Formal Modelling and Analysis
of a Self-Adaptive Robotic System

Juliane Péagler! ® @, Maurice H. ter Beek?®, Ferruccio Damiani*®,

S. Lizeth Tapia Tarifa'®, and Einar Broch Johnsen'

1 University of Oslo, Oslo, Norway
{julipas,sltarifa,einarj}@ifi.uio.no
2 ISTI-CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it
3 University of Turin, Turin, Italy
ferruccio.damiani@unito.it

Abstract. Self-adaptation is a crucial feature of autonomous systems
that must cope with uncertainties in, e.g., their environment and their
internal state. Self-adaptive systems are often modelled as two-layered
systems with a managed subsystem handling the domain concerns and a
managing subsystem implementing the adaptation logic. We consider a
case study of a self-adaptive robotic system; more concretely, an au-
tonomous underwater vehicle (AUV) used for pipeline inspection. In
this paper, we model and analyse it with the feature-aware probabilistic
model checker ProFeat. The functionalities of the AUV are modelled in a
feature model, capturing the AUV’s variability. This allows us to model
the managed subsystem of the AUV as a family of systems, where each
family member corresponds to a valid feature configuration of the AUV.
The managing subsystem of the AUV is modelled as a control layer capa-
ble of dynamically switching between such valid feature configurations,
depending both on environmental and internal conditions. We use this
model to analyse probabilistic reward and safety properties for the AUV.

Keywords: feature models - probabilistic model checking - self-adaptive
systems - cyber-physical systems - robotics.

1 Introduction

Many software systems are subject to different forms of uncertainty like changes
in the surrounding environment, internal failures and varying user requirements.
Often, manually maintaining and adapting these systems during runtime by a
system operator is prohibitively expensive and error-prone. Enabling systems to
adapt themselves provides several advantages. A system that is able to perform
self-adaptation can also be deployed in environments where, e.g., communication
between an operator and the system is very limited or impossible, like in space
or under water. Thus, self-adaptation gives a system a higher level of autonomy.

http://orcid.org/0000-0001-8515-1809
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0001-8109-1706
http://orcid.org/0000-0001-9948-2748
http://orcid.org/0000-0001-5382-3949

2 J. Pakler et al.

_ A self-adaptive system (SAS) can
/ Self-Adaptive System\ . .

be implemented using a two-layered

> Managing Subsystem approach which decomposes the sys-

(adaptation logic) tem into a managed and a managing

I i -

o adapt subsystem [18], see Fig. 1’. The man

monitor L aged subsystem deals with the do-

Managed Subsystem main concerns and tries to reach the

(domain concerns) goals set by the system’s user, e.g.,

\ A | / navigating a robot to a specific loca-

i # . .
monitor effect tion. The managing subsystem han-

' dles the adaptation concerns and de-

4[Environment J fines an adaptation logic that specifies

a strategy on how the system can fulfil

Fig. 1: Two-level SAS architecture the goals under uncertainty [25], e.g.,

adapting to changing environmental

conditions. While the managed subsystem may affect the environment via its

actions, the managing subsystem monitors the environment and the internal

state of the managed subsystem. By using the adaptation logic, the managing

subsystem deduces whether and which reconfiguration is needed and adapts the
managed subsystem accordingly.

This paper models and analyses the case study of a self-adaptive autonomous
underwater vehicle (AUV) as a two-layered system based on Markov decision
processes. The functionalities of the managed subsystem of the AUV are mod-
elled in a feature model, making the dependencies and requirements between
the components of the AUV explicit. The behaviour of the managed subsys-
tem is modelled as a probabilistic transition system whose transitions may be
equipped with feature guards, which only allow a transition to be taken if the
feature guarding it is included in the current system configuration. Thus, it is
modelled as a family of systems whose family members correspond to valid fea-
ture configurations. As the behaviour of the AUV depends on environmental
and internal conditions, which are both hard to control, we opted for a prob-
abilistic model in which uncontrolled events, like a thruster failure, occur with
given probabilities. We model the behaviour of the managing subsystem as a
control layer that switches between the feature configurations of the managed
subsystem according to input from the probabilistic environment model and the
managed subsystem. We consider a simplified version of an AUV, with limited
features and variability, but there are many different possibilities to extend the
model to a more realistic underwater robot.

The case study is modelled in ProFeat [8], a tool for probabilistic family-
based model checking. Family-based model checking provides a means to simul-
taneously model check, in a single run, properties of a family of models, each
representing a different configuration [23]. Analyses with ProFeat give system
operators an estimate of mission duration and the AUV’s energy consumption,
as well as some safety guarantees.

The main contributions of this paper are as follows:

Formal Modelling and Analysis of a Self-Adaptive Robotic System

— A case study of an SAS from the underwater robotics domain, modelled
as a probabilistic feature guarded transition system with dynamic feature
switching;

— Automated verification of (quantitative) properties that are important for
roboticists, using family-based analysis.

Outline. Sec. 2 presents the case study of pipeline inspection with an AUV.
Sec. 3 explains both the behaviour of the managed and managing subsystem
of the AUV and the environment, as well as their implementation in ProFeat.
Sec. 4 presents quantitative analyses conducted on the case study. Sec. 5 provides
related work. Sec. 6 discusses our results and ideas for future work.

2 Case Study: Pipeline Inspection by AUV

In this section, we introduce our case study of an AUV used for pipeline inspec-
tion, which was inspired by the exemplar SUAVE [22].

An AUV has the mission to first find and then inspect a pipeline located
on a seabed. During system operation, the water visibility (i.e., the distance in
meters within which the AUV can perceive objects) might change (e.g., due to
currents that swirl up the seabed), while one or more of the AUV’s thrusters
might fail and needs to be restarted before the mission can be continued.

The AUV can choose to operate at three different altitudes, low, med (for
medium) and high. A higher altitude allows the AUV to have a wider field of
view and thus increases its chances of finding the pipeline during its search. The
probability of a thruster failure is lower at a higher altitude because, e.g., seaweed
might wrap around the thrusters at a lower altitude. However, the altitude at
which the AUV can perceive the seabed depends on the water visibility. With
low water visibility, the AUV cannot perceive the seabed from a high or medium
altitude. Thus, it is not always possible to operate at a high or medium altitude,
and the altitude of the AUV needs to be changed during the search, depending
on the current environmental conditions. Once the pipeline is found, the AUV
will follow it at a low altitude to avoid costs for switching altitudes. In fact, once
found, a wider field of view provides no benefit. However, the AUV can also lose
the pipeline again (e.g., when the pipeline was partly covered by sand or the
AUV’s thrusters failed for some time causing the AUV to drift off its path). In
this case, the AUV has to search the pipeline again, enabling all three altitudes.

Two-layered View of the AUV. Considering the AUV as a two-layered SAS, the
AUV’s managed subsystem is responsible for the search for and inspection of
the pipeline. Depending on the current task and altitude of the AUV, a different
configuration of the managed subsystem must be chosen. Thus, the managed
subsystem can be seen as a family of systems where each family member corre-
sponds to a valid configuration of the AUV. To do so, the different altitudes for
navigation (low, med and high) and the tasks search and follow can be seen as
features of the managed subsystem that adhere to the feature model in Fig. 2,

4 J. Pakler et al.

which models the dependencies and constraints among the features. Each con-
figuration of the AUV contains exactly one feature for navigation and one for
pipeline inspection, and feature follow requires feature low, yielding four different
configurations of the managed subsystem of the AUV.
The managing subsystem
¢ mandatory feature of the case study switches
/AP\ exclusive or bet\.zveen the?,e conﬁgurat.lons
during runtime by activat-
ing and deactivating the sub-
features of navigation and
pipeline inspection, while the
resulting feature configura-
tion has to adhere to the fea-
ture model in Fig. 2. The fea-
tures low, med and high are
activated and deactivated ac-
cording to the current water visibility. If the water visibility is good, all three
features can be activated; if the water visibility is average, high cannot be acti-
vated; and if the water visibility is poor, only low can be activated. The managing
subsystem switches from the feature search to follow if the pipeline was found,
and from follow to search if the pipeline was lost.

---» requires

pipeline inspection

| high | | med | | low |<| follow | |search |

Fig. 2: Feature model of the case study

3 Modelling the AUV Case Study with ProFeat

In this section, we describe the behavioural model of the managed and managing
subsytem and the environment and model the case study with the family-based
model checker ProFeat! [8]. ProFeat provides a means to both specify probabilis-
tic system families and perform family-based quantitative analysis on them. It
extends the probabilistic model checker PRISM? [19] with functionalities such as
family models, features and feature switches. Thereby, it enables family-based
modelling and (quantitative) analysis of probabilistic systems in which feature
configurations may dynamically change during runtime. The whole model can
be analysed with probabilistic family-based model checking using PRISM. The
probabilities used in our model are estimates and have not been validated by
experiments, since in this paper our goal was not to make a model that is as
realistic as possible, but rather to show the feasibility of our approach.

Similar to an SAS, a ProFeat model can be seen as a two-layered model, as
illustrated in Fig. 1. The behaviour of a family of systems that differ in their
features, such as the managed subsystem of an SAS, can be specified. Then a so-
called feature controller can activate and deactivate the features during runtime,
and thus change the behaviour of the system, such as the managing subsystem of
an SAS that changes the configuration of the managed subsystem. Furthermore,
the environment can be specified as a separate module that interacts with the

! https://pchrszon.github.io/profeat.
2 https://www.prismmodelchecker.org/manual

https://pchrszon.github.io/profeat
https://www.prismmodelchecker.org/manual

Formal Modelling and Analysis of a Self-Adaptive Robotic System

managed and managing subsystem. Thus, ProFeat is well suited to model and
analyse the case study described in Sec. 2.

A ProFeat model consists of three parts: an obligatory feature model that
specifies features and their relations and constraints, obligatory modules that
specify the behaviour of the features, and an optional feature controller that
activates or deactivates features. The pipeline inspection case study was modelled
as a Markov decision process in ProFeat.? It consists of (i) the implementation
of the feature model of Fig. 2; (ii) modules describing the behaviour of the
managed subsystem of the AUV (see Fig. 3) and of the environment (see Fig. 4);
and (iii) the feature controller that switches between features during runtime,
corresponding to the managing subsystem of the AUV (see Fig. 5).

We start by explaining how the feature model was implemented in ProFeat
in Sec. 3.1, then describe the behaviour and implementation of the managed and
managing subsystem and of the environment in Sec. 3.2, 3.4, and 3.3 respectively.

3.1 The Feature Model

We first show how the feature model of the case study is expressed in ProFeat,
including connections and constraints among features. Each feature is specified
within a feature ... endfeature block, the declaration of the root feature is done
in a root feature ... endfeature block.

The Root Feature. An excerpt of the implementation of the root feature of the
pipeline inspection case study according to Fig. 2 is displayed in Listing 1.1.
The root feature can be decomposed into subfeatures; in this case only one, the
subfeature robot, see Line 2. The all of keyword indicates that all subfeatures
have to be included in the feature configuration if the parent feature, in this
case the root feature, is included. It is, e.g., also possible to use the one of key-
word if exactly one subfeature has to be included, see Line 2 of Listing 1.2. The
modules modelling the behaviour of the root feature are specified after the key-
word modules. In this case study, the root feature is the only feature specifying
modules, thus the behaviour of all features is modelled in the modules auv and
environment described later.

Contrary to an ordinary feature model, ProFeat allows to specify feature-
specific rewards in the declaration of a feature. Like costs, rewards are real
values, but unlike costs (and although they may be interpreted as costs) rewards
are meant to motivate rather than penalise the execution of transitions. Each
reward is encapsulated in a rewards ... endrewards block. In the case study, we
consider the rewards time and energy, see Lines 4-18 of Listing 1.1. During
each transition the AUV module takes, the reward time is increased by 1; it is a
transition-based reward, see Line 5. We assume that one time step corresponds
to one minute, allowing us to compute an estimate of a mission’s duration.

The reward energy is a state-based reward and can be used to estimate the
necessary battery level for a mission completion. If a thruster of the AUV failed

3 The model is publicly available at [21].

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

1
2
3
4

6 J. Pakler et al.

root feature

all of robot;

modules auv, environment;

rewards "time"
[step] true : 1;

endrewards

rewards "energy"
// Costs for being in a recovery state
(s=recover high) : 2;
// .. omitted code ..

// Costs for switching altitudes
(s=search high) & active(low) : 4;
(s=search high) & active(med) : 2;
(s=found) & active(high) : 4;
(s=found) & active(med) : 2;
// .. omitted code ..
endrewards
endfeature

Listing 1.1: An excerpt of the declaration of the root feature of the case study

feature navigation

one of low, med, high;

initial constraint active(low);
endfeature

Listing 1.2: The declaration of the navigation feature of the case study

and needs to be recovered, a reward of 2 is given, see, e.g., Line 9. The model also
reflects that switching between the search altitudes requires significant energy.
Since the altitude is switched if the AUV is in a search state and a navigation
subfeature that does not correspond to the current search altitude is active, a
higher energy reward is given in these states. If the AUV needs to switch between
low and high altitude, as, e.g., in Line 13, an energy reward of 4 is given, while all
other altitude switches receive a reward of 2, see, e.g., Line 14. Since the altitude
must be changed to low once the pipeline is found, these cases also receive an
energy reward as explained above, see Lines 15-16. All other states receive an
energy reward of 1. We use the function active to determine which feature is
active, i.e., included in the current feature configuration; given a feature, the
function returns true if it is active and false otherwise. Note that both time and
energy rewards are interpreted as costs.

Ordinary Features. The remainder of the feature model is implemented similar
to the root feature, but the features do not contain feature-specific modules
or rewards. The features are implemented and named according to the feature
model in Fig. 2. To have only one initial state, we initialise the model with the
features search and low active, using the keyword initial constraint, see Line 3
of Listing 1.2. As an example of the implementation of another feature, the
declaration of the feature navigation can be seen in Listing 1.2.

3.2 The Managed Subsystem

The Behavioural Model of the Managed Subsystem. The behaviour of the man-
aged subsystem of the AUV can be described by a probabilistic transition system

Formal Modelling and Analysis of a Self-Adaptive Robotic System

equipped with features that guard transitions (a probabilistic featured transition
system). Only if the feature guarding a transition is included in the current con-
figuration of the managed subsystem of the AUV, the transition can be taken.
This transition system adheres to the feature model in Fig. 2 and is depicted in
Fig. 3, where a number of details have been omitted to avoid cluttering (in par-
ticular, all probabilities). The details can be obtained from the publicly available
model in [21]. The probabilistic model allows to easily model the possibilities of,
e.g., finding and losing the pipeline depending on the system configuration.

The transition system can roughly be divided into two parts, one concerning
the search for and one the following of the pipeline, as shown by the grey boxes
in Fig. 3. At deployment time, i.e., in state start task, the AUV can either imme-
diately start following the pipeline if it was deployed above it, or start searching
for it. During the search for the pipeline, i.e., when the AUV is in the grey area
labelled search, the feature search should be active and remain active until the
state found is reached. The managing subsystem can switch between the features
low, med and high during every transition, depending on the water visibility as
described in Sec. 2. Once the pipeline is found, the managing subsystem has to
deactivate the feature search and activate the feature follow, which also implies
activating the feature low and deactivating med and high due to the feature
constraints in Fig. 2. We assume that the managing subsystem activates and
deactivates features during transitions, so the features follow and low should
be activated during the transition from the state found to the state start task.
When the AUV is following the pipeline, i.e., in the grey area labelled follow, it
can also lose the pipeline again, e.g., because of sand covering it or because it
drifted off its path due to thruster failures. Then the managing subsystem has
to activate the feature search during the transition from lost pipe to start task.

We distinguish two kinds of transitions: transitions that model the behaviour
of a certain configuration of the managed subsystem (black transitions) and (fea-
tured) transitions that switch between configurations, enabled by the managing
subystem during runtime (blue transitions). The labels search, follow, low, med
and high on the transitions represent the features that have to be active to ex-
ecute the respective transition. The transitions between configurations (blue)
implicitly carry the action to start the task or go to the altitude specified by
the feature associated with the transition. For instance, the transitions from
search low to search medium can be taken if the feature med is active because
the transition has the guard med. When taking this transition, the AUV should
perform the action of going to a medium altitude. The transitions inside a con-
figuration (black) with a feature label contain the implicit action to stay at the
current altitude because the navigation subfeature has not been changed during
the previous transition.

Whether a transition inside the configuration or between configurations is
executed in the search states search low, search medium and search high depends
on the managing subsystem, i.e., the controller switching between features (see
Sec. 3.4). If the managing subsystem switched between the features low, med and
high during the last transition, a transition to the search state corresponding

8 J. Pakler et al.

O state

@ O recovery state
—» transition between configurations

—>» transition inside a configuration

search

search

Fig. 3: The managed subsystem of the AUV

to the new feature will be executed, i.e., the configuration will be changed.
Otherwise, a transition inside the configuration will be executed. For instance,
consider the state search low. If the feature low is active, then a black transition
will be executed. If, however, the managing subsystem deactivated the feature
low during the last transition and activated either med or high, then the AUV
will perform a transition to the state search medium or search high, respectively.

The ProFeat Implementation of the Managed Subsystem. The module auv models
the behaviour of the managed subsystem of the AUV as displayed in Fig. 3,
see Listing 1.3 for an excerpt of the model. As in Fig. 3, there are thirteen
enumerated states in the ProFeat module with names that correspond to the
state labels in the figure. The recovery states are named according to the state
they are connected to (e.g., the recovery state connected to search high is called
recover _high). The variable s in Line 2 represents the current state of the AUV
and is initialised using the keyword init with the state start task. To record how
many meters of the pipeline have already been inspected, the variable d_insp in
Line 3 represents the distance the AUV has already inspected the pipeline, it is
initialised with 0. The variable inspect represents the desired inspection length
and can be set by the user during design time. Since the number of times a
thruster failed impacts how much the AUV deviates from its path, the variable
t_failed can be increased if a thruster fails while the AUV follows the pipeline.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Formal Modelling and Analysis of a Self-Adaptive Robotic System

module auv
s @ [0..12] init start task;
d insp : [0..inspect] init O;
t:failed : [0..infl _tf] init O;

// To the correct task
[step] (s=start task & active(search)) —> 1: (s'=start_search);
[step] (s=start task & active(follow)) —> 1: (s'=following);

// .. omitted code
// From search state to another state
[step] (s=search high & active(high))

—> 0.59:(s'=found)

+ 0.4:(s'=search_high)

+ 0.01:(s'=recover high);
[step] (s=search high & active(med)) —> 1:(s'=search med);
[step] (s=search high & active(low)) —> 1:(s'=search low);
// .. omitted code

// Go to other task if pipeline is found
[step] (s=found) —> 1:(s'=start task);

// Following the pipeline
[step] (s=following) & (d_insp<inspect) & (t_failed=0)
—> 0.92: (s'=following) & (d_insp'=d_insp+1)
+ 0.05: (s'=lost pipe)
+ 0.03:(s'=recover following)
& (t_failed '=(t_failed<infl_ tf? t failed4+1 : t_ failed));
[step] (s=following) & (d_insp<inspect) & (t_failed >0)
—> 0.92%(1—t_failed/infl tf): (s'=following)
& (d_insp’=d_insp+1) & (t_ failed’'=t _ failed —1)
+ 0.05%(1+((0.92%t failed)/(0.05%infl tf))): (s'=lost pipe)
+ 0.03:(s'=recover following)
& (t_failed '=(t_failed<infl_ tf? t failed4+1 : t _ failed));
[step] (s=following) & (d_insp=inspect) —> (s'=done);

// Lost the pipeline
[step] (s=lost pipe) —> 1: (s'=start_ task) & (t_failed '=0);

// Recovery states
[step] (s=recover high) —> 0.5:(s'=recover high) + 0.5:(s'=search high);
// .. omitted code

endmodule

Listing 1.3: An excerpt of the ProFeat AUV module of the case study

It is bounded by the influence a thruster failure can have on the system (infl_tf)
that can be set by the user during design time.

The behaviour of the module is specified with guarded commands, corre-
sponding to possible, probabilistic transitions, of the following form.

[action] guard —> prob 1: update 1 + ... 4+ prob_n: update n;

A command may have an optional label action to annotate it or to synchronise
with other modules. In PRISM, the guard is a predicate over global and local
variables of the model, which can also come from other modules. ProFeat extends
the guards by, e.g., enabling the use of the function active. If the guard is true,
then the system state is changed with probability prob i using update i for all 7.
An update describes how the system should perform a transition by giving new
values for variables, either directly or as a function using other variables.

10 J. Pakler et al.

For instance, consider the command in Lines 12-15, which can be read as
follows. If the system is in state search high and the feature high is active, then
with a probability of 0.59, the system changes its state to found, with a probability
of 0.4 it changes to search high and with a probability of 0.01 it changes to
recover _high. These are exactly the black transitions shown in Fig. 3 exiting from
state search high. This command also has an action label, step. Using this action
label, it synchronises with the environment module and the feature controller,
as described later. The blue transitions exiting state search high in Fig. 3 are
modelled in Lines 16-17. If the model is in state search _high, but the feature low or
med is active, indicating that the AUV should go to the respective altitude, then
the state is changed to the respective search state. The transitions exiting the
states search _med and search _low are modelled similarly. However, the probability
of going to the state found is highest from state search high and lowest from
search _low because the AUV has a wider field of view when performing the
search at a higher altitude. Furthermore, the probability of a thruster failure,
i.e., of going to the respective recover state, is highest in state search low and
lowest in state search high because the probability of seaweed getting stuck in
the thrusters is higher at a lower altitude. If the AUV found the pipeline, then
a transition to start task is taken, see Line 21.

From the state start task, a transition to either start search or following can
be taken, depending on which subfeature of pipeline _inspection is currently active,
see Lines 7-8.

From the following state, the transitions that can be taken depend on the
variables d_insp and t_failed. Lines 24-28 consider the case where the distance
of the pipeline that has already been inspected (d_insp) is less than the distance
the pipeline should be inspected (inspect) and the variable t_failed is 0, indicating
that there were no recent thruster failures. Then the AUV stays in the following
state and inspects the pipeline one more meter, it loses the pipeline, or a thruster
fails and it transitions to the failure state and increases t_failed if t_failed is not
at its maximum. Lines 29-34 consider the case where d_insp is less than inspect
and t_failed is greater than 0. In this case, the probabilities of following and of
losing the pipeline depend on the value of t_failed. The bigger the value, the more
likely it is to lose the pipeline because it indicates that the AUV’s thrusters did
not work for some time, causing it to drift off its path. If the already inspected
distance is equal to the required inspection distance, the AUV transitions to the
done state (see Line 35) and finishes the pipeline inspection. If the AUV lost the
pipeline (see Line 38), then a transition to start task is taken and the variable
t_failed is set to 0 again.

When the AUV is in a recovery state, it can either stay there for another
time step or exit it again to the state from where the recovery was triggered (see
Line 41).

All commands in the module auv are labelled with step. Thus, every transition
receives a time reward of 1, i.e., the time advances with every transition the AUV
takes, see Lines 4-6 of Listing 1.1.

Formal Modelling and Analysis of a Self-Adaptive Robotic System

(1-cp)/2

(1-cp)/2
(1-cp)/. (1 cp)/2‘ (1 cp)/2
(1 +c Pt

Fig.4: The behaviour of the environment

module environment

water visib : [min_visib.. max _visib]
init round((max_visib—min visib)/2);
[step] true —> current prob: (water visib'= (water visib=min_visib?

min _visib:water visib—1)) + (1—current prob)/2: (water_ visib'=
(water visib=max_visib? max_visib:water visib+1))
+ (1—current prob) /2: true;

endmodule

Listing 1.4: The ProFeat environment module of the case study

3.3 The Environment

The Behavioural Model of the Environment. We assume that there is a minimum
and a maximum visibility of the environment, depending on where the AUV is
deployed and set by the user during design time. Furthermore, different envi-
ronments also have different probabilities of currents that influence the water
visibility. This can also be set during design time. The behaviour of the envi-
ronment is then modelled as depicted in Fig. 4, where cp represents the current
probability. With the probability of currents cp, the water visibility decreases
by 1, while it stays the same or increases by 1 with probability (1-cp)/2. If the
water visibility is already at minimum visibility, the water visibility stays the
same with probability (14¢p)/2 and, at maximum visibility, it stays the same
with probability (1-cp).

The Implementation of the Environment in ProFeat. The environment is mod-
elled in a separate environment module, see Listing 1.4. The variable water visib
in Line 2 reflects the current water visibility and is initialised parametrically,
depending on the minimum and maximum visibility, see Line 3. The function
round() is pre-implemented in the PRISM language and rounds to the nearest
integer. The environment module synchronises with the AUV module via the
label of its action, step. Since the guard of the only action in the environment
module is true, the environment executes a transition every time the AUV mod-
ule does. By decoupling the environment module from the AUV module, we
obtain a separation of concerns which makes it easier to change the model of the
environment if needed.

3.4 The Managing Subsystem

The Behavioural Model of the Managing Subsystem. As described in Sec. 2,
the managing subsystem of the AUV implements the AUV’s adaptation logic,
which corresponds to activating and deactivating the features of the managed
subsystem. The behaviour of the managing subsystem of the AUV is displayed

11

12 J. Pakler et al.

(wv poor)
Vv (wv average) search

v (wv good)
| low 2

search
altitude
low

(wv poor)
Vv (wv average) (wv poor)
v (wv good) v (wv average)

I low v (wv good)

s = lost pipe
| low

| search

(wv average)
v (wv good)

= I low A follow

s = found
I low A follow

s = found

I low A follow
search follow search
altitude average altitude
ediu ¢ b high /wv good
v (wv good) 9 | h%gh
(wv average) /
v (wv good) wv good
| med | high

Fig.5: The managing subsystem of the AUV

in Fig. 5. The grey area of the figure includes the transitions that can be taken
during the search for the pipeline, and the white area the transitions once the
pipeline has been found. Each transition contains a guard, written in black, and
an action, written in grey after a vertical bar.

During the search for the pipeline, i.e., in the grey area of Fig. 5, the manag-
ing subsystem activates and deactivates the features low, med and high according
to the current water visibility as described in Sec. 2. The activated feature is
displayed in grey on the transition, implicitly the other two subfeatures of navi-
gation are deactivated. Note that the transitions in the grey area implicitly carry
the guard s /= found, i.e., the AUV is not in the state found, because they rep-
resent the transitions during the search for the pipeline. This guard was omitted
for better readability.

Once the pipeline has been found, i.e., the managed subsystem is in the
state found, one of the transitions in the white area, guarded by s = found, is
taken. These transitions include the action of activating low and follow, and thus
deactivating med, high and search. When the AUV loses the pipeline, i.e., it is
in the state lost pipe, the managing subsystem activates search and deactivates
follow. Since the AUV is following the pipeline at a low altitude, the AUV will
start searching at a low altitude.

Formal Modelling and Analysis of a Self-Adaptive Robotic System 13

1 formula med visib = (max_visib—min _visib) /3;

2 formula high visib = 2%(max_visib—min _visib)/3;

3

4 controller

5 // Change altitude depending on water visibility

6 [step] (s!=found) & active(search) & water visib < med visib
7 —> activate(low) & deactivate(high) & deactivate (med);
8 [step] (s!=found) & active(search)

9 & med visib <= water visib & water visib < high_visib
10 —> activate(low) & deactivate(med) & deactivate(high);

11 [step] (s!=found) & active(search)

12 & med visib <= water visib & water visib < high visib
13 —> activate(med) & deactivate(low) & deactivate(high);

14 // .. omitted code ..

15
16 // Switch task from "search" to "follow"
17 [step] (s=found) & active(search)

18 —> deactivate (search) & activate(follow) & activate (low)
19 & deactivate(med) & deactivate (high);

20

21 // Switch task from "follow" to "search”

22 [step] (s=lost pipe) & active(follow)

23 —> deactivate(follow) & activate(search);

24
25 // Enable transitions when following the pipeline
26 [step] (s!=lost pipe) & active(follow) —> true;
27 endcontroller

Listing 1.5: An excerpt of the ProFeat feature controller of the case study

The Implementation of the Managing Subsystem in ProFeat. The managing sub-
system of the AUV is implemented as a feature controller in ProFeat. The fea-
ture controller can also use commands to change the state of the system. Such
commands are similar to those used in a module; they are mostly of the form
[action] guard —> update. Each command can have an optional label action to
synchronise with the modules, and its guard is a predicate of global and local
variables of the model and can also contain the function active. In contrast to
the commands in the modules, the feature controller can activate and deactivate
features in the update of a command. Several features can be activated and de-
activated at the same time, but this cannot be done probabilistically and the
resulting feature configuration has to adhere to the feature model.

In the pipeline inspection case study, subfeatures of navigation (i.e., the differ-
ent altitudes at which the AUV can operate) and subfeatures of pipeline _inspection

(i.e., the tasks the robot has to fulfil) can be switched by the feature controller
during runtime, see Listing 1.5.

When the feature search is active and the pipeline has not been found yet, the
feature controller activates and deactivates the altitudes non-deterministically,
but according to the current water visibility, as described before. The minimum
and maximum water visibility can be set by the user during design time and
influence the altitudes associated with the features low, med and high; i.e., it
influences when the feature controller is able to switch features. To reflect this,
the variables med visib and high visib are declared as in Lines 1-2 (a formula in
PRISM and ProFeat can be used to assign an identifier to an expression). If the
water visibility is less than med visib, the feature controller activates the feature
low (see Lines 6-7) because the AUV cannot perceive the seabed from a higher

14 J. Pakler et al.

altitude. If the water visibility is between med visib and high visib, it chooses
non-deterministically between low and med (see Lines 8-13), whereas it chooses
non-deterministically between all three altitudes if the water visibility is above
high _visib. Note that it is also possible to deactivate or activate a feature if it is
already inactive or active, respectively.

When the pipeline is found, i.e., the AUV is in state found, the feature con-
troller activates the feature follow and deactivates search, see Lines 17-19. Since
the AUV should be at a low altitude while following the pipeline, the feature
controller also deactivates the features high and med and activates low. If the AUV
lost the pipeline, i.e., it is in state lost pipe, the feature controller deactivates
follow and activates search to start the search for the pipeline, see Lines 22-23.

The feature controller synchronises with the auv and environment modules via
action label step. Since all transitions of the modules and feature controller have
the same action label, they can only execute a transition if there is a transition
with a guard evaluating to true in both modules and in the feature controller.
Thus, the feature controller needs to include a transition doing nothing if the
feature follow is active and the AUV is not in state lost pipe, see Line 26.

4 Analysis

ProFeat automatically converts models to PRISM for probabilistic model check-
ing. To analyse a PRISM model, properties can be specified in the PRISM prop-
erty specification language, which includes several probabilistic temporal logics
like PCTL, CSL and probabilistic LTL. For family-based analysis, ProFeat ex-
tends this specification language to include, e.g., the function active. (ProFeat
constructs have to be specified in ${...} to be correctly translated to the PRISM
property specification language.)

The operators used for analysis in this paper are P and R, which reason
about probabilities of events and about expected rewards, respectively. Since we
use Markov decision processes which involve non-determinism, these operators
must be further specified to ask for the minimum or maximum probability and
expected cost, respectively, for all possible resolutions of non-determinism.

The analysis of the model considered two different aspects. First, the rewards
energy and time were used to compute some safety guarantees that can be used
for the deployment of the AUV. Second, safety properties with regard to unsafe
states were analysed. Note that it is not necessary to analyse whether the model
satisfies the constraints of the feature model because this is automatically en-
sured by ProFeat. Of course, in addition to that, more complex analysis can be
done. In this paper, we just give a taste of possible analyses to demonstrate the
feasibility of our approach.

We analysed two different scenarios; the values used in these scenarios are
reported in Table 1. Scenario 1 is in the North Sea, where the minimum and max-
imum water visibility (in 0.5 meter units) are relatively low and the probability
of currents that decrease the water visibility is relatively high. In this case, only
10 meters of the pipeline have to be inspected. Scenario 2 is in the Caribbean

Formal Modelling and Analysis of a Self-Adaptive Robotic System

Table 1: Two different scenarios used for analysis

Scenario min_visibmax_visib|current prob|inspect
1 (North Sea) 1 10 0.6 10
2 (Caribbean Sea) 3 20 0.3 30

1 R{"energy"}min=? [F ${s=done}];
2 R{"energy"}max=? [F ${s=done}];

Listing 1.6: Analysis using the rewards

Sea, with a higher minimum and maximum visibility and a lower probability
of currents compared to the North Sea, and 30 meters of pipeline that have to
be inspected. For both scenarios, we first analysed whether it is always possible
to finish the pipeline inspection, i.e., reach the state done. This could be con-
firmed since the minimum probability for all resolutions of non-determinism of
eventually reaching the state done is 1.0.

Reward Properties. The rewards time and Table 2: Expected min- /maximum
energy were used to analyse some safety rewards for completing the mission
properties related to the execution of the for both scenarios

AUYV. Since the AUV only has a limited

amount of battery, an estimation of the Energy Time
energy needed to complete the mission is |Scenario| min| max |min| max
required. This ensures that the AUV is 1 24.78| 44.39 |23.66] 32.40
only deployed for the mission if it has suf- 2 59.08]4723.29[55.54|1315.58

ficient battery to complete it. The commands in Listing 1.6 were used to com-
pute the minimum and maximum expected energy (for all resolutions of non-
determinism) to complete the mission. Since the model includes two reward
structures, the name of the reward has to be specified in {".."} after the R
operator. Similarly, the minimum and maximum expected time to complete the
mission was analysed to give the system operators an estimate of how long the
mission might take. The results for Scenarios 1 and 2 are reported in Table 2.
It can be seen that the variation of the parameters in the two scenarios strongly
influences the expected energy and time of the mission. It is interesting to see
that the difference between minimum and maximum expected energy and min-
imum and maximum expected time for Scenario 2 are significantly bigger than
for Scenario 1. In particular, the maximum expected energy and time are much
higher for Scenario 2 than for Scenario 1. Further analysis in this direction could
investigate trade-offs between different scenarios and a better understanding of
the influence in the results for the different parameters.

Unsafe States. Thruster failures, although we assume that they can be repaired,
pose a threat to the AUV. Unforeseen events like strong currents might cause
the AUV to be damaged, e.g., by causing it to crash into a rock. To analyse this,
the state space was partitioned into two parts, safe and unsafe states. This was
achieved by using labels, see Lines 1-4 of Listing 1.7.

15

o B A

16 J. Pakler et al.

label "unsafe" = s=recover high | s=recover med | s=recover low
| s=recover following;

label "safe" = s=start task | s=lost pipe | s=start search | s=search high
| s=search_med | s=search_low | s=found | s=following |s=done;

Pmin=? [G "safe"];

filter (min, Pmin=? [F<=k "safe"], "unsafe");

filter (max, Pmax=? [F<=k "unsafe"], "safe");

filter (avg, Pmax=? [F<=k "unsafe"], "safe");

Listing 1.7: Analysis of unsafe states

These labels were then used to calculate the probability of several properties.
The minimum probability of only taking safe states (see Line 5) was shown to
be 0.65 for Scenario 1 and 0.32 for Scenario 2. As expected, the probability
of only taking safe states is higher for a shorter pipeline inspection. It is also
important to ensure that a safe state will be reached from an unsafe state after
a short period of time, as, e.g., in Line 6, where k is an integer. For every unsafe
state, the minimum probability (for all possible resolutions of non-determinism)
of reaching a safe state within k time steps is calculated. Then the minimum
over all these probabilities is taken. Thus, it gives the minimum probability of
reaching a safe state from an unsafe state in k time steps. PRISM experiments
allow analysing this property automatically for a specified range of k. Using
PRISM experiments, it was shown that in both scenarios the probability of
reaching a safe state from an unsafe state is above 0.95 after 5 time steps and
above 0.99 after 7 time steps.

The probability of going to an unsafe state from a safe state should be as small
as possible. This is analysed with the properties in Lines 7-8. First, the maximum
probability (over all possible resolutions of non-determinism) for reaching an
unsafe state from a safe state is calculated, and then the maximum (or average)
is taken. Again, PRISM experiments were used to analyse this, the plotted graphs
for Scenarios 1 and 2 are displayed in Fig. 6. They show that the probability of
reaching an unsafe state from a safe state increases with the number of considered
time steps. Furthermore, the probability of reaching an unsafe state from a safe
state stabilises much later and at a higher value in Scenario 2 than in Scenario 1.
While the maximum probability of reaching an unsafe state from a safe state
stabilises after about 42 time steps at ~0.37 in Scenario 1, it stabilises after
about 76 time steps at ~0.69 in Scenario 2. Similar differences can be observed
for the average probability.

5 Related Work

The analysis of behavioural requirements is often crucial when developing an SAS
that operates in the uncertainty of a physical environment. These requirements
often use quantitative metrics that change during runtime. Both rule-based and
goal-based adaptation logics can be used to enable the SAS to meet its be-
havioural requirements. Many practitioners rely on formal methods to provide
evidence for the system’s compliance with such requirements [26,20], but many
different methods are used [15,1]. We consider related work for family-based
modelling and analysis approaches.

Formal Modelling and Analysis of a Self-Adaptive Robotic System

0.70
0.65
0.60
0.55
0.50
0.45

% 0.40

Zoas3s
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 &0
k

— Scenariol filter(max, Pmax=? [F<=k "unsafe”], “safe”) — Scenariol filter(avg, Pmax=7 [F<=k “unsafe’], "safe”)
Scenario2 filter{max, Pmax=7 [F<=k "unsafe’], "safe) *** Scenario2 filter(avg, Pmax=7 [F<=k "unsafe’], "safe’)

Fig. 6: Results for reaching an unsafe state from a safe state in k time steps

Family-based model checking of transition systems with features allows to
model check properties of multiple behavioural models in a single run, following
the seminal work by Classen et al. [10]. Such model-checking tools can be encoded
in well-known classical model checkers like SPIN [17], NuSMV [9] or PRISM [19].
In this paper, we used ProFeat [8], a software tool built on top of PRISM for the
analysis of feature-aware probabilistic models. Alternatively, QFLan [24] offers
probabilistic simulations to yield statistical approximations, thus trading 100%
precision for scalability. In [6,7], configurable systems are modelled and analysed
as role-based systems, an extension of feature-oriented systems, with a focus on
feature interaction; in contrast to our paper, they do not consider a separation
between managed and managing subsystem.

Software product lines (SPLs) can be seen as families of (software product)
models where feature selection yields variations in the products (configurations).
SPLs have previously been proposed to model static variability, i.e., variability
during design time, for robotic systems [12]. In [3] it is argued that most of the
costs for robotic systems come from non-reusable software. A robotic system
mostly contains software tailored to the specific application and embodiment of
the robot, and often even software libraries for common robotic functionalities
are not reusable. Therefore, they must be re-developed all the time. Thus, a new
approach for the development of robotic software using SPLs is proposed in [3].

Finally, dynamic SPLs (DSPLs) [13,16] have been proposed to manage vari-
ability during runtime for self-adaptive robots [4]. There are several approaches
that model, but do not analyse, SASs as DSPLs, e.g., [2,11,14]. For robotics,
the authors in [12] propose the toolchain HyperFlex to model robotic systems
as SPLs; it supports the design and reuse of reference architectures for robotic
systems and was extended with the Robot Perception Specification Language for
robotic perception systems in [5]. It allows to represent variability at different
abstraction levels, and feature models from different parts of the system can be
composed in several different ways. However, contrary to the approach used in
this paper, HyperFlex only considers design time variability. Furthermore, it is
only used for modelling robotic systems, not for analysing them.

17

18 J. Pakler et al.

6 Discussion and Future Work

In this paper, we used a feature model together with a probabilistic, feature
guarded transition system to model the managed subystem of an AUV used for
pipeline inspection, and a controller switching between these features to model
the managing subsystem of the AUV. This allowed modelling the managed sub-
system of the AUV as a family of systems, where each family member corre-
sponds to a valid feature configuration of the AUV. The managing subsystem
could then be considered as a control layer capable of dynamically switching
between these feature configurations depending on both environmental and in-
ternal conditions. The tool ProFeat was used for probabilistic family-based model
checking, analysing reward and safety properties.

ProFeat allowed to model the two different layers of abstraction of an SAS,
the managed and managing subsystem, which also makes it easier to understand
the model and the adaptation logic. Furthermore, it makes analysing all configu-
rations of the managed subsystem more efficient by enabling family-based model
checking. However, it remains to be seen how this scales with larger models. We
are unaware of other work that exploits the family-based modelling and analysis
capabilities of ProFeat for SASs, but we believe this is a natural approach.

The case study in this paper is of course a highly simplified model of an AUV
and its mission. However, we showed that it is feasible to model and analyse a
two-layered self-adaptive cyber-physical system as a family of configurations with
a controller switching between them. To analyse a real AUV, both the models
of the AUV and the environment, and in particular the probabilities, have to be
adapted to the robot and the environment with the help of real data and domain
experts. We plan to investigate this together with an industrial partner of the
MSCA network REMARO (Reliable AI for Marine Robotics).

In the future, we plan to investigate which kind of models can be modelled
and analysed as we did with the case study to try to find a general methodology
for modelling and analysing SASs as family-based systems. Furthermore, we
plan to find optimal strategies for the managing subsystem, i.e., the controller
switching between features, e.g., to minimise energy consumption. We would
also like to find patterns between choosing a certain feature configuration and
the effect of this on quality criteria of the system. Finding such control patterns
could help to improve the adaptation logic of the managing subsystem to be
more resilient towards faults.

Acknowledgments. We would like to thank Clemens Dubslaff for explaining Pro-
Feat and its usage to us, and for answering numerous questions. Furthermore, we
would like to thank Rudolf Schlatte for his help in preparing the artifact for the final
artifact submission. This work was supported by the European Union’s Horizon 2020
Framework Programme through the MSCA network REMARO (Grant Agreement No
956200), by the Italian project NODES (which has received funding from the MUR —
M4C2 1.5 of PNRR with grant agreement no. ECS00000036) and by the Italian MUR
PRIN 2020TL3X8X project T-LADIES (Typeful Language Adaptation for Dynamic,
Interacting and Evolving Systems).

Formal Modelling and Analysis of a Self-Adaptive Robotic System

References

10.

11.

12.

Araujo, H., Mousavi, M.R., Varshosaz, M.: Testing, Validation, and Verifica-
tion of Robotic and Autonomous Systems: A Systematic Review. ACM Trans-
actions on Software Engineering and Methodology 32(2), 51:1-51:61 (2023).
https://doi.org/10.1145/3542945

. Bencomo, N., Sawyer, P., Blair, G.S., Grace, P.: Dynamically Adaptive Systems

are Product Lines too: Using Model-Driven Techniques to Capture Dynamic Vari-
ability of Adaptive Systems. In: Thiel, S., Pohl, K. (eds.) Proceedings of the 12th
International Conference on Software Product Lines (SPLC 2008). vol. 2, pp. 23—
32. Lero, University of Limerick (2008)

Brugali, D.: Software Product Line Engineering for Robotics. In: Cavalcanti, A.,
Dongol, B., Hierons, R., Timmis, J., Woodcock, J. (eds.) Software Engineering for
Robotics, pp. 1-28. Springer (2021). https://doi.org/10.1007/978-3-030-66494-7 1
Brugali, D., Capilla, R., Hinchey, M.: Dynamic Variability Meets Robotics. IEEE
Computer 48(12), 94-97 (December 2015). https://doi.org/10.1109/MC.2015.354

. Brugali, D., Hochgeschwender, N.. Managing the Functional Variability of

Robotic Perception Systems. In: Proceedings of the 1st International Con-
ference on Robotic Computing (IRC 2017). pp. 277-283. IEEE (2017).
https://doi.org/10.1109/IRC.2017.20

Chrszon, P., Baier, C., Dubslaff, C., Klipppelholz, S.: From Features
to Roles. In: Proceedings of the 24th International Systems and Soft-
ware Product Line Conference (SPLC 2020). pp. 19:1-19:11. ACM (2020).
https://doi.org/10.1145/3382025.3414962

Chrszon, P., Baier, C., Dubslaff, C., Kliippelholz, S.: Interaction detection in con-
figurable systems — A formal approach featuring roles. Journal of Systems and
Software 196 (2023). https://doi.org/10.1016/j.jss.2022.111556

Chrszon, P., Dubslaff, C., Kliippelholz, S., Baier, C.: ProFeat: Feature-Oriented
Engineering for Family-Based Probabilistic Model Checking. Formal Aspects of
Computing 30(1), 45-75 (2018). https://doi.org/10.1007/s00165-017-0432-4
Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) Proceedings of the 14th Interna-
tional Conference on Computer Aided Verification (CAV 2002). LNCS, vol. 2404,
pp- 359-364. Springer (2002). https://doi.org/10.1007/3-540-45657-0 29

Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model
Checking Lots of Systems: Efficient Verification of Temporal Properties in
Software Product Lines. In: Proceedings of the 32nd International Con-
ference on Software Engineering (ICSE 2010). pp. 335-344. ACM (2010).
https://doi.org/10.1145/1806799.1806850

Dhungana, D., Griinbacher, P., Rabiser, R.: Domain-Specific Adaptations of Prod-
uct Line Variability Modeling. In: Ralyté, J., Brinkkemper, S., Henderson-Sellers,
B. (eds.) Proceedings of the IFIP WG 8.1 Working Conference on Situational
Method Engineering: Fundamentals and Experiences (ME 2007). IFIP, vol. 244,
pp. 238-251. Springer (2007). https://doi.org/10.1007/978-0-387-73947-2 19
Gherardi, L., Brugali, D.: Modeling and Reusing Robotic Software Architec-
tures: the HyperFlex Toolchain. In: Proceedings of the International Confer-
ence on Robotics and Automation (ICRA 2014). pp. 6414-6420. IEEE (2014).
https://doi.org/10.1109/ICRA.2014.6907806

19

https://doi.org/10.1145/3542945
https://doi.org/10.1007/978-3-030-66494-7_1
https://doi.org/10.1109/MC.2015.354
https://doi.org/10.1109/IRC.2017.20
https://doi.org/10.1145/3382025.3414962
https://doi.org/10.1016/j.jss.2022.111556
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1007/978-0-387-73947-2_19
https://doi.org/10.1109/ICRA.2014.6907806

20

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. Pakler et al.

Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic Software Product
Lines. In: Capilla, R., Bosch, J., Kang, K.C. (eds.) Systems and Software Variabil-
ity Management: Concepts, Tools and Experiences, pp. 253-260. Springer (2013).
https://doi.org/10.1007/978-3-642-36583-6 16

Hallsteinsen, S., Stav, E., Solberg, A., Floch, J.: Using Product Line Tech-
niques to Build Adaptive Systems. In: Proceedings of the 10th International
Software Product Line Conference (SPLC 2006). pp. 141-150. IEEE (2006).
https://doi.org/10.1109/SPLINE.2006.1691586

Hezavehi, S.M., Weyns, D., Avgeriou, P., Calinescu, R., Mirandola, R., Perez-
Palacin, D.: Uncertainty in Self-adaptive Systems: A Research Community Per-
spective. ACM Transactions on Autonomous and Adaptive Systems 15(4), 10:1-
10:36 (2021). https://doi.org/10.1145/3487921

Hinchey, M., Park, S., Schmid, K.: Building Dynamic Software
Product Lines. IEEE Computer 45(10), 22-26 (October 2012).
https://doi.org/10.1109/MC.2012.332

Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley (2004)

Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer
36(1), 41-50 (January 2003). https://doi.org/10.1109/MC.2003.1160055
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings of the
23rd International Conference on Computer Aided Verification (CAV 2011). LNCS,
vol. 6806, pp. 585-591. Springer (2011). https://doi.org/10.1007/978-3-642-22110-
1 47

Lackcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal Specification
and Verification of Autonomous Robotic Systems: A Survey. ACM Computing
Surveys 52(5), 100:1-100:41 (2019). https://doi.org/10.1145/3342355

Péakler, J., ter Beek, M.H., Damiani, F., Tapia Tarifa, S.L., Johnsen, E.B.: For-
mal Modelling and Analysis of a Self-Adaptive Robotic System (Artifact) (August
2023). https://doi.org/10.5281 /zenodo.8275533

Rezende Silva, G., Péafler, J., Zwanepol, J., Alberts, E., Tapia Tarifa,
S.L., Gerostathopoulos, I., Johnsen, E.B., Hernandez Corbato, C.: SUAVE:
An Exemplar for Self-Adaptive Underwater Vehicles. In: Proceedings of
the 18th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS 2023). pp. 181-187. IEEE (2023).
https://doi.org/10.1109/SEAMS59076.2023.00031

Thiim, T., Apel, S., Késtner, C., Schaefer, 1., Saake, G.: A Classification and Survey
of Analysis Strategies for Software Product Lines. ACM Computing Surveys 47(1),
6:1-6:45 (2014). https://doi.org/10.1145/2580950

Vandin, A., ter Beek, M.H., Legay, A., Lluch Lafuente, A.: QFLan: A Tool for the
Quantitative Analysis of Highly Reconfigurable Systems. In: Havelund, K., Peleska,
J., Roscoe, B., de Vink, E. (eds.) Proceedings of the 22nd International Symposium
on Formal Methods (FM 2018). LNCS, vol. 10951, pp. 329-337. Springer (2018).
https://doi.org/10.1007/978-3-319-95582-7 19

Weyns, D.: An Introduction to Self-Adaptive Systems: A Contemporary Software
Engineering Perspective. John Wiley & Sons (2020)

Weyns, D.; Iftikhar, M.U., de la Iglesia, D.G., Ahmad, T.: A Survey of Formal
Methods in Self-Adaptive Systems. In: Proceedings of the 5th International C*
Conference on Computer Science and Software Engineering (C3S2E 2012). pp.
67-79. ACM (2012). https://doi.org/10.1145,/2347583.2347592

https://doi.org/10.1007/978-3-642-36583-6_16
https://doi.org/10.1109/SPLINE.2006.1691586
https://doi.org/10.1145/3487921
https://doi.org/10.1109/MC.2012.332
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1145/3342355
https://doi.org/10.5281/zenodo.8275533
https://doi.org/10.1109/SEAMS59076.2023.00031
https://doi.org/10.1145/2580950
https://doi.org/10.1007/978-3-319-95582-7_19
https://doi.org/10.1145/2347583.2347592

	Formal Modelling and Analysis of a Self-Adaptive Robotic System

