼⊤ ¬γ, α ∧ γ |∼⊤ β

α |∼γ β

(Ext)
γ ≡ δ

α |∼γ β iff α |∼δ β
(SupExp)

α |∼γ∧δ β

α ∧ γ |∼δ β

(SubExp)
δ |∼⊤ ⊥, α ∧ γ |∼δ β

α |∼γ∧δ β

We shall refer to these as the situated AGM postulates for reasons to be

outlined below.

Definition 3.5 (Full Situated Conditional). A BSC is a full SC (FSC) if it

satisfies the situated AGM postulates.

One way in which to interpret the addition of a situation to conditionals,

from a technical perspective, is to think of it as similar to belief revision. That

is, α |∼γ β can be thought of as stating that if a revision with γ has taken

place, then β will hold on condition that α holds. With this view of situated

conditionals, the situated AGM postulates above are seen as versions of the

AGM postulates for belief revision [30]. The names of these postulates were

chosen with the names of their AGM analogues in mind. The situated AGM

postulates can be motivated intuitively as follows.

Together, Inc and Vac require that when the situation (or revision with) γ

is compatible with what is currently plausible, then a conditional w.r.t. the
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situation γ (a ‘revison by’ γ) is the same as a conditional where the situation

is ⊤ (where there is no ‘revision’ at all), but with γ added to the premise of the

conditional. Ext ensures that situation is syntax-independent. Finally, SupExp

and SubExp together require that if the situation δ is implausible (that is, the

‘revision’ with δ is incompatible with what is plausible), then a conditional w.r.t.

the situation γ ∧ δ (a ‘revision by’ γ ∧ δ) is the same as a conditional where the

situation (or ‘revision’) is δ, but with γ added to the premise of the conditional.

It turns out that FSCs are characterised by epistemic interpretations, result-

ing in the following representation result.

Theorem 3.2. Every epistemic interpretation generates an FSC. Every FSC

can be generated by an epistemic interpretation.

The AGM-savvy reader may have noticed that the following two obvious

analogues of the suite of situated AGM postulates are missing from our list

above.

(Succ) α |∼γ γ (Cons) ⊤ |∼γ ⊥ iff γ ≡ ⊥

Succ requires situations to matter: a ‘revision’ by γ will always be successful.

Cons states that we will obtain an inconsistency only when the situation is

inconsistent.

It turns out that Succ holds for epistemic interpretations, but follows from

the combination of the situated KLM and AGM postulates, while just one di-

rection of Cons holds.

Corollary 3.2. Every FSC satisfies Succ, but there are FSCs for which Cons

does not hold. However, the right-to-left direction of Cons holds: If γ ≡ ⊥ then

⊤ |∼γ ⊥.

Proof. To prove that Succ holds, it suffices, by Theorem 3.1, to show that

E 
 α |∼γ γ for all epistemic interpretations E and all α, γ. To see that this

holds, observe that Jα ∧ γKE ⊆ JγK.

To prove that Cons does not hold, it suffices, by Theorem 3.1, to show that

there is an epistemic interpretation E such that E 
 ⊤ |∼γ ⊥ but γ 6≡ ⊥. To
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construct such an E , let Uf

E
= U∞

E
= ∅ (and so E (u) = 〈∞,∞〉 for all u ∈ U).

It is easy to see that by picking any γ s.t. γ 6≡ ⊥ the result follows.

To prove that if γ ≡ ⊥ then ⊤ |∼γ ⊥, note that, by Definition 3.2 and

Theorem 3.2, ⊤ |∼γ ⊥ iff minJ⊤ ∧ γK∞
E
⊆ J⊥K whenever γ ≡ ⊥, which holds

since minJ⊤ ∧ γK∞
E

= J⊥K = ∅.

The fact that Cons does not hold can be explained by considering the epis-

temic interpretation where all valuations are taken to be impossible (that is, to

have the rank 〈∞,∞〉), in which case all statements of the form α |∼γ β are

true.

We conclude this section by considering the following two postulates.

(Incons) α |∼⊥ β (Cond) If γ 6|∼⊤ ⊥, then α ∧ γ |∼⊤ β iff α |∼γ β

Incons requires that all conditionals hold when the situation is inconsistent,

while Cond requires that conditionals w.r.t. the situation γ be equivalent to the

same conditional with γ added to the premise and with a tautologous situation

(i.e., the situation is⊤), provided that γ is not inconsistent w.r.t. the tautologous

situation.

Proposition 3.1. Every FSC satisfies Incons and Cond.

Proof. To prove that Incons holds, it suffices, by Theorem 3.1, to show that E 


α |∼⊥ β for all epistemic interpretations E , and all α, β. To see that this holds,

observe that Jα ∧⊥KE = ∅.

To prove that Cond holds, it suffices, by Theorem 3.1, to show that if E 6


γ |∼⊤ ⊥, then E 
 α∧γ |∼⊤ β iff E 
 α |∼γ β for all epistemic interpretations E ,

and all α, β, γ. So, suppose that E 6
 γ |∼⊤ ⊥. By Definition 3.2, this means

that Uf

E
∩ JγK 6= ∅ and also that Uf

E
∩ J⊤K 6= ∅. From this, by Definition 3.2, we

need to show that Jα ∧ γ ∧⊤Kf
E
⊆ JβK iff Jα ∧ γKf

E
⊆ JβK for the result to hold,

which follows immediately.
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4. Entailment

The previous section provides a framework for characterising the class of full

situated conditionals in terms of epistemic interpretations. In this section, we

move to an investigation of how we can reason within this framework. More

precisely, the question of interest is the following: given a finite set of situ-

ated conditionals, or a situated conditional knowledge base (SCKB) KB, which

situated conditionals can be said to be entailed from it? Lehmann and Magi-

dor already pointed out that in a non-monotonic framework it is generally not

appropriate to consider entailment relations that are Tarskian in nature. The

reason for this is that such entailment relations are, by definition, monotonic.

As a result, they tend to be too weak, inferentially speaking [5]. Rather, more

suitable entailment relations can be defined by picking a single model of the

knowledge base satisfying some desirable postulates. It is generally accepted

that there is not a unique entailment relation for defeasible reasoning, with dif-

ferent forms of entailment being dependent on the kind of reasoning one wants

to model [17, 23]. In the framework of preferential semantics, rational closure,

recalled in Section 2, is generally recognised as a core form of entailment with

other apt forms of entailment being refinements of rational closure.

We now present a version of rational closure, reformulated for our framework,

that we refer to as minimal closure (MC). We adapt the notion of a minimal

model [21], recalled in Section 2, for our framework, and show that for any

SCKB the minimal model is unique.

The construction of the minimal model is obtained by creating a bridge

between situated conditionals and epistemic interpretations on one hand and

defeasible conditionals and ranked interpretations on the other. Some notions

can naturally be extended from the latter framework to the former one. First of

all, we can extend the notion of consistency. A set C of defeasible conditionals

is consistent iff it has a ranked model R s.t. J0KR 6= ∅. This is the case since

such a model does not satisfy the conditional ⊤ |∼ ⊥, which captures absurdity

in the conditional framework. This condition can easily be translated into our
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framework.

Definition 4.1 (SCKB Consistency). An SCKB KB is consistent if it has an

epistemic model E s.t. J〈f, 0〉KE 6= ∅.

In other words, an SCKB is consistent if it has an epistemic model E that

does not satisfy ⊤ |∼⊤ ⊥. J〈f, 0〉KE is a notation for epistemic interpretations

that mirrors the notation J0KR for ranked interpretations, that is, J〈x, y〉KE

represents the set of worlds that have rank 〈x, y〉 in E .

Given Corollary 3.1, we can define the satisfaction of defeasible conditionals

also for epistemic interpretations:

E 
 α |∼ β iff E 
 α |∼⊤ β

Note that an epistemic interpretation E satisfies exactly the same defeasible

conditionals of its extracted ranked interpretation RE (see Definition 3.3). That

is, the ranks specified inside U∞
E
∪J〈∞,∞〉K are totally irrelevant w.r.t. the satis-

faction of the defeasible conditionals of the form α |∼ β. We can also intuitively

define the converse operation of the extraction of a ranked interpretation from

an epistemic interpretation: we can extract an epistemic interpretation from a

given ranked interpretation.

Definition 4.2 (Extracted Epistemic Interpretation). For a ranked interpreta-

tion R, we define the epistemic interpretation E R extracted from R as

follows: for u ∈ Uf

R
, E R(u) = 〈f, i〉, where R(u) = i, and E R(u) = 〈∞,∞〉,

for u ∈ U \ Uf

R
.

It is easy to see that R and E R are equivalent w.r.t. the satisfaction of

defeasible conditionals.

The following corollary of Proposition 3.1, that is simply a semantic refor-

mulation of the postulate Cond, will be central in connecting the satisfaction of

situated conditionals to that of defeasible ones.

Corollary 4.1. For every epistemic interpretation E , if Uf

E
∩ JγK 6= ∅, then

E 
 α |∼γ β iff E 
 α ∧ γ |∼ β.
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Proof. Since it is just a semantic reformulation of the postulate Cond, it follows

directly from the proof in Proposition 3.1 that Cond holds.

Given Corollary 4.1, we define a simple transformation of situated condi-

tional knowledge bases.

Definition 4.3. Let KB be an SCKB; with KB∧ we denote its conjunctive

classical form, defined as follows: KB∧ def= {α ∧ γ |∼ β | α |∼γ β ∈ KB}.

We can use the conjunctive classical form to define two models for an SCKBKB:

the classical epistemic model and the minimal epistemic model. The former is

the epistemic interpretation generated by the minimal ranked model of KB∧.

Definition 4.4 (Classical Epistemic Model). Let KB be an SCKB, KB∧ its con-

junctive classical form, and R the minimal ranked model of KB∧. The classical

epistemic model of KB is the epistemic interpretation E
R extracted from R

(see Definition 4.2).

Since R is a ranked model of KB∧, so is E R. We need to check whether E R

is also a model of KB.

Proposition 4.1. Let KB be an SCKB, and let E R be defined as in Defini-

tion 4.4. Then, we have that E
R is a model of KB.

Proof. Let α |∼γ β ∈ KB. Since E R is an epistemic model of KB∧ and we have

Corollary 4.1, if JγK ∩ Uf

E R 6= ∅, then we conclude E R

 α |∼γ β. Otherwise,

we have JγK ⊆ J〈∞,∞〉K, which implies Jα ∧ γK ⊆ J〈∞,∞〉K, which in turn

implies E R

 α |∼γ β.

From Proposition 4.1 and Corollary 4.1, we can also easily prove the following

result.

Proposition 4.2. Let KB be an SCKB. KB has an epistemic model iff KB∧

has a ranked model.
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Proof. Proposition 4.1 shows that if KB∧ has a ranked model, then KB has an

epistemic model. For the opposite direction, assume that KB has an epistemic

model E . From E , we define an epistemic model Erk in the following way:

Erk(u) =







E (u), if E (u) = 〈f, i〉 for some i;

〈∞,∞〉, otherwise.

It is easy to check that Erk is an epistemic model of KB. Moreover, thanks

to Corollary 4.1, it is an epistemic model of KB∧: for every α |∼γ β ∈ KB,

if Erk 6
 ¬γ, then Erk 
 α∧γ |∼ β, by Corollary 4.1; if Erk 
 ¬γ, then Jα∧γK ⊆

J〈∞,∞〉K, and we can conclude Erk 
 α ∧ γ |∼ β.

Let R be the ranked model corresponding to Erk, that is,

R(u) =







i, if Erk(u) = 〈f, i〉 for some i;

∞, otherwise.

Since for every pair of valuations u, v in U , u is preferred to v in Erk iff u is

preferred to v in R, it is easy to see that if Erk is an epistemic model of KB∧,

then R is a ranked model of KB∧.

By linking the satisfaction of an SCKB KB to the satisfaction of its con-

junctive form KB∧, we are able to define a simple method for checking the

consistency of an SCKB, based on the materialisation KB∧ of KB∧. The mate-

rialisation C of a set of defeasible conditionals C is the set of material implications

corresponding to the conditionals in C, defined in the following way:

C def= {α→ β | α |∼ β ∈ C}

Corollary 4.2. An SCKB KB is consistent iff KB∧ 6|= ⊥.

This corollary is an immediate consequence of Proposition 4.2 and the well-

known property that a finite set of defeasible conditionals is consistent if and

only if its materialisation is a consistent propositional knowledge base [5, Lemma

5.21].

The results above show that a classical epistemic model serves as the basis

for reducing SCKB consistency checking to simple propositional satisfiability

21



checking. This is because it is a direct translation of a ranked interpretation

into an equivalent epistemic interpretation. At the same time, since classical

epistemic models are not sufficiently expressive to define appropriate forms of

entailment, we now move to the definition of the minimal epistemic model, refer-

ring to the minimality order introduced for ranked interpretations in Section 2.

We need to adapt, in an intuitive way, the notion of minimality defined for

ranked interpretations to the present framework. In Section 3, we defined a

total ordering � over the tuples 〈x, y〉 representing the ranks in epistemic inter-

pretations. Let the ordering ≺KB on all the epistemic models of an SCKB KB

be defined as follows: E1 ≺KB E2, if, for every v ∈ U , E1(v) � E2(v), and there

is a w ∈ U s.t. E2(w) 6� E1(w).

Definition 4.5 (Minimal Epistemic Model). Let KB be a consistent SCKB,

and EKB be the set of its epistemic models. E ∈ EKB is a minimal epistemic

model of KB if there is no E ′ ∈ EKB s.t. E ′ ≺KB E .

We first define the construction of a model, given a consistent SCKB KB.

Then we prove that it is actually the unique minimal epistemic model of KB

w.r.t. the ordering ≺KB.

Definition 4.6 (Construction of a Minimal Epistemic Model). Let KB be a con-

sistent SCKB, KB∧ its conjunctive classical form, and R be the minimal ranked

model of KB∧. We pick out in a set KB∞ the conditionals in KB associated

with a situation that has infinite rank in R, that is,

• KB∞
def= {α |∼γ β ∈ KB | R(γ) =∞}.

And from KB∞ we define the set KB∧
∞↓:

• KB∧
∞↓

def= {α ∧ γ |∼ β | α |∼γ β ∈ KB∞} ∪ {sent(Uf

R
) |∼ ⊥}.

We construct the interpretation EKB in the following way:

1. For every u ∈ Uf

R
, if R(u) = i, then EKB(u) = 〈f, i〉;

2. Let R′ be the minimal ranked model of KB∧
∞↓. For every u ∈ U∞

R
,

if R′(u) = i, with i ∈ N ∪ {∞}, then EKB(u) = 〈∞, i〉.
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More informally, Definition 4.6 proceeds as follows. First we want to parti-

tion the situations that can be satisfied in some plausible worlds from those with

infinite rank. γ is not satisfiable in a plausible valuation if and only if γ |∼⊤ ⊥

is satisfied in every model of KB, which, by Corollaries 4.1 and 3.1, justifies

the use of the minimal ranked model R of the conjunctive form KB∧ for the

specification of KB∞. We then specify the minimal configuration satisfying KB,

considering first the finite ranks, and then the infinite ones. Corollary 4.1 tells

us that, w.r.t. the plausible situations, the minimal configuration is associated

with the conjunctive classical form. Hence, we refer again to the minimal ranked

model R of KB∧ to decide the configuration of the plausible valuations (Point 1

in Definition 4.6). In order to configure the infinite ranks from the knowledge

base KB∧
∞↓, all the counterfactual conditionals in KB∞ are considered and all

plausible valuations in R are required to have an infinite rank. R′ defines the

minimal configuration that satisfies the conditionals in KB∧∞↓, and, at Point 2

in Definition 4.6, we put such a configuration ‘on top’ of the finite ranks to

define EKB.

We need to prove that EKB is an epistemic model of KB, and that it is the

unique minimal epistemic model of KB.

Let E be an epistemic interpretation. We build an interpretation E ∞, the

counterfactual shifting of E , in the following way:

E
∞
↓ (u) def=







〈f, i〉, if E (u) = 〈∞, i〉, with i <∞;

〈∞,∞〉, otherwise.

Intuitively, E ∞
↓ simply shifts the infinite ranks in E to the finite ranks.

For E ∞
↓ , we can prove a lemma corresponding to Corollary 4.1.

Lemma 4.1. For every epistemic interpretation E , if Uf

E
∩ JγK = ∅, then E 


α |∼γ β iff E ∞
↓ 
 α ∧ γ |∼ β.

Using Corollary 4.1 and Lemma 4.1, it becomes easy to prove that EKB is

indeed an epistemic model of KB.

Proposition 4.3. Let KB be a consistent SCKB, and let EKB be an epistemic

interpretation built as in Definition 4.6. Then, EKB is an epistemic model of KB.
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Proof. Let KB∞ be defined as in Definition 4.6. We distinguish two possible

cases.

• α |∼γ β ∈ KB \ KB∞, that is, EKB(γ) = 〈f, i〉, for some i. By the

construction of EKB (Definition 4.6), EKB is an epistemic model of KB∧,

that is, it is an epistemic model of α ∧ γ |∼ β. From Corollary 4.1, it

follows that EKB 
 α |∼γ β.

• α |∼γ β ∈ KB∞, that is, EKB(γ) = 〈∞, i〉, for some i. By the construction

of EKB (Definition 4.5), EKB is an epistemic model of KB∧, that is, it

is an epistemic model of α ∧ γ |∼ β. Let E ∞
KB↓ be the counterfactual

shifting of EKB. From Lemma 4.1, we know that, since E ∞
KB↓ 
 α∧γ |∼ β,

E ∞
KB↓ 
 α |∼γ β holds. Since Jα ∧ γKEKB

= Jα ∧ γK∞
EKB

= Jα ∧ γKE∞

KB
,

for every u ∈ U , we have u ∈ Jα ∧ γKE∞

KB
iff u ∈ Jα ∧ γKEKB

, that is,

EKB 
 α |∼γ β.

Therefore, for every α |∼γ β ∈ KB, we have EKB 
 α |∼γ β.

We proceed by showing that EKB above is actually the only minimal epis-

temic model of KB.

Proposition 4.4. Let KB be a consistent SCKB, and let EKB be an epistemic

interpretation built as in Definition 4.6. Then, EKB is the only minimal epis-

temic model of KB.

Example 4.1. Assume the SCKB KB = {b |∼⊤ f, p |∼p ¬f, d |∼d ¬f, d |∼⊤

⊥, p ∧ ¬b |∼p∧¬b ⊥, d ∧ ¬b |∼d∧¬b ⊥} from Example 3.2. Then we have KB∧ =

{b∧⊤ |∼ f, p∧p |∼ ¬f, d∧d |∼ ¬f, d∧⊤ |∼ ⊥, p∧¬b∧p∧¬b |∼ ⊥, d∧¬b∧d∧¬b |∼

⊥}, which is rank equivalent to {b |∼ f, p |∼ ¬f, d |∼ ¬f, d |∼ ⊥, p ∧ ¬b |∼

⊥, d∧ ¬b |∼ ⊥}. Figure 4 depicts the minimal ranked model of KB∧. Following

Definition 4.6, we have KB∞ = {d |∼d ¬f, p ∧ ¬b |∼p∧¬b ⊥, d ∧ ¬b |∼d∧¬b ⊥}.

From KB∞, we get KB∧∞↓ = {d∧d |∼ ¬f, p∧¬b∧p∧¬b |∼ ⊥, d∧¬b∧d∧¬b |∼

⊥, (p→ b)∧¬d |∼ ⊥}, which is rank equivalent to {d |∼ ¬f, p∧¬b |∼ ⊥, d∧¬b |∼

⊥, (p→ b) ∧ ¬d |∼ ⊥}. Following Steps 1 and 2 in Definition 4.6, we construct
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the minimal epistemic model of the original knowledge base, which is shown in

Figure 5.

∞ U \ (J0K ∪ J1K ∪ J2K)

2 pdbf

1 pdbf, pdbf,

0 pdbf, pdbf, pdbf

Figure 4: Minimal ranked interpretation of KB∧ in Example 4.1.

The minimal closure of KB is defined in terms of the minimum epistemic

model of KB constructed in this way.

Definition 4.7 (Minimal Entailment and Closure). α |∼γ β is minimally

entailed by an SCKB KB, denoted as KB |=m α |∼γ β, if EKB 
 α |∼γ β,

where EKB is the minimal model of KB. The correspondent closure operation

Cm(KB) def= {α |∼γ β | KB |=m α |∼γ β}

is the minimal closure of KB.

Example 4.2. We proceed from Example 4.1. Looking at the model in Figure 5,

we are able to check what is minimally entailed. For every α |∼γ β ∈ KB,

KB |=m α |∼γ β. In particular, while KB |=m d |∼⊤ ⊥, we do not have

KB |=m d |∼d ⊥, that is, it is possible to reason counterfactually about dodos.

From the point of view of the actual situation (that is, in the situation ⊤), we

can conclude anything about dodos, since they do not exist. Indeed, we have

both KB |=m d |∼⊤ ¬f and KB |=m d |∼⊤ f. Nevertheless, we are able to reason

coherently about dodos once we assume a point of view in which they would exist.

To witness, we have KB |=m d |∼d ¬f, but KB 6|=m d |∼d f.

Definition 4.5 shows that the minimal epistemic model can be defined us-

ing the minimal ranked models for two sets of defeasible conditionals, KB∧

and KB∧∞↓. That is to say, we do so using the rational closure of each one.
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〈∞,∞〉 Jp ∧ ¬bK ∪ Jd ∧ ¬bK

〈∞, 1〉 pdbf, pdbf

〈∞, 0〉 pdbf, pdbf

〈f, 2〉 pdbf

〈f, 1〉 pdbf, pdbf

〈f, 0〉 pdbf, pdbf, pdbf

Figure 5: Minimal epistemic model of the knowledge base in Example 4.1.

Now, there are decision procedures for rational closure that fully rely on a series

of propositional decision steps [31, 32]. In short, which situated conditionals

hold in the minimal epistemic model can be decided by checking what holds in

two minimal ranked models, and what holds in a minimal ranked model can be

decided using a procedure that relies on propositional steps. Starting from this,

it is also possible to define a decision procedure for |=m that fully relies on a

series of propositional decision steps. This is precisely what we address in the

next section.

5. Computing entailment from situated conditional knowledge bases

In this section we define a procedure to decide whether a conditional is in the

minimal closure of an SCKB KB. The procedure is described by Algorithm 6,

and it relies on a series of propositional decision problems. Hence, it can be

implemented on top of any propositional reasoner.

Algorithms 1-4 are known procedures (see the work of Freund [31] and of

Casini and Straccia [32, Section 2]) that together define a decision procedure for

rational closure (RC). As indicated in Section 2, on the semantic side, the RC

of a knowledge base C containing defeasible conditionals can be characterised

using the minimal ranked model R
C
RC [21], that is, α |∼ β is in the RC of a set

of defeasible conditionals C iff RC
RC 
 α |∼ β (Definition 2.2).

It has been proved [31, 32] that α |∼ β is in the RC of C, that is, RC
RC 
 α |∼
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β, iff RationaClosure(C, α |∼ β) returns true. In what follows, we provide an

explanation of all the algorithms involved in the process. We shall often refer to

Figure 1 (repeated in Figure 6 below for the reader’s convenience), which is the

minimal ranked model of the knowledge base C = {b |∼ f, p |∼ ¬f, p ∧ ¬b |∼ ⊥}.

∞ bfp, bfp

2 bfp

1 bfp, bfp

0 bfp, bfp, bfp

Figure 6: Minimal ranked model of the knowledge base C = {b |∼ f,p |∼ ¬f, p ∧ ¬b |∼ ⊥}.

• Exceptional(C) takes as input a finite set C of defeasible conditionals and

gives back the exceptional elements, that is, the conditionals α |∼ β s.t.

⊤ |∼ ¬α holds in the minimal ranked model of C. For example, from

Figure 6, one can check that the conditionals p |∼ ¬f and p ∧ ¬b |∼ ⊥

are exceptional, since none of the valuations in layer 0 satisfies p, and in

fact Exceptional(C) = {p |∼ ¬f, p ∧ ¬b |∼ ⊥}. The procedure fully relies

on propositional logic, since it uses the materialisation of the KB C (see

Section 4).

• ComputeRanking(C) ranks each conditional in the KB C w.r.t. its excep-

tionality level. E0 contains all the conditionals, E1 the exceptional ones

w.r.t. E0, and so on. E∞ contains the fixed point of the exceptionality

procedure, that is, the conditionals having antecedents that cannot be

satisfied in any valuation that is ranked as finite in any ranked model

of C. ComputeRanking(C) returns E0 = C = {b |∼ f, p |∼ ¬f, p ∧ ¬b |∼ ⊥},

E1 = {p |∼ ¬f, p ∧ ¬b |∼ ⊥}, E∞ = {p ∧ ¬b |∼ ⊥}.

• Rank(C, α) decides the rank of a proposition, that is, the lowest rank in the

minimal ranked model containing a valuation that satisfies the proposition.

For example, the reader can check that Rank(C,¬p) = 0, Rank(C, p) =

1, Rank(C, p ∧ f) = 2, Rank(C, p ∧ ¬b) = ∞, values that, for each of
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the propositions, correspond exactly to the lowest layer in the minimal

ranked model in which there is a valuation satisfying the proposition (see

Figure 6).

• RationalClosure(C, α |∼ β) tells us whether α |∼ β is in the RC of C, that

is, whether RC
RC 
 α |∼ β. For example, RationalClosure(C, p |∼ ¬f) is

true, since: Rank(C, p) = 1, E1 = {p |∼ ¬f, p∧¬b |∼ ⊥}, and E1∪{p} |= ¬f.

Note that all the procedures fully rely on propositional logic.

Algorithm 1: Exceptional(C)

input : a set of defeasible conditionals C

output: E ⊆ C s.t. E is exceptional w.r.t. C

1 E ← ∅

2 C ← {α→ β | α |∼ β ∈ C}

3 foreach α |∼ β ∈ C do

4 if C |= ¬α then

5 E ← E ∪ {α |∼ β}

6 end

7 end

8 return E

Algorithms 5 and 6 are new. They define a procedure to decide minimal

entailment |=m, given an SCKB, and they are built on top of ComputeRanking,

Rank, and RationalClosure. Let us go through them:

• Partition(KB) takes as input an SCKB KB and identifies the set KB∞

and the set of defeasible conditionals KB∧
∞↓, in a way that, we will prove,

corresponds to Definition 4.6. That is, KB∞ is the set of conditionals of

which the situations are ranked as infinite w.r.t. KB∧.

• MinimalClosure(KB, α |∼γ β) tells us whether α |∼γ β is in the minimal

closure of KB. First the algorithm checks if KB is a consistent SCKB.
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Algorithm 2: ComputeRanking(C)

input : a set of defeasible conditionals C

output: An exceptionality ranking rC

1 i← 0

2 E0 ← C

3 E1 ← Exceptional(E0)

4 while Ei+1 6= Ei do

5 i← i+ 1

6 Ei+1 ← Exceptional(Ei)

7 end

8 E∞ ← Ei

9 rC ← (E0, . . . , Ei−1, E∞)

10 return rC

Then, in case it is consistent, it checks the rank of the situation γ. If the

situation’s rank is finite, then it checks whether the conjunctive form α ∧

γ |∼ β is in the RC of KB∧. Otherwise, it checks whether the conjunctive

form α ∧ γ |∼ β is in the RC of KB∧∞↓.

We need to prove that Algorithm 6 is complete and correct w.r.t. minimal

entailment |=m. Before the main theorem, we need to prove the following lemma.

Lemma 5.1. Let KB be a consistent SCKB, let KB∧ be its conjunctive classical

form, and let R be the minimal ranked model of KB∧. Moreover, let µ be defined

as in Algorithm 5, and let sent(Uf

R
) be as in Definition 4.6. Then we have that µ

is logically equivalent to sent(Uf

R
).

Proof. First, we prove that sent(Uf

R
) |= µ. Let α |∼ β ∈ E∞. This implies that

rkKB∧(α) = ∞, that is, all the valuations that satisfy α are in J∞K. That is,

Uf

R
⊆ J¬αK for every α s.t. α |∼ β ∈ E∞. That implies

Uf

R ⊆
⋂

{J¬αKR | α |∼ β ∈ E∞},
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Algorithm 3: Rank(C, α)

input : a set of defeasible conditionals C, a proposition α

output: the rank rkC(α) of α

1 rC = (E0, . . . , En, E∞)← ComputeRanking(C)

2 i← 0

3 while Ei |= ¬α and i ≤ n do

4 i← i+ 1

5 end

6 if i ≤ n then

7 rkC(α)← i

8 end

9 else

10 if E∞ 6|= ¬α then

11 rkC(α)← i+ 1

12 end

13 else

14 rkC(α)←∞

15 end

16 end

17 return rkC(α)

and, consequently, sent(Uf

R
) |= µ.

Now we prove that µ |= sent(Uf

R
). Assume that is not the case, that is,

there is a valuation w ∈ U∞
R

s.t. w 
 µ. Let n be the highest finite rank in R,

and consider the ranked model R′ obtained from R just by assigning to the

valuation w the rank n+ 1. R′ is preferred to R, and it is easy to see that R′

is a ranked model of KB: for every α |∼ β ∈ Ei, for some i < ∞, there is a

valuation in a lower rank satisfying α∧β, while for every α |∼ β ∈ E∞, w 
 ¬α,

and consequently w is irrelevant w.r.t. the satisfaction of α |∼ β by R′, since

it is not in minJαKf
R′ . Hence, we have that R′ ≺KB R, against the hypothesis
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Algorithm 4: RationalClosure(C, α |∼ β)

input : a set of defeasible conditionals C, a query α |∼ β

output: true, if C |=RC α |∼ β, false otherwise

1 rKB = (E0, . . . , En, E∞)← ComputeRanking(C)

2 r ← Rank(C, α)

3 return Er ∪ {α} |= β

that R is the minimal element in ≺KB, which leads to a contradiction, and

therefore µ |= sent(Uf

R
).

Now we can state the main result of the present section.

Theorem 5.1. Let KB be an SCKB. MinimalClosure(KB, α |∼γ β) returns

true iff KB |=m α |∼γ β.

Example 5.1. Let us model a more practically-oriented scenario. The agent

knows that the Kitchen has been cleaned (¬ck |∼⊤ ⊥), and has a series of

(defeasible) expectations: the pan is clean (cl) and positioned in Cupboard1 (cb1)

(⊤ |∼⊤ cl and ⊤ |∼⊤ cb1), but in case the pan is in Cupboard2 (cb2), the agent

will need a stool (st) to reach the pan (cb2 |∼⊤ st). We can also model the

agent’s expectations about counterfactual situations, that is, situations that are

not compatible with the information the agent has about the actual situation.

E.g., if the kitchen has not been cleaned the pan will presumably be in the sink

(⊤ |∼¬ck si) and it will be dirty (⊤ |∼¬ck ¬cl). Also, we have some constraints

that must necessarily hold, simply stating that the pan must be in exactly one

place: ¬cb1∧¬cb2∧¬si |∼¬cb1∧¬cb2∧¬si ⊥, cb1∧cb2 |∼cb1∧cb2 ⊥, cb1∧si |∼cb1∧si ⊥,

cb2∧si |∼cb2∧si ⊥. Note that the conditionals α |∼α ⊥ impose that the valuations

satisfying α can be placed only in rank 〈∞,∞〉, that is, ¬α cannot be falsified,

even in the counterfactual situations (see Example 3.2).

Hence, we have an SCKB KB = {¬cb1 ∧ ¬cb2 ∧ ¬si |∼¬cb1∧¬cb2∧¬si ⊥, cb1 ∧

cb2 |∼cb1∧cb2 ⊥, cb1 ∧ si |∼cb1∧si ⊥, cb2 ∧ si |∼cb2∧si ⊥,¬ck |∼⊤ ⊥,⊤ |∼⊤ cl,⊤ |∼⊤

cb1, cb2 |∼⊤ st,⊤ |∼¬ck si,⊤ |∼¬ck ¬cl}. We apply Algorithm 5, Partition, to
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Algorithm 5: Partition(KB)

input : an SCKB KB

output: the conjunctive forms KB∧ and KB∧
∞↓

1 KB∧ ← {α ∧ γ |∼ β | α |∼γ β ∈ KB}

2 rKB∧ = (E0, . . . , En, E∞)← ComputeRanking(KB∧)

3 KB∞ ← ∅

4 foreach α |∼γ β ∈ KB do

5 if Rank(KB∧, γ) =∞ then

6 KB∞ ← KB∞ ∪ {α |∼γ β}

7 end

8 end

9 µ←
∧

{¬α | α |∼ β ∈ E∞}

10 KB∧
∞↓ ← {α ∧ γ |∼ β | α |∼γ β ∈ KB∞} ∪ {µ |∼ ⊥}

11 return KB∧,KB∧∞↓

KB:

• The algorithm creates the conjunctive form KB∧ = {¬cb1 ∧ ¬cb2 ∧ ¬si |∼

⊥, cb1 ∧ cb2 |∼ ⊥, cb1 ∧ si |∼ ⊥, cb2 ∧ si |∼ ⊥,¬ck |∼ ⊥,⊤ |∼ cl,⊤ |∼

cb1, cb2 |∼ st,¬ck |∼ si,¬ck |∼ ¬cl} (we have simplified the formulas in

the conditionals w.r.t. the definition of KB∧ in Section 4, for example

substituting formulas α ∧ α or α ∧ ⊤ with α).

• Calling algorithm ComputeRanking, we rank KB∧ in E0 = {⊤ |∼ cl,⊤ |∼

cb1}∪E1, E1 = {cb2 |∼ st}∪E∞, E∞ = {¬cb1∧¬cb2∧¬si |∼ ⊥, cb1∧cb2 |∼

⊥, cb1 ∧ si |∼ ⊥, cb2 ∧ si |∼ ⊥,¬ck |∼ ⊥,¬ck |∼ si,¬ck |∼ ¬cl}.

• We then apply the procedure Rank(KB∧, γ) for every formula γ that appears

in some conditional α |∼ β in KB. It turns out that Rank(KB∧, γ) = ∞

for γ ∈ {¬cb1∧¬cb2∧¬si, cb1∧ cb2, cb1∧ si, cb2∧ si,¬ck}. Consequently,

KB∞ = {¬cb1 ∧ ¬cb2 ∧ ¬si |∼¬cb1∧¬cb2∧¬si ⊥, cb1 ∧ cb2 |∼cb1∧cb2 ⊥, cb1 ∧

si |∼cb1∧si ⊥, cb2 ∧ si |∼cb2∧si ⊥,⊤ |∼¬ck si,⊤ |∼¬ck ¬cl}.
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Algorithm 6: MinimalClosure(KB, α |∼γ β)

input : an SCKB KB, a query α |∼γ β

output: true, if KB |=m α |∼γ β, false otherwise

1 KB∧,KB∧∞↓ ← Partition(KB)

KB∧ = {(α ∧ γ)→ β | α ∧ γ |∼ β ∈ KB∧}

2 if KB∧ |= ⊥ then

3 return true

4 end

5 else

6 if Rank(KB∧, γ) <∞ then

7 return RationalClosure(KB∧, α ∧ γ |∼ β)

8 end

9 else

10 return RationalClosure(KB∧
∞↓, α ∧ γ |∼ β)

11 end

12 end

• Eventually, the algorithm defines the set KB∧
∞↓: first, from E∞ we can

define µ as
∧

{cb1∨ cb2∨ si,¬cb1∨¬cb2,¬cb1∨¬si,¬cb2∨¬si, ck}; then

we can define KB∧
∞↓ as {¬cb1∧¬cb2∧¬si |∼ ⊥, cb1∧ cb2 |∼ ⊥, cb1∧ si |∼

⊥, cb2 ∧ si |∼ ⊥,¬ck |∼ si,¬ck |∼ ¬cl, µ |∼ ⊥}.

Once we have KB∧ and KB∧
∞↓, we can give queries to Algorithm 6 (MinimalClosure).

For example, we can check whether the agent should expect the pan to be in the

sink (⊤ |∼⊤ si).

• Given KB∧, we define its materialisation KB∧, which contains the im-

plications (α ∧ γ) → β corresponding to the conditionals α ∧ γ |∼ β in

KB∧. Using KB∧, the algorithm checks whether the knowledge base KB is

inconsistent by checking whether KB∧ |= ⊥ (the reader can check that it

is not the case.)
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• We then have to check the rank of the situation ⊤ in ⊤ |∼⊤ si, which, be-

ing ⊤, must be 0. Hence, semantically, since ⊤ cannot be an exceptional

proposition, ⊤ |∼⊤ si is a conditional whose satisfaction needs to be checked

w.r.t. the valuations in the finite ranks of the minimal epistemic model of

KB, in particular w.r.t. the valuations in the rank 〈f, 0〉. This corresponds

to checking in Algorithm MinimalClosure whether ⊤ |∼ si is in the ratio-

nal closure of KB∧. That is, whether RationalClosure(KB∧,⊤ |∼ si)

returns true.

In the procedure RationalClosure(KB∧,⊤ |∼ si), the rank 0 is associated

to ⊤, and E0 = KB∧. Consequently, ⊤ |∼ si is in the rational closure of

KB∧ iff E0 |= si, which is not the case. Actually, we have that ⊤ |∼⊤ ¬si

is in the minimal closure of KB, since, due to the presence of ⊤ → cb1

and (cb1 ∧ si)→ ⊥ in E0, we have E0 |= ¬si.

We now consider a counterfactual situation, checking whether the agent be-

lieves that, in case the kitchen has not been cleaned, the pan is not in Cupboard2

(⊤ |∼¬ck ¬cb2).

• As for the previous query, the algorithm starts by checking whether KB is

consistent.

• We then have to check the rank of the situation ¬ck in ⊤ |∼¬ck ¬cb2. Since

in KB we have the conditional ¬ck |∼⊤ ⊥, that is, the agent knows that the

kitchen has been cleaned, the immediate conclusion is that Rank(KB∧) =

∞.

• Hence, semantically, ⊤ |∼¬ck ¬cb2 is a conditional that needs to be checked

w.r.t. the valuations in the infinite ranks of the minimal epistemic model

of KB. This corresponds to checking whether ¬ck |∼ ¬cb2 follows from

KB∧
∞↓, that is, whether RationalClosure(KB∧

∞↓,¬ck |∼ ¬cb2) returns

true. RationalClosure(KB∧
∞↓,¬ck |∼ ¬cb2) associates the rank 0 to

¬ck, and E0 = KB∧
∞↓. Consequently, ¬ck |∼ ¬cb2 is in the rational closure
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of KB∧∞↓ iff KB∧∞↓∪{¬ck} |= ¬cb2, which is the case, since KB∧∞↓ contains

¬ck→ si and cb2 ∧ si→ ⊥.

We now turn to the computational complexity of deciding minimal entail-

ment. We have seen that the entire procedure can be reduced to a sequence of

classical propositional entailment tests, with propositional entailment known to

be co-NP-complete. Therefore, we have to check, given a SCKB as input, how

many classical entailment tests are required in the worst case. We examine each

algorithm in turn.

• Given a set of defeasible conditionals C, Algorithm Exceptional performs

|C| propositional entailment tests.

• Given a set of defeasible conditionals C, Algorithm ComputeRanking runs

the algorithm Exceptional at most |C| times in the case where each con-

ditional from C has a distinct antecedent, and each rank contains exactly

one conditional. In such a case, we have that the first iteration of the

algorithm Exceptional performs |C| entailment checks, the second one

|C| − 1 entailment checks, the third one |C| − 2 entailment checks, and so

on. That is, the i-th iteration of Exceptional performs |C| − i+1 propo-

sitional entailment checks. So there are fewer than |C|2 entailment check

and hence Algorithm ComputeRanking performs a polynomial number of

propositional entailment checks. Note that, given a conditional KB C, we

need to run ComputeRanking only once.

• Given a set of defeasible conditionals C and a formula α, Algorithm Rank

calls ComputeRanking (which performs at most |C|2 entailment checks),

and then performs at most a number of entailment checks that corresponds

to the number of ranks, which is |C| at most. Hence Algorithm Rank

performs a polynomial number of propositional entailment checks.

• Given a set of defeasible conditionals C and a conditional α |∼ β, Algorithm

RationalClosure calls Algorithm ComputeRanking once and Algorithm
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Rank once, plus it does a final entailment check. Hence, the algorithm

performs a polynomial number of propositional entailment checks.

• Given a SCKBKB, Algorithm Partition runs Algorithm ComputeRanking

once and Algorithm Rank at most |KB| times. Since |KB∧| = |KB|, run-

ning ComputeRanking consists of |KB|2 entailment checks at most. The

same holds for each run of Rank. Hence running Partition consists of at

most (|KB|2)(|KB|+ 1)) = |KB|3 + |KB|2 entailment checks.

• Given a SCKBKB and a situated conditional α |∼γ β, Algorithm MinimalClosure

runs Algorithm Partition once, followed by one entailment check (line 2),

one call to Algorithm Rank and one call to algorithm RationalClosure

(with either KB∧ or KB∧∞,↓ as argument):

– Partition performs at most |KB|3 + |KB|2 entailment checks.

– Rank performs at most |KB|2 entailment checks.

– RationalClosure performs at most |KB|2 entailment checks.

Hence Algorithm MinimalClosureperforms a polynomial number of propo-

sitional entailments checks.

In summary then, deciding minimal entailment using Algorithm MinimalClosure

is in co-NP and is therefore no harder than propositional entailment.

6. Related work

With regard to the distinction between plausible and implausible state of

affairs, a similar distinction has been used by Booth et al. [33], where some

pieces of information are considered credible while others are not.

The literature on the notion of context is vast, and several formalisations

and applications of it have been studied across many areas within AI [34, 35,

36, 37, 38].

The role of context in conditional-like statements has been explored re-

cently, in particular in defeasible reasoning over description logic ontologies
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and within semantic frameworks that are closely related to ours. Britz and

Varzinczak [39, 40], for example, have put forward a notion of defeasible class

inclusion parameterised by atomic roles. Their semantics allows for multiple

preference relations on objects, which is more general than our single-preference

approach, and allows for objects to be compared in more than one way. This

makes normality (or typicality) context dependent and gives more flexibility

from a modelling perspective. Giordano and Gliozzi [41] consider reasoning

about multiple aspects in defeasible description logics where the notion of aspect

(or context) is linked to concept names (alias, atoms) also in a multi-preference

semantics.

When compared with our framework, neither of the above mentioned ap-

proaches allow for reasoning about objects that are ‘forbidden’ by the back-

ground knowledge. In that respect, our proposal is complementary to theirs

and a contextual form of class inclusion along the lines of the ternary |∼ here

studied, with potential applications going beyond that of defeasible reasoning

in ontologies, is worth exploring as future work.

7. Concluding remarks

In this paper, we have made the case for the provision of a simple situation-

based form of conditional. We have shown, using a number of representative

examples, that it is sufficiently general to be used in several application domains.

The proposed situation-based conditionals have an intuitive semantics which is

based on a semantic construction that has proved to be quite useful in the

area of belief change, and is more general and also more fine-grained than the

standard preferential semantics. We also showed that the proposed conditionals

can be described in terms of a set of postulates. We provide a representation

result, showing that the postulates capture exactly the constructions obtained

from the proposed semantics. An analysis in terms of the postulates shows

that these situated conditionals are suitable for knowledge representation and

reasoning, in particular when reasoning about information that is incompatible
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with background knowledge.

With the basic semantic structures in place, we then proceeded to define a

form of entailment for situated conditional knowledge bases that is based on

the widely-accepted notion of rational closure for KLM-style reasoning. More-

over, we showed that, like rational closure, entailment for situated conditional

knowledge bases is reducible to classical propositional reasoning.

The work described in this paper assumes classical propositional logic as the

underlying logical formalism, but it is worthwhile to consider extending this

to other, more expressive logics. In this regard, an extension to Description

Logics is perhaps an obvious starting point, particularly since rational closure

has already been reformulated for this case [21, 42, 32, 40]. A different kind

of extension of the work presented here is one in which other forms of entail-

ment are investigated. For this, the obvious initial candidate is lexicographic

closure [17] and its variants [28, 23, 43]. More generally, we intend to investigate

an extension to the class of entailment relations studied by Casini et al. [23].
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Appendix A. Proofs

Theorem 3.1. Every epistemic interpretation generates a BSC, but the con-

verse does not hold.

Proof. Consider any epistemic interpretation E and pick any γ ∈ L. We consider

three disjoint and covering cases.

Case 1: If Uf

E
∩ JγK 6= ∅, then define R from E as follows: (i) for all u ∈

Uf

E
∩ JγK, R(u) def= i, where E (u) = 〈f, i〉; (ii) for all u ∈ U \Uf

E
∩ JγK, R(u) def=∞.

It follows from Definition 3.2 and the definition of satisfaction of |∼-statements

in ranked interpretations that E 
 α |∼γ β iff R 
 α |∼ β. From Theorem 2.1,

it follows that the |∼ generated by R satisfies the original KLM postulates. For

this specific γ it then follows that |∼γ satisfies the situated rationality postulates.
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Case 2: If Uf

E
∩ JγK = ∅ but U∞

E
∩ JγK 6= ∅, then define R from E as

follows: (i) for all u ∈ U∞
E
∩ JγK, R(u) def= i, where E (u) = 〈∞, i〉; (ii) for all

u ∈ U \ (U∞
E
∩ JγK), R(u) def=∞. It follows from Definition 3.2 and the definition

of satisfaction for |∼-statements in ranked interpretations that E 
 α |∼γ β iff

R 
 α |∼ β. From Theorem 2.1, it follows that the |∼ generated by R satisfies

the original KLM postulates. For this specific γ it then follows that |∼γ satisfies

the situated rationality postulates.

Case 3: If JγK ⊆ U \ (Uf

E
∪ U∞

E
), then R(u) def=∞ for all u ∈ JγK. Again,

it follows from Definition 3.2 and the definition of satisfaction for |∼ in ranked

interpretations that E 
 α |∼γ β iff R 
 α |∼ β. From Theorem 2.1, it follows

that the |∼ generated by R satisfies the original KLM postulates. For this

specific γ it then follows that |∼γ satisfies the situated rationality postulates.

Putting the three cases together, it then follows immediately that the situ-

ated conditional |∼γ obtained from E satisfies the situated rationality postulates.

Now, in order to show that the converse does not hold, consider the language

generated from {p, q}. Note first that there is a ranked interpretation R such

that R 
 α |∼ β iff p∧q∧α |= β. From Theorem 2.1, it follows that |∼, defined

in this way, is a rational conditional, and therefore satisfies the situated KLM

postulates. Similarly, there is a ranked interpretation R′ such that R′

 α |∼ β

iff p∧ q∧α |= β. From Theorem 2.1, it follows that |∼, defined in this way, is a

rational conditional, and therefore satisfies the situated KLM postulates. Now,

define the situated conditional |∼ by letting α |∼p β iff p∧q∧α |= β, and α |∼γ β

iff α |= β, for every γ other than p. It then follows immediately that |∼ is

a BSC. However, it is easy to see that it cannot be generated by an epistemic

interpretation. To see why, observe that p |∼p q, but that p 6|∼p∨p q.

Theorem 3.2. Every epistemic interpretation generates an FSC. Every FSC

can be generated by an epistemic interpretation.

Proof. Let E be an epistemic interpretation and let γ ∈ L. Suppose Uf

E
∩JγK 6= ∅.

Then if E 
 α |∼γ β, it follows by Definition 3.2 that E 
 α ∧ γ |∼⊤ β. On the
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other hand, if Uf

E
∩JγK = ∅, then E 
 α∧γ |∼⊤ β. This means that the situated

conditional |∼ obtained from E as follows satisfies Inc: α |∼γ β iff E 
 α |∼γ β.

Suppose E 6
 ⊤ |∼⊤ ¬γ. This means that Uf

E
∩ JγK 6= ∅. Then if E 


α ∧ γ |∼⊥ β, it follows by Definition 3.2 that E 
 α |∼γ β. This means that

the situated conditional |∼ obtained from E as follows satisfies Vac: α |∼γ β iff

E 
 α |∼γ β.

That the situated conditional obtained from E as follows satisfies Ext follows

immediately from Definition 3.2: α |∼γ β iff E 
 α |∼γ β.

For SupExp we consider two cases. For Case 1, if Uf

E
∩ Jγ ∧ δK 6= ∅, then

the result follows easily. For Case 2, suppose Uf

E
∩ Jγ ∧ δK = ∅. If Uf

E
∩ JδK =

∅, then the result follows easily. Otherwise the result follows from the fact

that Uf

E
∩ Jα ∧ γ ∧ δK = ∅.

For SubExp, suppose that E 
 δ |∼⊤ ⊥. This means E 
 α∧γ |∼δ β implies

that U∞
E
∩ Jα ∧ γ ∧ δK ⊆ JβK, from which it follows that E 
 α |∼γ∧δ β.

For the converse, consider any FSC |∼. We construct an epistemic interpre-

tation E as follows. First, consider |∼⊤. Since it satisfies the situated KLM

postulates, there is a ranked interpretation R such that R 
 α |∼ β iff α |∼⊤ β.

We set Uf

E

def=UR, and for all u ∈ Uf

E
, we let E (u)def=〈f,R(u)〉. Next, let U ′ def=U\Uf

E
.

Let kf be a formula such that JkfK = Uf

E
. Similarly, let k∞ be a formula such

that Jk∞K = U ′. Now, consider |∼k∞ . Since it satisfies the situated KLM pos-

tulates, there is a ranked interpretation R′ such that R′

 α |∼ β iff α |∼k∞ β.

We let U∞
E

def={u ∈ U ′ | R′(u) 6=∞}, and for all u ∈ U ′, we let E (u)def=〈∞,R′(u)〉.

Observe that for some u ∈ U ′ it may be the case that E (u) = 〈∞,∞〉, which

means that for such a u, u /∈ U∞
E

. It is easily verified that E is indeed an epis-

temic interpretation. Next we show that α |∼γ β iff E 
 α |∼γ β. We do so by

considering two cases. Case 1: Uf

E
∩JγK 6= ∅. Note first that it follows easily from

the construction of E that α |∼⊤ β iff E 
 α |∼⊤ β. Suppose α |∼γ β. By Inc,

α ∧ γ |∼⊤ β and therefore E 
 α ∧ γ |∼⊤ β, and E 
 α |∼γ β, by definition.

Conversely, suppose E 
 α |∼γ β. Then by definition, E 
 α ∧ γ |∼⊤ β, and

therefore α ∧ γ |∼⊤ β. Since ⊤ 6|∼⊤ ¬γ, it then follows from Vac that α |∼γ β.
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Case 2: Uf

E
∩ JγK 6= ∅. By the construction of E , it follows that α |∼k∞ β iff

E 
 α |∼k∞ β. Suppose α |∼γ β. Note that γ ≡ k∞. By Ext, α |∼γ∧k∞ β and

so, by SupExp, α ∧ γ |∼k∞ β. It then follows that E 
 α ∧ γ |∼k∞ β and, by

Definition 3.2, that E 
 α |∼γ β. Conversely, suppose that E 
 α |∼γ β. Then

E 
 α∧γ |∼k∞ β, by Definition 3.2, and, therefore, using Ext, that α∧γ |∼γ∧k∞

β. Note that E 
 kf |∼⊤ ⊥ and therefore kf |∼⊤ ⊥. By SubExp it then follows

that α |∼γ∧k∞ β, and by Ext that α |∼γ β holds.

Lemma 4.1. For every epistemic interpretation E , if Uf

E
∩ JγK = ∅, then E 


α |∼γ β iff E ∞
↓ 
 α ∧ γ |∼ β.

Proof. Let E 
 ¬γ, that is, there are not valuations in the finite ranks that

satisfy γ. Then the satisfaction of the conditionals with situation γ must be

checked referring to the valuations that are ranked as infinite. E 
 α |∼γ β

implies two possible situations: either among the valuations in JγK that are

ranked as infinite there are ones satisfying α∧γ, and among them all the minimal

ones satisfy also β; or all the valuations satisfying α∧γ have rank 〈∞,∞〉. γ has

finite rank in E ∞, or rank 〈∞,∞〉. In the latter case, we have E ∞

 α∧γ |∼ β.

In the former case, the rank of γ in E is 〈∞, i〉, with i < ∞, that is, the rank

of γ∧α in E ∞ is 〈f, j〉, for some j s.t. i ≤ j <∞, or 〈∞,∞〉. In the latter case,

again, it is straightforward to conclude E ∞

 α ∧ γ |∼ β. In the former case,

we have E 
 α |∼γ β, and the construction of E ∞ imposes that the minimal

valuations in Jα ∧ γK satisfy also β, that is, E ∞

 α ∧ γ |∼ β.

The proof is analogous in the opposite direction. If E 
 ¬γ, then there are

valuations in E
∞
↓ satisfying γ ranked as finite. Let E ↓∞ 
 α∧γ |∼ β. Either the

minimal valuations in E ↓∞ satisfying α ∧ γ are in rank 〈f, i〉, for some i < ∞,

and satisfy β, or they are in 〈∞,∞〉. In the former case, it means that the

minimal valuations in E ↓∞ satisfying α ∧ γ have rank 〈f, i〉, for some i < ∞,

and satisfy β, or they are in 〈∞,∞〉. In both cases, since the minimal valuations

in E satisfying γ are ranked as infinite, we have E 
 α |∼γ β.

Proposition 4.4. Let KB be a consistent SCKB, and let EKB be an epistemic
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interpretation built as in Definition 4.6. Then, EKB is the only minimal epis-

temic model of KB.

Proof. We divide the proof in two parts. First, we prove that EKB is a minimal

epistemic model, then that it is also the only minimal epistemic model.

Regarding minimality, we proceed by contradiction. We know by Propo-

sition 4.3 that EKB is an epistemic model of KB. Assume it is not minimal,

that is, assume there is an epistemic model E ′ of KB s.t., for every u ∈ U ,

E
′(u) ≤ EKB(u), and there is a w ∈ U s.t. E

′(w) < EKB(w). Regarding the

ranking of w, we have two possibilities:

Case 1. EKB(w) = 〈f, i〉, for some i, and E ′(w) = 〈f, j〉, for some j < i. LetKBfE ′ =

{α |∼γ β ∈ KB | E ′ 6
 ¬γ}. By Corollary 4.1, E ′

 α ∧ γ |∼ β, for ev-

ery α |∼γ β ∈ KBfE ′ . Consider the ranked interpretation R′ defined as:

R
′(u) =







i, if E ′(u) = 〈f, i〉, for some i;

∞, otherwise.

R
′ above is clearly a ranked model of every α∧γ |∼ β s.t. α |∼γ β ∈ KBfE ′ .

Since R′ has only one infinite rank, ∞, R′ is also a ranked model of ev-

ery α ∧ γ |∼ β s.t. α |∼γ β ∈ KB \ KBfE ′ , since the minimal valuations

satisfying their premises are in J〈∞,∞〉K, and consequently they are triv-

ially satisfied. Hence, R′ is a ranked model of KB∧.

By Definition 4.5, EKB has been built using the minimal ranked model R

of KB∧. However, now we end up with a ranked model R′ of KB∧ that

is preferred to R, since for every u ∈ U , R′(u) ≤ RKB(u), and R′(w) <

RKB(w). This leads us to a contradiction.

Case 2. EKB and E ′ are identical w.r.t. the finite ranks, and EKB(w) = 〈∞, i〉,

for some i. We have two subcases: E
′(w) = 〈∞, j〉, for some j < i,

or E ′(w) = 〈f, j〉, for some j. The latter subcase leads to a contradiction:

it can be proved analogously to Case 1. It remains to prove the first

subcase.
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The proof is still close to the one for Case 1 above, we simply have to

refer to the counterfactual shiftings of EKB and E ′, E ∞
KB↓ and E ′∞

↓ (see

page 23). Since EKB and E ′ are epistemic models of KB∧, E ∞
KB↓ and E ′∞

↓

are epistemic models of KB∧∞, and E ′∞
↓ is preferred to E ∞

KB↓. From E ∞
KB↓

and E ′∞
↓ , we can extract two ranked interpretations, R∞

KB and R′∞ (see

Definition 3.3), that are both epistemic models of KB∧
∞. In the construc-

tion of EKB, following Definition 4.5, we have used for the infinite ranks

the ranked interpretation R∞
KB, which, also by Definition 4.5, must be the

minimal ranked model of KB∧
∞. But in the present case, R

∞
KB cannot be

the minimal ranked model of KB∧∞, since R′∞ is a ranked model of KB∧
∞

that is preferred to R∞
KB. This leads to a contradiction.

To conclude this part, in all the possible cases, if EKB is not a minimal

epistemic model of KB, then we end up with a contradiction. Hence EKB must

be a minimal epistemic model of KB.

The final step consists in proving that EKB is the only minimal epistemic

model of KB. The procedure is again by contradiction, assuming that EKB is

not the only minimal epistemic model of KB. Hence, let E ′ be another minimal

epistemic model of KB. The structure of the proof actually mirrors the one for

the previous part, about the minimality of EKB. Again, we can distinguish two

main cases.

Case 1. EKB and E ′ differ w.r.t. the ranking of some valuations among the ones

ranked as finite. From EKB and E ′, we can extract, respectively, the

ranked models R and R′, which are both ranked models of KB∧. But,

by Definition 4.5, R is the only minimal ranked model of KB∧, that is,

R ≺ R′, which implies that E ′ cannot be a minimal epistemic model

of KB.

Case 2. EKB and E ′ do not differ w.r.t. the ranking of the valuations that are

ranked as finite in both of them, but differ w.r.t. the ranking of some

valuation, w, that is ranked as infinite in one of the two. W.l.o.g., we

assume that w is ranked as infinite in EKB. We have two subcases: E ′(w) =
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〈∞, j〉, for some j, or E ′(w) = 〈f, j〉, for some j. The latter subcase leads

to a contradiction: it can be proved analogously to Case 1 using the

extracted ranked models. It remains to show the first subcase.

The proof is still analogous to Case 2 above. We refer to the counterfac-

tual shiftings of EKB and E ′, E ∞
KB↓ and E ′∞

↓ . Since EKB and E ′ are epis-

temic models of KB∧ and they are identical w.r.t. the finite ranks, E ∞
KB↓

and E
′∞
↓ are epistemic models of KB∧∞. From E

∞
KB↓ and E

′∞
↓ , we can ex-

tract two ranked interpretations, R∞
KB and R′∞ (see Definition 3.3), that

are both ranked models of KB∧∞. In the construction of EKB, following

Definition 4.5, we have used for the infinite ranks the ranked interpre-

tation R∞
KB, which, also by Definition 4.5, must be the minimal ranked

model of KB∧∞. If R∞
KB is the minimal ranked model of KB∧

∞, then R∞
KB

is preferred to R′∞, and, by construction, EKB must be preferred to E ′.

This leads to a contradiction.

To conclude, if we assume that there is another minimal epistemic model

of KB beyond EKB, we end up with a contradiction. Hence, EKB must be the

only minimal epistemic model of KB.

Theorem 5.1. Let KB be an SCKB. MinimalClosure(KB, α |∼γ β) returns

true iff KB |=m α |∼γ β.

Proof. We already know that algorithms Exceptional, ComputeRanking, Rank

and RationalClosure are complete and correct w.r.t. the correspondent seman-

tic notions.

As a first step, we need to prove that algorithm Partition returns the

correct result, that is, the sets KB∞ and KB∧∞↓ correspond to the same sets

introduced in Definition 4.6.

The correspondence of KB∞ to the semantic notion introduced in Defini-

tion 4.6 is guaranteed by the correctness of algorithm ComputeRanking w.r.t.

the semantic definition of ranks w.r.t. the rational closure.

To prove the correspondence of KB∧
∞↓ to the semantic notion in Defini-

tion 4.6, we need to prove also that the defeasible conditionals µ |∼ ⊥ and
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sent(Uf

R
) |∼ ⊥ are equivalent, which is an immediate consequence of Lemma 5.1

and the LLE postulate.

Now we can check the correctness of algorithm MinimalClosure. We con-

sider the possible cases as presented in the algorithm.

Case 1. KB∧ |= ⊥.

By Corollary 4.2, KB∧ |= ⊥ iff KB is inconsistent, and in such a case

KB |=m α |∼γ β for every α, γ, β, and the algorithm behaves correctly.

Case 2. KB∧ 6|= ⊥ and Rank(KB∧, γ) <∞.

We have to prove that in this case α ∧ γ |∼ β is in the RC of KB∧ iff

α |∼γ β is in the minimal closure of KB.

Assume α ∧ γ |∼ β is in the RC of KB∧, and let R be the minimal

ranked model of KB∧. That means that minJα ∧ γKR ⊆ JβK. Also, since

Rank(KB∧, γ) < ∞, we have that JγK ∩ Uf

R
6= ∅. By construction of

the minimal epistemic model of KB, EKB, Uf

EKB
= Uf

R
, and the rank of

each valuation is the same. Consequently, we have that JγKf
EKB

6= ∅.

According to Definition 3.2, we have to check whether JγKf
EKB
⊆ J¬αK or

Jα ∧ γKEKB
⊆ JβK. From R 
 α ∧ γ |∼ β, we single out two possible cases:

– Rank(KB∧, α) =∞. This implies that JγKf
EKB
⊆ J¬αK.

– Otherwise, in R we have minJα ∧ γKf ⊆ JβK. Since EKB preserves

in Uf

EKB
the same ranking as in Uf

R
, we have Jα ∧ γKf

EKB
⊆ JβK.

We can conclude that EKB 
 α |∼γ β.

Now we check the opposite direction: we assume EKB 
 α |∼γ β. Since

Rank(KB∧, γ) <∞, by Definition 12 we have that JγKf
EKB
6= ∅. The latter,

together with EKB 
 α |∼γ β, implies Jα ∧ γKf
EKB
⊆ JβK. By Definition

12, this condition implies that Jα ∧ γKf
R
⊆ JβK, which in turn implies

R 
 α ∧ γ |∼ β.

Case 3. KB∧ 6|= ⊥ and Rank(KB∧, γ) =∞.
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We have to prove that in this case α ∧ γ |∼ β is in the RC of KB∧∞↓ iff

α |∼γ β is in the minimal closure of KB.

Since Rank(KB∧, γ) =∞, we have that JγK ∩ Uf

R
= ∅. By construction of

the minimal epistemic model of KB, EKB, Uf

EKB
= Uf

R
. Consequently, we

have that JγKf
EKB

= ∅ and JγKEKB
all have rank 〈∞, j〉, for some j.

Assume α∧γ |∼ β is in the RC of KB∧
∞↓, and let R′ be the minimal ranked

model of KB∧
∞↓. According to Definition 3.2, we have to check whether

Jα ∧ γKEKB
⊆ JβK. Assume this is not the case, that is, EKB 6
 α |∼γ β.

Since JγKf
EKB

= ∅, all the valuations in JγKEKB
are ranked as infinite, and

EKB 6
 α |∼γ β implies that there is a valuation w in Jα∧γKEKB
s.t. w 6
 β.

Let w ∈ J〈∞, i〉K, for some i < ∞, and w � v, for every v ∈ Jα ∧ γK. By

Definition 4.5, in R′ we have w ∈ JiK, for some i < ∞, and w � v, for

every v ∈ Jα∧γK. Hence, we would have R′ 6
 α∧γ |∼ β, which is against

our hypothesis that α ∧ γ |∼ β is in the RC of KB∧
∞↓.

Now we assume EKB 
 α |∼γ β. Again, since JγKf
EKB

= ∅, all the valuations

in JγKEKB
are ranked as infinite. The latter, together with Definition 4.5,

implies that JγKEKB
= minJα ∧ γKR′ , and consequently JγKEKB

⊆ JβK

implies minJα ∧ γKR′ ⊆ JβK. We can conclude R′

 α ∧ γ |∼ β, that is,

α ∧ γ |∼ β is in the RC of KB∧∞↓.

We have proved that in all possible cases MinimalClosure(KB, α |∼γ β)

returns true iff KB |=m α |∼γ β.
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