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Abstract. In this paper, we extend the KLM approach to defeasible
reasoning beyond the propositional setting. We do so by making it appli-
cable to a restricted version of first-order logic. We describe defeasibility
for this logic using a set of rationality postulates, provide a suitable and
intuitive semantics for it, and present a representation result character-
ising the semantic description of defeasibility in terms of our postulates.
An advantage of our semantics is that it is sufficiently general to be ap-
plicable to other restricted versions of first-order logic as well. Based on
this theoretical core, we then propose a version of defeasible entailment
that is inspired by the well-known notion of Rational Closure as it is de-
fined for defeasible propositional logic and defeasible description logics.
We show that this form of defeasible entailment is rational in the sense
that it adheres to the full set of rationality postulates.
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1 Introduction

The past 15 years have seen a flurry of activity to introduce defeasible-reasoning
capabilities into languages that are more expressive than that of propositional
logic [5,6,7,8,11,12,13,14,17,18,19,24,25,35]. Most of the focus has been on defea-
sibility for description logics (DLs), with much of it devoted to versions of the
so-called KLM approach to defeasible reasoning initially advocated for proposi-
tional logic by Kraus et al. [30]. In DLs, knowledge is expressed as class inclusions
of the form C ⊑ D, with the intended meaning that every instance of C is also an
instance of D. Defeasible DLs allow, in addition, for defeasible inclusions of the
form C⊏∼D with the intended meaning that instances of C are usually instances
of D. For example, Student ⊏∼ ¬∃pays.Tax (students usually don’t pay tax) is a
defeasible version of Student ⊑ ¬∃pays.Tax (students don’t pay tax).

In this paper, we focus instead on a restricted version of first-order logic
(RFOL), for which a semantics in terms of Herbrand interpretations suffices.
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We provide the theoretical foundations for an extension of RFOL modelling de-
feasible reasoning (DRFOL). However, the availability of non-unary predicates
means that the definition of an appropriate semantics for DRFOL is a non-trivial
exercise. This is because the intuition underlying KLM-style defeasibility gener-
ally depends on the underlying language. For propositional logics the intuition
dictates a notion of typicality over possible worlds. The statement “birds usually
fly”, formalised as bird |∼ fly, says that in the most typical worlds in which bird is
true, fly is also true. In contrast, defeasibility in DLs invokes a form of typicality
over individuals. Thus Student ⊏∼ ¬∃pays.Tax states that of all those individuals
that are students, the most typical ones don’t pay taxes. To see the problem
in extending either of these intuitions to the case with non-unary predicates,
consider the following version of an example by Delgrande [21].

Example 1. The following DRFOL knowledge base states that humans don’t feed
wild animals, that elephants are usually wild animals, that keepers are usually
human, and that keepers usually feed elephants, but that Fred the keeper usually
does not feed elephants (the connective ; refers to defeasible implication and
variables are implicitly quantified).

K =



wild_animal(x) ∧ human(y) → ¬feeds(y, x),
elephant(x) ; wild_animal(x),

keeper(x) ; human(x),

elephant(x) ∧ keeper(y) ; feeds(y, x),

elephant(x) ∧ keeper(fred) ; ¬feeds(fred, x)


For any appropriate semantics, K above should be satisfiable (given a suit-

able notion of satisfiability). Then it soon becomes clear that the propositional
approach cannot achieve this. To see why, note that applying the propositional
intuition to the example would result in elephant(x) ∧ keeper(y) ; feeds(y, x),
meaning that in the most typical worlds (Herbrand interpretations in this case)
all keepers feed all elephants. This is in conflict with elephant(x)∧keeper(fred) ;
¬feeds(fred, x), which states that in the most typical Herbrand interpretations,
keeper Fred does not feed any elephants. For any reasonable definition of satis-
fiability, this would render the knowledge base unsatisfiable.

The DL-based intuition of object typicality is also problematic. Under this
intuition, the statement elephant(x) ; wild_animal(x) would mean that the most
typical elephants are wild animals. Similarly, keeper(x) ; human(x) would mean
that the most typical keepers are human. Combined with the first statement
in K, it would then follow that the most typical keepers (being humans) do not
feed the most typical elephants (being wild animals). On the other hand, the
fourth statement in K explicitly states that the most typical keepers feed the
most typical elephants, from which we obtain the counter-intuitive conclusion
that typical elephants and typical keepers cannot exist simultaneously. Some
reflection on this example should be sufficient to indicate that it represents a
genuine limitation of the standard propositional and DL approaches to defeasi-
bility when applied to FOL.
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In this paper, we resolve this matter with a semantics that is in line with
the propositional intuition of a typicality ordering over worlds, but also includes
aspects of the DL intuition of typicality of individuals. We achieve the latter
by enriching our semantics with typicality objects, which are used to represent
typical individuals. Thus, elephant(x) ∧ keeper(y) ; feeds(y, x) means that in
the most typical enriched Herbrand interpretations, all typical keepers feed all
typical elephants, with the understanding that there may be exceptional keepers
that don’t feed some elephants. Note that the term typical is used here in two
different, but related, ways.

Our central theoretical result is a representation result (Theorems 1 and
2), showing that defeasible implication defined in this way can be characterised
w.r.t. a set of KLM-style rationality postulates adapted for DRFOL. Another
important consequence of our representation result is that it provides the theo-
retical foundation for the definition of various forms of defeasible entailment for
DRFOL. We present one such form of defeasible entailment and show that it
can be viewed as the DRFOL analogue of Rational Closure as originally defined
for the propositional case [32].

In the rest of the paper, we start by providing a brief introduction to RFOL
and to KLM-style defeasible reasoning (Section 2). In Section 3, we introduce
DRFOL, describe an abstract notion of satisfaction w.r.t. a set of KLM-style pos-
tulates, provide a suitable semantics, and prove a representation result, showing
that the KLM-style postulates characterise the semantic construction. In Sec-
tion 4, we present a form of defeasible entailment for DRFOL that can be viewed
as the DRFOL equivalent of the well-known notion of Rational Closure. Before
concluding the paper, we discuss related work in Section 5. Proofs can be found
in an online appendix: https://tinyurl.com/yckbzp3p.

2 Background

The language of RFOL builds on three disjoint sets of symbols: a finite set of
constants const, a countably infinite set of variable symbols var, and a finite set
of predicate symbols pred. It has no function symbols. A term is an element of
const∪var. Each predicate symbol α ∈ pred has an arity, denoted ar(α) ∈ N,
representing the number of terms it takes as arguments. We assume the existence
of predicate symbols ⊤ and ⊥, which have arity 0. An atom is an expression of
the form α(t1, . . . , tar(α)), where α ∈ pred and each ti is a term. Observe that
⊤ and ⊥ are atoms as well.

A compound is a Boolean combination of atoms (i.e., built from atoms and
the logical connectives ¬, ∧, and ∨). An implication has the form A(x⃗) → B(y⃗),
where A(x⃗) and B(y⃗) are compounds, and where the terms occurring in x⃗ and y⃗
may overlap. A compound (resp. implication) is ground if all the terms contained
in it are constants; otherwise it is open. Ground atoms are also known as facts.

The only formulas we permit are compounds and implications and these
are understood to be implicitly universally quantified. We shall also adopt the
following conventions. Constant symbols and variables are written in lowercase,

https://tinyurl.com/yckbzp3p
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with early letters used for constants (a, b, . . . ) and later letters for variables
(x, y, . . . ). Compounds are denoted by uppercase letters (A,B, . . . ). Tuples of
variables or constants are written with overbars, such as x⃗ and a⃗ resp., and A(x⃗)
and B(⃗a) are used as shorthand for compounds over their respective tuples of
terms. We use lowercase early Greek letter (α, β, . . . ) to denote RFOL formulas,
sometimes with tuples of terms (α(x⃗)). The set of all formulas (compounds and
implications) is denoted by L. A knowledge base K is a finite subset of L.

The Herbrand universe U is the set const. The Herbrand base of U, denoted
B, is the set of facts defined over U. A Herbrand interpretation is a subset H ⊆ B.
The set of Herbrand interpretations is denoted by H . Substitutions are defined
to be functions φ : var → var∪const assigning a term to each variable symbol.
Variable substitutions are substitutions that assign only variables, and ground
substitutions are substitutions that assign only constants. The application of a
substitution φ to a compound A(x⃗) is denoted A(φ(x⃗)).

RFOL knowledge bases are interpreted by Herbrand interpretations H as
follows: (1) if A(⃗a) is a ground atom, then H ⊩ A(⃗a) iff A(⃗a) ∈ H; (2) if A(⃗a)
and B(⃗b) are ground compounds (where a⃗ and b⃗ may overlap), then H ⊩ A(⃗a)

and H ⊩ A(⃗a) → B(⃗b) as usual for Boolean connectives; (3) if A(x⃗) is an open
compound, then H ⊩ A(x⃗) iff H ⊩ A(φ(x⃗)) for every ground substitution φ;
(4) if A(x⃗) → B(y⃗) is an open implication (where x⃗ and y⃗ may overlap), then
H ⊩ A(x⃗) → B(y⃗) iff H ⊩ A(φ(x⃗)) → B(φ(y⃗)) for every ground substitution
φ, and (5) if K is a knowledge base, then H ⊩ K iff H ⊩ α for every α ∈ K.
A Herbrand interpretation satisfying a knowledge base K is a Herbrand model
of K.

Kraus et al. [30] originally defined |∼ as a consequence relation over a propo-
sitional language, with statements of the form α |∼ β to be interpreted as the
meta-statement “β is a defeasible consequence of α”. Subsequently, Lehmann
and Magidor [32] made a subtle shift in considering an object-level language
containing statements of the form α |∼ β, to be interpreted as the object-level
statement “α defeasibly implies β”, and with |∼ viewed as an object-level con-
nective. This view is captured by a set of rationality postulates, which have been
widely discussed in the literature. We do not repeat these rationality postulates
here, but note that Definition 3, our definition of rationality for DRFOL, the
defeasible version of RFOL, relies heavily on versions of the KLM rationality
postulates that are lifted to DRFOL (see Section 3).

A semantics for defeasible implications is provided by ranked interpretations
R, with R a function from U (the set of all valuations) to N∪{∞}, satisfying the
following convexity property : for every i ∈ N, if R(u) = i, then, for every j < i,
there is a u′ ∈ U for which R(u′) = j. R(v) indicates the degree of atypicality
of v. The valuations judged most typical are those with rank 0, while those with
infinite rank are judged so atypical as to be impossible. A defeasible statement
α |∼ β is satisfied in R (R ⊩ α |∼ β) if the models of α with the smallest finite
rank in R are all models of β. A classical statement α is satisfied in R (R ⊩ α)
if every valuation of finite rank satisfies α.
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Note that R ⊩ ¬α |∼ ⊥ iff all the models of ¬α have infinite rank, which is
equivalent by definition to R ⊩ α.

3 Defeasible restricted first-order logic

Defeasible Restricted First-Order Logic (DRFOL) extends the logic RFOL pre-
sented above with defeasible implications of the form A(x⃗) ; B(y⃗), where A(x⃗)
and B(y⃗) are compounds, and where x⃗ and y⃗ may overlap. The set of defeasible
implications is denoted L;, and a DRFOL knowledge base K is defined to be
a subset of L ∪ L;. Note that DRFOL knowledge bases may include (classical)
RFOL formulas.

As demonstrated in Example 1, defeasible implications are intended to model
properties that typically hold, but which may have exceptions. In this exam-
ple, for instance, elephant(x) ∧ keeper(fred) ; ¬feeds(fred, x), is an exception to
elephant(x)∧keeper(y) ; feeds(y, x). A DRFOL knowledge base containing these
statements ought to be satisfiable (for an appropriate notion of satisfaction).
The same goes for the DRFOL knowledge base {bird(x) ; fly(x), bird(tweety),
¬fly(tweety)}. To formalise these intuitions we first describe the intended be-
haviour of the defeasible connective ; and its interaction with (classical) RFOL
formulas in terms of a set of rationality postulates in the KLM style [30,32].
These postulates are expressed via an abstract notion of satisfaction:

Definition 1. A satisfaction set is a subset S ⊆ L ∪ L;.
We denote the classical part of a satisfaction set by SC = S ∩ L. The first

postulate we consider ensures S respects the classical notion of satisfaction when
restricted to classical formulas, where |= refers to classical entailment:

(Cla)
SC |= α

α ∈ S
Next, we consider the interaction between classical and defeasible implications:

(Sup)
A(x⃗) ∈ S

¬A(x⃗) ; ⊥ ∈ S
We now consider the core of the proposal for defining rational satisfaction sets,
the KLM rationality postulates, lifted to DRFOL, and expressed in terms of
satisfaction sets:

(Refl) A(x⃗) ; A(x⃗) ∈ S

(Rw)
A(x⃗) ; B(y⃗) ∈ S, |= B(y⃗) → C(z⃗)

A(x⃗) ; C(z⃗) ∈ S

(Lle)
A(x⃗) ; C(z⃗) ∈ S, |= A(x⃗) → B(y⃗), |= B(y⃗) → A(x⃗)

B(y⃗) ; C(z⃗) ∈ S

(And)
A(x⃗) ; B(y⃗) ∈ S, A(x⃗) ; C(z⃗) ∈ S

A(x⃗) ; B(y⃗) ∧ C(z⃗) ∈ S

(Or)
A(x⃗) ; C(z⃗) ∈ S, B(y⃗) ; C(z⃗) ∈ S

A(x⃗) ∨B(y⃗) ; C(z⃗) ∈ S

(Rm)
A(x⃗) ; ¬B(y⃗) ̸∈ S, A(x⃗) ∧B(y⃗) ; C(z⃗) ̸∈ S

A(x⃗) ; C(z⃗) ̸∈ S
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Next we consider instantiations of implications (applicable to all substitutions
of the right type):

(Dui)
A(x⃗) ; B(y⃗) ∈ S

A(φ(x⃗)) ; B(φ(y⃗)) ∈ S

To begin with, note that universal instantiation is not a desirable property
for defeasible implications. To see why, consider a satisfaction set S containing
elephant(x)∧keeper(y) ; feeds(y, x) and elephant(x)∧keeper(fred) ; ¬feeds(fred, x).
From (Dui) we have elephant(x) ∧ keeper(fred) ; feeds(fred, x) ∈ S, and hence
by (And) and (Rw) that elephant(x)∧ keeper(fred) ; ⊥ ∈ S as well, which is in
conflict with the intuition that exceptional cases (all elephants usually not being
fed by keeper Fred) should be permitted to exist alongside the general case (all
elephants usually being fed by all keepers).

Weaker forms of instantiation for defeasible implications are more reasonable.
Consider keeper(x) ; feeds(x, y), which states that keepers typically feed every-
thing. While we cannot conclude anything about instances of x, for the reasons
discussed above, we should at least be able to conclude things about instances
of y, since y only appears in the consequent of the implication. This motivates
the following postulate (again, applicable to all substitutions of the right type),
where ψ is a variable substitution and x⃗ ∩ y⃗ = ∅:

(Irr)
A(x⃗) ; B(x⃗, y⃗) ∈ S

A(x⃗) ; B(x⃗, ψ(y⃗)) ∈ S

There are some more subtle forms of defeasible instantiation that seem reason-
able as well. Consider the following relation defined over L:

Definition 2. A(x⃗) is at least as typical as B(y⃗) w.r.t. S, denoted A(x⃗) ≼S
B(y⃗), iff A(x⃗) ∨B(y⃗) ; ¬A(x⃗) ̸∈ S.

Intuitively, A(x⃗) ≼S B(y⃗) states that typical instances of A(x⃗) are at least as
typical as typical instances of B(y⃗). Note that for any variable substitution ψ,
a typical instance of A(ψ(x⃗)) is always an instance of A(x⃗). Thus the following
postulate should hold, where ψ is any variable substitution:

(Typ) A(x⃗) ≼S A(ψ(x⃗))

The last postulate we consider has to do with defeasibly impossible formulas.
Suppose A(φ(x⃗)) ; ⊥ ∈ S for all substitutions φ : var → var ∪ U. This states
that if all specialisations of A(x⃗) are defeasibly impossible, then we should expect
that there are in fact no instances of A(x⃗) at all:

(Imp)
A(φ(x⃗)) ; ⊥ ∈ S for all φ : var → var ∪ U

¬A(x⃗) ∈ S

This puts us in a position to define the central construction of the paper,
namely that of a rational satisfaction set.

Definition 3. S is rational iff it satisfies (Cla), (Sup), (Irr), (Typ), (Imp)
and (Refl)-(Rm).
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Rational satisfaction sets satisfy the following form of label invariance for
defeasible implications, where the variable substitution ψ is a permutation:

(Per)
A(x⃗) ; B(y⃗) ∈ S

A(ψ(x⃗)) ; B(ψ(y⃗)) ∈ S

Proposition 1. Let S be a rational satisfaction set. Then S satisfies (Per).

We define a semantics for defeasible implications by enriching the Herbrand
universe with a set T of typicality objects. Typicality objects represent individ-
uals that aren’t explicitly mentioned in a given knowledge base, and are used to
interpret defeasible implications in a ranking of (enriched) Herbrand interpreta-
tions.

Definition 4. Given a set of typicality objects T , the corresponding enriched
Herbrand universe is defined to be the set UT = U∪T . For each possible partition
of U into two sets Ut and Ue (both possibly empty), we have a typicality set
Typ = Ut ∪ T . An enriched Herbrand interpretation (or EHI) E is a Herbrand
interpretation defined over an enriched Herbrand universe UT , and associated
with TypE , one of the possible typicality sets in UT .

Using the typicality sets in enriched Herbrand interpretations we distinguish
between typical and atypical objects. That is, we assume that, given an interpre-
tation E , all the objects in TypE are typical objects, while the set Ue = UT \TypE
represents the exceptional ones.

Every EHI E restricts to a unique Herbrand interpretation HE over U, defined
by HE = E∩B. The set of EHIs over T is denoted by HT . To interpret defeasible
implications we make use of preference rankings over HT .

Definition 5. A ranked interpretation is a function rk : HT → Ω ∪ {∞},
for some linear poset Ω, satisfying the following properties, where we define
H rk

T = {E ∈ HT : rk(E) ̸= ∞} to be the set of possible EHIs w.r.t. rk, and
H rk

T (A(x⃗)) = {E ∈ H rk
T : E ⊩ A(φ(x⃗)) for some φ : var → TypE} to be the set

of possible EHIs w.r.t. rk satisfying some typical instance of A(x⃗) ∈ L:

1. if rk(E) = x < ∞, then for every y ≤ x there is some E ′ ∈ HT such that
rk(E ′) = y.

2. for all A(x⃗) ∈ L, H rk
T (A(x⃗)) is either empty or has an element that is an

rk-minimal model of A(x⃗). This is smoothness [30].

The set of ranked interpretations over T is denoted RT .

Definition 6. Let rk be a ranked interpretation. For all A(x⃗), B(y⃗) ∈ L:

1. rk ⊩ A(x⃗) iff E ⊩ A(x⃗) for all E ∈ H rk
T .

2. rk ⊩ A(x⃗) → B(y⃗) iff E ⊩ A(x⃗) → B(y⃗) for all E ∈ H rk
T .

3. rk ⊩ A(x⃗) ; B(y⃗) iff E ⊩ A(φ(x⃗)) → B(φ(y⃗)) for all E ∈ minrk H rk
T (A(x⃗))

and all φ : var → TypE .
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Thus, compounds and classical implications are true in a ranked interpreta-
tion rk if they are true in all possible EHIs w.r.t. rk, while a defeasible implication
is true in rk if its classical counterparts, with variables substituted by typicality
objects, are true in all minimal EHIs (possible w.r.t. rk) in which the antecedent
of the defeasible implication is true. A ranked interpretation in which a statement
is true is a ranked model of the statement.

Example 2. This is a (slightly modified) example proposed by Delgrande [21].
Let const = {clyde, fred}, var = {x, y}, and pred = {elephant, keeper, likes}.
The following DRFOL knowledge base states that elephants and keepers are
disjoint, that elephants usually like keepers, that elephants usually don’t like
keeper Fred, and that elephant Clyde usually does like Fred:
K = {elephant(x) → ¬keeper(x),
elephant(x) ∧ keeper(y) ; likes(x, y),
elephant(x) ∧ keeper(fred) ; ¬likes(x, fred),
elephant(clyde) ∧ keeper(fred) ; likes(clyde, fred)}.

Let T = {t1, . . .} be the set of typicality objects. For readability we abbreviate
elephant with e, keeper with k and likes with l.

Consider the EHIs E1 = {e(t1), k(t2), l(t1, t2), e(t2), e(clyde), k(fred), l(clyde, fred)},
E2 = {e(t1), k(t2), l(t1, t2), k(t3), l(t1, t3), e(clyde), k(fred), l(clyde, fred)}, and
E3 = {e(t1), k(t2), e(t2), e(clyde), k(fred), l(clyde, fred)}. In all these EHIs let
Ut = ∅ and consequently Typ = T . That is, in each of them the defeasible impli-
cations are evaluated only w.r.t. the typicality objects. Let rk1(E1) = rk1(E2) = 0,
rk1(E3) = 1, and rk1(E) = ∞ for all other EHIs. Then rk1 is a ranked model of the
knowledge base above. Let rk2(E1) = rk2(E3) = 0, rk2(E2) = 1, and rk2(E) = ∞
for all other EHIs. Then rk2 is not a ranked model of elephant(x) ∧ keeper(y) ;
likes(x, y), but is a ranked model of elephant(x) ∧ keeper(fred) ; ¬likes(x, fred)
and elephant(clyde) ∧ keeper(fred) ; likes(clyde, fred).

The main important technical result of the paper is a representation result,
comprising a soundness result (Theorem 1) and a completeness result (Theo-
rem 2), showing that ranked interpretations precisely characterise rational sat-
isfaction sets:

Definition 7. The satisfaction set Srk corresponding to a ranked interpretation
rk is: Srk = {α ∈ L ∪ L; : rk ⊩ α}.

First we show that all ranked interpretations generate rational satisfaction
sets:

Theorem 1. For every ranked interpretation rk, Srk is a rational satisfaction
set.

Then we show every rational set S can be realised as the satisfaction set
corresponding to some ranked interpretation:

Theorem 2. For every rational satisfaction set S there exists a ranked inter-
pretation rk, over an infinite set of T of typicality objects, such that S = Srk.



KLM-Style Defeasibility for Restricted First-Order Logic 9

4 Defeasible entailment

A central question that we have postponed until now is entailment. That is,
given a DRFOL knowledge base K, when are we justified in asserting that a
DRFOL formula α follows defeasibly from K? In this section, we provide one
answer to this question by defining a semantic version of Rational Closure [32]
for DRFOL. It is, by now, well-established that systems for defeasible reasoning
are amenable to multiple forms of entailment, and the work we present in this
section should therefore be viewed as the first step in a larger investigation into
defeasible entailment.

In this section we consider the question of defeasible entailment for DRFOL
and define a semantic version of Rational Closure [32] for DRFOL. Due to the
so-called drowning effect [4], it is considered inferentially too weak for some appli-
cation domains. Despite that, it is a semantic construction that can be extended
to obtain other interesting entailment relations [31,19,16,23]. It has gained atten-
tion in the framework of DLs [18,15,25,6]. An equivalent semantic construction,
System Z [34], has been considered for unary first-order logic [28,2,3]. Several
equivalent definitions of Rational Closure can be found in the literature. Here
we refer to the approach due to Booth and Paris [9] and Giordano et al. [25].

Let a knowledge base K be a set of propositional defeasible implications
α |∼ β. Booth and Paris provide a construction with the following two immedi-
ate consequences: (i) Given all the ranked models of K, there is a model R∗ of K,
that we can call the minimal one, which assigns to every propositional valuation
v the minimal rank assigned to it by any of the ranked models of K. (ii) Propo-
sitional Rational Closure can be characterised using R∗. That is, α |∼ β is in the
(propositional) Rational Closure of K iff R∗ ⊩ α |∼ β. The intuition behind the
use of the ranked model R∗ for the definition of entailment is that it formalises
the presumption of typicality [31]: assigning to each valuation the lowest possible
rank, we model a reasoning pattern in which we assume that we are in one of
the most typical situations that are compatible with our knowledge base.

We can define an analogous construction for DRFOL, but to do so we first
need to address a technical restriction regarding typicality objects. More specifi-
cally, Theorem 2 requires an infinite set of typicality objects to be true in general.
The next result shows that ranked interpretations can be restricted to finite sets
of typicality objects, which is exactly what we need for our definition of defeasible
entailment.

Proposition 2. Let K ⊆ L ∪ L;. Then K has a unique minimal ranked model
iff it has a unique minimal ranked model over a finite set T ′ of typicality objects,
with the size of T ′ referred to as the order of K.

The order of K depends on the number of formulas in K and the number of
quantifier-bound variables in the formula, and is easy to calculate. The minimal
ranked interpretation is defined in two stages, combining the two minimisation
approaches used in propositional logic and DLs, respectively: first the rank rk∗K, a
minimisation with respect to the rank of the EHIs, in line with the propositional
approach [9,25]; then we refine it into the rank rkK, based on the minimisation
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of the position of the constants inside the EHIs, in line with the DL approach
[25,20,15].

Definition 8. Let K ⊆ L∪L; be of order n, and take T ′ ⊂ T to be a finite set
of typicality objects of cardinality n. The rank rk∗K : HT ′ → N ∪ {∞} is defined
as follows:

rk∗K(E) = min{rk(E) : rk ∈ RT ′ and rk ⊩ K}.

The minimal ranked model of K, which we denote by rkK : HT ′ → (N×N)∪
{∞}, is defined as:

• rkK(E) = ∞, if rk∗K(E) = ∞;
• rkK(E) = (i, j), if:

a) rk∗K(E) = i (i ∈ N); and
b) for every k ≥ j, there is no E ′ s.t. Typ′

E ⊃ TypE and rkK(E ′) = (i, k);
and

c) for every l < j, there is some E ′ s.t. Typ′
E ⊃ TypE and rkK(E ′) = (i, l).

The order is defined lexicographically: (i, j) ≤ (k, l) iff i < j, or i = j and
j ≤ l.

Given a consistent K and fixed a finite set of typicality constants, rkK exists
and is unique.

Proposition 3. Let K be a knowledge base with a ranked model rk. Then, for a
fixed a finite enriched Herbrand universe UT , K has exactly one minimal ranked
model rkK.

Note that by convention min ∅ = ∞, and rkK is a ranked interpretation over
T ′, since the lexicographic order defined in Definition 8 can easily be translated
into an order defined over N ∪ ∞ satisfying the constraints from Definition 5.
Hence rkK ∈ RT ′ . Intuitively, rkK is the result of first “pushing” every EHI
rank as low as possible amongst the models of K, similar to how it’s done in
the propositional approach, and then giving priority to the EHIs that have a
bigger set of objects considered typical. That is, a bigger set Typ, in line with
the DL approach. This minimal ranked model can be used to define a defeasible
entailment relation for DRFOL:

Definition 9. Let K ⊆ L ∪ L; and α ∈ L ∪ L;. Then α is in the Rational
Closure of K, denoted K |≈rc α, iff rkK ⊩ α.

The idea is that we give preference to the EHIs in which the set of typical
individuals is maximal. That is, we assume that as many objects as possible
behave according to our expectations.

Example 3. Assume K as in Example 2. The order of K is 2, so we build our
minimal model rkK using the set of EHIs HT ′ , where the set of typical constants
is T ′ = {t1, t2}. Each EHI E satisfying K will be assigned rank rk∗K′(E) = 0. That
is, all the EHIs in which, given two constants a, b ∈ TypE , if a is an elephant
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and b is a keeper, a likes b but, if fred is a keeper, a does not like fred. Also,
if fred is a keeper and clyde is an elephant, clyde likes fred. All the other EHIs
will be assigned rank 1, apart those in which keepers and elephant are not
disjoint, that will have rank ∞. For example, the EHI E1 from Example 2 would
have rank 0, while E3 would have rank 1, since it does not satisfy the formula
elephant(x)∧keeper(y) ; likes(x, y) (E2 is not considered in rkK, since it uses the
constant t3).

Now extend K into K′ by adding the facts elephant(dustin) and keeper(george).
Also, add the unary predicate purple(x) to pred . The order of K′ is still 2, so we
build our minimal model rkK′ using again the set of EHIs HT ′ . Again, each EHI
E satisfying K′ will be assigned rank rk∗K′(E) = 0, while only the EHIs in which
elephants and keepers are not disjoint, and either dustin is not an elephant or
george is not a keeper, will have rank ∞.

We need to refine rk∗K into rkK looking at the relative sizes of the sets Typ
associated to each EHI. Among the EHIs E s.t. rk∗K(E) = 0, the ones in which
TypE is bigger are those in which TypE = T ∪ U. In order to satisfy K′, in such
EHIs it is necessary that fred is not a keeper. Such EHIs will have rank (0, 0)
in rkK′ . Since we have no information forcing the exceptionality of dustin and
george, such minimal models must satisfy likes(dustin, george), and we obtain the
intuitive conclusion that K′ |≈rc ⊤ ; likes(dustin, george).

Being a ranked interpretation, the desirable form of monotonicity (Rm)
holds. For example, note that all EHIs E at rank (0, 0) in the minimal model
rkK′ would either satisfy purple(a) or not for any a ∈ TypE , since it is irrele-
vant w.r.t. the satisfaction of K′. The outcome would be that, while satisfying
elephant(x) ∧ keeper(fred) ; ¬likes(x, fred) (which is in K′), rkK′ would not sat-
isfy elephant(x) ∧ keeper(fred) ; ¬purple(x), while it would satisfy elephant(x) ∧
purple(x) ∧ keeper(fred) ; ¬likes(x, fred).

More generally, Rational Closure, in the propositional and DL cases, satisfies
a number of attractive properties:

(Incl) α ∈ K implies K |≈rc α

(Smp) S = {α : K |≈rc α} is rational

It is straightforward that these properties carry over to our definition of |≈rc.

Theorem 3. |≈rc satisfies (Incl) and (Smp).

It is worthwhile delving a bit deeper into each of these properties. The first
one, (Incl), also known as Inclusion, simply requires that statements in K also
be defeasibly entailed by K. It is a meta-version of the (Refl) rationality pos-
tulate for propositional logic (described in Section 2) and for DRFOL (described
in Section 3). While the property itself might seem self-evident, it is instructive
to view it in concert with the definition of rkK. From this it follows that rkK,
which essentially defines Rational Closure, is the ranked interpretation in which
EHIs are assigned a ranking that is truly as low (i.e., as typical) as possible,
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subject to the constraint that rkK is a model of K. This aligns with the intu-
ition of propositional Rational Closure which requires of valuations in a ranked
interpretation to be as typical as possible.

(Smp) requires the set of statements corresponding to the Rational Closure
of K to be rational (cf. Definition 3). By virtue of Theorem 2, this requires de-
feasible entailment to be characterised by a single ranked interpretation, whence
the fact the property is also referred to as Single Model Property.

5 Related work

Defeasible reasoning is part of a broader research programme on conditional rea-
soning [1], most of which was developed for propositional logic. This paper falls
in the class of approaches aimed at moving beyond propositional expressivity.
Besides the many extensions of defeasible reasoning to DLs in the recent litera-
ture [5,15,25], there have also been proposals to extend this approach to FOL.
Most of these define a preference order on the domain [36,10,22], in line with
some of the aforementioned DL proposals, and present rationality postulates,
but they do not provide characterisations in terms of rationality postulates.
Others [21,29] are formally closer to our work in that they use preference orders
over interpretations.

Delgrande [21] proposes a semantics closer to the intuitions behind circum-
scription [33], giving preference to interpretations minimising counter-examples
to defeasible conditionals. On the other hand, Kern-Isberner and Thimm [29]
propose a technical solution much closer to the work we present here. Like ours,
their semantics is based on Herbrand interpretations. They define ordinal condi-
tional functions over the set of Herbrand interpretations, obtaining a structure
that is very close to our ranked interpretations. They identify some individuals
as representatives of a conditional. This is done to formalise the same intuition
(or, at least, an intuition that is very similar) that underlies our decision to intro-
duce typicality objects. Apart from other formal differences (e.g. the expressivity
of their language is slightly different), their work focuses on the definition of a
notion of entailment based on a specific semantic construction carried over from
the propositional framework known as c-representations of a conditional knowl-
edge base [26,27]. In contrast, our focus in this paper is on getting the theoretical
foundations of defeasible reasoning for restricted FOL in place. Thus, our work
here is centred around a representation result that provides a characterisation
of the semantics in terms of structural properties. And while we present some
results on defeasible entailment, we have left a more in-depth study of this im-
portant topic as future work. Indeed, it is our conjecture that the foundations
we have put in place in this paper will allow for the definition of more than one
form of defeasible entailment. At the same time, a more in-depth comparison
with the proposal of Kern-Isberner and Thimm remains to be done.

Kern-Isberner and Beierle [28] and Beierle et al. [2,3] use the same semantic
approach of Kern-Isberner and Thimm [29] to develop an extension of Pearl’s
System Z [34] for first-order logic, but they restrict their attention to unary
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predicates. System Z is a form of entailment that is very close to the approach
we introduce here.

Brafman [10] suggests preference orders over the domain should result in
forms of reasoning quite different from the use of preference orders on interpre-
tations, comparable to the difference between statistical and subjective readings
of probabilities. We leave an investigation of the differences between these two
modelling solutions as future work.

We conclude this section with some remarks on the differences between DR-
FOL and the defeasible DL DALC [15]. When DALC is stripped of existential
and value restrictions and confined to TBox statements, and when DRFOL is
restricted to unary predicates and open implications (defeasible and classical),
every concept C in DALC can be mapped to a compound C(x) in DRFOL, and
vice versa. It is then possible to obtain a result that is analogous to the propo-
sitional case, with one exception: a defeasible implication of the form C(x) ; ⊥
has a meaning that is different than C ⊏∼ ⊥, its DALC counterpart.

This marks an important distinction between DRFOL and both the proposi-
tional KLM framework and DALC, in which classical statements are equivalent
to certain defeasible implications. In the propositional case, α is equivalent to
¬α |∼ ⊥ (R ⊩ α iff R ⊩ ¬α |∼ ⊥ for all R) while, for DALC, C ⊑ ⊥ is equiva-
lent to C ⊏∼ ⊥. But in DRFOL, defeasible implications cannot inform us about
compounds or classical implications. Formally, rational satisfaction sets do not
necessarily satisfy the following postulate:

(Sub)
A(x⃗) ; ⊥ ∈ S
A(x⃗) → ⊥ ∈ S

Note nevertheless that for a ground compound α (including those containing
0-ary predicates) it is indeed the case that α ; ⊥ is equivalent to α → ⊥. It
is when α is an open compound that (Sub) need not hold. As result, DRFOL
provides the domain modeler with greater flexibility in that it leaves open the
possibility of there being only atypical objects, something that is not possible in
the propositional and DL cases.

6 Conclusion and future work

In this paper, we have laid the theoretical groundwork for KLM-style defeasible
RFOL. Our primary contribution is a set of rationality postulates describing the
behaviour of DRFOL, a typicality semantics for interpreting defeasibility, and
a representation result, proving that the proposed postulates characterise the
semantic behaviour precisely.

With the theoretical core in place, we then proceeded to define a form of
defeasible entailment for DRFOL that can be viewed as the DRFOL equivalent
of the propositional form of defeasible entailment known as Rational Closure.

With a suitable definition of DRFOL defeasible entailment in place, the next
step is to design algorithms for computing DRFOL defeasible entailment. Here
we plan to draw inspiration from both the propositional and DL cases, where
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defeasible entailment can be reduced to a series of classical entailment checks,
sometimes in polynomial time and with a polynomial number of classical entail-
ment checks.

The theoretical framework presented in this paper also places us in a position
to investigate extensions to other restricted versions of first-order logic.
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KLM-Style Defeasibility for Restricted First-Order Logic
-

Appendix with proofs

The propositions that are not present in the main article are indicated with
an asterisk.

A Preliminaries

In this section we collect a number of technical results that will be useful in
later proofs. We assume that the first-order language Σ is fixed (and satisfies
the constraints in Section 2), and that the set T of typicality objects is fixed and
countably infinite. First of all, it is convenient to be able to translate between
Herbrand semantics and standard first-order semantics, as this allows us to use
classical tools such as the compactness theorem. We recall the basic definitions:

Definition 10. A first-order interpretation is a tuple I = ⟨D, ν, ·I⟩, where D
is the non-empty domain, ν : var → D is a valuation function on free variables,
and ·I is an interpretation function that interprets symbols in Σ as follows:

1. a predicate symbol α ∈ pred is mapped to a relation αI ⊆ Dar(α).
2. a constant symbol c ∈ const is mapped to an element of the domain cI ∈ D.

Satisfaction for first-order formulas is defined as usual with respect to an
interpretation I, and will be denoted by the symbol ⊩. In general, first-order
interpretations are strictly more expressive than Herbrand interpretations. If
we restrict our attention to RFOL formulas, however, then it turns out that
Herbrand interpretations are expressive enough:

Lemma 1 (*). Let I = ⟨D, ν, ·I⟩ be any first-order interpretation. Then there
exists some E ∈ HT and φ : var → TypE such that:

1. For any A(x⃗) ∈ L, I ⊩ ∀x⃗A(x⃗) iff E ⊩ A(x⃗).
2. For any A(x⃗) ∈ L, I ⊩ A(x⃗) iff E ⊩ A(φ(x⃗)).

Proof. By the Löwenheim-Skolem theorem, D can be assumed to be at most
countable, and hence there exists some surjection π : T → D. Consider the
extension of π to π̃ : UT → D defined as follows:

π̃(c) =

{
cI if c ∈ U
π(c) if c ∈ T

Let E be the enriched Herbrand interpretation defined by the following cri-
terion: E contains a ground atom α(c1, . . . , cn) iff I ⊩ α(π̃(c1), . . . , π̃(cn)). By
induction this implies that E satisfies a ground compound A(c1, . . . , cn) iff I ⊩
A(π̃(c1), . . . , π̃(cn)).
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To show that E satisfies property 1, consider any formula A(x1, . . . , xn) ∈
L. Then E ⊩ A(x1, . . . , xn) iff for all substitutions φ : var → UT we have
E ⊩ A(φ(x1), . . . , φ(xn)), which from the previous paragraph is true iff I ⊩
A(π̃(φ(x1)), . . . , π̃(φ(xn))). But the substitutions φ are arbitrary, and π̃ is sur-
jective by assumption, hence this is true iff I ⊩ ∀x1, . . . , xnA(x1, . . . , xn).

To show that E satisfies property 2, let π̃−1 : D → T be any inverse to
π̃ and consider the substitution φ : var → TypE defined by φ(x) = π̃−1(xI).
Then it follows from the definition of E that for any A(x1, . . . , xn) ∈ L, E ⊩
A(φ(x1), . . . , φ(xn)) iff I ⊩ A(π̃(φ(x1)), . . . , π̃(φ(xn))). But π̃(φ(xi)) = xIi by
construction, hence this is true iff I ⊩ A(x1, . . . , xn) as required.

We will also find it useful to be able to take an EHI and restrict our attention
to a subset of its typicality objects. While a ranked interpretation doesn’t allow
for EHIs with different sets of typicality objects, we can mimic such a restriction
as follows:

Lemma 2 (*). Consider some E ∈ HT , and let T ⊆ TypE be a subset of the
typicality set of E. Then there exists some ET ∈ HT such that:

1. For any A(x⃗) ∈ L, E ⊩ A(x⃗) implies ET ⊩ A(x⃗).
2. For any A(x⃗) ∈ L and φ : var → T , ET ⊩ A(φ(x⃗)) iff E ⊩ A(φ(x⃗)).
3. For any φ : var → TypE , there exists some ψ : var → T such that for all

A(x⃗) ∈ L, ET ⊩ A(φ(x⃗)) iff E ⊩ A(ψ(x⃗)).

Proof. Let π : TypE → T be any surjection that is constant on T , and consider
the following extension of π to π̃ : UT → UT :

π̃(c) =

{
c if c ∈ Ue

π(c) if c ∈ TypE

Now define ET by the following criterion: ET contains a ground atom α(c1, . . . , cn)
iff E ⊩ α(π(c1), . . . , π(cn)). Then the rest of the proof follows the same reasoning
as that of Lemma 1.

Our next results concern the derived rules of rational satisfaction sets. We
note that the rules (Refl)-(Rm) are structurally the same as their propositional
counterparts, and hence any derived rule for propositional KLM knowledge bases
can be translated into a derived rule for rational satisfaction sets. The lemma
below, for instance, follows directly from this observation:

Lemma 3 (*). Let S be a rational satisfaction set. Then S satisfies the follow-
ing rule:

A(x⃗) ≼S B(y⃗), B(y⃗) ; C(z⃗) ∈ S
A(x⃗) ; ¬B(x⃗) ∨ C(z⃗) ∈ S

This allows us to prove a label-invariance principle for rational satisfaction
sets:
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Proposition 1. Let S be a rational satisfaction set. Then S satisfies (Per).

Proof. Suppose that A(x⃗) ; B(y⃗) ∈ S. To begin with, let φ : var → var be
a permutation such that φ(x⃗) ∩ (x⃗ ∪ y⃗) = ∅. Since φ is a permutation it has
an inverse and hence by (Typ) we have that A(φ(x⃗)) ≼S A(x⃗). By Lemma 3,
it follows that A(φ(x⃗)) ; ¬A(x⃗) ∨ B(y⃗) ∈ S. But then by (Irr) we conclude
that A(φ(x⃗)) ; ¬A(φ(x⃗)) ∨B(φ(y⃗)) ∈ S, and hence by (Refl) and (Rw) that
A(φ(x⃗)) ; B(φ(y⃗)) ∈ S as required.

To prove the general case, suppose that ψ : var → var is an arbitrary
permutation. In the previous argument, we can wlog. choose φ such that ψ(x⃗)∩
(φ(x⃗) ∪ φ(y⃗)) = ∅. But then we can run the argument twice; first, to show that
A(φ(x⃗)) ; B(φ(y⃗)) ∈ S, and then again to show that A(ψ(x⃗)) ; B(ψ(y⃗)) ∈ S.

Given a satisfaction set S, we say that the compounds A(x⃗), B(y⃗) are equally
typical with respect to S, denoted A(x⃗) ≡S B(y⃗), iff A(x⃗) ≼S B(y⃗) and B(y⃗) ≼S
A(x⃗). The equivalence class of a compound A(x⃗) ∈ L with respect to ≡S will
be denoted by [A(x⃗)]S . The following lemmas then follow from the fact that the
corresponding propositional rules are derivable [32, p. 46]:

Lemma 4 (*). Let S be a rational satisfaction set. Then S satisfies the follow-
ing rule:

A(x⃗) ≼S B(y⃗)

A(x⃗) ≡S A(x⃗) ∨B(y⃗)

Lemma 5 (*). Let S be a rational satisfaction set. Then S satisfies the follow-
ing rule:

A(x⃗) ; ⊥ ̸∈ S, B(y⃗) ; ⊥ ∈ S
A(x⃗) ≼S B(y⃗)

We say a compound A(x⃗) is consistent with respect to S iff A(x⃗) ; ⊥ ̸∈
S, and define the set of such formulas by L+

S . In other words, the consistent
compounds are those that are not considered impossibly atypical with respect
to S. A nice property of consistent formulas is that the relation ≼S restricts to
a true preorder over L+

S , a proof of which can be directly translated from the
propositional case [32, p. 46]:

Lemma 6 (*). Let S be a rational satisfaction set. Then ≼S is a transitive,
reflexive and total relation on L+

S .

The following technical lemmas will be required later:

Lemma 7 (*). Let S be a rational satisfaction set. Then S satisfies the follow-
ing axiom, where φ : var → var is any variable substitution:

A(x⃗) ≼S B(y⃗), B(y⃗) ; C(z⃗) ∈ S
A(x⃗) ; ¬B(φ(y⃗)) ∨ C(φ(z⃗)) ∈ S
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Proof. As var is infinite, there exists some permutation ψ : var → var such
that (ψ(y⃗)∪ψ(z⃗))∩x⃗ = ∅. By (Per), we have that B(ψ(y⃗)) ; C(ψ(z⃗)) ∈ S, and
by applying (Typ) symmetrically we get B(y⃗) ≡S B(ψ(y⃗)). But then by Lemma
6 we have A(x⃗) ≼S B(ψ(y⃗)), and hence by Lemma 3 that A(x⃗) ; ¬B(ψ(y⃗)) ∨
C(ψ(z⃗)) ∈ S. But the variables on either side of this implication are disjoint by
our choice of ψ, and thus by (Irr) we conclude that A(x⃗) ; ¬B(φ(y⃗))∨C(φ(z⃗))
as required.

Lemma 8 (*). Let S be a rational satisfaction set. Then S satisfies the follow-
ing rule, where A(x⃗) ∈ L is any formula:

B(y⃗) ∈ SC

A(x⃗) ; B(y⃗) ∈ S

Proof. Suppose that B(y⃗) ∈ SC . Then by (Sup), we have that ¬B(y⃗) ; ⊥ ∈ S.
But this implies that A(x⃗) ≼S ¬B(y⃗), and hence by Lemma 7 that A(x⃗) ;

B(y⃗) ∨ ⊥ ∈ S, which in turn implies by (Refl) that A(x⃗) ; B(y⃗) ∈ S.

Finally, the classical part of S is closed under classical entailment, courtesy
of the (Cla) axiom. The following lemma shows that the defeasible part of S is
also closed under a form of classical entailment:

Lemma 9 (*). Given A(x⃗) ∈ L, consider the following set of formulas:

Γ = {B(φ(y⃗)) → C(φ(z⃗)) : B(y⃗) ∈ [A(x⃗)]S ,

B(y⃗) ; C(z⃗) ∈ S and φ : var → var}

Then we have that A(x⃗) ; D(w⃗) ∈ S iff Γ ∪ SC |= A(x⃗) → D(w⃗).

Proof. The “only if” direction follows directly from the definitions, so suppose
that Γ ∪ SC |= A(x⃗) → D(w⃗). By the compactness theorem there are finite
sets Γ ′ ⊆ Γ and S ′

C ⊆ SC such that Γ ′ ∪ S ′
C |= A(x⃗) → D(w⃗). Suppose that

Γ ′ = {Bi(φi(y⃗i)) → Ci(φi(z⃗i)) : 1 ≤ i ≤ n}. Then by the deduction theorem the
following formula is a classical tautology:∧

1≤i≤n

(
Bi(φi(y⃗i)) → C(φ(z⃗i))

)
∧

∧
α∈S′

C

α

→
(
A(x⃗) → D(w⃗)

)
Letting Ψ represent the conjunction of the formulas in Γ ′, and ∆ the con-

junction of formulas in S ′
C , this implies that A(x⃗) ∧ Ψ ∧ ∆ → D(w⃗) is a clas-

sical tautology. But by Lemma 7, Lemma 8, (Refl) and (And) we have that
A(x⃗) ; A(x⃗) ∧ Ψ ∧∆ ∈ S. Hence by (Rw) we conclude that A(x⃗) ; D(w⃗) ∈ S
as required.

By translating between EHIs and first-order structures using Lemma 1, we
can rephrase this in terms of EHIs:
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Corollary 1 (*). Given A(x⃗) ∈ L, consider the following set of formulas:

Γ = {B(φ(y⃗)) → C(φ(z⃗)) : B(y⃗) ∈ [A(x⃗)]S ,

B(y⃗) ; C(z⃗) ∈ S and φ : var → var}

Then A(x⃗) ; D(w⃗) ∈ S iff for all E ∈ HT and ψ : var → TypE such that
E ⊩ ψ(Γ ) and E ⊩ ψ(SC), we have E ⊩ A(ψ(x⃗)) → D(ψ(W⃗ )).

Proof. The “only if” direction is immediate from the definitions, so suppose that
for all E ∈ HT and ψ : var → TypE such that E ⊩ ψ(Γ ) and E ⊩ ψ(SC), we
have E ⊩ A(ψ(x⃗)) → D(ψ(W⃗ )). We will show that Γ ∪SC |= A(x⃗) → D(w⃗), and
hence by Lemma 9 that A(x⃗) ; D(w⃗) ∈ S.

Let I = ⟨D, •I⟩ be any first-order model of Γ ∪ SC . Then by Lemma 1,
there exists some E ∈ HT and ψ : var → TypE such that for all B(x⃗) ∈ L,
E ⊩ B(ψ(x⃗)) iff I ⊩ B(x⃗). But then E ⊩ ψ(Γ ) and E ⊩ ψ(SC). By assumption,
this implies E ⊩ A(ψ(x⃗)) → D(ψ(W⃗ )) and thus I ⊩ A(x⃗) → D(w⃗) as required.

B Proofs for Section 3

Now let us turn to the main technical result of the paper, namely a proof of
the representation result. This consists of both a soundness direction (Theorem
1) and a completeness direction (Theorem 2). In general, soundness is usually
easier to prove, and DRFOL is no exception:

Theorem 1. For every ranked interpretation rk, Srk is a rational satisfaction
set.

Proof. In this proof, let Γ denote the set of compounds and classical implications
satisfied by rk.

1. (Refl) Let A(x⃗) ∈ L be any formula. Then for any E ∈ minrk H rk
T (A(x⃗))

and φ : var → TypE , E ⊩ A(φ(x⃗)) vacuously implies itelf, and hence rk ⊩
A(x⃗) ; A(x⃗).

2. (Rw) Suppose rk ⊩ A(x⃗) ; B(y⃗) and |= B(y⃗) → C(z⃗). Now consider any
E ∈ minrk H rk

T (A(x⃗)) and φ : var → TypE such that E ⊩ A(φ(x⃗)). By
hypothesis, E ⊩ B(φ(y⃗)) which implies E ⊩ C(φ(z⃗)). Thus rk ⊩ A(x⃗) ;

C(z⃗).
3. (Lle) Suppose rk ⊩ A(x⃗) ; C(z⃗), |= A(x⃗) → B(y⃗) and |= B(y⃗) → A(x⃗).

Now consider any E ∈ minrk H rk
T (B(y⃗)) and φ : var → TypE such that

E ⊩ B(φ(y⃗)). Note that the equivalence implies that E ⊩ A(φ(x⃗)), and also
that minrk H rk

T (A(x⃗)) = minrk H rk
T (B(y⃗)). Thus E ∈ minrk H rk

T (A(x⃗)) and
we have E ⊩ C(φ(z⃗)) by hypothesis. This implies that rk ⊩ B(y⃗) ; C(z⃗).

4. (And) Suppose rk ⊩ A(x⃗) ; B(y⃗) and rk ⊩ A(x⃗) ; C(z⃗). Now consider
any E ∈ minrk H rk

T (A(x⃗)) and φ : var → TypE such that E ⊩ A(φ(x⃗)).
By hypothesis E ⊩ B(φ(y⃗)) and E ⊩ C(φ(z⃗)), and hence rk ⊩ A(x⃗) ;

B(y⃗) ∧ C(z⃗).



KLM-Style Defeasibility for Restricted First-Order Logic 21

5. (Or) Suppose rk ⊩ A(x⃗) ; C(z⃗) and rk ⊩ B(y⃗) ; C(z⃗). Now consider
any E ∈ minrk H rk

T (A(x⃗) ∨ B(y⃗)) and φ : var → TypE such that E ⊩
A(φ(x⃗)) ∨ B(φ(T⃗ )). Then wlog assume that E ⊩ A(φ(x⃗)), and hence E ∈
minrk H rk

T (A(x⃗)). By hypothesis, this implies that E ⊩ C(φ(z⃗)), and hence
rk ⊩ A(x⃗) ∨B(y⃗) ; C(z⃗).

6. (Rm) Suppose rk ⊩ A(x⃗) ; C(z⃗). Now assume that rk ̸⊩ A(x⃗) ; ¬B(y⃗).
Thus there is at least one E ∈ minrk H rk

T (A(x⃗)) and φ : var → TypE such
that E ⊩ A(φ(x⃗)) and E ⊩ B(φ(y⃗)). But this implies that minrk H rk

T (A(x⃗)∧
B(y⃗)) ⊆ minrk H rk

T (A(x⃗)), and hence A(x⃗) ∧ B(y⃗) ; C(z⃗). Thus either
rk ⊩ A(x⃗) ; ¬B(y⃗) or A(x⃗) ∧B(y⃗) ; C(z⃗).

7. (Cla) Suppose that Γ |= A(x⃗). Then for every E ∈ H rk
T , E ⊩ Γ and hence

E ⊩ A(x⃗). Thus rk ⊩ A(x⃗).
8. (Sup) Suppose that rk ⊩ A(x⃗). But then by definition, there can be no

E ∈ minrk H rk
T (¬A(x⃗)), and hence rk ⊩ ¬A(x⃗) ; ⊥.

9. (Typ) Let φ : var → var be any variable substitution. Now consider
any E ∈ minrk H rk

T (A(x⃗) ∨ A(φ(x⃗))) and ψ : var → TypE such that
E ⊩ A(ψ(x⃗)) ∨ A(ψ(φ(x⃗))). Then clearly E ∈ H rk

T (A(x⃗)). But this implies
that rk ̸⊩ A(x⃗) ∨A(φ(x⃗)) ; ¬A(x⃗).

10. (Irr) Suppose that rk ⊩ A(x⃗) ; B(x⃗, y⃗), where x⃗ ∩ y⃗ = ∅, and that φ :
var → var is some variable substitution. Now consider any E ∈ minrk H rk

T (A(x⃗)
and ψ : var → TypE such that E ⊩ A(ψ(x⃗)). But we can wlog. take
ψ to agree with φ over the variables in y⃗, and hence E ⊩ B(φ(y⃗)). Thus
rk ⊩ A(x⃗) ; B(x⃗, φ(y⃗)).

11. (Imp) Suppose that rk ⊩ A(φ(x⃗)) ; ⊥ for all φ : var → var ∪ TypE . Now
consider any E ∈ H rk

T , and suppose for contradiction that E ⊩ A(ψ(x⃗) for
some ψ : var → UT . But then there is some φ : var → var ∪ U such that
H rk

T (A(φ(x⃗))) ̸= ∅, a contradiction. Hence we conclude rk ⊩ A(x⃗).

To prove the completeness direction, we adapt the proof of the representation
result due to Lehmann and Magidor [32]. The main idea is to show that the
defeasible implications in a given rational satisfaction set can be completely
characterised by normal EHIs, which are EHIs that in a certain sense characterise
the defeasible consequences of a given compound A(x⃗). By ranking these normal
EHIs appropriately, we obtain a ranked interpretation that exactly characterises
the satisfaction set. Normal EHIs are formally defined as follows:

Definition 11. Let S be a rational satisfaction set. Then E ∈ HT is normal
for a formula A(x⃗) ∈ L with respect to S iff the following properties hold:

1. E ⊩ α for all α ∈ SC .
2. E ⊩ A(φ(x⃗)) for some φ : var → TypE .
3. for all B(y⃗) ∈ [A(x⃗)]S and φ : var → TypE , B(y⃗) ; C(z⃗) ∈ S implies that

E ⊩ B(φ(y⃗)) → C(φ(z⃗)).

The set of normal EHIs for a compound A(x⃗) with respect to S is denoted
normS(A(x⃗)). For the rest of this section, we will suppose that a rational sat-
isfaction set S has been fixed. We will then construct a ranked interpretation
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rk : HT → Ω ∪ {∞} such that S = Srk, thereby proving Theorem 2. To begin
with, we will prove our initial claim that normal EHIs characterise defeasible
consequence in S:

Lemma 10 (*). A(x⃗) ; B(y⃗) ∈ S iff for every E ∈ normS(A(x⃗)) and substi-
tution φ : var → TypE we have E ⊩ A(φ(x⃗)) → B(φ(y⃗)).

Proof. The “only if” direction follows from the definitions, so suppose for the
sake of contradiction that A(x⃗) ; B(y⃗) ̸∈ S, and yet for every E ∈ normS(A(x⃗))
and φ : var → TypE we have E ⊩ A(φ(x⃗)) → B(φ(y⃗)). By Corollary 1, A(x⃗) ;
B(y⃗) ̸∈ S iff there is some (not necessarily normal) E ∈ HT and φ : var → TypE
such that E ⊩ φ(Γ ), E ⊩ φ(SC) and E ̸⊩ A(φ(x⃗)) → B(φ(y⃗)). Note that this
implies E ⊩ A(φ(x⃗)) and E ̸⊩ B(φ(y⃗)).

Let T be the set of typicality objects in the image of φ, and consider the
EHI ET ∈ HT given by applying Lemma 2 to T . We claim that ET is normal
for A(x⃗). Firstly, by part 2 of Lemma 2, ET ⊩ A(φ(x⃗)) since E ⊩ A(φ(x⃗)).
Secondly, suppose that C(z⃗) ∈ [A(x⃗)]S and C(z⃗) ; D(w⃗) ∈ S. Then by part
3 of Lemma 2, for any ψ : var → TypE there exists some χ : var → T such
that ET ⊩ C(ψ(z⃗)) → D(ψ(w⃗)) iff E ⊩ C(χ(z⃗)) → D(χ(w⃗)). But this latter
statement is true, as C(χ(z⃗)) → D(χ(w⃗)) ∈ φ(Γ ).

It remains to show that ET ⊩ α for every α ∈ SC . This is true iff for every
ψ : var → UT and every α ∈ SC we have ET ⊩ ψ(α). But ψ = χ ◦ η for some
η : var → var ∪ U and χ : var → TypE , and η(α) ∈ SC by (Ui) and (Ui). By
part 3 of Lemma 2, there exists some λ : var → T such that ET ⊩ χ(η(α)) iff
E ⊩ λ(η(α)). But again, λ(η(α)) ∈ φ(SC), so this latter statement is true, and
hence ET is normal for A(x⃗).

Finally, since ET ⊩ A(φ(x⃗)), we conclude by normality and our initial as-
sumption that ET ⊩ B(φ(y⃗)). On the other hand, E ⊮ B(φ(y⃗)), and hence by
part 2 of Lemma 2 we have ET ̸⊩ B(φ(y⃗)), a contradiction.

As a corollary of Lemma 10 we obtain a characterisation of consistency in
terms of normal EHIs:

Corollary 2 (*). A(x⃗) is consistent with respect to S iff A(x⃗) has a normal
EHI with respect to S.

Proof. If A(x⃗) ; ⊥ ∈ S, then normS(A(x⃗)) = ∅, as any normal EHI for A(x⃗)
would have to satisfy ⊥. On the other hand, if normS(A(x⃗)) = ∅, then Lemma
10 implies that A(x⃗) ; ⊥ ∈ S.

In fact, normal EHIs characterise not only the defeasible subset of S, but the
classical subset too:

Lemma 11 (*). A(x⃗) ∈ SC iff for every B(y⃗) ∈ L and E ∈ normS(B(y⃗)) we
have that E ⊩ A(x⃗).

Proof. The “only if” direction follows from the definitions, so suppose E ⊩ A(x⃗)
for every B(y⃗) ∈ L and E ∈ normS(B(y⃗)). Then by Lemma 10, for every B(y⃗) ∈
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L and φ : var → var ∪ U we have B(y⃗) ; A(φ(x⃗)) ∈ S. In particular, for all
φ : var → var ∪ U we have ¬A(φ(x⃗)) ; A(φ(x⃗)) ∈ S, and hence by (Rw)
that ¬A(φ(x⃗)) ; ⊥ ∈ S. Finally, by (Imp) we conclude that ¬A(x⃗) ∈ SC as
required.

There is an interplay between normal EHIs and the ≼S relation, which we
will exploit to prove the rest of the representation theorem:

Lemma 12 (*). Suppose that A(x⃗) ≼S B(y⃗) and E ∈ normS(A(x⃗)). If there
exists some φ : var → TypE such that E ⊩ B(φ(y⃗)), then E ∈ normS(B(y⃗)) and
A(x⃗) ≡S B(y⃗).

Proof. First we show that E ∈ normS(B(y⃗)). Suppose that C(z⃗) ∈ [B(y⃗)]S
and C(z⃗) ; D(w⃗) ∈ S, and let ψ : var → var be any substitution such
that x⃗ ∩ (ψ(z⃗) ∪ ψ(w⃗)) = ∅. Then by Lemma 6, A(x⃗) ≼S C(z⃗), and hence by
Lemma 7 we conclude A(x⃗) ; ¬C(ψ(z⃗)) ∨ D(ψ(w⃗)) ∈ S. But E ⊩ A(η(x⃗))
for some η : var → TypE by normality. Thus for any λ : var → TypE , by
picking substitutions carefully we conclude from normality that E ⊩ A(η(x⃗)) →
¬C(λ(z⃗)) ∨D(λ(w⃗)) and hence that E ⊩ C(λ(z⃗)) → D(λ(w⃗)) as required.

Next, suppose for contradiction that B(y⃗) ̸≼S A(x⃗), and hence that A(x⃗) ∨
B(y⃗) ; ¬B(y⃗) ∈ S by definition. But by Lemma 4 we have that A(x⃗) ≡S A(x⃗)∨
B(y⃗). Thus by normality, T ⊩ A(φ(x⃗))∨B(φ(y⃗)) → ¬B(φ(y⃗)), a contradiction.

Let Ω∗ = {⟨A(x⃗), E⟩ : A(x⃗) ∈ L, E ∈ normS(A(x⃗))}. We order elements of
Ω∗ using the relation ≼S as follows:

⟨A(x⃗), EA⟩ ≤ ⟨B(y⃗), EB⟩ iff A(x⃗) ≼S B(y⃗)

We now show that Ω∗ is a total preorder:

Proposition 4 (*). ≤ is reflexive, transitive and total over Ω∗.

Proof. By Corollary 2, ⟨A(x⃗), E⟩ ∈ Ω∗ only if A(x⃗) is consistent. But since
⟨A(x⃗), EA⟩ ≤ ⟨B(y⃗), EB⟩ iff A(x⃗) ≼S B(y⃗), by Lemma 6 we conclude that ≤ is
transitive, reflexive and total on Ω∗.

Let Ω = Ω∗/ ∼ be the quotient of Ω∗ with respect to its equivalence classes,
which we denote by [α]≤ for α ∈ Ω∗. By Proposition 4, Ω is a linear poset,
though in general it is not well-ordered.

Lemma 13 (*). For any E ∈ HT , the following set is either empty or contains
a single equivalence class:

Ω(E) = {[⟨A(x⃗), E⟩]≤ : ⟨A(x⃗), E⟩ ∈ Ω∗}.
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Proof. Suppose that Ω(E) ̸= ∅, as else we are done already, and let [⟨A(x⃗), E⟩]≤,
[⟨B(y⃗), E⟩]≤ be any two of its elements. By Lemma 6, we have wlog. that A(x⃗) ≼S
B(y⃗). But since E is normal for B(y⃗), E ⊩ B(φ(y⃗)) for some φ : var → TypE .
By Lemma 12, this implies that A(x⃗) ≡S B(y⃗), and hence that [⟨A(x⃗), E⟩]≤ =
[⟨B(y⃗), E⟩]≤

This lets us construct a ranking function rk : HT → Ω ∪ {∞} as follows:

rk(E) =
{
x if Ω(E) = {x}
∞ if Ω(E) = ∅

Proposition 5 (*). The ranking function rk : HT → Ω ∪ {∞} is a ranked
interpretation.

Proof. 1. Consider some xdef=[⟨A(x⃗), E⟩]≤ ∈ Ω. Then by Lemma 13, Ω(E) = {x},
and thus rk(E) = x. But x was arbitrary, so we conclude that rk is surjective
on Ω.

2. Consider any A(x⃗) ∈ L. First, suppose that A(x⃗) ; ⊥ ∈ S, and consider any
E ∈ H rk

T (A(x⃗)). By Lemma 13, Ω(E) = { [⟨B(y⃗, E⟩]≤ } for some B(y⃗) ∈ L.
But then by Lemma 5 we have B(y⃗) ≼S A(x⃗), and hence by Lemma 12 we
conclude that E is normal for A(x⃗), a contradiction. Thus H rk

T (A(x⃗)) = ∅.
Next, suppose that A(x⃗) ; ⊥ ̸∈ S, and consider any E ∈ normS(A(x⃗)). Then
by Lemma 13, Ω(E) = x def= { [⟨A(x⃗), E⟩]≤ }. Clearly E ∈ H rk

T (A(x⃗)), but
we claim further that E ∈ minrk H rk

T (A(x⃗)). If not, then there exists some
y def= [⟨B(x⃗), E ′⟩]≤ ∈ H rk

T (A(x⃗)) such that y < x. But then B(y⃗) ≼S A(x⃗) and
there exists some φ : var → TypE such that E ′ ⊩ A(φ(x⃗)). By Lemma 12,
this implies that A(x⃗) ≼S B(y⃗), and hence x ≤ y, a contradiction.

Finally, we have the following result relating normal EHIs to minimal ele-
ments in rk:

Lemma 14 (*). For any formula A(x⃗) ∈ L, we have that minrk H rk
T (A(x⃗)) =

normS(A(x⃗)).

Proof. If A(x⃗) is inconsistent, we’re done already by Corollary 2, so assume A(x⃗)
is consistent. First, note that if E1, E2 ∈ normS(A(x⃗)) are any two normal EHIs
for A(x⃗), then by Lemma 13 we have that Ω(E1) = Ω(E2). Thus it suffices to
show that minrk H rk

T (A(x⃗)) contains only normal EHIs for A(x⃗).
Consider any E ∈ minrk H rk

T (A(x⃗)), and suppose thatΩ(E) = { [⟨B(y⃗), E⟩]≤ }.
Then E must be normal for A(x⃗), as otherwise for every E ′ ∈ normS(A(x⃗))
we would have [⟨B(y⃗), E⟩]≤ < [⟨A(x⃗), E ′⟩]≤. But by assumption E ⊩ A(φ(x⃗))
for some φ : var → TypE , and hence by Lemma 12 this would imply E ∈
normS(A(x⃗)), a contradiction.

This completes all the technical groundwork we need to prove the complete-
ness direction of the representation result:
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Theorem 2. For every rational satisfaction set S there exists a ranked inter-
pretation rk, over an infinite set of T of typicality objects, such that S = Srk.

Proof. Consider some A(x⃗) ; B(y⃗) ∈ L. Then by Lemmas 14 and 10, A(x⃗) ;
B(y⃗) ∈ S iff rk ⊩ A(x⃗) ; B(y⃗). On the other hand, consider some formula
A(x⃗) ∈ L. Then by Lemma 11 we conclude that rk ⊩ A(x⃗) iff E ⊩ A(x⃗) for all
B(y⃗) ∈ L and E ∈ normS(B(y⃗)). But this is true iff rk ⊩ A(x⃗) by construction.
Thus S = Srk.

C Proofs for Section 4

Theorem 2 has some limitations in that it requires an infinite set of typicality
objects to be true in general. In this section we detail some ways ranked in-
terpretations can be restricted to finite sets of typicality objects, which will be
useful for defining a basic notion of entailment for DRFOL knowledge bases.

First, consider a fixed finite set T ′ ⊂ T . Note that the set of EHIs over
T ′ is finite, as there are only finitely many possible atoms over the extended
Herbrand base BT ′ . Furthermore, given any such E ∈ HT ′ , we can define a
characteristic compound for E that parallels the notion of characteristic formula
for a propositional valuation:

Definition 12. Let E ∈ HT ′ be an EHI over T ′, and π : TypE → var any
injective function. Then the characteristic compound for E, denoted chπ(E), is
defined as follows:

chπ(E) =
∧

A(c⃗,⃗t)∈BT ′

±A(c⃗, π(⃗t))

Here, c⃗ is a tuple of constants, t⃗ is a tuple of objects in TypE , and ±A(x⃗, π(⃗t))
means A(c⃗, π(⃗t)) if E ⊩ A(c⃗, π(⃗t)), or ¬A(c⃗, π(⃗t)) otherwise.

Note that, while chπ(E) depends on π, the characteristic formula is never-
theless unique up to relabelling of variables and the order of clauses. For this
reason we will omit defining π explicitly where we refer to it. The important fact
about characteristic formulas is that they reflect satisfaction properties of the
underlying EHI E :

Lemma 15. Let E ∈ HT and E ′ ∈ HT ′ be any two EHIs over T and T ′

respectively such that E ⊩ φ(chπ(E ′)) for some φ : var → TypE . Then for
any compound A(x⃗) and substitution ψ : var → TypE′ , E ′ ⊩ A(ψ(x⃗)) iff E ⊩
A(φ ◦ π ◦ ψ(x⃗)).

Proof. We prove the claim by structural induction on compounds A(x⃗). First,
suppose that A(x⃗) is an atom. Then from Definition 12, E ′ ⊩ A(ψ(x⃗)) iff chπ(E ′)
contains the clause A(π ◦ ψ(x⃗)). But chπ(E ′) either contains this clause or it
contains its negation. Since E ⊩ φ(chπ(E ′)), E satisfies every clause of the char-
acteristic formula and hence this is all true iff E ⊩ A(φ ◦ π ◦ ψ(x⃗)), as required.
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Next, suppose A(x⃗) = ¬B(x⃗). Then E ′ ⊩ A(ψ(x⃗)) iff E ′ ̸⊩ B(ψ(x⃗)), which by
our induction hypothesis is true iff E ̸⊩ B(φ ◦ π ◦ ψ(x⃗)). But this in turn is true
iff E ⊩ A(φ ◦ π ◦ ψ(x⃗X)). Equally straightforward arguments work in the cases
of the other logical connectives.

The number of typicality objects required to model a defeasible formula de-
pends on the number of quantifier-bound variables in the formula. With this in
mind, we define the order of a formula A(x⃗) to be the length of the tuple x⃗.

Definition 13. For any ranked interpretation rk ∈ RT , the restriction of rk to
T ′, denoted rk∗ ∈ RT ′ , is defined by rk∗(E) = minrk H rk

T (chπ(E)).

To prove Lemma 18 later, which shows that rk agrees with rk∗ for formulas
of small enough order, it will be useful to have the following technical results:

Lemma 16. Let E ∈ HT be an EHI over T , A(x⃗) a compound of order ≤ |T ′|,
and φ : var → TypE a substitution such that E ⊩ A(φ(x⃗)). Then there exists
some E ′ ∈ H rk∗

T ′ (A(x⃗)) such that E ∈ H rk
T (chπ(E ′)).

Proof. Let σ : var → var be any permutation of var such that σ(x⃗) ⊆ π(T ′).
Note that at least one must exist since |x⃗| ≤ |T ′| by assumption. Define E ′ by
setting TypE′ = T ′, and for each ground atom B(c⃗, t⃗) having E ′ ⊩ B(c⃗, t⃗) iff
E ⊩ A(c⃗, φ ◦ σ−1 ◦ π(⃗t)). Then E ′ ∈ H rk∗

T ′ (A(x⃗)) because E ′ ⊩ A(π−1 ◦ σ(x⃗)),
and E ∈ H rk

T (chπ(E ′)) by construction.

Lemma 17. Let E ′ ∈ HT ′ be an EHI over T ′, and A(x⃗) a compound of order ≤
|T ′|. Then E ′ ∈ minrk∗ H rk∗

T ′ (A(x⃗)) iff there exists some E ∈ minrk H rk
T (A(x⃗)),

φ : var → TypE and ψ : var → TypE′ such that E ⊩ φ(chπ(E ′)) and E ⊩
A(φ ◦ π ◦ ψ(x⃗)).

Proof. Suppose that E ′ ∈ minrk∗ H rk∗
T ′ (A(x⃗)). This implies that rk∗(E ′) ̸= ∞,

so by definition there exists some E ∈ minrk H rk
T (chπ(E ′)) and φ : var → TypE

such that E ⊩ φ(chπ(E ′)). But by assumption there is some ψ : var → TypE′

such that E ′ ⊩ A(ψ(x⃗)), which by Lemma 15 implies that E ⊩ A(φ ◦ π ◦ ψ(x⃗)),
and hence E ∈ H rk

T (A(x⃗)). It remains to prove that E is minimal; suppose not,
then there exists some E2 ∈ H rk

T (A(x⃗)) such that rk(E2) < rk(E). By Lemma
16 there thus exists some E ′

2 ∈ H rk∗
T ′ (A(x⃗)) such that E2 satisfies a typical

instance of chπ(E ′
2). But then we have that rk∗(E ′

2) ≤ rk(E2) < rk(E) = rk∗(E ′),
contradicting minimality of E ′.

On the other hand, suppose that E ∈ minrk H rk
T (A(x⃗)), and that there is

some φ : var → TypE and ψ : var → TypE′ such that E ⊩ φ(chπ(E ′)) and
E ⊩ A(φ ◦ π ◦ ψ(x⃗)). By Lemma 15, this implies that E ′ ⊩ A(ψ(x⃗)), and hence
E ′ ∈ H rk∗

T ′ (A(x⃗)). Suppose that E ′ is not minimal, however, and so there exists
some E ′

2 ∈ minrk∗ H rk∗
T ′ (A(x⃗)) such that rk∗(E ′

2) < rk∗(E ′). But by definition this
implies that there is some E2 ∈ minrk H rk

T (chπ(E2)) such that rk(E2) < rk(E). By
Lemma 15, however, we have that E2 ∈ H rk

T (A(x⃗)), contradicting the minimality
of E .
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The following lemma proves that rk∗ and rk agree for formulas of small
enough order:

Lemma 18. rk∗ satisfies the following properties, where n = |T ′| is the number
of typicality objects in T ′:

1. for all classical formulas α ∈ L, rk∗ ⊩ α iff rk ⊩ α.
2. for all defeasible formulas α ∈ L; of order ≤ n, rk∗ ⊩ α iff rk ⊩ α.

Proof. 1. Consider a classical formula A(x⃗) → B(y⃗). Then rk ⊩ A(x⃗) → B(y⃗)
iff for every φ : var → const, rk ⊩ ¬A(φ(x⃗))∨B(φ(y⃗)). But this in turn is
true iff minrk H rk

T (A(φ(x⃗))∧¬B(φ(y⃗))) = ∅, which by Lemma 17, restricted
to ground case, is true iff minrk∗ H rk∗

T ′ (A(φ(x⃗)) ∧ ¬B(φ(y⃗))) = ∅.
2. Let A(x⃗) ; B(y⃗) be a defeasible formula of order ≤ n. First, suppose that

rk ⊩ A(x⃗) ; B(y⃗), and consider any E ′ ∈ minrk∗ H rk∗
T ′ (A(x⃗)). By Lemma

17, there is some E ∈ minrk H rk
T (A(x⃗)) such that E ∈ H rk

T (chπ(E ′)). But by
Lemma 15, this implies that E ′ satisfies a typical instance of A(x⃗) ∧ ¬B(y⃗)
only if E does, and hence by assumption we conclude that rk∗ ⊩ A(x⃗) ;

B(y⃗). Now, suppose instead that rk∗ ⊩ A(x⃗) ; B(y⃗), and consider any
E ∈ minrk H rk

T (A(x⃗)). If E satisfies any typical instance of A(x⃗) ∧ ¬B(y⃗),
then since the order A(x⃗) ; B(y⃗) is ≤ n, we can always find substitutions
φ : var → TypE and ψ : var → TypE′ such that E ⊩ A(φ ◦ π ◦ ψ(x⃗))
and E ⊩ ¬B(φ ◦ π ◦ ψ(y⃗)). But then by Lemma 17 there exists some E ′ ∈
minrk∗ H rk∗

T ′ (A(x⃗)) such that E ⊩ φ(chπ(E)). Finally, we conclude by Lemma
15 that E ′ satisfies a typical instance of A(x⃗)∧¬B(y⃗), a contradiction. Thus
rk ⊩ A(x⃗) ; B(y⃗) as expected.

This lets us define approximations to any given ranked interpretation using
a finite subset of typicality objects. In particular, if one only cares about satis-
faction for formulas of bounded order, then a finite set suffices to model them.
Thus we have the following corollary:

Proposition 2. Let K ⊆ L ∪ L;. Then K has a unique minimal ranked model
iff it has a unique minimal ranked model over a finite set T ′ of typicality objects,
with the size of T ′ referred to as the order of K.

Proof. Follow immediately from Lemma 18.

Proposition 3. Let K be a knowledge base with a ranked model rk. Then, for a
fixed a finite enriched Herbrand universe UT , K has exactly one minimal ranked
model rkK.

Proof. Given that K has at least one model, the existence of rk∗K and its unique-
ness is immediate from the definition of rk∗K.

We need to prove that, given rk∗K, it can be refined into exactly one minimal
ranked model rkK.

We can prove it by induction on the rank. Let R∗
i be the set of EHIs E s.t.

rk∗K(E) = i, and let R(i,j) be the set of EHIs E s.t. rkK(E) = (i, j).
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R(0,0) will be populated by the EHIs in R∗
0 with the biggest typicality sets,

that is, rkK(E) = (0.0) iff rk∗K(E) = 0 and there is no EHI E ′ s.t. rkK(E) = 0
and TypE′ ⊃ TypE .

R(0,0) must contain exactly such EHIs: adding other EHIs to R(0,0) we go
against condition (b) in Definition 8; if we move some EHIs in R(0,0) to an upper
rank, we go against condition (c) in Definition 8.

Let i ≥ 0 and j > 0. R(i,j) will be populated by the remaining EHIs in R∗
i

with the biggest typicality sets. That is, rkK(E) = (i.j) iff rk∗K(E) = i and there
is no EHI E ′ s.t. rkK(E) = i and TypE′ ⊃ TypE and E ′ /∈

⋃
k≤i,l<j R(k,l).

Also in this case, R(i,j) must contain exactly such EHIs: adding other EHIs
to R(i,j), we go against condition (b) in Definition 8; if we move some EHIs in
R(i,j) to an upper rank, we go against condition (c) in Definition 8.
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