A geometry-preserving shape optimization tool
based on deep learning*

Andrea Favﬂhl,Z[0009700047934277106]’ Francesco Lacconel[0000700027378777215],
Paolo Cignonil[0000700027268678567]’ LUIgl Malomol[000070001778927894)(]’ and
Daniela Giorgil [0000—0002—6752—6918]
1 ISTT - CNR, via G. Moruzzi 1, Pisa, Italy
2 University of Pisa, Lungarno Pacinotti 43, Pisa, Italy
andrea.favilli@isti.cnr.it

Abstract. In free-form architecture, computational design tools have
made it easy to create geometric models. However, obtaining good struc-
tural performance is difficult and requires further steps, such as shape
optimization, to enhance system efficiency and material savings. This
paper provides a user interface for form-finding and shape optimiza-
tion of triangular grid shells. Users can minimize structural compliance,
while ensuring small changes in their original design. A graph neural
network learns to update the nodal coordinates of the grid shell to re-
duce a loss function based on strain energy. The interface can manage
complex shapes and irregular tessellations. A variety of examples prove
the effectiveness of the tool.

Keywords: Design tool - Shape optimization - Graphical User Interface
- Geometric learning.

1 Shape optimization of shells and grid shells

In the structural design of shells and grid shells, shape optimization refers to
methods and tools for maximizing the performance of an input surface. As
building components, shells and grid shells are subject to unique contextual,
functional, constructional or aesthetic constraints. Therefore, the relationship
between shape and structural variables can differ case by case. Additionally,
these structures are often shaped as free-form surfaces, which complicates the
structural response.

A properly-designed shell or grid shell should possess a prevailing membrane
behavior, avoid bending forces, and have good robustness [1]. In the ideal case,
a ‘natural’ shape is sculpted by providing loading and boundary conditions to
form-finding methods [2]. However, in the general case the shape is not natu-
rally efficient and requires several design checks and improvements, which can

* This work was supported by the NextGenerationEU programme under the funding
schemes PNRR-PE-AI scheme (M4C2, investment 1.3, line on AI) FAIR (Future
Artificial Intelligence Research)



2 A. Favilli et al.

either rely on heuristics and experience, or adopt automated shape optimization
methods. The objective functions usually involve structural quantities that are
iteratively updated by moving the design variables within predefined bounds.

The literature offers a large variety of shape optimization methods, differing
in the types of variables, objective functions, optimization methods etc. In [3],
finite element mesh nodes are the variables updated through deformation gradi-
ent. The solution is enriched with surface regularization and distortion control.
The authors of [4] emply a NURBS surface formulation, using control points and
thickness as variables. The shape modifications result from finite element anal-
ysis and gradient evaluations, performed using Automatic Differentiation (AD).
In [5], structural stiffness is maximized in a grid shell by iteratively updating
nodal coordinates according to sensitivity information. Since the procedure is
initialized with a displacement perturbation, which can lead to a jagged surface,
a filtering scheme is adopted to normalize the non-smooth gradient fields. Other
shape optimization methods are formulated as multi-criteria optimization. In [6],
curves and surfaces can have discontinuities in tangent vectors and curvatures
(creases). A multi-objective optimization problem is solved by the constraint
approach to generate a trade-off design between smoothness and mechanical
compliance.

In this paper, we implement a Graphical User Interface based on the method
in [7], which modifies a grid shell shape using deep learning. The user can edit a
set of input parameters, such as the beam characteristics and the solution speed.
The graph neural network in the background is fed with geometric input features
and the structural analysis of the grid shell. The variables are node coordinates.
We showcase the potential of our tool with three representative examples. In two
examples we perform shape optimization on free-form shells. Additionally, since
shape optimization methods are often applied to solve form-finding problems [8],
in a third example we solve a form-finding task on a flat surface input.

After briefly introducing the problem formulation and the learning model in
Section 2, we describe how to reformulate the model for the tool implementa-
tion and a typical usage scenario in Section 3. Finally, Section 4 presents some
example results that a user can achieve.

2 Geometric deep learning for shape optimization

Our tool is based on a graph neural network model [7] driven by the static
analysis of grid shells. One of the main innovations is the introduction of a
differentiable Euler-Bernoulli approach which fits usage in a learning model.

A triangular mesh M = (V, &, F) represents the input grid shell. V are the
vertices (identified with the structural nodes), £ are the edges (identified with
the beams), and F are the mesh faces. The learning-based shape optimization
acts on the vertices by imposing translations, while retaining the original mesh
connectivity. In other words, the neural network model predicts an optimal trans-
lation vector &, € R3 for each vertex v € V. Fixed nodes can be constrained so
that translations are null for a given subset of vertices V C V.



A geometry-preserving shape optimization tool based on deep learning 3

The neural network model takes as input an augmented encoding of the orig-
inal structure. We combine different pieces of information in an input feature
vector x, € R'2, for each vertex v € V. The input feature vector includes ver-
tex coordinates, vertex normals, principal curvatures of the underlying free-form
surface, and four distance and centrality measures of vertices with respect to
the shell boundary OV and the fixed nodes V. Then, a deep sequence of layers
transforms features until the final layer yields the prediction dy. At each layer,
vertex features are updated by computing the weighted average of the features
of the nearest-neighboring vertices. The network weights are determined by min-
imizing the loss, a target function accounting for structural compliance. The loss
minimization follows a gradient descent method: starting from randomly initial-
ized network weights, the weights are moved along the direction of maximum
loss decrease (the opposite of the gradient) in an iterative procedure. At each
step, the decrease direction vector is scaled by the learning rate parameter.

The learning model uses a two-node Euler-Bernoulli linear beam formulation.
The loss function £(M) is defined as the mean strain energy over all edges:

LM) = ﬁZEe (1)

ec

with E. the strain energy on a single edge e.

The loss in Eq. (1) is made differentiable with respect to vertex coordinates so
that it can be used to determine the neural network weights in accordance with
gradient descent minimization. The method relies on automatic differentiation
(AD) to get punctual evaluations of gradients, thus avoiding the need to express
analytically the partial derivatives of L.

Our shape optimization task falls within the frame of single-instance learning.
For each input mesh, we reset the network weights and we start a new loss

minimization procedure. The task can be formalized as finding an optimal mesh
M* := Ty« (M) such that

0" € argming L(Tp(M)) (2)

where the neural network is a function Ty of the weights 6.

While [7] adopts a scale-dependent stopping criterion for the iterative proce-
dure, the graphical user interface proposed in this paper allows the user to enter
the execution flow. The user can change the optimization parameters on the fly
and visualize the shape modification from different perspectives. Moreover, the
user can replay or restart the procedure until he/she founds a balance between
performance metrics and amount of shape modification.

Finally, since a user interface needs a fast response for functional evaluation of
the loss and its partial derivatives, we express the loss from Eq. (1) as a sequence
of vectorized operations that support AD, without using code branching to build
intermediate results. Our array-based implementation can benefit from GPU
parallelization to speed up the process.



4 A. Favilli et al.

mesh

— > Graphical User Interface ]

parameters A A
parameter setting/reset parameter tuning display display

Y

Graph-based

o Neural Network Intermediate
Initial State Output Output
gradient descent step

Loss
L(M) = ﬁ Deee Ee

Neural Shape Optimizer

Fig. 1. The pipeline of our tool. The input is a grid shell encoded as a triangle mesh.
The user can also input parameters concerning the structure (e.g., beam cross sections,
Young’s modulus, etc). As the learning and optimization procedure starts, partial shape
modifications are visualized in real time, so that the user can tune parameters on the
fly, control the optimization flow or restart the procedure with different settings. The
user can explore the outcomes until he/she reaches a good compromise between shape
and performance.

3 Tool design and user interface

The tool is implemented in the Python programming language and is made of two
main components: the Graphical User Interface and the Neural Shape Optimizer
(Fig. 1). Each component runs on a different process, so computations can run
asynchronously from the interface display task. This scheme implies that the user
can explore the interface functionalities while the neural network modifies the
shape. The Graphical User Interface detects parameter changes and updates the
Neural Shape Optimizer process. Inter-process communication is implemented
through two directed queues; one sends parameter changes from the Graphical
User Interface to the Shape Optimizer, and the other sends back results to update
the visualization.

We employed the PyTorch deep learning library [9] for the Neural Shape Op-
timizer. PyTorch offers an easy way to define the architecture of neural networks,
with full support to Automatic Differentiation and a large variety of array-based
operations. We also used PyTorch Geometric [10] to implement the graph-based
network layers. To implement the Graphical User Interface we used Polyscope
[11], a flexible 3D object viewer with a customizable user interface. Fig. 2 shows
the GUL

3.1 Usage scenario

To describe the usage and features of the user interface, we introduce Frank, a
fictitious designer who can benefit from the tool in an early conceptual design



A geometry-preserving shape optimization tool based on deep learning 5

7
115
7

Iaﬂ,‘

0270
77
7

S

NN

A
SR
N

Fig. 2. Our interface at launching with an input grid shell. On the left, the user can
find the default Polyscope tools (Polyscope and Structures boxes), where visualization
settings (camera and shape appearance) can be modified. On the right (Command
UI box), the user can control the shape optimization algorithm, check the structural
performance in real time, and switch between different visualizations of metrics.

phase. Even though Frank has a clear idea about the grid shell shape he wants
to design, he needs to produce a practically feasible solution. Thanks to our
user interface, he can feed the optimization tool with a tentative shape concept,
then drive the optimization towards a feasible solution from a structural point
of view, while preserving his original design intent.

Frank loads the initial shell as a 3D model file and enters the optimization
flow. He controls the shape optimization with a set of buttons recalling the
videotape jargon: Play, Pause, Rewind and Replay. He knows almost nothing
about Artificial Intelligence but was instructed about the only relevant parame-
ter concerning the neural network he might want to tune: the learning rate. The
interface proposes a default value for the learning rate, based on the dimension
of the input structure. However, Frank might want to change the default param-
eter according to his needs, knowing that a lower learning rate would produce
slow convergence of the gradient-based optimization, while a higher learning
rate would lead to convergence in a smaller number of steps. On the other hand,
Frank knows that the advantage of a lower learning rate is that it produces less
distortion on shapes. The learning rate also depends on the initial loss, that
is, on the energy of the input surface design: high energy inputs are likely to
require lower rates to converge, while small energy inputs need higher rates to
boost gradient descent towards a local optimum. In what follows, we describe
Frank’s interaction with the interface to refine his design.



6 A. Favilli et al.

Frank is in front of the initial interface screen, Fig. 2. Given the scale of
the shell bounding box, he deems appropriate to set the beam cross-section ra-
dius field to 0.08 m, learning rate to 0.0001 and 200 max iterations. The other
default grid shell parameters are considered valid, i.e. a Poisson’s ratio of 0.3
and a Young’s modulus of 2.1 x 108 kN/m?. The Load is a sum of two terms:
the structure’s own weight, which is computed from the beam density, and an
external face load, which is in the direction of gravity and is applied per node
on a lumped scheme. Frank considers appropriate the default Load as a weight
per square meter of 3 kN/m? and a beam density of 78.5 kN/m3. At this point,
he clicks on the Play button, and the shape optimization procedure starts.

After 50 iterations, Frank realizes that the loss decrease is too slow. Hence
he clicks on the Pause button, increases the learning rate from 0.0001 to 0.0005,
and resumes the procedure after clicking again Play. When all 200 iterations
are carried out, Frank decides to check the evolution of the shape optimization
process from a different perspective, switching to a different visualization.

Indeed, our interface enables the user to visualize not only the surface ge-
ometry and tessellation, but also the deformation under Service Load and the
strain energy, mapped on the surface mesh in false colours (Fig. 3).

Fig. 3. Switching to different visualizations than geometry only: (Left) deformation
under Service Load, (Right) strain energy visualization.

Frank selects the energy option from the dropdown menu, and clicks Replay.
The Replay option is available only when the execution flow is paused in a state
different from the initial. Finally, Frank can accept the outcome, perform some
more iterations, or restart the procedure with different settings after clicking
Rewind.

4 Results and discussion

We analyze three different input shapes. The objective is to highlight the relation
between user interaction inputs, parameter settings, and outcomes. Two exam-
ples shapes, Ice and Waving, are free-form grid shells with different structural



A geometry-preserving shape optimization tool based on deep learning 7

compliance. The third example is a flat grid shell (Flat) to test the form-finding
capabilities of our tool.

According to the size of the examples, we first use a learning rate of 0.01
(A in Figs. 4, 5 and 6) and 200 gradient descent iterations (it) for shape op-
timization. However, the user can edit these parameters to alter the output
shape. Ice and Waving show a different behavior for shape optimization in terms
of design preservation. While both are complex surfaces designed sculpturally,
Waving has a better initial static configuration, independently of the chosen
beam cross-section. While static performance is the objective function, our tool
tries to preserve the input shape. This happens with the settings mentioned
above, as shown in Fig. 4 (b), as well as with different input parameters set via
the interface, as in Fig. 4 (c), where the cross-section radius reduces to 0.04 m,
the learning rate increases to 0.05 and the number of iterations to 500. For both
cases, it can be seen that the loss goes down, while the overall design and surface
features are preserved.

rcs = 0.08 m ros = 0.04m
A=0.01 A=0.05
200 it 500 it
(a) (b) (c)

Fig.4. Shape optimization on the Waving model: (a) the input structure (£ =
0.0042 kJ if rcs = 0.08 m, L = 0.0097 kJ if rcs = 0.04 m); (b) the output for
suitable parameters (£ = 0.0038 kJ); (c) shape modification is still slight if we reduce
the cross-section radius, and we increase the learning rate and the number of iterations
(£ =0.0033 kJ).

Ice is more sensitive to the setting of the structural parameters, for the same
gradient descent parameters A = 0.01 and 200 iterations. In particular, as the
size of the beam cross-section is closely involved with the edge strain energy,
in Figs. 5 (b) and (c), we compare the results obtained with two different solid
circular cross-section radii (rcg). On the one hand, a higher radius means a
higher beam weight and, consequently, a higher load. On the other hand, larger
beams have more bending stiffness and collect less stress due to external load.
The case rcs = 0.08 m (Fig. 5 (b)) is less energized than the case rcs = 0.04 m
(Fig. 5 (c)), leading to a lighter shape modification with respect to the input.
The case rcg = 0.04 m tends towards a membrane solution.



8 A. Favilli et al.

rcs = 0.08 m rcs = 0.04 m
A=0.01 A=0.01
200 it 200 it

(a) (b) (c)

Fig. 5. Shape optimization on the Ice model: (a) the input structure (£ = 0.0466 k.J if
rcs = 0.08 m, £ =0.3103 kJ if rcs = 0.04 m); (b) the output for suitable parameters
(£ =0.0170 kJ); (c) the output if the cross-section radius is reduced (£ = 0.0117 k.J).

Our tool can also be employed for form-finding. Dealing with a flat surface
requires re-calibrating the input parameters. Indeed, while shape optimization
aims at validating and hopefully preserving an input shape, form-finding requires
heavy shape modification. The third model, Flat, is a high-energy grid shell.
Hence, it requires lower learning rates to ensure convergence compared to the
previous examples. Fig. 6 reports the outcomes of form-finding with A = 5-107°.
The figure also shows how beam cross-sections affect the initial strain energy,
and consequently the behaviour of the optimizer, which converges towards dif-
ferent minima: the classic funicular pillow shape in Fig. 6 (b), or the symmetric
membrane surface used in tension and compression in Fig. 6 (c).

5 Conclusions

We developed a graphical interface tool to perform shape optimization and form
finding based on deep learning. Our tool lets the user break up the linearity of
a classical iterative procedure, and move the outcome back and forth as if the
optimization task was a videotape playing.

This contribution is a first step towards the development of a complete Al-
based software for assisted design. Indeed, architecture is for humans, and our
tool puts humans at the center of the decision process. Automating the design
process is not straightforward. However, we provide the designer with a tool to
support the design space exploration. In real-time, different shape outcomes can
be visualized after each parameter change.

This tool lays essential methodological foundations and can be expanded
to include other feasibility/aesthetics metrics besides statics. A human-machine
joint approach can enhance design quality, by accounting for both aesthetics and
feasibility, and also benefit creativity.



A geometry-preserving shape optimization tool based on deep learning 9

rcs = 0.08 m

A=5-10"°
5000 it 5000 it
(a) (b) (c)

Fig. 6. Form-finding starting from Flat grid shell. (a): the input structure (£ =
15.7806 kJ if rcs = 0.1 m, L = 27.8012 kJ if rcs = 0.08 m); (b) and (c): two
different local minima output (£ = 0.0240 kJ and £ = 0.0901 kJ respectively). The
second row shows color-mapped strain energy on beams.

References

1. Ramm, E.: Shape finding of concrete shell roofs. Journal of the International As-
sociation for Shell and Spatial Structures 45(1), 29-39 (2004)

2. Veenendaal, D., Block, P.: An overview and comparison of structural form find-
ing methods for general networks. International Journal of Solids and Structures
49(26), 3741-3753 (2012). https://doi.org/10.1016/j.ijsolstr.2012.08.008

3. Bletzinger, K.U., Firl, M., Linhard, J., Wiichner, R.: Optimal shapes of mechani-
cally motivated surfaces. Computer methods in applied mechanics and engineering
199(5-8), 324-333 (2010). https://doi.org/10.1016/j.cma.2008.09.009

4. Espath, L., Linn, R.V., Awruch, A.: Shape optimization of shell struc-
tures based on nurbs description using automatic differentiation. Interna-
tional Journal for Numerical Methods in Engineering 88(7), 613-636 (2011).
https://doi.org/10.1002/nme.3183

5. Wang, H., Chen, Z., Wen, G., Ji, G., Min Xie, Y.: A robust node-shifting method
for shape optimization of irregular gridshell structures. Structures 34, 666—677
(2021). https://doi.org/10.1016/j.istruc.2021.08.003

6. Ohsaki, M., Ogawa, T., Tateishi, R.: Shape optimization of curves and surfaces
considering fairness metrics and elastic stiffness. Structural and Multidisciplinary
Optimization 27, 250-258 (2004). https://doi.org/10.1007/s00158-004-0382-3

7. Favilli, A., Giorgi, D., Laccone, F., Malomo, L., Cignoni., P.: Geometric deep
learning for statics-aware 3d gridshells. Tech. rep., ISTI - CNR (07 2022).
https://doi.org/http://dx.doi.org/10.32079 /isti-tr-2022/016



10

10.

11.

A. Favilli et al.

. Bletzinger, K.U., Ramm, E.: Form finding of shells by structural optimization.

Engineering with computers 9, 27-35 (1993)

. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chin-
tala, S.: Pytorch: An imperative style, high-performance deep learning library. In:
Advances in Neural Information Processing Systems 32, pp. 8024-8035. Curran As-
sociates, Inc. (2019), http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric
(2019), http://arxiv.org/abs/1903.02428, cite arxiv:1903.02428

Sharp, N., et al.: Polyscope (2019), www.polyscope.run



